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ABSTRACT

The increasing size of screening libraries poses a significant challenge for the
development of virtual screening methods for drug discovery, necessitating a re-
evaluation of traditional approaches in the era of big data. Although 3D phar-
macophore screening remains a prevalent technique, its application to very large
datasets is limited by the computational cost associated with matching query phar-
macophores to database ligands. In this study, we introduce PharmacoMatch,
a novel contrastive learning approach based on neural subgraph matching. Our
method reinterprets pharmacophore screening as an approximate subgraph match-
ing problem and enables efficient querying of conformational databases by encod-
ing query-target relationships in the embedding space. We conduct comprehen-
sive investigations of the learned representations and evaluate PharmacoMatch as
pre-screening tool in a zero-shot setting. We demonstrate significantly shorter
runtimes and comparable performance metrics to existing solutions, providing a
promising speed-up for screening very large datasets.

1 INTRODUCTION

A challenging task in the early stages of drug discovery campaigns is the identification of hit
molecules that effectively bind to a protein target of interest. Due to the vastness of the chemi-
cal space, estimated to encompass more than 1060 small organic molecules (Virshup et al., 2013),
identifying molecules with desirable drug-like properties is often compared to finding a needle in a
haystack. Virtual screening methods have therefore become an essential component of the computer-
aided drug discovery toolkit, aiding medicinal chemists in filtering molecular databases to efficiently
explore the search space for potential hit compounds (Sliwoski et al., 2014).

A pharmacophore represents non-bonding interactions of chemical features that are essential for
binding to a specific protein target (Wermuth et al., 1998). A pharmacophore query can, for example,
be generated from the interaction profile of a ligand-receptor complex and used to identify potential
hit compounds from databases by searching for molecules with similar pharmacophoric patterns
(Wolber & Langer, 2005). The process involves a positional alignment of the pharmacophore model
with the three-dimensional conformations of molecules in the database, which are ranked based
on their agreement with the pharmacophore query (Wolber et al., 2006). Since pharmacophore
screening focuses on abstract interaction patterns, rather than specific molecular structures, it allows
for the identification of structurally diverse hit compounds (Seidel et al., 2017).

Virtual screening of make-on-demand libraries like Enamine REAL (Shivanyuk et al., 2007) is of
growing interest because these libraries contain compounds that can be synthesized through reliable
synthetic routes within a short period, making them readily commercially available. These libraries
encompass billions of molecules and continue to expand due to advances in synthetic accessibility
(Llanos et al., 2019). While screening larger compound libraries enhances the likelihood of identi-
fying hit compounds, it also extends screening times, thereby necessitating the scaling up of virtual
screening methods (Sadybekov et al., 2022). However, scaling up 3D pharmacophore screening to
accommodate billions of molecules presents significant challenges (Warr et al., 2022). Although
various filtering techniques have been developed (Seidel et al., 2010), molecules that pass these
methods must still undergo alignment algorithms, which ultimately determine the speed of the pro-
cess. Despite substantial efforts to optimize these algorithms (Wolber et al., 2008; Permann et al.,
2021), the overall screening procedure remains time-intensive.
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In this work, we propose using self-supervised learning to create meaningful 3D pharmacophore rep-
resentations for efficient virtual screening. Our PharmacoMatch model employs a graph neural net-
work (GNN) encoder, trained with a contrastive learning objective, to map 3D pharmacophores into
an order embedding space (Ying et al., 2020), thereby enabling pharmacophore matching through
vector comparisons. The embedding vectors for the screening database are computed once and then
used to quickly generate a hitlist based on the query embedding. An illustration of the proposed
workflow is presented in Appendix A.1.

Our key contributions are:

• We propose to predict the matching of pharmacophores by using learned representations.

• We develop a GNN encoder model that generates meaningful vector representations from 3D
pharmacophores. The model is trained in a self-supervised manner on unlabeled data, employing
a contrastive loss objective to capture the relationships between queries and targets based on their
partial ordering in the learned embedding space. We design augmentation strategies specifically
suited for the task of pharmacophore alignment.

• We use the learned representation for fast virtual screening in the embedding space and evaluate
the performance of our method through experiments on virtual screening benchmark datasets.

2 RELATED WORK

Pharmacophore alignment algorithms Alignment algorithms compute a rigid-body transforma-
tion, the pharmacophore alignment, to match a query’s pharmacophoric pattern to database ligands.
A scoring function then evaluates the pharmacophore matching by considering both the number of
matched features and their spatial proximity. The alignment is typically preceded by fast filtering
methods that prune the search space based on pharmacophoric types, pharmacophoric point counts,
and quick distance checks. Only molecules that pass these filters undergo the final, computationally
expensive 3D alignment step, which is usually performed by minimizing the root mean square devi-
ation (RMSD) between pairs of pharmacophoric points (Seidel et al., 2010; Dixon et al., 2006). The
algorithm by Wolber et al. (2006) creates smoothed histograms from the neighborhoods of phar-
macophoric points for pair assignment using the Hungarian algorithm, followed by alignment with
Kabsch’s method (Kabsch, 1976). A recent implementation by Permann et al. (2021) improves on
runtime and accuracy by using a search strategy that maximizes pairs of matching pharmacophoric
points. Alternatively, shape-matching algorithms like ROCS (Hawkins et al., 2007) and Pharao
(Taminau et al., 2008) model pharmacophoric points with Gaussian volumes, optimizing for volume
overlap.

Machine learning for virtual screening A common approach to using machine learning for vir-
tual screening is to train models on measured bioactivity values. However, these models are con-
strained by the scarcity of experimental data, which is both costly and challenging to obtain (Li et al.,
2021). Unsupervised training of target-agnostic models for virtual screening avoids dependence on
labeled data, but remains relatively unexplored. DrugClip (Gao et al., 2023) approaches virtual
screening as a similarity matching problem between protein pockets and molecules, using a multi-
modal learning approach where a protein and a molecule encoder create a shared embedding space
for virtual screening. Sellner et al. (2023) used the Schrödinger pharmacophore shape-screening
score to train a transformer model on pharmacophore similarity, which is a different objective than
pharmacophore matching. PharmacoNet (Seo & Kim, 2023) uses instance segmentation for phar-
macophore generation in protein binding sites and a graph-matching algorithm for binding pose
estimation, employing deep learning for pharmacophore modeling, but not for the alignment nor
matching.
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3 PRELIMINARIES

Pharmacophore representation In this work, we treat 3D pharmacophores as attributed point
clouds (Mahé et al., 2006; Kriege & Mutzel, 2012). A pharmacophore P can be represented by a
set of pharmacophoric points P = {(ri, di) ∈ R3 × D}i with the Cartesian coordinates ri and the
descriptor di of the pharmacophoric point pi. The descriptor set D contains the following phar-
macophoric descriptors: hydrogen bond donors (HBD) and acceptors (HBA), halogen bond donors
(XBD), positive (PI) and negative electrostatic interaction sites (NI), hydrophobic interaction sites
(H), and aromatic moieties (AR). Directed descriptors like HBD and HBA can be associated with a
vector component, but for simplicity, we will omit this information in our study. We further denote
the set of pair-wise distances between pharmacophoric points asR = {∥ri−rj∥2 | 1 ≤ i, j ≤ |P |}.
The pharmacophore P can be represented as a complete graph G(P ) = (VP , EP , λP ), where VP =
{v1, ..., v|P |} denotes the set of nodes with node attributes λP (vi) = li, and EP = VP × VP
denotes the set of edges, with the edge attribute of eij defined as the pair-wise Euclidean distance
λP (eij) = ∥ri − rj∥2 between the positions of nodes i and j. The edges are undirected, edge eij
can be identified with edge eji, The label set L = D ∪ R is the union of the descriptor set and the
set of pair-wise distances, and λP represents a labelling function λ : V ∪E → L that assigns a label
to the corresponding vertex v or edge e. This representation is invariant to translation and rotation.

Subgraph matching Two graphs G1 = (V1, E1, λ1) and G2 = (V2, E2, λ2) are isomorphic,
denoted by G1 ≃ G2, if there exists an edge-preserving bijection f : V1 → V2 such that ∀(u, v) ∈
E1 : (f(u), f(v)) ∈ E2. Additionally, we require the preservation of node and edge labels, such
that ∀v ∈ V1 : λ1(v) = λ2(f(v)), and ∀(u, v) ∈ E1 : λ1((u, v)) = λ2((f(u), f(v))). Let
GQ = (VQ, EQ, λQ) be a query graph, GT = (VT , ET , λT ) a larger target graph, and GH =
(VH , EH , λH) a subgraph of GT such that VH ⊆ VT , and EH ⊆ ET . The objective of subgraph
matching is to decide, whether GQ is subgraph isomorphic to GT , denoted by GQ ≲ GT , which
requires the existence of a non-empty set of subgraphsH = {GH | GH ≃ GQ} that are isomorphic
to GQ.

Figure 1: Illustration of the pharmacophore
matching objective: The aim is to match the phar-
macophoric points of a query with the correspond-
ing points of a target pharmacophore such that the
query points fall within the tolerance sphere of the
target points, with a tolerance radius rT .

Pharmacophore matching In its most gen-
eral setting, pharmacophore matching seeks to
match all pharmacophoric points of a query
pharmacophore PQ with the corresponding
pharmacophoric points of a larger target phar-
macophore PT . Let PH ⊆ PT denote a subset
of the pharmacophoric points of PT . Then PQ

matches PT after alignment if there exists a bi-
jection g : PQ → PH such that ∀i ∈ PQ :
di = dg(i) and ∥ri − rg(i)∥2 < rT , where rT
is the radius of a tolerance sphere. It is thereby
sufficient that query pharmacophoric points are
mapped into the tolerance sphere of their tar-
get counterpart. For simplicity, we assume the
same tolerance radii among all pharmacophoric

points. The ultimate goal of pharmacophore matching is to retrieve molecules from a database. A
matching pharmacophore is always linked to a corresponding ligand molecule via a look-up table.

When represented as graphs GQ = G(PQ), GH = G(PH), and GT = G(PT ), this task boils down
to the node-induced subgraph matching of a query pharmacophore graph GQ to a target pharma-
cophore graph GT . The tolerance sphere, however, weakens the requirement on edge label match-
ing. An approximate matching λQ((u, v)) ≈ λH((f(u), f(v))) is sufficient if the difference be-
tween λQ((u, v)) and λH((f(v), f(u))) is less than 2rT , where rT represents the tolerance radius
of each pharmacophoric point. This ensures that the query points fall within the tolerance spheres of
the target points (compare Figure 1). Our problem formulation of pharmacophore matching relies
on relative distances instead of the absolute positioning of pharmacophoric features and is therefore
independent of prior alignment.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

Figure 2: (a.) The embedding model learns an order embedding space by comparing augmented
pharmacophores. (b) Illustration of the embedding space, where pharmacophores matching a query
are positioned to the upper right.

Overview In the following we introduce PharmacoMatch, a novel contrastive learning framework
with the aim to encode query-target relationships of 3D pharmacophores into an embedding space.
We propose to train a GNN encoder model in a self-supervised fashion, as illustrated in Figure 2.
Our model is trained on approximately 1.2 million unlabeled small molecules from the ChEMBL
database (Davies et al., 2015; Zdrazil et al., 2023) and learns pharmacophore matching solely from
augmented examples, comparing positive and negative pairs of query and target pharmacophore
graphs, while optimizing an order embedding loss to extract relevant matching patterns.

Unlabeled data for contrastive training To span the pharmaceutical compound space, we down-
load a set of drug-like molecules sourced from the ChEMBL (2024) website in the form of Simplified
Molecular Input Line Entry System (SMILES) strings (Weininger, 1988) and curate an unlabeled
dataset using the open-source Chemical Data Processing Toolkit (CDPKit) (Seidel, 2024) (see Ap-
pendix A.2 for details). After an initial data clean-up, which includes the removal of solvents and
counter ions, adjustment of protonation states to a physiological pH, and elimination of duplicate
structures, the dataset contains approximately 1.2 million small molecules. To ensure a zero-shot
setting in our validation experiments, we remove all molecules from the training data that also ap-
pear in the test sets. Finally, we generate a low-energy 3D conformation and the corresponding
pharmacophore for each ligand.

Model input We represent the node labels {λP (v1), ..., λP (v|P |)} of a given pharmacophore
graph G(P ) = (VP , EP , λP ) as one-hot-encoded (OHE) feature vectors h = (h1, ...,h|P |). We
employ a distance encoding to represent pair-wise distances, which was inspired by the SchNet ar-
chitecture (Schütt et al., 2018). The edge attributes of edge euv are derived from the edge label
λP (euv) and represented by a radial basis function ek(ru − rv) = exp(−β(∥ru − rv∥2 − µk)

2),
where centers µk were taken from a uniform grid of K points between zero and the distance cutoff
at 10 Å, and the smoothing factor β represents a hyperparameter. To this end, the pharmacophore P
is represented by a data point x = [h, e] which is a tuple of the feature matrix h ∈ R|P |×L and the
distance-encodings e ∈ R(|P |×|P |)×K .

GNN encoder architecture The encoder input is the pharmacophore graph representation x =
[h, e], with the feature matrix h and the edge attributes e. Node feature embeddings are generated
by initially passing the OHE feature matrix through a single dense layer without an activation func-
tion. We then update the node representations through message passing using the edge-conditioned
convolution operator (NNConv) by Gilmer et al. (2017); Simonovsky & Komodakis (2017), which
was originally designed for representation learning on point clouds and 3D molecules, to aggregate
distance information into the learned node representations (see Appendix A.4 for details). We con-
nect successive convolutional layers using DenseNet-style skip connections (Huang et al., 2017).
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Graph-level read-out is achieved by additive pooling of the updated feature matrix h ∈ R|P |×m into
a graph representation q ∈ Rm, which is then projected to the final output embedding z ∈ RD

+ by
a multi-layer perceptron. The employed loss function requires to map the final representation to the
non-negative real number space. We accomplish this by using the absolute values of the learnable
weights for the last linear transformation immediately after the final ReLU unit (see Appendix A.5
for details).

Loss function In order to encode query-targets relationship of pharmacophores into the embed-
ding space, we employ the loss function by Ying et al. (2020). The key insight is that subgraph
relationships can be effectively encoded in the geometry of an order embedding space through a
partial ordering of the corresponding vector embeddings. Let zQ the embedding of graph GQ, zT
the embedding of graph GT , and fΘ : G → RD

+ a GNN encoder to map pharmacophore graphs G
to embedding vectors z ∈ RD

+ . The partial ordering zQ ⪯ zT reflects, whether GQ is subgraph
isomorphic to GT :

zQ[i] ≤ zT [i], ∀i ∈ {1, ..., D} iff GQ ≲ GT (1)

The following max-margin objective can be used to train the GNN encoder fΘ on this relation:

L(zQ, zT ) =
∑

(zQ,zT )∈Pos

E(zQ, zT ) +
∑

(zQ,zT )∈Neg

max{0, α− E(zQ, zT )} (2)

The penalty functionE : RD
+×RD

+ → R+ reflects violation of the partial ordering on the embedding
vector pair:

E(zQ, zT ) = ∥max{0, zQ − zT }∥22 (3)

Pos is the set of positive pairs per batch, these are pairs of query zQ and target graph embedding zT
with a subgraph-supergraph relationship, and Neg is the set of negative examples, these are pairs
of query and target embedding vectors that violate this relationship. The positive and negative pairs
are generated on-the-fly via augmentation during training.

Figure 3: Augmentation strategies for model
training involve generating positive and negative
query-target pairs on-the-fly by combining node
deletion with varying degrees of node displace-
ment. Negative pairs are also created by shuffling
the batch, mapping query pharmacophores to ran-
dom target pharmacophores.

Augmentation module The PharmacoMatch
model correlates the matching of a query and a
target pharmacophore with the partial ordering
of their vector representations. Positive pairs
represent successful matchings, while negative
pairs serve as counter examples. In order to
create these pairs from unlabeled training data,
we define three families of augmentations T ,
which are composed of random point deletions
and positional point displacements.

For positive pairs, valid queries are created by
randomly deleting some nodes from a phar-
macophore P , leaving at least three, and dis-
placing the remaining nodes within a tolerance
sphere of radius rT . This augmentation, de-
noted as t1(·) ∼ T1, produces the positive pair
(t1(P ), P ).

Negative pairs highlight examples of unsuc-
cessful matching, using three strategies to cap-
ture different undesired outcomes. The first
strategy introduces positional mismatches by
displacing the pharmacophoric points of P to
the boundary of the tolerance sphere without
deleting any points. Specifically, we compute
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the mean position of the points, µ = 1
|P |

∑|P |
i=1 ri, and shift each point pi by rT along the direction

ri−µ. This approach avoids the unintended creation of positive pairs, which can occur with random
sampling, and ensures that displacements do not cancel out. The resulting augmentation, denoted
t2(·) ∼ T2, generates the negative query-target pair (t2(P ), P ). This strategy demonstrated better
model performance than random positional displacement.

Our second strategy teaches the model that every pharmacophoric point in the query should corre-
spond to a point in the target. This is achieved by deleting some target nodes, using an augmentation
operator t3(·) ∼ T3, where T3 involves node deletion without displacement. As a result, the query
in the pair (t1(P ), t3(P )) only partially matches its target. With the third strategy, we train the
model to avoid matching queries with targets that are significantly different. This approach involves
randomly mapping queries t1(Pi) to the incorrect targets Pj , where i ̸= j (for more details, see
Appendix A.3).

Curriculum learning We design a curriculum learning strategy for training on pharmacophore
graphs. We start training with pharmacophores containing four nodes. If the loss does not decrease
significantly within 10 epochs, we add pharmacophores with one additional node to the training
data. This approach allows the model to start with very simple examples, gradually increasing the
difficulty of the matching task.

Model Training Our GNN encoder model is implemented with three convolutional layers with
an output dimension of 64. The MLP has a depth of three dense layers with a hidden dimension of
1024 and an output dimension of 512. The final model was trained for 500 epochs using an Adam
optimizer with a learning rate of 10−3. The margin of the best performing model was set to α = 100.
The tolerance radius rT for node displacement was set to 1.5 Å, which is the default value in the
pharmacophore screening functionalities of the CDPKit (see Appendix A.6 for more details).

Ablation studies To evaluate the importance of various model parameters, we conduct a series
of ablation studies using the best-performing model. In these experiments, we systematically al-
ter one parameter at a time and assess its impact on classification performance using the validation
hold-out set. The complete details of these experiments are provided in the Appendix A.6 (Table 5).
Our findings reveal several key insights. The embedding dimension of the learned representations
can be reduced to 128 without loss in performance. The encoder requires at least 32 dimensions
to remain effective. Skip-connections are critical for model performance, with DenseNet-style con-
nections slightly outperforming ResNet-style (He et al., 2015) alternatives. Interestingly, the choice
of message-passing layer, whether NNConv, graph isomorphism operator (GINE) (Hu et al., 2020),
graph attention operator (GAT) (Brody et al., 2022), or continuous-filter convolutional layers (CF-
Conv) (Schütt et al., 2018), has minimal impact on performance. The depth of the projector and
encoder also does not significantly affect results. In contrast, the margin value plays a significant
role in model performance. While larger values enhance performance, excessively high margins can
lead to training instability. A margin of 100 provides an effective balance between these factors.
The displacement radius for augmentations in creating positive pairs is most effective at 1.5 Å.

Decision function for model inference We are using the trained GNN encoder fΘ to precompute
vector embeddings zT of the database pharmacophores. These are queried with the pharmacophore
embedding zQ by verification of the partial ordering constraint (3), which shall not be violated by
more than a threshold t. This leads to the decision function g : RD

+ × RD
+ → {0, 1}:

g(zQ, zT ) =

{
1 iffE(zQ, zT ) < t

0 otherwise
(4)

which evaluates to 1 if the partial ordering on zQ and zT reflects a pharmacophore matching, and 0
otherwise. In the following, we will refer to equation (4) as matching decision function. In practice,
we recommend a decision threshold of t = 6500, which was determined during our benchmark
experiments.
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5 EXPERIMENTS

We designed our embeddings to reflect the type and relative positioning of pharmacophoric points.
Comparison of embedding vectors via the matching prediction function should emulate the matching
of the underlying pharmacophores. To get a better understanding of the encoder’s latent space, we
investigate these properties as follows:

1. Pharmacophoric point perception: We investigate the learned embedding space qualita-
tively through dimensionality reduction.

2. Positional perception: We investigate the influence of positional changes on the output of
the matching decision function.

3. Virtual screening performance: The performance of our model is evaluated using ten
DUD-E targets, and the produced hitlists are compared with the performance and runtime
of the CDPKit (Seidel, 2024) alignment algorithm.

DUD-E benchmark dataset We perform our experiments on the DUD-E benchmark dataset
(Mysinger et al., 2012), which is commonly used to evaluate the performance of molecular docking
and structure-based screening. The complete benchmark contains 102 protein targets, each accom-
panied by active and decoy ligands in the form of SMILES strings (Weininger, 1988) and the PDB
template (Burley et al., 2017) of the ligand-receptor complex. We randomly select ten different
protein targets for the evaluation of our model. Ligands in these datasets are processed according
to the data curation pipeline outlined in the Methodology section, except that we sample up to 25
conformations per compound (see Appendix A.7 for more details).

5.1 PHARMACOPHORIC POINT PERCEPTION

We conduct a qualitatively analysis through dimensionality reduction to gain a first intuition for the
properties of the learned embedding space.

The partial ordering of graph representations in the embedding space, based on the number of nodes
per graph, is essential for encoding query-target relationships. This ordering property of the em-
bedding space can be visualized using principal component analysis (PCA). Figure 4a displays the
first two principal component axes of the learned representations, with the representations labeled
according to the number of pharmacophoric points of the corresponding pharmacophore. This visu-
alization demonstrates how the embedding vectors are systematically ordered relative to the number
of nodes in each pharmacophore graph.

Similarly, the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes et al.,
2020), a dimensionality reduction technique that preserves the local neighborhood structure of high-
dimensional data, was employed. Figure 4b shows the UMAP representation of the embeddings,
labeled by the number of pharmacophoric points of a specific type. This visualization suggests that
pharmacophores with a similar set of points are mapped proximally within the order embedding
space.

5.2 POSITIONAL PERCEPTION

We define a family of augmentations TrD to randomly delete nodes from a pharmacophore
P and displace the remaining nodes by a radius rD. We sample augmentations trD (·) ∼
TrD with increasing radius rD taken from a uniform grid of m distances between 0 and
10 Å. For a given batch of pharmacophores {P1, ..., Pn}, we generate the query-target pairs
{(trD (P1), P1), ..., (trD (Pn), Pn)}. We then evaluate the decision function g(·, ·) (Equation 4) on
the corresponding vector representations and calculate the mean of the decision function across all
pairs against an increasing radius rD, which is illustrated in Figure 4c. Without node displacement,
the mean matching decision function is close to 1, indicating that the model recognizes pharma-
cophores with reduced node sets as valid queries. With a displacement of approximately 1.5 Å, the
mean matching decision value drops to 50%, demonstrating the model’s consideration of the chosen
tolerance radius. Beyond a displacement of 1.5 Å, the decision function further decreases, ap-
proaching a plateau at approximately 6 Å. The results show that our model integrates 3D-positional
information of pharmacophoric points into the learned representations.

7
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Figure 4: (a.) Dimensionality reduction of the ADA target’s embedding space via PCA, with em-
beddings labeled by pharmacophoric point count. (b.) Dimensionality reduction via UMAP, with
embeddings labeled by pharmacophoric point type. (c.) Experimental validation of the model’s
perception of 3D point positions, showing the mean matching decision function versus the displace-
ment radius rD of the augmentation, with a decision threshold set to t = 6500.

5.3 ALIGNMENT PREDICTION AND PERFORMANCE AS A PRE-SCREENING TOOL

Each benchmark set is comprised of a pharmacophore query PQ and a set of ligands L =
{L1, ..., Ln}, where each ligand Li is associated with a set of pharmacophores {P1, ..., Pki

}i
and a label yi, which indicates whether the ligand is active or decoy. The task is to rank
the database ligands w.r.t. the query, based on a scoring function F : P × P → R+.
The ranking score ψi of ligand Li is calculated through aggregation of the pharmacophore
scores

⊕
({F (PQ, P1), ..., F (PQ, Pki

)}i), where
⊕

is an aggregation operator. PharmacoMatch
transforms the query G(PQ) 7→ zQ and the set of pharmacophores {G(P1), ..., G(Pki

)}i 7→
{z1, ..., zki

}i via encoder model fΘ : G → RD
+ and evaluates the penalty function E : RD

+ ×RD
+ →

R+. A low penalty corresponds to a high ranking. The ranking score of database ligand Li is
calculated as ψi = min({E(zQ, z1), ..., E(zQ, zki

)}i).

Ground truth for alignment prediction We evaluate the alignment prediction performance of
PharmacoMatch by relative comparison with the alignment algorithm implemented in the open-
source software CDPKit (Seidel, 2024), which utilizes clique-detection followed by Kabsch align-
ment (Kabsch, 1976). The ligand-receptor complex of the respective DUD-E target is used to gen-
erate an interaction pharmacophore as a structure-based query with the CDPKit. The CDPKit align-
ment algorithm only returns exact matches, meaning that queries with an excessive number of points
may yield no results. Consequently, pharmacophore modeling often requires user interaction to re-
duce the number of points in the query. For our comparison, we refined the initial query pharma-
cophores to a subset of 5–7 pharmacophoric points, which is a common range in pharmacophore
modeling. These points were selected to ensure that the query yields meaningful enrichment for the
CDPKit algorithm. Only after this refinement did we proceed to compare PharmacoMatch against
this ground truth.

The alignment of a query PQ and a target PT is evaluated with an alignment score S : P ×
P → R+, which takes into account the number of matched features and their geometric fit
(further details are provided in the Appendix A.6). The ligand ranking score is calculated as
ψi = max({S(PQ, P1), ..., S(PQ, Pki)}i), the highest alignment score represents the score for
the database ligand. Analogous to equation (4), we can also define a matching decision function ϕ
based on the alignment score, where t = |PQ|:

ϕ(PQ, PT ) =

{
1 iffS(PQ, PT ) ≥ t
0 otherwise

(5)

Evaluation Both algorithms rank database ligands to produce a hitlist. We assess the performance
of PharmacoMatch on the benchmark using two approaches. First, we demonstrate that the Phar-
macoMatch penalty E(·, ·) correlates with the matching decision function ϕ(·, ·) of the alignment
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algorithm. We evaluate both functions against all pharmacophores in a dataset w.r.t. query PQ.
The outputs are compared by generating the corresponding receiver operating characteristic (ROC)
curves, and the performance is quantified using the area under the ROC curve (AUROC) metric.
Second, we compare the virtual screening performance of our model and the alignment algorithm
using the ligand ranking score ψ. The primary objective of virtual screening is to find active com-
pounds amongst decoys. We evaluate this using two different metrics. The AUROC metric is used
to evaluate the overall classification performance w.r.t. activity label yi. A drawback of this metric
is that it does not reflect the early enrichment of active compounds in the hitlist, which is of sig-
nificant interest in virtual screening. Early enrichment is assessed using the Boltzmann-enhanced
discrimination of ROC (BEDROC) metric (Truchon & Bayly, 2007), which assigns higher weights
to better-ranked samples. Note that these performance metrics are entirely dependent on the chosen
query. Rather than aiming to maximize those metrics, our goal is to achieve comparable values
between our model and the alignment algorithm.

Alignment prediction performance Our results, comparing PharmacoMatch with the CDPKit
alignment algorithm across all ten targets, are summarized in Table 1 (ROC plots are provided
in the Appendix A.7). We observe a robust correlation between the hitlists generated by the two
algorithms, demonstrating the effectiveness of our approach. This correlation varies by target, re-
flecting the sensitivity of virtual screening to the chosen query. Although the alignment algorithm
achieves generally higher AUROC scores and early enrichment, our method consistently produces
hitlists with competitive performance across several targets. In terms of runtime, PharmacoMatch
significantly outperforms the alignment algorithm. We compare the time required for alignment, em-
bedding, and vector matching per pharmacophore. Alignment is performed in parallel on an AMD
EPYC 7713 64-Core Processor with 128 threads, while pharmacophore embedding and matching
are run on an NVIDIA GeForce RTX 3090, with both devices having comparable purchase prices
and release dates. Creating vector embeddings from pharmacophore graphs takes 92 ± 12 µs per
pharmacophore, which takes longer than aligning a query to a target with 13 ± 7 µs. However, the
embedding process only needs to be performed once. Subsequently, the preprocessed vector data
can be used for vector matching, which takes 0.30 ± 0.09 µs, being approximately two orders of
magnitude faster than the alignment. Additionally, vector comparison is independent of the query
size, an advantage not shared by the alignment algorithm. Although executed on different hardware,
this comparison highlights the speed-gain of our algorithm.

Table 1: Method comparison and screening performance of the PharmacoMatch algorithm and
the CDPKit alignment algorithm on ten different DUD-E protein targets (see Appendix A.7 for
details). BEDROC values are calculated with α = 20, as recommended by Truchon & Bayly
(2007), AUROC and BEDROC are reported in percent. Confidence intervals are calculated using
bootstrapping (Efron, 1979), with standard deviations reported based on 1,000 resampled datasets.

Protein Relative Absolute screening performance
target performance PharmacoMatch CDPKit

AUROC AUROC BEDROC EF1% EF5% EF10% AUROC BEDROC EF1% EF5% EF10%

ACES 90.7 ± 0.2 57 ± 2 19 ± 2 10 ± 1 3.9 ± 0.4 2.3 ± 0.2 55 ± 1 15 ± 1 4 ± 1 3.4 ± 0.3 2.3 ± 0.2

ADA 97.7 ± 0.3 80 ± 3 39 ± 4 10 ± 4 9 ± 1 5.5 ± 0.5 93 ± 2 80 ± 4 53 ± 4 16.2 ± 0.9 8.6 ± 0.4

ANDR 98.0 ± 0.2 78 ± 2 32 ± 2 15 ± 2 5.8 ± 0.5 4.3 ± 0.3 72 ± 2 26 ± 2 13 ± 2 4.3 ± 0.5 3.7 ± 0.3

EGFR 90.4 ± 0.5 59 ± 1 10 ± 1 2.7 ± 0.7 1.8 ± 0.2 1.5 ± 0.2 72 ± 1 22 ± 1 11 ± 1 4.0 ± 0.4 3.1 ± 0.2

FA10 84.2 ± 0.1 48 ± 1 2.1 ± 0.4 0.2 ± 0.2 0.3 ± 0.1 0.4 ± 0.1 55 ± 1 5.8 ± 0.6 - 0.7 ± 0.2 1.2 ± 0.1

KIT 80.2 ± 0.1 52 ± 2 2.3 ± 0.6 - 0.3 ± 0.2 0.3 ± 0.1 58 ± 2 7 ± 1 1.2 ± 0.9 0.9 ± 0.3 1.2 ± 0.3

PLK1 79.1 ± 0.5 61 ± 3 9 ± 2 1.4 ± 1.2 0.8 ± 0.4 1.8 ± 0.4 75 ± 3 39 ± 3 6 ± 2 10 ± 1 5.4 ± 0.5

SRC 95.6 ± 0.1 77 ± 1 22 ± 1 3.9 ± 0.8 3.9 ± 0.3 4.0 ± 0.2 77 ± 1 24 ± 1 5 ± 1 4.7 ± 0.4 3.3 ± 0.2

THRB 86.4 ± 0.4 73 ± 1 26 ± 2 6 ± 1 5.5 ± 0.4 3.8 ± 0.2 81 ± 1 40 ± 2 16 ± 2 8.4 ± 0.4 5.3 ± 0.2

UROK 83.3 ± 0.2 59 ± 2 3 ± 1 0.6 ± 0.6 0.4 ± 0.2 0.4 ± 0.2 91 ± 1 52 ± 3 25 ± 3 10.6 ± 0.7 5.5 ± 0.4

Applicability as a pre-screening tool In the paragraph above, we demonstrated how Pharmaco-
Match predicts pharmacophore matching and compared its performance with the CDPKit alignment
algorithm. A key aspect of this comparison is the role of user interaction in query design, since
the alignment algorithm only identifies a match when all pharmacophoric points align, and while it
is possible to define features as optional, this flexibility significantly increases runtime due to the
combinatorial explosion of possible query patterns. Consequently, handling larger queries with ten
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or more points becomes computationally prohibitive. PharmacoMatch operates independently of the
query’s size. This characteristic makes PharmacoMatch particularly suitable as a pre-screening tool.
By using structure-based queries without refinement step, it can filter extensive datasets effectively,
reducing the computational burden before engaging more resource-intensive methods or requiring
user interaction.

To evaluate this use case, we compare our method with the recent pre-screening tool PharmacoNet
Seo & Kim (2023), which employs image segmentation to generate pharmacophore queries and
a parameterized analytical function for hitlist creation. To replicate an automated pre-screening
scenario, we exclude user interaction from our workflow. Specifically, we generate an interaction
pharmacophore using CDPKit and use it directly as a query for PharmacoMatch. We assess the
pre-screening performance of PharmacoMatch and PharmacoNet on the DEKOIS2.0 dataset (Bauer
et al., 2013), comprising 81 targets with 40 actives and 1,200 decoys each. A comprehensive descrip-
tion of the dataset and its preprocessing is provided in the Appendix A.7. Performance is evaluated
using the average AUROC, BEDROC, and EF metrics across all targets (see Appendix A.7 for more
details). The results of this comparison are summarized in Table 2.

Table 2: Comparison of PharmacoMatch with PharmacoNet as a pre-screening tool. The reported
performance metrics were averaged over all targets of the DEKOIS2.0 dataset. AUROC and
BEDROC are given in percent, BEDROC values are calculated with α = 80.5, as reported in the
PharmacoNet publication. PharmacoNets runtime per ligand depends on the number of atoms, here
we report their measurement for ligands with 70 heavy atoms. The runtime for PharmacoMatch
was calculated as average over all ligands in the benchmark.

AUROC BEDROC EF0.5% EF1% EF5% Runtime per ligand (s)

PharmacoMatch 58.4 9.7 3.52 2.92 2.35 4.58 · 10−6

PharmacoNet 62.5 12.3 4.39 4.21 2.85 5.15 · 10−3

Our evaluation demonstrates that PharmacoMatch can serve as an effective pre-screening tool,
achieving performance comparable to PharmacoNet on the DEKOIS2.0 dataset. However, Pharma-
coMatch’s runtime is three orders of magnitude faster. Given that the primary goal of pre-screening
is rapid and cost-effective filtering before employing more computationally expensive methods, we
argue that this substantial improvement in runtime justifies the slight trade-off in enrichment metrics.

Practical considerations There are two options for integrating our model into a virtual screen-
ing pipeline. First, the PharmacoMatch model can be used in place of the alignment algorithm to
generate a hitlist of ligands, which is suitable for quickly producing a compound list for experi-
mental testing. Alternatively, our method can serve as an efficient pre-screening tool for very large
databases, reducing the number of molecules from billions to millions, after which the slower align-
ment algorithm can be applied to this filtered subset. Note that alignment will still be necessary if
visual inspection of aligned pharmacophores and corresponding ligands is desired.

6 CONCLUSION

We have presented PharmacoMatch, a contrastive learning framework that creates meaningful phar-
macophore representations for virtual screening. The proposed method tackles the matching of 3D
pharmacophores through vector comparison in an order embedding space, thereby offering a valu-
able method for significant speed-up of virtual screening campaigns. PharmacoMatch is the first
machine-learning based solution that approaches pharmacophore virtual screening via an approxi-
mate neural subgraph matching algorithm. We are confident that our method will help to improve
on existing virtual screening workflows and contribute to the assistance of medicinal chemist in the
complex task of drug discovery.

REPRODUCIBILITY STATEMENT

The source code of this project can be found under the following link: https://anonymous.
4open.science/r/PharmacoMatch-34A0/README.md. Please follow the instructions
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in the repository for reproduction of our results. Training and test data can be downloaded here:
https://figshare.com/s/24757b89ea7f0932bf3c?file=49290172.
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A APPENDIX

A.1 ILLUSTRATION OF THE PROPOSED WORKFLOW

Figure 5: Overview of the PharmacoMatch workflow: Conformer and pharmacophore generation
from ligands and query creation, for example from a ligand-protein complex, precede pharma-
cophore screening. The encoder model converts the screening database into embedding vectors,
stored for later use. A hitlist is generated by comparing the query embedding with the database
embeddings.

A.2 DATASET CURATION & STATISTICS

Unlabeled training data was downloaded from the ChEMBL database to represent small molecules
with drug-like properties. At the time of data download, the ChEMBL database contained 2,399,743
unique compounds. We constrained the compound category to ”small molecules” and enforced ad-
herence to the Lipinsky rule of five (Lipinski et al., 1997), specifically setting violations to ”0,”
resulting in a refined set of 1,348,115 compounds available for download. The molecules were ac-
quired in the form of Simplified Molecular Input Line Entry System (SMILES) (Weininger, 1988)
strings. Subsequent to data retrieval, we conducted preprocessing using the database cleaning func-
tionalities of the Chemical Data Processing Toolkit (CDPKit) (Seidel, 2024). This process involved
the removal of solvents and counter ions, adjustment of protonation states to a physiological pH
value, and elimination of duplicate structures, where compounds differing only in their stereo con-
figuration were regarded as duplicates. To prevent data leakage, we carefully removed all structures
from the training data that would occur in one of the test sets we used for our benchmark exper-
iments. The final set was comprised of 1,221,098 compounds. For each compound within the
dataset, a 3D conformation was generated using the CONFORGE (Seidel et al., 2023) conformer
generator from the CDPKit, which was successful for 1,220,104 compounds. To enhance batch di-
versity, we generated only one conformation per compound for contrastive training. Subsequently,
3D pharmacophores were computed for each conformation, with removal of pharmacophores con-
taining less than four pharmacophoric points. The ultimate dataset comprised 1,217,361 distinct
pharmacophores.

Figure 6 shows the frequency of pharmacophores with a specific pharmacophoric point count in
the training data. On average, a pharmacophore consists of 13 pharmacophoric points, with the
largest pharmacophore in the dataset containing 32 points. Pharmacophores with fewer than four
points were omitted during data clean-up. Hydrophobic pharmacophoric points and hydrogen bond
acceptors are the most prominent, while hydrogen bond donors and aromatics occur less frequently.
Ionizable pharmacophoric points and halogen bond donors are comparatively rare.
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Figure 6: Pharmacophoric point statistics of the training data. The respective histograms display
the total number of pharmacophoric points and the number of points of specific types per phar-
macophore in the training data. The complete training dataset contains 1,217,361 distinct pharma-
cophores.
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A.3 AUGMENTATION MODULE

The augmentation module receives the initial pharmacophore x0 = [h0, r0], with the initial OHE
feature matrix h0 and the Cartesian coordinates r0. Edge attributes of the complete graph were
calculated from the pair-wise distances between nodes after modifying the input according to the
augmentation strategy, which combines random node deletion and random node displacement. The
module outputs the modified tuple x = [h, e] with the feature matrix h and the edge attributes e.

Node deletion Random node deletion involved removing at least one node, with the upper bound
determined by the cardinality of the set of nodes Vi of graphGi. To ensure the output graph retained
at least three nodes, the maximum number of deletable nodes was |Vi| − 3. The number of nodes to
delete was drawn uniformly at random.

Node displacement There are two modes for the displacement of pharmacophoric points, dis-
placement within the tolerance sphere, and displacement onto the surface of the tolerance sphere.
For simplicity, we assumed the same tolerance sphere radius rT across different pharmacophoric
types. For displacement within the tolerance sphere, we calculated the coordinate displacement
(∆x,∆y,∆z) from spherical coordinates ϕ ∼ U(0, 2π) and cos θ ∼ U(−1, 1), which were drawn
at random from a uniform distribution:

∆x = ∆r sin θ cosϕ, ∆y = ∆r sin θ sinϕ, ∆z = ∆r cos θ (6)

where ∆r = rT 3
√
u and u ∼ U(0, 1). Displacement of the nodes onto the tolerance sphere surface

was achieved by calculating the mean of the positions of the pharmacophoric points, µ = 1
n

∑|P |
i=1 ri,

and displacing each point pi by rT in the direction ri − µ. The displacement away from the center
ensures that displacement directions do not cancel each other.

A.4 MESSAGE PASSING NEURAL NETWORK

Convolution on irregular domains like graphs is formulated as message passing, which can generally
be described as:

h
(k)
i = γ(k)(h

(k−1)
i ,

⊕
j∈N (i)

ϕ(k)(h
(k−1)
i ,h

(k−1)
j , eij)) (7)

where h
(k)
i ∈ RF ′

denotes the node features of node i at layer k, h(k−1)
i ∈ RF denotes the node

features of node i at layer k − 1, eij ∈ RD the edge features of the edge from node i to node j,
γ(k) and ϕ(k) are parameterized, differentiable functions, and

⊕
is an aggregation operator like,

e. g., the summation operator (Fey & Lenssen, 2019). In our encoder architecture, we employed the
following edge-conditioned convolution operator, which was proposed both by Gilmer et al. (2017);
Simonovsky & Komodakis (2017):

h
(k)
i = Θh

(k−1)
i +

∑
j∈N (i)

h
(k−1)
j · ψΘ(eij) (8)

where Θ ∈ RF×F ′
denotes learnable weights and ψΘ(·) : RD → RF×F ′

denotes a neural network,
in our case an MLP with one hidden layer. These transformations map node features h into a latent
representation that combines pharmacophoric types with distance encodings.

A.5 ENCODER IMPLEMENTATION

The encoder was implemented as a GNN fΘ : G → RD
+ that maps a given graph G to the abstract

representation vector z ∈ RD
+ . The architecture is comprised of an initial embedding block, three

subsequent convolution blocks, followed by a pooling layer, and a projection block.
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Embedding block The embedding block receives the pharmacophore graph Gi as the tuple xi =
[hi, ei], with the OHE feature matrix hi and the edge attributes ei. Initial node feature embeddings
are created from the OHE features with a fully-connected (FC) dense layer with learnable weights
W and bias b:

hi ←Whi + b (9)

Convolution block The convolution block consists of a graph convolution layer, which is imple-
mented as edge-conditioned convolution operator (NNConv), the update rule is described in Section
A.4. The network further consists of batch normalization layers (BN), GELU activation functions,
and dropout layers. The hidden representation hl

i of graph Gi is updated at block l as follows:

[hl
i, ei]→ {NNConv→ BN→ GELU→ concat(hl′

i ,h
l
i)→ dropout} → hl+1

i (10)

where hl′

i represents the latent representation after activation. Updating the feature matrix l times
yields the final node representations of the pharmacophoric points.

Pooling layer We employed additive pooling for graph-level read-out ri, which aggregates the set
of |V | node representations {h1, ...,h|V |}i of a Graph Gi by element-wise summation:

qi =

|V |∑
k=1

hk (11)

Projection block The projection block maps the graph-level read-out to the positive real number
space and is implemented as a multi-layer perceptron MLP : Rd → RD

+ , where d is the dimension
of the vector representation before and D the dimension after the projection. The block consists of
k sequential layers of FC layers, BN, ReLU activation, and dropout:

qk
i → {FC→ BN→ ReLU→ Dropout} → qk+1

i (12)

The final layer is a FC layer without bias and with positive weights, only:

zi ← abs(W)qi (13)

Matrix multiplication of the positive learnable weights W and the output of the last ReLU activation
function produces the final representation zi ∈ RD

+ .

Figure 7: Architecture of the GNN encoder model.
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A.6 MODEL IMPLEMENTATION AND TRAINING

Implementation dependencies The GNN was implemented in Python 3.10 with PyTorch (v2.0.1)
and the PyTorch Geometric library (v2.3.1) (Fey & Lenssen, 2019). Both, model and dataset, were
implemented within the PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) frame-
work (v2.1.0). Model training was monitored with Tensorboard (v2.13.0). CDPKit (v1.1.1) was
employed for chemical data processing. Software was installed and executed on a Rocky Linux
(v9.4) system with x86-64 architecture.

Model training Training was performed on a single NVIDIA GeForce 3090 RTX graphics unit
with 24 GB GDDR6X. Training runs were performed for a maximum of 500 epochs with a batch size
of 256 pharmacophore graphs. Curriculum learning was applied by gradual enrichment of the dataset
with increasingly larger pharmacophore graphs. At training start, only pharmacophore graphs with
4 nodes were considered. After 10 subsequent epochs without considerable minimization of the loss
function, pharmacophore graphs with one additional node were added to the training data. The loss
function was minimized with the Adam optimizer, we further applied gradient clipping. A training
run on the full dataset took approximately 48 hours with the above hardware specifications.

Hyperparameter tuning & model selection Hyperparameters were optimized through random
parameter selection, the tested ranges are summarized in Table 4. Unlabeled data was split into
training and validation data with a 98:2 ratio. Training runs were compared using the AUROC value
on the validation data. This was calculated by treating the positive and negative pairs as binary labels,
and the predictions were based on their respective order embedding penalty, which was calculated
with Equation (3). Hyperparameter optimization was performed on a reduced dataset with 100,000
graphs, which took approximately 5 hours per run. The best performing models were retrained on
the full dataset. The hyperparameters of the final encoder model are summarized in Table 3. After
model selection, the final model performance was tested on virtual screening datasets.

Table 3: Hyperparameters of the best performing encoder model

Hyperparameter

batch size 256
dropout convolution block 0.2
dropout projection block 0.2
max. epochs 500
hidden dimension convolution block 64
hidden dimension projection block 1024
output dimension convolution block 1024
output dimension projection block 512
learning rate optimizer 0.001
margin for negative pairs 100.0
number of convolution blocks 3
depth of the projector MLP 3
edge attributes dimension 5
sampling sphere radius positive pairs 1.5
sampling surface radius negative pairs 1.5

Table 4: Tested hyperparameter ranges for model training.

Hyperparameter Parameter range

dropout [0.2, 0.3, 0.4, 0.5]
margin for negative pairs [0.1, 0.5, 1, 2, 5, 10, 100, 1000]
output dimension projection block [64, 128, 256, 512, 1024]
displacement sphere radius rT of positive pairs [0.25, 0.5, 1.0, 1.5]
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Table 5: Tested hyperparameter ranges for ablation studies.
Parameter Parameter range Validation AUROC

Tolerance radius [0.0, 0.5, 1.0, 1.5, 2.0] [0.91, 0.93, 0.94, 0.94, 0.93]
Encoder dimension [8, 16, 32, 64, 96] [0.92, 0.93, 0.94, 0.94, 0.94]
Embedding dimension [32, 64, 128, 256, 512, 1024] [0.91, 0.93, 0.94, 0.94, 0.94, 0.93]
Skip-connection [dense, res, none] [0.94, 0.93, 0.74]
GNN Layer [NNConv, GINE, CFConv, GAT] [0.94, 0.94, 0.94, 0.93]
Projector layers [1, 2, 3] [0.94, 0.94, 0.94]
Convolution layers [1, 2, 3] [0.94, 0.94, 0.94]
Margin [0.01, 0.1, 1, 2, 5, 10, 100, 1000] [0.88, 0.90, 0.92, 0.92, 0.93, 0.93, 0.94, 0.94]

A.7 VIRTUAL SCREENING

DUD-E dataset details General information about the DUD-E targets is summarized in Table 6.
For each target we downloaded the receptor structure from the PDB and created the correspond-
ing interaction pharmacophore with the CDPKit. Vector features were converted into undirected
pharmacophoric points with LigandScout (Wolber & Langer, 2005). The resulting pharmacophore
queries (Figure 8) were used in our virtual screening experiments.

Table 6: DUD-E targets that were selected for bechmarking experiments in this study.

Target PDB code Ligand ID Active
Ligands

Active
Conformations

Decoy
Ligands

Decoy
Conformations

Query
Points

ACES 1e66 HUX 451 10048 26198 567122 6
ADA 2e1w FR6 90 2166 5448 125035 7

ANDR 2am9 TES 269 3039 14333 211968 6
EGFR 2rgp HYZ 541 12468 35001 755017 7
FA10 3kl6 443 537 13343 28149 638831 5
KIT 3g0e B49 166 3703 10438 224364 5

PLK1 2owb 626 107 2531 6794 152999 6
SRC 3el8 PD5 523 11868 34407 737864 6

THRB 1ype UIP 461 11494 26894 626722 7
UROK 1sqt UI3 162 3450 9837 199204 6

Figure 8: Structure-based pharmacophore queries of ten targets of the DUD-E benchmark dataset.

DEKOIS2.0 dataset details General information about the DEKOIS2.0 targets (Bauer et al.,
2013). Each target is associated with a PDB four-letter code and a corresponding ligand ID. For each
target, we downloaded the receptor structure and its respective ligand from the PDB and generated
the interaction pharmacophore using the CDPKit. These queries were used without further refine-
ment in our pre-screening experiments. For targets containing the small molecule ligand in multiple
binding pockets, we randomly selected one pocket for pharmacophore generation. The SIRT2 target
was excluded from our evaluation because its structure does not contain a small molecule ligand.
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Pre-screening performance metric calculation For each target, we calculated the AUROC,
BEDROC, and enrichment factors (EF) for the top 0.5%, 1%, and 5% of the hit list, reporting
the average values for these metrics. Five targets contained three or fewer pharmacophoric points,
lacking sufficient geometric information for meaningful pattern matching, and were therefore ex-
cluded from the metrics calculations. Metrics for PharmacoNet were reported as presented in their
original manuscript and were not recalculated.

CDPKit alignment scoring function The CDPKit implements alignment as a clique-detection
algorithm and computes a rigid-body transformation via Kabsch’s algorithm to align the pharma-
cophore query PQ to the pharmacophore target PT . The goodness of fit is evaluated with a geometric
scoring function S : P × P → R+:

S(PQ, PT ) = SMFP (PQ, PT ) + SGeom(PQ, PT ) (14)

where SMFP : P × P → Z+ counts the number of matched feature pairs and SGeom : P × P →
[0, 1) evaluates their geometric fit.

Runtime measurement We measured alignment runtimes using the psdscreen tool from the CDP-
Kit with 128 threads on an AMD EPYC 7713 64-Core Processor, while embedding and matching
runtimes with PharmacoMatch were recorded using an NVIDIA GeForce RTX 3090 GPU with 24
GB GDDR6X. Runtime per pharmacophore was estimated by dividing the total runtime by the num-
ber of pharmacophores in each dataset, with the final estimate taken as the mean of ten runs. The
results report the mean and standard deviation of these estimates across all ten datasets.

ROC curves The performance metrics of our virtual screening experiments are derived from the
ROC curves presented in Figures 9 and Figure 10.

Figure 9: Performance comparison of PharmacoMatch and the alignment algorithm. The ROC-
curves display the agreement of the hitlist ranking of the two algorithms for ten targets of the DUD-E
benchmark dataset.

A.8 EMBEDDING SPACE VISUALIZATION

UMAP visualization UMAP embeddings for visualization plots were calculated with the UMAP
Python library. The ‘metric‘ parameter was set to Manhattan distance, all other parameters are the
default settings of the implementation. We tested a range of hyperparameters to ensure that the
visualization results are not sensitive to parameter selection.
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Figure 10: Absolute screening performance of PharmacoMatch and the alignment algorithm perfor-
mance for ten targets of the DUD-E benchmark dataset. The pharmacophore queries were generated
from the respective PDB ligand-receptor structures.

Figure 11: UMAP visualization of the vector embeddings of the ACES target.

Figure 12: UMAP visualization of the vector embeddings of the ANDR target.
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Figure 13: UMAP visualization of the vector embeddings of the EGFR target.

Figure 14: UMAP visualization of the vector embeddings of the FA10 target.

Figure 15: UMAP visualization of the vector embeddings of the KIT target.
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Figure 16: UMAP visualization of the vector embeddings of the PLK1 target.

Figure 17: UMAP visualization of the vector embeddings of the SRC target.

Figure 18: UMAP visualization of the vector embeddings of the THRB target.
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Figure 19: UMAP visualization of the vector embeddings of the UROK target.
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