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ABSTRACT

Most tabular-data generators match marginal statistics yet ignore causal structure,
leading downstream models to learn spurious or unfair patterns. We present Tab-
SCM, a mixed-type generator that preserves those causal dependencies. Start-
ing from a Completed Partially Directed Acyclic Graph (CPDAG) found by any
discovery algorithm, TabSCM (i) orients edges to a DAG, (ii) fits root-node
marginals with KDE or categorical frequencies, and (iii) learns topologically or-
dered structural assignments: conditional diffusion models for continuous chil-
dren and gradient-boosted trees for categorical ones. Ancestral sampling yields
semantically valid records and enables exact counterfactual queries. On seven
public datasets, encompassing healthcare, finance, housing, environment, Tab-
SCM matches or surpasses state-of-the-art GAN, diffusion, and LLM baselines
in statistical fidelity, downstream utility, and privacy risk, while also cutting rule-
violation rates and providing causally meaningful and robust counterfactual inter-
ventions. Because generation is decomposed into explicit equations, it runs up
to 583× faster than diffusion-only models and exposes interpretable knobs for
fairness auditing and policy simulation, making TabSCM a practical choice for
realism, explainability, and causal soundness.

1 INTRODUCTION

Synthetic data is increasingly recognized as a practical solution to many of
the challenges associated with real-world data: privacy constraints Jordon et al.
(2018); Chen et al. (2021), data sparsity Esteban et al. (2017); Frid-Adar
et al. (2018), access restrictions Goncalves et al. (2020), and fairness concerns
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Figure 1: Shows average error (Eq. 3) and average
training time of TabSCM against each baseline
method averaged over seven real-world datasets.

Veale & Binns (2017); Xu et al. (2018); Bar-
bierato et al. (2022). In regulated domains such
as healthcare, finance, and education, where the
availability of labeled, high-quality data is of-
ten limited, synthetic data can offer a privacy-
preserving and compliance-friendly alternative
to real data Goncalves et al. (2020); Jordon
et al. (2018).

While substantial progress has been made in
generating realistic synthetic data for images,
text, and time series Radford et al. (2018);
Ramesh et al. (2022); Dhariwal & Nichol
(2021); Rombach et al. (2022), tabular data re-
mains a uniquely challenging modality. Tabular
datasets frequently encode heterogeneous data
types, non-linear dependencies, and causal re-
lationships among variables. These causal de-
pendencies are essential for supporting counterfactual reasoning, robust decision-making, and fair
model behavior in high-stakes applications such as credit risk assessment, treatment effect estima-
tion, and resource allocation Louizos et al. (2017); Johansson et al. (2016).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite recent advances in generative modeling for tabular data, including methods such as TabD-
DPM Kotelnikov et al. (2023), TabSyn Zhang et al. (2024), TabDiff Shi et al. (2025), and GReaT
Borisov et al. (2023), the evaluation of generated data largely focuses on statistical fidelity (e.g.,
marginal/conditional distributions, pairwise correlations) or utility-based metrics (e.g., downstream
task performance). These criteria, however, are agnostic to the preservation of causal structure,
which is fundamental for ensuring that synthetic data supports valid inferences and avoids reinforc-
ing spurious patterns.

Moreover, existing state-of-the-art models often struggle to generate semantically valid samples but
generate out-of-domain entries that violate known constraints, see Table 4. Such issues limit their
applicability in real-world decision-making and high-stakes environments for which validity matters.

To address these limitations, we propose TabSCM, a synthetic data generation framework that lever-
ages structural causal models (SCMs) to explicitly model and preserve the underlying causal rela-
tionships in the data. By conditioning on the causal graph, TabSCM generates samples in a topolog-
ically ordered fashion, ensuring semantic validity, supporting counterfactual reasoning, and offering
greater transparency. In contrast to diffusion- or transformer-based approaches, our method is both
significantly faster and more interpretable, while producing higher-quality and causally coherent
synthetic data. This makes TabSCM a practical and principled tool for fair, explainable, and policy-
aware data generation.

In summary, our contributions are:

(1) A practical framework for mixed tabular data: We propose TabSCM, leveraging Structural
Causal Models (SCMs) that combine causal reasoning with decision trees and diffusion models.
By leveraging the causal structure, our method improves the computational time by up to 583×
in comparison to state-of-the-art diffusion methods. TabSCMs modularity significantly decreases
computational time on average while providing state-of-the-art statistical fidelity, see Section 1.

(2) Realistic, valid, and privacy-preserving synthetic data: Through extensive experiments, see
Section 6, we prove that our proposed method achieves competitive or better results in statistical
fidelity, utility, and privacy of generated data, and excels in the validity of generated samples in
contrast to diffusion-only methods.

(3) Additional insights with counterfactual interventions: We show that our method comes with
a natural extension of counterfactual interventions. This property is a useful addition and enables
meaningful simulations of “what-if” scenarios and enables the generation of out-of-distribution
(OOD) samples.

Our evaluation shows that TabSCM is able to generate privacy-preserving and valid samples while
maintaining a high utility for downstream learning tasks.

2 RELATED WORK

Causal aware generation. Causal aware generation integrates knowledge of cause-and-effect rela-
tionships between variables into the synthetic data generation process. Unlike traditional generative
models that rely solely on statistical correlations, causal models generate data in a way that respects
the underlying structural dependencies. Causal-GAN Kocaoglu et al. (2018) was one of the first
to incorporate causality into a Generative Adversarial Network (GAN). Causal-TGAN Wen et al.
(2022) is an adaptation tailored to tabular data. While delivering promising results, the evaluation
is limited, putting the generalizability in question. GOGGLE Liu et al. (2023) is another framework
that integrates causal graphs and generative modeling for tabular data generation. It directly learns
the adjacency matrix and leverages the causal structure, generating realistic samples. Both methods
deploy GANs. Contrarily, we use diffusion-based models to increase the sample quality in error
rates, downstream utility, and privacy (see Section 6).

Generative models for tabular data generation. Over the last years, Generative Adversarial Net-
works (GANs), Diffusion models, and LLMs have emerged as popular frameworks for tabular data
generation. While GAN-based methods TableGAN Park et al. (2018), CTGAN Xu et al. (2019), and
TVAE Xu et al. (2019) paved the way for deep learning for tabular data synthesis, they often fail to
capture the full diversity of the real data distribution. With the rise of diffusion-based architectures
in a wide range of deep learning applications, many diffusion-based tabular data generators such

2
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as TabSyn Zhang et al. (2024), TabDDPM Kotelnikov et al. (2023), and TabDiff Shi et al. (2025)
showed promising results in tabular data synthesis. The recent success of extracting and generating
language with LLMs led to various LLM-based methods for tabular data synthesis. One early work
includes GReaT Borisov et al. (2023) encoding tabular data into meaningful tokens, which are then
used to finetune an LLM. Various methods, including Pred-LLM Nguyen et al. (2024), Tabula Zhao
et al. (2023), Tabby Cromp et al. (2024), followed the approach and exploited LLMs to a certain
extent for generating tabular data.

3 PROBLEM SETUP

Let Dreal ∈ Rn×d denote a real-world tabular dataset consisting of n samples and d variables. Our
objective is to evaluate how well synthetic data generators preserve the causal structure encoded in
Dreal. We represent the causal structure of the data using a causal graph:

G = (V, E),
where V = {X1, X2, . . . , Xd} is the set of observed variables (nodes), and E ⊆ V × V is
the set of directed edges representing direct causal relationships between variables, i.e., (Xi →
Xj) ∈ E implies that Xi is a direct cause of Xj . For our theoretical framework, we as-
sume the causal sufficiency condition holds (i.e., no unobserved confounders), and that the data-
generating process is Markovian and faithful to a Directed Acyclic Graph (DAG) denoted by G.

X1

X3 X4

X2

ϵ1

ϵ3
ϵ2

ϵ4


X1 = f1(ϵ1)

X2 = f2(ϵ2)

X3 = f3(X1, ϵ3)

X4 = f4(X2, X3, ϵ4)

Figure 2: Minimal example of a system of four observed
variables Xi, and corresponding exogenous variables ϵi for
i = 1, 2, 3, 4. The causal relationships and interactions of
the observed variables are illustrated on the left-hand side
(causal graph G). On the right-hand side, we describe the
SCM for the associated causal graph G on the left.

A v-structure is a triplet of nodes
(Xi, Xj , Xk) such that (Xi → Xk)
and (Xj → Xk), where the nodes
Xi, Xj are not adjacent (i.e., not con-
nected by and edge). A Markov
equivalence class (MEC) consists
of DAGs encoding the same set
of conditional independence relations
among the nodes.

A Structural Causal Model (SCM)
provides a formal framework for rep-
resenting and reasoning about cause-
effect relationships between variables
in a system. Figure 2 illustrates a
minimal example of an SCM. Formally, an SCM is defined as a tuple

M = (G,F , E,PE),

where G = (V, E) denotes a causal graph, E = (ϵ1, . . . , ϵd) is a set of exogenous variables (noise),
F is a collection of structural assignments (or structural equations), where each Xi is defined as

Xi := fi(PAi, ϵi), (1)

where PAi denotes the set of parent variables of Xi in G Pearl (2000); Peters et al. (2017). The joint
distribution of the exogenous variables PE are mutually independent such that

PE :=

d∏
i=1

P(ϵi).

The graph structure and the mutual independence of the exogenous variables enable the causal fac-
torization of the joint probability distribution of the observables

P(X1, . . . , Xd) =

d∏
i=1

P(Xi|PAi), (2)

disentangling it into conditionals according to the structural assignments Pearl (2000).

4 PROPOSED METHOD

Here, we describe TabSCM, a model for tabular data generation utilizing a structural causal model
(SCM).

3
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Figure 3: The conceptual framework of our proposed
method, including i) causal discovery, ii) refining inferred
Causal graph, iii) learning structural assignments and con-
ditional sampling, and iv) Counterfactual Interventions.

Consider the topological ordering of
the structural assignments (1) linked
to each node of the underlying graph

fπ−1(1) ≺ fπ−1(2) ≺ · · · ≺ fπ−1(d),

where π : {1, . . . , d} → {1, . . . , d}
denotes the permutation of the set of
edges such that fπ−1(1) ≺ fπ−1(2)

indicates that node π−1(1) is a par-
ent of node π−1(2). Our proposed
method follows the topological order-
ing and starts at the root nodes. We il-
lustrate the conceptual framework of
TabSCM in Figure 3.

Root nodes. For each root node
{Xi : PAi = ∅; i = 1, . . . , d} ∈
V , we directly estimate its marginal
distribution P(Xi) based on the ob-
served data {xi

j}nj=1 from Dreal. For
continuous variables, we apply kernel
density estimation (KDE)

P̂(x) =
1

nh

n∑
j=1

K

(
x− xj

h

)
,

with a Gaussian kernel function K(u) := 1√
2π

exp (−u2

2 ). For categorical root nodes Xi, we esti-
mate the marginal distribution with relative frequencies for c = 1, . . . , C with:

P̂(Xi = c) =
1

n

n∑
j=1

1[x
(i)
j = c].

Conditional nodes. For each continuous non-root node Xi ∈ V with parent set PAi ̸= ∅, we aim to
model the conditional distribution P(Xi | PAi) using a conditional denoising diffusion probabilis-
tic model (DDPM). The diffusion model defines a forward process (diffusion) that gradually adds
Gaussian noise to the target variable Xi, and a reverse process that learns to denoise and reconstruct
Xi given its parents. Given a normalized input x(0)

i ∼ P(Xi | PAi), the forward process corrupts it
by gradually adding Gaussian noise q(x(t)

i | x(0)
i ) = N (x

(t)
i ;

√
ᾱtx

(0)
i , (1− ᾱt)I), where x(0)

i is the
clean data sample, x(t)

i is the noisy version at timestep t, and {ᾱt}Tt=1 is the cumulative product of
noise schedule coefficients

ᾱt =

t∏
s=1

αs, αs = 1− βs.

We train a neural network hθ to predict the noise added at each step, conditioned on the parents PAi

and the uniformly distributed diffusion timestep t,

ĥ = hθ(x
(t)
i ,PAi, t).

We train the model to minimize the mean-squared error between true and predicted noise,

Lt = E
(x

(0)
i ,ϵ,t)

[∥∥∥ϵ− hθ

(
x
(t)
i ,PAi, t

)∥∥∥2
2

]
.

For categorical nodes, we deploy a boosted tree classifier Friedman (2001) providing a flexible and
robust approximation.

Counterfactual reasoning. Structural Causal Model enable counterfactual reasoning, which is the
ability to ask what would have happened if a variable had taken a different value. This is achieved by
explicitly modeling how variables in a system interact through causal mechanisms (i.e., functional
assignments that describe how each variable is generated from its causes and some noise). The key
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idea is that by altering these mechanisms only for specific variables, we can simulate alternative,
hypothetical counterfactual instances. Formally, a counterfactual intervention refers to modifying
the data-generating process by setting a variable Xi ∈ V to a fixed value xi, and keeping the rest of
the model unchanged. This is denoted by the do-operator do(Xi = xi), following the framework
introduced by Pearl (2000; 2012). The intervention replaces the structural assignment for Xi with a
fixed assignment

Xi = xi,

resulting in a new SCM denoted by MXi=xi
. Following the topological ordering, all descendant

variables are generated based on the fixed assignment Xi = xi instead of the original functional
assignment fi(PAi, ϵi). In practice, sampling from the joint distribution w.r.t. the intervention
Xj = xj includes:

(1) SAMPLE EXOGENOUS VARIABLES: Draw sample of the noise vector E = (ϵ1, . . . , ϵd) ∼ PE ,
with i.i.d. ϵi.

(2) SET INTERVENTION: Replace the structural assignment for Xj with Xj := xj , removing
the dependence on PAj and ϵj . This step replaces the causal mechanism for Xj and is the main
difference to conditioning which leaves the structural assignment intact.

(3) FORWARD SAMPLING: Follow the topological ordering and generate xi accordingly

xi =

{
xj if i = j

xi ∼ P(Xi|PAi) otherwise

Steps (1)–(3) generate samples from the interventional distribution

P
(
X | do(Xj = xj)

)
.

For unit-level counterfactuals, one would first condition on the factual observation to infer the
posterior exogenous noise Ê ∼ P

(
E | X = xobs

)
, and then reuse the same Ê in Steps (2)–(3).

5 EXPERIMENTAL SETUP

5.1 DATASETS

We use a total of seven real-world datasets covering classification and regression tasks from various
application domains. The data covers large-scale datasets (>250k samples) and small-scale datasets
(<1000 samples).

Classification. The Adult Census Income Becker & Kohavi (1996) dataset contains demographic
and employment-related information from the 1994 U.S. Census to predict whether an individual
earns more than $50,000 annually. The Early Stage Diabetes Risk Prediction Islam et al. (2019)
dataset contains 520 patient records collected via questionnaires at Sylhet Diabetes Hospital in
Bangladesh, including 16 demographic and symptom-related features such as age, gender, polyuria,
polydipsia, and sudden weight loss. The task is to predict whether an individual is diabetic. The
Home Equity Line of Credit (HELOC) dataset1contains anonymized credit report features with 24
numeric variables detailing borrowers’ credit behaviors. The task is to classify whether an applicant
will default (or fail to repay) their HELOC within two years. The Loan dataset2contains over 250k
historic consumer loan applications from India, including demographic, financial, and behavioral
attributes. The task is to classify applicants into likely defaulters or reliable borrowers. The Magic
Gamma Telescope dataset Bock (2004) simulates the detection of high-energy gamma particles us-
ing a ground-based atmospheric Cherenkov telescope and imaging techniques. The task is to classify
events as gamma-ray signals or background cosmic-ray-induced hadronic showers.

Regression. The Beijing PM2.5 dataset Liang et al. (2015) includes hourly PM2.5 measurements
from the U.S. Embassy in Beijing, along with meteorological data from Beijing Capital International
Airport. The goal is to predict PM2.5 concentration levels. The California Housing dataset Pace
& Barry (1997) contains district-level demographic and housing information across California. The
task is to predict the median house value for each district.

1https://tinyurl.com/2r4mxjbp
2https://tinyurl.com/44eex2yp
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5.2 EVALUATION METRICS

Here, we briefly describe the metrics used for each evaluation category along three dimensions i)
statistical similarity, ii) downstream utility, and iii) privacy.

Statistical Similarity: We follow the two-folded evaluation of the statistical similarity proposed
by SDMetrics3 and used by prior works Zhang et al. (2024); Shi et al. (2025). This includes column-
wise density estimation and correlation error calculation.

For each continuous column i ∈ Cnum, we use the Kolmogorov–Smirnov (KS) test, which quantifies
the maximum absolute difference between the empirical cumulative distribution functions (CDFs)
of the real and synthetic data. The KS statistic is defined as

KS(i) := sup
x

∣∣F real
i (x)− F syn

i (x)
∣∣ ,

where F real
i , F syn

i denote the CDFs of the i-th column of the real and synthetic data. Lower values
indicate closer alignment between the two distributions. For categorical columns i ∈ Ccat := C \
Cnum, we compute the Total Variation (TV) distance between empirical distributions preal

i and psyn
i :

TV(i) :=
1

2

∑
a∈Ai

∣∣preal
i (a)− psyn

i (a)
∣∣ ,

where Ai is the set of categories for column i. We report the average distance

eden :=
1

|C|

( ∑
i∈Cnum

KS(i) +
∑
i∈Ccat

TV(i)

)
. (3)

To assess how well the synthetic data preserves pairwise dependencies, we compute separate errors
for numerical and categorical pairs, and aggregate them into a correlation error score. We denote
the set of all possible combinations of numerical columns Inum := {(i, j) ∈ Cnum × Cnum} for
|Cnum| ≥ 1. For numerical column pairs (i, j), we compute the Pearson correlation coefficients ρreal

ij

and ρsyn
ij , and define the numerical correlation error as

enum
corr :=

1

|Inum|
∑

(i,j)∈Inum

∣∣ρreal
ij − ρsyn

ij

∣∣ .
For categorical column pairs (i, j), we construct empirical contingency tables R(ij) and S(ij) from
the real and synthetic datasets, respectively. The categorical correlation error is defined as the Total
Variation distance between the normalized contingency tables:

ecat
corr :=

1

|I| − |Inum|
∑
(i,j)

1

2

∑
α,β

∣∣∣R(ij)
α,β − S

(ij)
α,β

∣∣∣ .
For mixed pairs (i, j) with one numerical and one categorical column, we discretize the numerical
variable into bins and apply the same procedure as for categorical pairs. Finally, we define the
overall correlation error as the average of the numerical and categorical components

ecorr :=
1

2

(
enum

corr + ecat
corr

)
. (4)

Lower values of ecorr indicate that the synthetic data preserves the correlation structure of the real
data more accurately.

Utility: Following prior work Zhang et al. (2024); Shi et al. (2025); Liu et al. (2023), we assess
the utility of synthetic data by training an XGBoost classifier or regressor on synthetic samples and
evaluating performance on the real test set. Specifically, we split each real dataset into training and
test sets, train the generative model on the real training data, and generate a synthetic dataset of equal
size. An XGBoost classifier/regressor Chen & Guestrin (2016) is trained on this synthetic data using
hyperparameters selected via grid search on 20 random train/validation splits, and evaluated on the
real test set. We report the mean and standard deviation of AUC (for classification tasks) or RMSE
(for regression tasks) across these runs.

3https://docs.sdv.dev/sdmetrics
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Method Adult Beijing Diabetes HELOC Housing Loan Magic
GReaT 56.6± 0.03 7.21± 0.08 5.46± 0.85 12.56± 0.11 9.19± 0.09 4.05± 0.01 16.9± 0.24

CTGAN 17.4± 0.04 18.6± 0.08 7.31± 0.34 18.1± 0.07 8.79± 0.04 13.1± 0.02 10.3± 0.09

TabDDPM 1.10± 0.07 1.22± 0.05 4.63± 0.26 2.79± 0.13 44.7± 0.05 31.1± 0.06 1.17± 0.26

TabSyn 0.84± 0.07 1.29± 0.04 2.60± 0.39 2.09±0.13 1.17±0.13 4.59± 0.02 1.15± 0.12

TabDiff 0.75±0.02 1.16±0.07 2.48± 0.73 2.27± 0.09 1.56± 0.16 1.34± 0.01 0.79±0.11

GOGGLE 13.9± 0.05 20.1± 0.08 37.1± 0.17 4.55± 0.08 10.9± 0.08 OOM 3.35± 0.09

TabSCM (Ours) 2.46± 0.09 1.92± 0.05 1.73±0.16 2.09±0.08 2.36± 0.05 1.21±0.02 3.90± 0.05

Table 1: The error rate (%) of column-wise density estimation (Eq. 3). Lower values indicate a more
accurate estimation (superior results). Bold numbers indicate best performance; underlined values
are second best results for each dataset.

Method Adult Beijing Diabetes HELOC Housing Loan Magic
GReaT 80.9± 0.09 9.82± 3.20 10.5± 0.93 8.29± 0.15 15.9± 1.73 22.06± 0.03 10.5± 0.39

CTGAN 18.3± 0.89 20.3± 0.03 13.8± 0.38 7.64± 0.07 16.4± 0.24 27.0± 0.03 11.1± 0.17

TabDDPM 2.11± 0.09 4.45± 0.12 20.5± 0.15 1.99± 0.21 21.5± 0.04 55.0± 0.07 1.20± 0.41

TabSyn 1.94± 0.44 3.48± 0.26 4.65± 0.82 1.71±0.33 1.89± 0.21 11.7± 0.03 0.75±0.09

TabDiff 1.59±0.02 2.94±0.14 3.95±0.33 1.93± 0.17 3.0± 0.03 8.83± 0.02 0.81± 0.13

GOGGLE 25.1± 0.09 46.6± 0.05 46.9± 0.24 10.8± 0.26 22.3± 0.20 OOM 9.35± 0.53

TabSCM (Ours) 5.12± 0.11 3.89± 0.05 6.75± 0.17 1.86± 0.48 1.86±0.04 6.62±0.06 2.79± 0.53

Table 2: The error rate (%) (Eq. 4) of correlation estimation between column distribution of real and
synthetic data. Bold numbers indicate best performance; underlined values are second best results
for each dataset.

Privacy: Distance to Closest Records (DCR) is a privacy-related metric used to assess how similar
synthetic data points are to real data points. For x ∈ DSyn, the DCR is

DCR(x) = min
xj∈Dreal

||x− xj ||1,

and quantifies the distance to the nearest real record. A small value (DCR≈ 0) leaks real informa-
tion, a moderate value is associated with low privacy risk, and a high DCR value is safe from a
privacy perspective but might have low utility in general Park et al. (2018). Our evaluation shows
that TabSCM is able to generate privacy-preserving samples while maintaining a high utility for
downstream learning tasks.

6 EXPERIMENTAL RESULTS

We conducted all experiments on an NVIDIA RTX 6000 Ada 48GB. For GReaT, TabDDPM, and
TabSyn, we used the hyperparameters described in Zhang et al. (2024). For GOGGLE, we set the
dimension of the encoder to 512, that of the decoder to 128, and replaced the fixed random seed in
the sampling phase. For TabDiff, we used the hyperparameters described in Shi et al. (2025). For
CTGAN, we also used the default parameter set. Whenever possible, we report the mean and std
deviation for each metric obtained from the evaluation over five trials. The choice of causal discovery
method and hyperparameter setting for TabSCM is described in Section A.5.3 and summarized in
Table 18.

TabSCM achieves SoTA performance, matching or surpassing full diffusion models while
maintaining a low approximation error of the marginal distributions. Notably, TabSCM sig-
nificantly outperforms deep generative models in 3 out of 7 datasets, delivering a stable and gener-
alizable behavior, see Table 1. GOGGLE could not be applied to the large-scale Loan dataset due
to memory issues, and TabDDPM was not able to generate meaningful samples for the Housing
dataset.

While the error of the column-wise density estimation is a valid indicator of whether the genera-
tive model is able to learn the distribution for each feature individually, the feature correlation is
a key indicator of whether the generated data behaves realistically. TabSCM is able to outperform
all baseline methods in 2 out of 7 datasets, notably this included the large-scale dataset loan, see
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Table 2. The derived causal graph models the relationship of each variable, therefore the quality
of the correlation error of TabSCM is linked to the causal discovery algorithm. TabSCM factorizes
the data-generating process into modular components, abolishing this modularity, e.g., TabSyn and
TabDiff, can lead to lower correlation errors on average.

TabSCM achieves SoTA performance, matching or surpassing full diffusion models, while
enhancing privacy and providing high downstream utility. Generally, a low error of the column-
wise density and correlation error implies high downstream utility, see Tables 1 to 3. TabSCM
delivers competitive downstream utility and even outperforms the diffusion-only models, e.g., Tab-
Diff, TabSyn, and TabDDPM, which overall excel in this metric, on two datasets. While downstream
utility is a valid indicator of whether generated samples may be used to replace or augment real data,
it can be achieved by copying the data, which violates privacy. TabSCM delivers a strong perfor-
mance considering the trade-off between utility and privacy and shows an average relative deviation
of 5% from the best AUC/RMSE result while increasing the DCR by 0.74 on average.

Method Adult Beijing Diabetes HELOC
AUC (↑) DCR RMSE (↓) DCR AUC (↑) DCR AUC (↑) DCR

Real 0.927 - 0.431 - 0.975 - 0.814 -

GReaT 0.768± .171 7.036± 2.18 0.754± .028 1.579± 0.02 0.687± .113 2.26± 0.11 0.795± .006 0.489± 0.01

CTGAN 0.885± .004 1.389± 0.02 0.854± .022 1.749± 0.01 0.544± .009 4.94± 0.03 0.756± .005 0.925± 0.02

TabDDPM 0.908± .002 0.589± 0.02 0.585± .005 1.439± 0.01 0.368± .146 5.51± 0.05 0.808± .003 0.603± 0.01

TabSyn 0.909± .001 0.679± 0.01 0.568± .012 1.525± 0.01 0.991± .007 1.13± 0.07 0.789± .009 0.639± 0.01

TabDiff 0.912± .002 0.555± 0.01 0.568± .013 1.351± 0.01 0.982± .011 1.03± 0.06 0.798± .005 0.689± 0.01

GOGGLE 0.814± .009 1.105± 0.01 1.226± .013 1.855± 0.02 0.632± .009 7.42± 0.02 0.378± .004 0.892± 0.01

TabSCM (Ours) 0.842± .008 1.554± 0.01 0.594± .014 1.729± 0.01 0.945± .028 3.40± 0.04 0.813± .004 0.685± 0.01

Method Housing Loan Magic
RMSE (↓) DCR AUC (↑) DCR AUC (↑) DCR

Real 0.188 - 0.921 - 0.948 -

GReaT 0.265± .007 0.084± 0.01 0.530± .002 3.136± 0.02 0.881± .003 0.157± 0.01

CTGAN 0.352± .012 0.158± 0.01 0.490± .001 5.183± 0.02 0.821± .008 0.362± 0.01

TabDDPM 0.594± .07 2.955± 0.01 0.507± .009 5.833± 0.01 0.932± .002 0.199± 0.01

TabSyn 0.235± .004 0.109± 0.01 0.561± .001 4.771± 0.01 0.934± .005 0.199± 0.01

TabDiff 0.241± .011 0.118± 0.01 0.506± .001 5.423± 0.01 0.936± .006 0.202± 0.01

GOGGLE 0.381± .003 0.264± 0.01 OOM OOM 0.876± .002 0.331± 0.01

TabSCM (Ours) 0.253± .005 0.114± 0.01 0.591± .010 3.556± 0.01 0.928± .001 0.256± 0.01

Table 3: Accuracy of classifiers/regressors trained on synthetic data evaluated on real test data.
Bold numbers indicate best performance; underlined values are second best results for each dataset.
DCR values are not highlighted.

TabSCM demonstrates low violation rates outperforming full diffusion models on 3 out
of 4 sanity checks. We conduct sanity checks of the Adult, Housing, and Loan dataset.

Method (S1) (S2) (S3) (S4)

Real 2.24 0.00 0.07 7.60

GReaT 3.96±0.12 9.92± 22.2 0.01±0.04 7.82± 0.04

CTGAN 20.9± 0.14 55.1± 0.31 10.83± 4.24 4.79±0.02

TabDDPM 99.9± 0.05 0.38± 0.01 0.27± 0.25 28.9± 0.01

TabSyn 6.75± 0.15 0.78± 0.05 0.28± 0.25 7.43± 0.03

TabDiff 8.62± 0.30 0.22± 0.02 1.60± 1.13 7.69± 0.05

GOGGLE 49.7± 0.24 68.6± 0.21 48.9± 42.59 OOM

TabSCM 6.95± 0.18 0.00±0.00 0.11± 0.10 7.36± 0.05

Table 4: Reports violation rates (%) de-
scribed in Section 6. Bold numbers
indicate best performance; underlined
values are second best results for each
sanity check.

We investigate if longitude and latitude imply a location
inside of California (S1), education implies the same ed-
ucation number as given by the real data (S2), if hus-
band or wife implies the appropriate gender (S3), and
whether age implies an appropriate value of experience
(S4). We specify a mismatch between age and experi-
ence whenever experience exceeds age minus the min-
imum working age. Violation rates are reported in Ta-
ble 4. TabSCM is able to outperform full diffusion models
with lower violation rates, notably LLM-based methods,
e.g., GReaT dominated this metric. The underlying trans-
former and attention-based architecture enhance contex-
tualization through tokenization, enabling GReaT to gen-
erate highly realistic samples for these selected pairs of
variables, closely followed by TabSCM.
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7 COUNTERFACTUAL INTERVENTIONS

TabSCM allows for realistic counterfactual interventions and is able to generate out-
of-distribution samples. The Adult dataset contains demographic and employment-related
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Figure 4: Marginal distribution of out-of-
distribution counterfactual interventions of the
Adult dataset with interventions xage = 16 and
xrelationship =“own-child”. Real data is limited to
xage ≥ 17. We display the marginal distribution of
martial.status, education, and income of real data.
We only display xage ≤ 30 in the histogram of the
real age.

information of individuals above the age of 17.
We generate out-of-distribution samples for the
Adult dataset, and intervene for age do(xage =
16). We additionally intervene for relationship
as this is a root node and set it to “own-child”
to generate realistic samples. Measuring the
quality of out-of-distribution samples is a non-
standard task. Such OOD interventions are par-
ticularly valuable when stress-testing predictive
models or exploring scenarios that are realis-
tic but absent or underrepresented in the train-
ing data. We conducted qualitative assessments
and checked whether marital status, education,
and income are meaningful with respect to age.
Figure 4 shows the marginal distribution of syn-
thetic interventions obtained with TabSCM and
real data for four variables. TabSCM is able
to provide plausible out-of-distribution samples
on individuals of age 16, the majority of sam-
ples have an education between 9-th and 12-
th grade, have an income below 50k, and were
never married.

8 DISCUSSION AND CONCLUSION

We present TABSCM, a principled and efficient framework for generating realistic and causally
coherent tabular data. In contrast to existing generative models that prioritize marginal similarity
or downstream utility, TabSCM grounds the generation process in a structural causal model (SCM)
instantiated from a completed partially directed acyclic graph. By orienting this graph into a valid
DAG and fitting per-variable structural assignments, using conditional diffusion models for continu-
ous variables and gradient-boosted trees for categorical ones, TabSCM factorizes the data-generating
process into modular, interpretable components. This design ensures that samples are generated in
topological order, preserving structural dependencies and avoiding rule violations by construction.
Each conditional is a standalone, auditable model, which not only increases transparency but also
supports fairness-aware modifications or policy-specific constraints. Importantly, while causal dis-
covery from observational data is inherently imperfect, TabSCM is robust: through the oriented
DAG, the method is designed to retain all parents, and the expressive conditional models compen-
sate for minor misspecifications or spurious edges.

Empirical results across seven real-world datasets demonstrate that TabSCM consistently matches or
outperforms state-of-the-art GAN, diffusion, and LLM-based generators in statistical fidelity, down-
stream predictive performance, and privacy. Moreover, it does so with significantly lower training
time, up to 583× faster than diffusion-only baselines, and with native support for semantically valid
and counterfactually consistent samples. TabSCM further distinguishes itself as the only model in
this space with built-in support for unit-level counterfactual inference, enabling “what-if” reasoning
under hypothetical interventions.

Taken together, these results show that TabSCM achieves a rare combination of realism, inter-
pretability through causal soundness, and efficiency. It repositions SCMs from theoretical constructs
to practical tools for responsible data generation, particularly in high-stakes domains such as health-
care, finance, and policy modeling. By integrating structure with flexibility and causal reasoning
with generative modeling, TabSCM offers a compelling foundation for future work on fair, explain-
able, and intervention-aware synthetic data.

9
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A APPENDIX

A.1 OUTLINE

To provide a comprehensive understanding of our experimental framework and results, the follow-
ing presents additional experiments, detailed analysis, and the complete experimental setup. The
structure is as follows:

• Causal Discovery: Outlines a brief description of each Causal discovery method used.

• Ablation Study: We investigate how the causal discovery method influences the quality of
samples generated by TabSCM, and investigate the influence of training and diffusion steps
on sample quality.

• Additional Results: We provide an additional qualitative assessment of the violation rates
for the Housing dataset. We report α-precision, β-recall, and detection score for each
method and dataset, respectively.

• Experimental setup: We provide a detailed description of the experimental setup, includ-
ing datasets used, data preprocessing applied, chosen hyperparameter settings for numerical
and categorical nodes, and the full set of hyperparameters for each dataset.

A.2 CAUSAL DISCOVERY

The starting point of TabSCM is a Completed Partially Directed Acyclic Graph (CPDAG) modeling
the describing the inter-variable relationship of the tabular data. Unveiling unknown or hidden
relationships between variables is a well-known and long-studied problem in Causal Discovery.
Generally, Causal discovery describes the task of inferring the underlying causal structure among a
set of variables. Unlike correlation-based methods, causal discovery aims to reveal the directionality
of relationships, enabling robust predictions under interventions and distributional shifts. Several
algorithms have been proposed to perform causal discovery under different assumptions. TabSCM
utilizes three popular approaches, PC Spirtes et al. (2000), GES Chickering (2002), and NOTEARS
Zheng et al. (2018).

• PC: Is a constraint-based method, testing conditional independencies among variables, it
is lightweight and scalable, but sensitive to the choice of conditional independence test
(CI-test) and threshold α applies
Parameter:
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– CI-test: ”fisherz”, ”chisq”
– Significance level: α = 0.05

• GES: Is a score-based method iteratively adding, removing, and reversing edges to maxi-
mize a scoring function
Parameter:

– Scoring function: “local core BIC”

• NOTEARS: Frames causal discovery as a continuous optimization problem, directly learn-
ing a weighted adjacency matrix representing a DAG.
Parameter:

– Loss funtion: l2,
– minimal weight: wmin = 0.1,
– l1 regularization: λ1 = 0.05

We use the implementation of PC and GES provided in causal-learn4, and use the provided imple-
mentation of the linear version of NOTEARS5.

PC is an efficient simple method to derive causal graphs, GES and NOTEARS can cope with com-
plex tabular data and relationships.

A.3 ABLATION STUDY

In the following, we conduct an ablation study of the causal discovery algorithm and the hyper-
parameters of TabSCM. We use the magic dataset, which is numerical heavy. We investigate
how the causal discovery algorithm influences the statistical fidelity and downstream utility, and
show how diffusion steps and training epochs affect training time and the data quality of gen-
erated samples. We will PC algorithm with CI test={fisherz,chisq} with significance level α =
{0.01, 0.05, 0.1}. Additionally, we use NOTEARS with minimal weight wmin ∈ {0.01, 0.2, 0.3}
and λ1 ∈ {0.01, 0.05, 0.1} The default epochs and diffusion steps are set to 200 and 2000.

A.3.1 INFLUENCE OF CAUSAL DISCOVERY ALGORITHM

We report the average error rate of column-wise density estimation in Table 5 and the error rate of
the correlation estimation in Table 6. In this setting, a significance level α = 0.05 reports the best
results for both conditional independence tests. All parameter combinations lead to a similar density
estimation and correlation error. Therefore, we observe that all parameter combinations result in
similar downstream utility and DCR values, see Table 7.

We also report the error rates of column-wise density estimation and correlation estimation us-
ing NOTEARS for different values of wmin, λ1, see Tables 8 and 9. Generally, a stronger l1-
regularization enforces sparsity of the estimated adjacency matrix which decreases the number of
edges of the inferred causal graph, this can may oversimplify the interconnection of variables and
increase the final correlation error between real and synthetic data, see Table 9. The minimal weight
specifies the cutoff threshold of each edge, if an edge has a weight below this minimal threshold
it is deleted, this also induces sparsity of the adjacency matrix. If this threshold is set to high,
important edges may be deleted and are not represented in the synthetic data, thus increasing the
correlation error eventually. In this experiment, a dense adjacency matrix (wmin = 0.01, λ1 = 0.01)
reported minimal density estimation error and a significant decrease of the correlation error. Thus,
this parameter combination also led to the best downstream utility.

A.3.2 INFLUENCE OF TRAINING AND DIFFUSION STEPS

In the following, we investigate how the number of epochs n and the number of diffusion steps
t influence the statistical fidelity and downstream utility. We set n = {100, 250, 500, 1000} and
t = {t = 500, 1000, 1500, 2000} for each run. We used the same DAG, which we constructed
using NOTEARS with λ1 = 0.01, wmin = 0.01. We fitted TabSCM to the same training data with a

4https://github.com/py-why/causal-learn
5https://github.com/xunzheng/notears/tree/master
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CI test α = 0.01 α = 0.05 α = 0.1

fisherz 4.44± 0.09 4.12± 0.12 4.36± 0.09

chiqs 4.37± 0.09 4.11± 0.19 4.26± 0.06

Table 5: The error rate (%) of column-wise density estimation (Eq.3). Lower values indicate more
accurate estimation (superior results).

CI test α = 0.01 α = 0.05 α = 0.1

fisherz 7.21± 0.40 7.07± 0.47 7.08± 0.80

chiqs 7.28± 0.56 6.84± 0.31 7.26± 0.58

Table 6: The error rate (%) (Eq.4) of correlation estimation between column distribution of real and
synthetic data for different parameter combinations.

Parameter
fisherz chiqs

Real α= 0.01 α= 0.05 α= 0.1 α= 0.01 α= 0.05 α= 0.1

AUC (↑) 0.948 0.860± .005 0.866± .004 0.862± .002 0.856± .007 0.865± .007 0.859± .005

DCR - 0.312± .007 0.307± .002 0.315± .001 0.309± .001 0.305± .001 0.307± .002

Table 7: Results of the accuracy of classifiers/regressors trained on synthetic data evaluated on real
test data. Bold numbers indicate best performance; underlined values are second best results for
each dataset. DCR values are not highlighted.

NOTEARS wmin = 0.01 wmin = 0.2 wmin = 0.3

λ1 = 0.01 4.20± 0.12 4.65± 0.16 4.76± 0.06

λ1 = 0.05 5.23± 0.06 3.87± 0.08 3.70± 0.05

λ1 = 0.1 5.94± 0.14 4.82± 0.11 6.03± 0.18

Table 8: The error rate (%) of column-wise density estimation (Eq. 3)). Lower values indicate more
accurate estimation (superior results).

NOTEARS wmin = 0.01 wmin = 0.2 wmin = 0.3

λ1 = 0.01 2.96± 0.62 8.26± 0.15 8.96± 0.58

λ1 = 0.05 9.64± 1.12 8.15± 0.49 8.25± 0.98

λ1 = 0.1 10.84± 0.55 9.89± 0.57 11.24± 0.63

Table 9: The error rate (%) (Eq. 4) of correlation estimation between column distribution of real and
synthetic data for different parameter combinations.

Parameter wmin= 0.01 wmin= 0.2 wmin= 0.3

Real λ1= 0.01 λ1= 0.05 λ1= 0.1 λ1= 0.01 λ1= 0.05 λ1= 0.1 λ1= 0.01 λ1= 0.05 λ1= 0.1

AUC (↑) 0.948 0.925± .002 0.902± .008 0.906± .003 0.903± .003 0.903± .004 0.898± .004 0.897± .005 0.906± .005 0.903± .006

DCR - 0.227± .001 0.370± .001 0.436± .001 0.391± .002 0.391± .001 0.457± .002 0.395± .001 0.389± .001 0.485± .003

Table 10: Accuracy of classifiers/regressors trained on synthetic data evaluated on real test data.
Bold numbers indicate best performance; underlined values are second best results for each dataset.
DCR values are not highlighted.

unique combination of epochs and diffusion steps. After fitting TabSCM, we sampled five synthetic
datasets independently. We report the mean error of the density and correlation estimation with
standard deviation in Tables 11 and 12. Increasing the number of epochs leads to a better density
estimation error for all numbers of diffusion steps, we see the opposite behavior for the correlation
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estimation. Increasing the number of diffusion steps leads to a better correlation estimation for the
same number of epochs.

For all parameter combinations, the AUCs are above 0.920, such that all samples show a high utility
for augmenting the training set. In contrast, the AUC score of real data is 0.948. Increasing the
number of epochs improves the AUC score in general, while the number of diffusion steps does not
primarily influence AUC results for the same number of epochs.

n/t t = 500 t = 1000 t = 1500 t = 2000

n = 100 4.09± 0.07 4.09± 0.11 4.18± 0.08 4.31± 0.08

n = 250 3.37± 0.13 3.65± 0.11 3.87± 0.69 3.92± 0.09

n = 500 2.98± 0.15 2.86± 0.14 2.87± 0.07 3.09± 0.11

n = 1000 2.71± 0.15 2.65± 0.05 2.51± 0.08 2.74± 0.09

Table 11: The error rate (%) of column-wise density estimation (Eq.3). Lower values indicate more
accurate estimation.

n/t t = 500 t = 1000 t = 1500 t = 2000

n = 100 3.06± 0.36 2.82± 0.37 2.95± 0.09 3.03± 0.19

n = 250 3.17± 0.48 2.92± 0.46 3.07± 0.69 2.79± 0.53

n = 500 3.29± 0.33 2.82± 0.61 2.81± 0.08 2.79± 0.49

n = 1000 4.10± 0.46 3.52± 0.30 3.15± 0.51 3.29± 0.29

Table 12: The error rate (%) (Eq.4) of correlation estimation between column distribution of real
and synthetic data for different parameter combinations.

n/t t = 500 t = 1000 t = 1500 t = 2000

n = 100 0.923± .003 0.924± .004 0.920± .002 0.922± .004

n = 250 0.931± .002 0.929± .002 0.930± .002 0.928± .006

n = 500 0.930± .003 0.931± .003 0.931± .002 0.931± .004

n = 1000 0.932± .002 0.934± .003 0.931± .002 0.932± .004

Table 13: Accuracy of classifiers/regressors trained on synthetic data evaluated on real test data.

In the next experiment, we vary the number of epochs n =
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} while we fix the number of diffusion steps
t = 500. Increasing the number of epochs decreases the error of the density estimation, but this
comes at a cost. This cost is runtime, which is increasing for larger epochs. We illustrate the results
in Figure 5.

A.4 ADDITIONAL METRICS

A.4.1 HOUSING

We conduct a sanity check to determine if the longitude and latitude pair indicate a location within
the state of California. For the specific boundary6 data, the real training data had an inherent vi-
olation rate of 2.24%. This can happen given that we collected the boundary data independently.
Figure 6 shows the qualitative assessment of boundary violations for each method. Additionally,
we report the 2-Wasserstein distance between the joint distribution of longitude, latitude of real and
synthetic data. The Wasserstein distance is an optimal transport-based metric that measures the cost
of transforming one source distribution into a certain target distribution. It goes beyond a single
point measure such as the KS-distance. TabSCM shows the lowest 2-Wasserstein distance, closely
followed by TabSyn.

6https://github.com/PublicaMundi/MappingAPI/blob/master/data/geojson/
us-states.json
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Figure 5: Illustrates how the number of epochs influences density estimation error (left), correlation
error (middle), and the AUC score (right) with respect to the runtime, which is measured in seconds.
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Figure 6: Comparison of original and generated samples from the California Housing dataset. Joint
histogram plots illustrate the relationship between the highly correlated variables, Latitude and Lon-
gitude. The number beside the title of each subplot indicates the 2-Wasserstein distance between
synthetic and real data samples. The black outline indicates the true boundary of the state of Cali-
fornia

A.4.2 α-PRECISION AND β-RECALL

We follow prior work Liu et al. (2023); Zhang et al. (2024); Shi et al. (2025) also evaluating data
quality on a higher-order statistics assessing the models capability to capture the joint distribution.
As we have previously outlined, solely evaluating MLE without context might undermine privacy,
but it also ignores less informative columns. Therefore, we follow Zhang et al. (2024) and evaluate
the adopted α-precision and β-recall Alaa et al. (2022):

• α-precision: how realistic (faithful) synthetic samples are

• β-recall how well synthetic data covers the real data distribution.

In general, diffusion only models including TabSyn and TabDiff show the best α-precision and β-
recall, TabSCM is outperforming both SoTA methods in small scale Diabetes and large scale Loan
dataset and delivers competitive result for all other datasets. The results are reported in Tables 14
and 15.

6Boundary obtained from https://github.com/PublicaMundi/MappingAPI/blob/
master/data/geojson/us-states.json
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Method Adult Beijing Diabetes HELOC Housing Loan Magic
GReaT 0.558± .001 0.974± .003 - 0.891± .004 0.899± .004 - 0.839± .006

CTGAN 0.780± .003 0.929± .002 0.885± .014 0.957± .002 0.950± .003 0.869± .002 0.768± .003

TabDDPM 0.958± .001 0.987± .001 0.866± .027 0.919± .004 - 0.450± .002 0.981± .006

TabSyn 0.991± .002 0.979± .002 0.978± .005 0.978± .003 0.994± .001 0.946± .002 0.992± .004

TabDiff 0.981± .002 0.985± .001 0.972± .006 0.975± .002 0.990± .002 0.994± .004 0.994± .004

GOGGLE 0.541± .002 0.944± .001 0.372± .008 0.908± .007 0.947± .002 OOM 0.943± .002

TabSCM (Ours) 0.982± .001 0.981± .002 0.949± .013 0.984± .003 0.991± .002 0.938± .002 0.955± .003

Table 14: Comparison of α-precision scores. Bold values represents the best score, and underlined
values are second best for each dataset. Higher values indicate superior results.

Method Adult Beijing Diabetes HELOC Housing Loan Magic
GReaT 0.487± .002 0.432± .003 - 0.455± .004 0.425± .002 - 0.343± .002

CTGAN 0.274± .001 0.394± .001 0.087± .012 0.111± .002 0.260± .003 0.055± .002 0.09± .003

TabDDPM 0.488± .001 0.555± .001 0.059± .008 0.541± .006 - 0.031± .001 0.471± .006

TabSyn 0.483± .002 0.568± .002 0.226± .005 0.490± .003 0.429± .002 0.103± .001 0.478± .002

TabDiff 0.545± .004 0.582± .001 0.232± .009 0.439± .002 0.422± .003 0.072± .003 0.474± .003

GOGGLE 0.07± .001 0.05± .001 0.027± .004 0.293± .003 0.072± .002 OOM 0.204± .002

TabSCM (Ours) 0.289± .001 0.503± .001 0.254± .020 0.450± .003 0.397± .001 0.126± .002 0.312± .002

Table 15: Comparison of β-recall scores. Bolde values represents the best scoreand, and underlined
values are second best for each dataset. Higher values indicate superior results.

A.4.3 DETECTION SCORE

We apply a Classifier Two Sample Test (C2ST) to quantify how difficult it is to distinguish real from
synthetic data. We follow the setup given by sdmetrics7, where a label gets assigned for each row
of real and synthetic tabular data, both datasets are randomly split into training and validation set, a
classifier is trained and evaluated on the validation set, then this procedure is repeated for different
training and validation splits. The final score is based on the average AUC of the ROC across the
different splits,

C2ST = 1− (2 · AUC − 1).

This score is maximized C2ST = 1 when real and synthetic data are indistinguishable to the classi-
fier, which corresponds to random guessing whether a sample is real or synthetic and vice versa. We
calculate the detection score for five different synthetic datasets sampled by each method for each
dataset, respectively. The average score and standard deviation are reported in Table 16.

A.5 EXPERIMENTAL SETUP

The following covers the datasets used, data preprocessing applied, and the hyperparameter specifi-
cation of TabSCM.

7https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-
single-table

Method Adult Beijing Diabetes HELOC Housing Loan Magic
GReaT 0.532± .004 0.621± .004 - 0.517± .003 0.776± .002 - .0419± .004

CTGAN 0.622± .002 0.827± .003 0.481± .036 0.729± .005 0.809± .003 0.451± .001 0.634± .003

TabDDPM 0.955± .005 0.953± .003 0.949± .029 0.904± .009 0.04± .017 0.273± .002 0.989± .006

TabSyn 0.979± .006 0.944± .001 0.985± .008 0.934± .007 0.992± .005 0.709± .001 0.994± .003

TabDiff 0.985± .002 0.959± .005 0.999± .002 0.924± .007 0.968± .006 0.925± .002 0.998± .001

GOGGLE 0.112± .004 0.352± .002 0.001± .001 0.790± .008 0.712± .001 OOM 0.855± .005

TabSCM (Ours) 0.869± .002 0.953± .003 0.999± .0001 0.909± .006 0.995± .004 0.902± .001 0.889± .004

Table 16: Reports C2ST score. Lower values indicate a more accurate estimation (superior results).
Bold numbers indicate best performance; underlined values are second best results for each dataset.
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A.5.1 DATASETS

We use a total of seven real-world datasets covering classification and regression tasks from various
application domains. The data covers large-scale datasets (>250k samples) and small-scale datasets
(<1000 samples). Adult, Beijing, Diabetes, and Magic are from the UCI Machine Learning Reposi-
tory8, Housing9 from sklearn datasets, and Loan10 and HELOC11 from kaggle. Below, we provide a
comprehensive overview of the datasets used. We denote the number of numerical columns #Num,
the number of categorical columns #Cat. #Max Cat stands for the number of categories of the
categorical column with the most categories.

Dataset # Rows # Num # Cat # Max Cat # Train # Val #Test Taks

Adult 48, 842 6 9 42 28, 943 3, 618 16, 281 Classification
Beijing 43, 824 7 5 31 35, 058 4, 383 4, 383 Regression
Diabetes 520 1 16 2 416 52 52 Classification
HELOC 10, 459 23 1 2 8, 367 1, 046 1, 046 Classification
Housing 20, 640 8 1 52 16, 512 2, 046 2, 046 Regression
Loan 252, 000 2 10 317 201, 600 25, 200 25, 200 Classification
Magic 19, 019 10 1 2 15, 215 1, 902 1, 902 Classification

Table 17: Overview of the datasets.

A.5.2 DATA PREPROCESSING

Following prior work Kotelnikov et al. (2023); Zhang et al. (2024), we fill missing numerical data
with the average column value of the corresponding column, and introduce an additional category
for missing values of categorical columns. The baseline methods transform numerical columns
using a QuantileTransformer12, and deploy OneHotEncoding for categorical columns13. TabSCM
transforms numerical data with the StandardScaler14, and converts categorical columns with the
LabelEncoder15. For columns with many categories, using Label encoding over OneHot encoding
reduces the overall data matrix.

A.5.3 HYPERPARAMETER SETTING

Below, we report the hyperparameter settings for the surrogate regression models for numerical
nodes and the classification models for categorical nodes. Additionally, we report the hyperparame-
ter set including the causal discovery method in Table 18.

Numerical nodes For numerical variables, we deploy a conditional diffusion model, implemented
with an MLP-based U-Net with,

- Hidden Dim: 256,

- Number of epochs: epochs ∈ {200, 500, 1000},

8https://archive.ics.uci.edu/datasets
9https://scikit-learn.org/stable/modules/generated/sklearn.datasets.

fetch_california_housing.html
10https://www.kaggle.com/datasets/subhamjain/loanprediction-based-on-

customer-behavior/data
11https://www.kaggle.com/datasets/averkiyoliabev/homeequity-line-of-

creditheloc
12https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.QuantileTransformer.html
13https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.OneHotEncoder.html
14https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.StandardScaler.html
15https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.LabelEncoder.html
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- Diffusion steps: t ∈ {500, 1000, 1500},
- Batch Size: 512,
- Learning Rate: 0.001,
- Optimizer: Adam

Categorical nodes Our experiment showed that tree-based classification models with gradient
boosting matched the performance of categorical diffusion models, thus we deploy an XGBoost
classifier Chen & Guestrin (2016) with:

- Tree method: ”hist”,
- Learning Rate: 0.2,
- Max Depth: 30,
- Num. Boosting Rounds: 500,
- L1-reg: 1.5,
- L2-reg: 1.5

Running a grid search for the hyperparameter may lead to superior results as reported.

Dataset Epochs Diffusion steps Causal Discovery Weight Threshold CI-Test α

Adult 500 500 GES – – –
Beijing 500 500 NOTEARS 0.1 – –
Diabetes 500 500 GES – – –
HELOC 1000 500 NOTEARS 0.1 – –
Housing 500 1000 GES – – –
Loan 500 1500 PC – fisherz 0.05
Magic 200 2000 NOTEARS 0.01 – –

Table 18: Hyperparameter settings of TabSCM for each dataset.

Method Adult Beijing Diabetes Heloc Housing Loan Magic

GReaT 71.52 72.70 168.68 96.85 30.80 168.93 24.05
TabDDPM 33.25 58.19 35.37 28.85 35.75 32.02 30.25
TabSyn 36.51 32.35 15.99 31.55 25.79 127.16 38.72
TabDiff 394.27 338.41 115.68 85.61 116.22 1999.51 118.71
GOGGLE 309.09 492.42 1.31 26.41 62.89 OOM 17.63

TabSCM (Ours) 7.08 11.46 0.20 24.15 5.01 17.45 2.44

Table 19: Training time (in minutes) for each method across datasets. Bold values indicate best
performance, and underlined values are second best for each dataset.
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