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ABSTRACT

Dataset distillation generates a small synthetic dataset on which a model is trained
to achieve performance comparable to that obtained on a complete dataset. Current
state-of-the-art methods primarily focus on Trajectory Matching (TM), which
optimizes the synthetic dataset by matching its training trajectory with that from
the real dataset. Due to convergence issues and numerical stability, it is impractical
to match the entire trajectory in one go; typically, a segment is sampled for matching
at each iteration. However, previous TM-based methods overlook the potential
interactions between matching different segments, particularly the presence of
negative correlations. To study this problem, we conduct a quantitative analysis
of the correlation between matching different segments and discover varying
degrees of negative correlation depending on the image per class (IPC). Such
negative correlation could lead to an increase in accumulated trajectory error
and transform trajectory matching into a continual learning paradigm, potentially
causing catastrophic forgetting. To tackle this issue, we propose a concurrent
learning-based trajectory matching that simultaneously matches multiple segments.
Extensive experiments demonstrate that our method consistently surpasses previous
TM-based methods on CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-1K.

1 INTRODUCTION

The increasing scale of data has significantly enhanced the performance of neural networks (Brown
et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022). However, it remains an unresolved question
whether networks trained on much smaller datasets can achieve similar success. To address this
question, Dataset Distillation (DD) (Wang et al., 2018) has emerged as a prominent research area
due to its straightforward concept of distilling large datasets into smaller synthetic ones, while still
maintaining comparable model performance. (Zhao et al., 2021; Cazenavette et al., 2022; Wang
et al., 2022; Kim et al., 2022; Zhang et al., 2023). Among various data distillation methods (Zhao
et al., 2021; Kim et al., 2022; Wang et al., 2022; Zhao & Bilen, 2023), Trajectory Matching (TM)-
based methods (Cazenavette et al., 2022; Zhang et al., 2023; Guo et al., 2023) achieve excellent
and even lossless results (Guo et al., 2023) by ensuring that the training trajectories on synthetic
dataset closely match those of the full dataset. During the matching process, the complete training
trajectory is divided into several segments for individual matching to ensure training stability and
convergence (Cazenavette et al., 2022; Zhang et al., 2023; Guo et al., 2023).

However, this segmented matching scheme overlooks a critical issue: Matching different segments
may be negatively correlated. This issue may bring an obstacle in the optimization because matching
one segment can significantly increase the matching loss of other segments.

In this paper, we conduct an in-depth study on the correlation between different segments of trajectory
matching. Specifically, we theoretically analyze how negative correlation affects the accumulated
trajectory matching error (Du et al., 2023), and then we conduct a series of experiments to verify
that negative correlations do exist. We monitor the matching loss of other epochs when one epoch
is selected for matching. By calculating the Pearson correlation coefficient between the loss of the
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(b) Ideal Case (c) Practical Case

Negative Correlation

(a) Correlation Heatmap

Expert Trajectory
Student Trajectory (without correlation)
Student Trajectory (with correlation)

Figure 1: (a) Heatmap of the Pearson correlation coefficients (PCC): The element (i, j) in the
heatmap represents the PCC between the matching losses of epoch j and the matching loss of epoch i,
when epoch i is the one being matched. It is evident that matching later epochs negatively correlates
with earlier epochs, meaning that as the loss of later epochs decreases, the matching losses of earlier
epochs increase. (b) In an ideal situation, the matching of each segment would not negatively affect
the others. As long as each segment is accurately matched, the training trajectory on synthetic data
can closely approximate the expert trajectory. (c) However, due to the negative correlation with other
parts, matching other parts can cause it to deviate from the expert trajectory.

matched epoch and the losses of the unmatched epochs, we demonstrate the correlation between
different segments. As shown in Figure 1 (a), the lower triangular portion of the heatmap matrix is
predominantly negatively correlated, indicating that matching later parts of the trajectory significantly
increases the loss of earlier parts. Moreover, we observe that the correlation between different
segments also varies with the information capacity of the synthetic data, namely the Image per Class
(IPC). When IPC is small, matching a late part exhibits a negative correlation with an early part,
whereas at a large IPC, the negative correlation shifts to the upper triangular of the heatmap matrix.
To understand this observation, we formalize the correlation and sampling strategy in the trajectory
matching into a continual learning problem (Kirkpatrick et al., 2017; Chen & Liu, 2018; Kudithipudi
et al., 2022), where matching different segments of the complete trajectory without strict correlation
can lead to catastrophic forgetting (McClelland et al., 1995; McCloskey & Cohen, 1989). This makes
the Existing TM-based methods unlikely to achieve a training trajectory on synthetic data that closely
resembles the real expert trajectory.

To overcome this issue, we develop a Concurrent Training-based Trajectory Matching(ConTra)
method. In the continual learning community, it is commonly believed that simultaneous multi-
task learning (MTL) achieves optimal results when dealing with multiple negatively correlated
tasks, representing an upper bound. Conversely, naive sequential learning (SL) is considered as a
lower bound (Kirkpatrick et al., 2017; Shin et al., 2017; Schwarz et al., 2018). Therefore, instead
of sampling a specific part from the complete trajectory to match each time as naive sequential
learning (SL), we concurrently match those negatively correlated parts with multi-task learning
(MTL). Furthermore, considering that different IPCs have varying information capacities, we employ
a curriculum learning approach (Bengio et al., 2009a; Zhang et al., 2024) to generate the expert
trajectory. Our experiments demonstrate that ConTra can consistently outperform other trajectory
matching methods on CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-1K.

Contributions. (1) We theoretically analyze how the negative correlations affect the accumulated
trajectory error and systematically quantify the correlation between matching different parts of a
complete trajectory under various IPCs. (2) We explicitly highlight the inherent continual learning
nature and the issue of catastrophic forgetting and based on this perspective, propose a new matching
strategy—concurrent training—from the upper bound of continual learning, MTL.(3) We validate the
effectiveness of our approach through extensive experiments.

2 RELATED WORK

(Wang et al., 2018) firstly formalized the concept of Dataset Distillation as a bi-level optimization
problem, with the goal of distilling large-scale datasets into smaller synthetic ones while preserving
comparable test performance. Dataset distillation can primarily be divided into following categories:
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Gradient matching. Zhao et al. (2021) pioneered the gradient matching approach to Dataset
Condensation (DC), which optimizes the synthetic data by minimizing difference between model
gradients trained with a large training set and with the synthetic dataset. Kim et al. (2022) and Zhang
et al. (2023) improved gradient matching by focusing on data regularity characteristics and model
augmentation. MTT (Cazenavette et al., 2022) introduced a long-range matching strategy. FTD (Du
et al., 2023) leveraged a flatter expert trajectory, and DATM (Guo et al., 2023) firstly achieved lossless
condensation and conducted coarse-grained studies on matching early and late parts. PDD (Chen
et al., 2023) generates several subsets to capture the entire training dynamics. However, all of the
previous works used a segmented matching strategy and there is no detailed analysis of whether the
matching of different segments is correlated.

Distribution matching. Another line of DD is feature or distribution matching, aiming at
synthesizing data that can accurately approximate the distribution of the real training data(Wang
et al., 2022; Zhao & Bilen, 2023; Zhao et al., 2023). They can only continually approximate lossless
test accuracy and cannot achieve it with relatively small IPCs due to their spirit akin to coreset
selection (Sener & Savarese, 2018; Welling, 2009)

Kernel-based methods. KIP (Nguyen et al., 2020), the first Kernel-based method, simplified
dataset distillation into a single-level optimization problem through kernel ridge-regression with
NTK (Lee et al., 2019). The computation cost of KIP scales quadratically in the number of pixels
for convolutional kernels. Although subsequent studies (Zhou et al., 2022; Loo et al., 2023) have
significantly reduced training costs, they still struggle to scale up to larger datasets and IPCs.

3 PRELIMINARIES

Let T = {(xi, yi)}|T |
i=1 be a dataset with |T | samples, where xi ∈ Rd and yi ∈ Y = {0, 1, . . . , C−1}

are the input datapoint and its corresponding label, and C is the number of classes. Dataset distillation
aims to distill T into a much smaller synthetic dataset S = {(si, yi)}|S|

i=1, such that a model f trained
on the synthetic dataset S can achieve a comparable performance with a significant less training cost.

Trajectory matching. Trajectory matching (TM)-based methods achieve this goal by making the
trajectories of models trained on synthetic dataset imitate the expert trajectories that are obtained on
real dataset. Specifically, an expert trajectory τ∗ is composed of a sequence of parameters that are
partitioned into T segments τ∗ = {Θ∗

t }T−1
t=0 , and each segment Θ∗

t =
(
θ∗t,0, θ

∗
t,1, . . . , θ

∗
t,M

)
, where

M is a hyper-parameter that represents the length of segments. Several models are initialized and
trained on the real dataset to get an expert trajectory set, {τ∗}. In each iteration, a trajectory is
sampled from {τ∗}, and a segment of it, Θ∗

t , is used for matching. During distillation, the start
parameters of the student trajectory θ̂t,0 are initialized with θ∗t,0 and then updated on the synthetic
dataset for N steps:

θ̂t,i+1 = θ̂t,i − α∇ℓ
(
A (bt,i) ; θ̂t,i

)
, where θ̂t,0 = θ∗t,0. (1)

α is a learnable learning rate, A denotes differentiable augmentation function, and bt+i is the mini-
batch sampled from S . We aim for the student trajectory to closely approximate the actual trajectory
after N steps of updates. Formally, the matching loss is defined as follows:

L =

∥∥∥θ̂t,N − θ∗t,M

∥∥∥2
2∥∥∥θ∗t,0 − θ∗t,M

∥∥∥2
2

. (2)

Subsequently, the synthetic dataset S is optimized by minimizing the matching loss of the segment,
and this process of sampling a segment and then matching it is repeated multiple times to finally
obtain a well-distilled dataset.
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4 INCONSISTENT CORRELATIONS BETWEEN SEGMENTS MATCHING

Previous TM-based methods calculate the matching loss L by sampling a segment from the expert
trajectory in each iteration. This paradigm assumes that if each segment of the trajectory is well-
matched, the complete trajectory will also be matched accurately. However, this assumption is
questionable. We find that if negative correlation exists between different segments, reducing the
matching loss of a single segment may cause the complete trajectory to deviate from the real trajectory.
In this section, we begin by demonstrating this issue from the perspective of accumulated trajectory
error as introduced in (Du et al., 2023). We then empirically verify that negative correlations do exist
prevalently in commonly used datasets.

4.1 THE IMPACT OF NEGATIVE CORRELATION ON ACCUMULATED TRAJECTORY ERROR

The ultimate goal of trajectory matching is to align complete trajectories trained on synthetic datasets
with those from real datasets. To analyze the impact of negative correlation on this objective, we
employ the accumulated matching error proposed in (Du et al., 2023) as a theoretical tool, which is
used to measure the difference between in model parameters’ weights obtained when training the
model on the real training set versus the synthetic dataset during the evaluation phase (the synthetic
dataset is already obtained by trajectory matching).
Definition 1. Accumulated error. Let ϵt represent the accumulated trajectory error in the tth segment,
which is defined as:

ϵt = θ̂t+1,0 − θ∗t+1,0 = θ̂t,N − θ∗t,M , (3)

where θ̂t,N represents the final sets of parameters of the tth trajectory segment obtained on the
synthetic dataset, which is also the initial parameters for the subsequent segment, i.e., θ̂t,N = θ̂t+1,0.
Importantly, during evaluation, θ̂t,0 is no longer initialized with θ∗t,0 and is continually updated by S .
Therefore, it is equal to the last set of weights in the previous segment, namely θ̂t,0 = θ̂t−1,N .

The accumulated trajectory error of the last segment determines the final distance between the
training trajectory on the synthetic dataset and the real trajectory. To analyze this more specifically,
we introduce two additional error terms as followed:
Definition 2. Initialization error. During training, the model for the (t)th segment is initialized
with θ∗t,0, but in the evaluation phase, it is initialized with θ̂t,0, which equals to θ∗t,0 + ϵt−1. This
inconsistency incurs further discrepancies in the weights after subsequent gradient descent updates,
namely the initialization error I:

It = US(fθ∗
t,0+ϵt−1 , N)− US(fθ∗

t,0
, N), (4)

where US(fθ, N) denotes the updates of model f after N steps gradient decent on the synthetic
dataset S, starting with parameter θ.
Definition 3. Matching error represents the distance between the endpoint of the sampled segment
that we try to minimize during optimizing the synthetic dataset in distillation step The matching error
of the (t)th is defined as followed:

δt = (US(fθ∗
t,0
, N)− UT (fθ∗

t,0
,M)) (5)

Then we have:
Theorem 1. Assuming there are T segments in total, the accumulated error of the last segment is the
sum of the matching errors and the initialization errors from all preceding segments:

ϵT−1 =

T−1∑
i=1

Ii +
T−1∑
i=0

δi, where δ0 = ϵ0. (6)

The proof of Theorem. 1 is provided in Appendix A.1. Previous TM-based methods sample only
one segment to minimize the matching loss as described in Equation 2, essentially involving the
random selection of a δi to minimize. However, when the minimization of the matching error for
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(a) IPC=10
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(b) IPC=50
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(c) IPC=100
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(d) IPC=1000

Figure 2: Heatmap of the Pearson correlation coefficients (PCC) on CIFAR-10: The element (i, j) in
the heatmap represents the PCC between the matching losses of epoch j and the matching loss of
epoch i, when epoch i is the one being matched.

different segments is negatively correlated, reducing the δi of one segment may lead to an increase
in the matching loss of other segments

∑
j ̸=i δj . Consequently, rather than decrease, ϵT−1 might

actually increase. This phenomenon makes it challenging for the trajectory trained from synthetic
data to closely approximate the exact trajectory, irrespective of the addition of more segments.

4.2 MATCHING DIFFERENT SEGMENTS EXHIBITS NEGATIVE CORRELATION (EMPIRICALLY)

Based on the analysis presented in Section 4.1, we clarify the impact of negative correlation on
trajectory matching. In this subsection, we conduct experiments to verify the prevalence of negative
correlation when matching different segments. We leverage the Pearson Correlation Coefficient
(PCC) for a quantitative analysis of the correlation. For simplicity, our experiments are conducted
on CIFAR-10 with a complete training trajectory comprises 40 epochs where each representing a
segment with multiple checkpoints. We first establish a complete τo as the reference trajectory, which
will not participate in the distillation process. For each iteration, we sample a trajectory and match a
fixed part of it—specifically, 1 of the 40 epochs. Subsequently, we monitor the changes in matching
losses (Eq. 2) for the matched epoch and the remaining 39 epochs on the trajectory τo. Specifically,
when matching the ith epoch, the PCC between the matching loss of the ith epoch and the jth epoch is
defined as:

rij =

∑Z
z=1

(
Li,z − L̄i

) (
Lj,z − L̄j

)√∑Z
z=1

(
Li,z − L̄i

)2√∑Z
z=1

(
Lj,z − L̄j

)2 , (7)

where Z denotes the total number of distillation iterations, Li,z is the matching loss of the ith segment
(epoch) of τo during the zth iteration. The PCC is positive if Li and Lj trends both decrease or
increase simultaneously. Conversely, the PCC is negative when the trends of Li and Lj diverge.

Negative correlation exists prevalently. Figure 2 shows the heatmaps of PCCs under different
IPCs. When the IPC is relatively small, matching later parts exhibits a strong negative correlation
with earlier parts, with negative correlations concentrated in the lower triangular area of the heatmap.
This pattern highlights a significant issue of matching later segments while earlier segments are
forgotten. In practical implementation of previous work, when the IPC is 10, it is common that
segments are only sampled from the first 20 epochs for matching (Cazenavette et al., 2022; Cui
et al., 2023; Guo et al., 2023). Therefore, sampling later segments clearly leads to a deviation of the
previously well-matched early part from the real trajectory.

As the IPC increases, the negatively correlated parts gradually shift from the lower triangular area to
the upper triangular area. When IPC reaches 1000, matching the early part causes an increase in the
matching loss of the well-matched late part. Experiments in (Guo et al., 2023) demonstrate that at an
IPC of 1000, matching only the late part yields satisfactory outcomes. From a correlation perspective,
this is because, at this IPC level, matching the late part is positively correlated with matching the
entire trajectory.

Roles of Training dynamics in the correlation variation. Although neural networks can nearly
memorize the entire training set (Zhang et al., 2021), the fitting of samples is a dynamic process.
In the early epochs of training, those easy patterns (Carlini et al., 2022) dominate the matching
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gradient (Arpit et al., 2017). That is to say, conducting gradient matching in the early epochs causes
the synthetic data to primarily fit the easy patterns, such as lines and curves. In the late stages of
model training, the situation becomes more complex. In particular, the training process does not
exclusively focus on fitting hard patterns in later stages; rather, it dynamically adjusts to also refit
simpler ones as needed (Arpit et al., 2017; Katharopoulos & Fleuret, 2018). This dynamic process is
controlled by both easy and hard patterns, and it thus contains the information of the entire dataset.

Regarding the variation in correlation with changes in IPC, we speculate that with a small IPC, the
synthetic dataset’s limited capacity suffices only to fit simple patterns. Easy patterns learned through
matching early segments are likely forgotten when matching later segments, so matching late segments
are negatively correlated with early ones. In contrast, a high IPC enables the synthetic dataset to
simultaneously fit both simple and complex patterns through complex training dynamics, facilitating
lossless distillation as reported in (Guo et al., 2023). With this increased IPC, matching early epochs
may result in the loss of information regarding complex patterns learned in later segments, thereby
exhibiting a negative correlation with these later epochs.

5 CONCURRENT TRAINING-BASED TRAJECTORY MATCHING

Trajectory matching as a continual learning problem. As discussed in Section 4, it is evident
that various correlations exist between different segments’ matching, resembling the scenario in
continual learning where different tasks exhibit high diversity. In continual learning, when tasks
are either uncorrelated or negatively correlated, sequential learning—where tasks are optimized one
by one—often leads to the phenomenon of catastrophic forgetting. This phenomenon occurs when
adaptation to a new task significantly diminishes the ability to perform previous tasks(Wang et al.,
2023). This parallel is precisely what we have observed in trajectory matching, where we regard the
matching of different segments as separate tasks. According to Eq. 6, our objective is to minimize
cumulative matching errors across different segments, representing the aggregated performance
across all tasks. Previous strategies failed to consider the potential for catastrophic forgetting by
employing a naive sequential learning (SL), which minimizes the performance of each task, i.e., δ,
sequentially. However, SL is considered the least effective learning paradigm, thereby serving as a
lower bound in continual learning (Kirkpatrick et al., 2017; Shin et al., 2017; Schwarz et al., 2018).

Concurrent training. For multiple negatively correlated tasks, compared to naive SL, a simple
yet effective method to significantly enhance the aggregated performance of these tasks is to learn
them simultaneously. This approach, known as multi-task learning (MTL) or concurrent training, is
considered the upper bound in continual learning (Kirkpatrick et al., 2017; Shin et al., 2017; Schwarz
et al., 2018).

Specifically, suppose a complete expert trajectory τ∗ comprises T segments. Previous methods
typically set an upper bound T+ and a lower bound T−, and only one segment within this range
{Θ∗

T− , · · ·,Θ∗
T+} is sampled to match (Guo et al., 2023; Cazenavette et al., 2022; Du et al.,

2023). Compared to them, in addition to sampling, we match multiple segments within this range
simultaneously, and the objective is defined as:

L = β

∥∥∥θ̂t,N − θ∗t,M

∥∥∥2
2∥∥∥θ∗t,0 − θ∗t,M

∥∥∥2
2

+ (1− β)

K−1∑
i=0

1

K

∥∥∥θ̂T−+iR,N − θ∗T−+iR,M

∥∥∥2
2∥∥∥θ∗T−+iR,0 − θ∗T−+iR,M

∥∥∥2
2

(8)

where β is the coefficient to balance the sampling and concurrent training, K represents the number
of tasks, which corresponds to the number of segments matched simultaneously, and R is the
distance between each segment that are simultaneously matched. θ̂T−+iR,N is obtained by N steps
optimization on θ̂T−+iR,0 on the synthetic dataset, where θ̂T−+iR,0 is the starting parameters of the
segment i and θ̂T−+iR,0 = θ∗T−+iR,0. There are two notable points here. First, the segments are not
necessarily consecutive, namely R could be larger than the length of a segment. Figure 2 suggests
that matching one segment is often positively correlated with matching adjacent segments. Thus, as
long as the gaps between non-consecutive segments are not too large, their matching loss will also
decrease in tandem with the decrease in matching loss of adjacent segments. Second, T−+(K−1)R
is close to T+, ensuring that the entire trajectory within the range are matched.
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Table 1: Comparing with previous dataset distillation methods on CIFAR-10, CIFAR-100, and Tiny
ImageNet. Both distillation and evaluation use ConvNETs, with the best results highlighted in bold.
1 For FTD, we followed the settings from (Guo et al., 2023), removing the exponential moving
average.
2 PDD (Chen et al., 2023) is a plug-in module which can be combined with any TM-base methods;
Here is the experimental results of PDD+MTT.
3 Previous TM-based methods worse than random initialization in higher IPC are indicated by

Published as a conference paper at ICLR 2024

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we

5

.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet

IPC 1 10 50 500 1000 1 10 50 100 1 10 50
Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 14.4±2.0 26.0±1.2 43.4±1.0 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 30.0±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

MTT3 46.2±0.8 65.4±0.7 71.6±0.2
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
DC 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
KIP1 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo1 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG1 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -
MTT2 46.2±0.8 65.4±0.7 71.6±0.2 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3

TESLA2 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
FTD2,3 46.0±0.4 65.3±0.4 73.2±0.2 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM (Ours) 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet.
ConvNet is used for the distillation and evaluation. Hilighted results indicate we achieve lossless distillation.
Our method consistently out-performs prior works and is the only to achieve lossless distillation.
1Kernel-based methods use a much larger neural network; we underline their results when they perform best.
2Previous TM-based methods perform worse than random initialization in higher IPC cases, indicated by .
3For a fair comparison, we reproduce FTD without using EMA (exponential moving average).

process of sampling the start parameters θ∗t can be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }), where T → T+. (4)

In each iteration, after deciding the value of t, we then sample θ∗t and θ∗t+M from expert trajectories
as the start parameters and the target parameters for the matching. Then θ̂t+N can be obtained
by Eq. 2. Subsequently, after calculating the matching loss using Eq. 1, we perform backpropa-
gation to calculate the gradients and then use them to update the synthetic data xi and Li, where
(xi, ŷi = softmax(Li)) ∈ Dsyn. See Algorithm 1 for the pseudocode of our method.

4 EXPERIMENTS

4.1 SETUP

We compare our method with several representative distillation methods including DC (Zhao et al.,
2020), DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen, 2021), CAFE (Wang et al., 2022), KIP
(Nguyen et al., 2020), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023), MTT (Cazenavette et al.,
2022), TESLA (Cui et al., 2023), and FTD (Du et al., 2023). The evaluations are performed on several
popular datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015). We generate expert trajectories in the same way as FTD without modifying the
involved hyperparameters. We also use the same suite of differentiable augmentations (Zhao & Bilen,
2021) in the distillation and evaluation stage, which is generally utilized in previous works (Zhao &
Bilen, 2021; Wang et al., 2022; Cazenavette et al., 2022; Du et al., 2023).

Consistent with previous works, we use networks with instance normalization by default, while
networks with batch normalization are indicated with "-BN" (e.g., ConvNet-BN). Without particular
specification, we perform distillation using a 3-layer ConvNet for CIFAR-10 and CIFAR-100, while
we move up to a depth-4 ConvNet for Tiny ImageNet. We also use LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al.,
2016) for cross-architecture experiments. More details can be found in Section A.8.

4.2 MAIN RESULTS

CIFAR-10/100 and Tiny ImageNet. As the results reported in Table 1, our method outperforms
other methods with the same network architecture in all settings but CIFAR-10 with IPC=1. As can
be observed, the improvements brought by previous distillation methods are quickly saturated as the
distillation ratio approaches 20%. Especially in CIFAR-10, almost all previous methods have similar
or even worse performance than random selection when the ratio is greater than 10%. Benefiting
from our difficulty alignment strategy, our method remains effective in high IPC cases. Notably, we
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24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -
PDD2 - 66.9±0.4 74.2±0.5 - - - 43.1±0.7 52.0±0.5 - - 27.3±0.5 29.2±0.6
DATM 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3
ConTra 50.0±0.6 68.3±0.4 76.9±0.4 84.0±0.1 86.1±0.2 28.5±0.3 48.9±0.2 55.5±0.2 58.0±0.1 17.7±0.2 32.9±0.4 40.2 ±0.2

Full Data 84.8±0.1 56.2±0.3 37.6±0.4

In each iteration, we choose K segments and 1 randomly sampled segment from an expert trajectory
to match, and then optimize the synthetic dataset by performing back-propagation with respect to the
matching loss Eq. 8. The whole algorithm is provided in Appendix C.

During our experiments, we also tried some techniques used in continual learning, such as Synaptic
Intelligence (SI) (Zenke et al., 2017) and Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017). They do bring some improvements, but none are as simple and effective as directly conducting
concurrent training for multiple tasks.

Information capacity. According to the analysis in Section 4.1, information capacity is a crucial
factor that influences the correlation between matched segments, especially when the capacity is
extremely limited, such as IPC = 1 or 10. Therefore, we should prioritize learning as many easy
patterns as possible. Therefore, we leverage a curriculum learning approach (Bengio et al., 2009b;
Zhang et al., 2024) to generate the expert trajectories, ensuring that the early part of the trajectory
primarily fits samples that can be easily classified. We only use curriculum learning with very limited
capacity, such as when the IPC is 1 and 10. For the details of this trick, please refer to Appendix B.

6 EXPERIMENTS

6.1 SETUP

Datasets and models. Following recent work (Guo et al., 2023; Liu et al., 2023), we conduct
experiments on several popular datasets, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and Tiny-imageNet (Le & Yang, 2015). Following previous works (Zhao et al., 2021; Cazenavette
et al., 2022; Guo et al., 2023), unless specified otherwise, both distillation and evaluation utilize a
3-layer convolutional network, while Tiny-imagenet employs a 4-layer configuration. We adopt the
differentiable augmentation widely used in previous work (Cazenavette et al., 2022; Guo et al., 2023;
Du et al., 2023; Cui et al., 2023). We also use the soft label and initialization with correct samples
introduced in (Guo et al., 2023). We provide more details in Appendix D.

Baselines. To verify the efficacy of our method, we compare it with some popular baselines and
State-of-The-Art methods, including DC (Zhao et al., 2021), DM (Zhao & Bilen, 2023), DSA (Zhao
& Bilen, 2021), CAFE (Wang et al., 2022), KIP (Nguyen et al., 2020), MTT (Cazenavette et al.,
2022), FTD (Du et al., 2023), TESLA (Cui et al., 2023), PDD (Chen et al., 2023), and DATM (Guo
et al., 2023). Kenel-based methods (Nguyen et al., 2020; Zhou et al., 2022; Loo et al., 2023) use a
ConvNet of much larger width (1024, other methods are 128), so we only choose KIP as the baseline.
Top-1 accuracy is the main metric to evaluate the distillation’s performance.
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6.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2: Cross-architecture generalization: Test
performance of other representative models trained on the
synthetic dataset distilled through ConvNet. We highlight
the best performance in bold.

IPC Method ResNet18 AlexNet VGG11

10

MTT 45.7±0.8 34.0±1.9 50.2±0.5
PDD 43.5±0.6 18.3±1.5 44.0±0.6

DATM 47.7±0.4 38.8±0.8 46.1±0.6
ConTra 52.9±0.5 42.4±1.3 50.6±0.3

50

MTT 62.9±0.3 51.1±1.2 57.5±0.8
PDD 60.5±0.5 16.3±2.2 48.2±0.5

DATM 65.9±0.8 53.4±1.6 60.1±0.4
ConTra 66.2±0.3 56.0±1.5 62.5±0.4

Table 1 presents the mean and standard
deviation of 5 runs for various dataset
distillation methods on CIFAR-10,
CIFAR-100, and Tiny ImageNet. We
observe that ConTra consistently
outperforms the baselines across
different IPCs, especially when the
information capacity is limited, i.e.,
when the IPC is small. Specifically,
ConTra surpasses DATM by margins
of 3.1%/1.5% on CIFAR-10 with IPC
1/10. In such cases, the synthetic dataset
is insufficient to capture the complex
training dynamics, leading to strong
negative correlations between matching
different segments. Matching later
segments can increase the matching loss
of previously matched earlier segments.
Concurrent training effectively alleviates this issue,and meanwhile, the curriculum training enables
the synthetic dataset to focus on simple patterns and samples that are easy to fit. Another notable
point is that ConTra achieve lossless condensation with a 20% ratio on CIFAR-10 and CIFAR-100,
and a 10% ratio on Tiny ImageNet.

6.3 CROSS-ARCHITECTURE GENERALIZATION

The process of dataset distillation is conducted on a specific model. Therefore, it is crucial to verify
whether the synthetic dataset distilled through a single model can be applied effectively to other
models. Table 2 shows the test accuracy of other models trained on the synthetic dataset distilled
by ConvNet on CIFAR-10. We can observe that whether the IPC is 10 or 50, compared to other
TM-based methods, ConTra achieves the best performance across several popular models.

6.4 ABLATION STUDY

Table 3: The performance of two
representative TM-based methods MTT and
DATM combined with concurrent training.

Dataset CIFAR-10 CIFAR-100

IPC 1 10 1 10

MTT 46.2 65.4 24.3 39.7
MTT+CT 48.1 67.1 26.0 43.3

DATM 46.9 66.8 27.9 47.2
DATM+CT 48.5 67.9 28.2 48.6

Concurrent training: a plug-in module.
Concurrent training, the core component of our
method, is an plug-in module that can be integrated
with any trajectory matching method. By simply
replacing the sampling loss in Eq. 2 with the loss Eq. 8,
previous TM-based methods can be adapted to operate
in a concurrent training mode. To validate the efficacy
of concurrent training, we incorporate it with MTT and
DATM which are the vanilla TM method ans SOTA
respectively, and the results are presented in Table 3.

We can see concurrent training significantly enhances
both MTT and DATM. Specifically, MTT improves by
1.1% to 3.6%, while DATM increases by 0.3% to 1.6%.
This demonstrates that concurrent training can serve as
a versatile module, capable of combining with other trajectory matching methods. Additionally, the
improvements are more pronounced when the IPC is smaller, and with more substantial gains on
CIFAR-10 compared to CIFAR-100. This further confirms that when the information capacity is
lower, the negative correlation between matching different segments is more significant, making
multi-task training more effective.

How does concurrent training affect correlation? To verify that ConTra indeed alleviates the
negative correlation problem, we conduct the experiments described in Section 4.2, displaying
heatmaps of the Pearson correlations coefficients between matching different segments. Notably that
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(b) CIFAR-10 (IPC=10)
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(c) CIFAR-100 (IPC=1)
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(d) CIFAR-100 (IPC=10)

Figure 3: Heatmap of the Pearson correlation coefficients on CIFAR-10 and CIFAR-100, with IPC=1
and IPC=10.

in Section 4.2, we set up the experiments to match only a specific segment, whereas for ConTra, we
applied the same setup to the sampling, with concurrent training still matching multiple segments
within the range. We select IPC=1 and IPC=10, where negative correlation is most severe for
demonstration. For IPC=1, we only used the first 20 epochs due to the extremely low information
capacity; no trajectory matching method utilize the trajectories beyond 20 epochs. The results are
shown in Figure 3, where it can be observed that ConTra’s concurrent training strategy exhibits
positive correlations across nearly all segments. The results on CIFAR-100 exhibits stronger positive
correlations compared to CIFAR-10 because, at the same IPC, the size of the synthetic dataset for
CIFAR-100 is ten times that of CIFAR-10, providing a larger information capacity.

Number of tasks. The number of tasks K represents the number of segments matched
simultaneously in Eq. 8. These segments should be evenly distributed between the lower bound T−

and the upper bound T+, so the range R is set to ⌊(T+ − T+)/K⌋. To explore the impact of K,
we conduct experiments on CIFAR-10 and set the number of tasks from 2 to 6. The performance of
our method and vanilla MTT with concurrent training (MTT+CT) is shown in Figure 4 (left). As K
rises, the concurrent training brings non-trivial improvement on MTT and our method. We notice
that the improvements brought by increasing K gradually slow down as K continues to grow. We
speculate that this is because, as K increases, the distance R between segments decreases, and Figure
2 indicates that closer segments exhibit more positive correlation. When K is sufficiently large, every
part of the full trajectory can find a matching segment that is positively correlated with it, making
further increase K less effective.

Curriculum learning. Curriculum learning is not a primary contribution of this work. We only
use it as a trick with very low IPC, such as when the IPC is 1 and 10 in CIFAR10. We provide the
ablation study in Table 4 left, showing that focusing on easy patterns can bring some performance
improvement when the information capacity is extremely low.

Table 4: Left: The performance of ConTra with and without curriculum learning. Right: We present
the number of iterations required to converge (approximately) and the training time for various values
of K (number of tasks) on the NVIDIA H800 GPU (IPC=10), measured in hours per 1000 iterations.

Dataset CIFAR-10 CIFAR-100

IPC 10 100 10 100

ConTra 50.0 68.3 28.5 48.9
ConTra w/o CL 48.3 67.6 28.1 48.6

Method DATM K=2 K=3 K=4 K=5

CIFAR-10 0.32 0.57 0.87 1.10 1.31
CIFAR-100 1.64 3.38 5.15 6.91 8.36

# of iters 4000 3100 2500 2000 1500

Balance coefficient. In Figure 4 (right), we investigate the impact of the balance coefficient, β,
on the performance of ConTra. β quantifies the reliance of ConTra on the sampling segment when
computing the matching loss. To achieve optimal results, β should not be too large, as a larger value
of β makes the approach more akin to traditional sampling-based trajectory matching methods.
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(a) CIFAR 10, IPC=10 (b) CIFAR-10, IPC=50 (c) CIFAR-10, IPC=10 (d) CIFAR-10, IPC=50

Figure 4: Left:Mean test accuracy and standard deviation of 5 runs on CIFAR-10 after training on
the distilled dataset with different number of tasks in concurrent training. Right: :Mean test accuracy
and standard deviation of 5 runs on CIFAR-10 after training on the distilled dataset with different
balance coefficient β in Eq. 8.

6.5 COST ANALYSIS

We report the training time for various values of K on the NVIDIA H800 GPU (IPC=10) in Table
4 right, measured in hours per 1000 iterations. The time cost is approximately proportional to the
value of K (number of tasks), but we find that larger K values lead to faster convergence. For
example, on CIFAR-10, DATM converges at 4000 iterations, whereas ConTra with K = 5 requires
only about 1500 iterations. ConTra does not incur additional GPU memory costs, as we can compute
the gradient of different tasks and backpropagate them, separately. Despite ConTra is slower, this
does not affect our core contribution: identifying the negative correlation in trajectory matching when
matching different segments. Concurrent Training, as a straightforward solution, offers significant
improvements.

6.6 ADDITIONAL EXPERIMENTS

Stability and visualizations. Another disadvantage of negative correlation is that it can cause
training to be highly unstable and convergence to be poor. We demonstrate the superior stability of
our method in Appendix E.1. In Appendix E.5, we provide visualizations of parts of the synthetic
dataset.

Scalability We can scale up ConTra to ImageNet-1K using TESLA (Cui et al., 2023). TESLA is a
plug-in trick that can compute the unrolled gradient in trajectory matching with constant memory
complexity. The result is provided in Appendix E.2, which demonstrate that concurrent learning can
also yield improvements on large-scale datasets.

Generalization across other architectures. To the best of our knowledge, cross-architecture
generalization from CNNs to Transformer-based models remains an unexplored problem. We study
the generalization VIT in Appendix E.4, and we find that trajectory matching is structurally bound;
therefore, synthetic datasets distilled from CNNs struggle to achieve good generalization performance
on ViTs.

Downstream task. We also perform experiments on neural architecture search, detailed in Appendix
E.3. We implement NAS on CIFAR10 with the search space of 720 ConvNets varying in network
depth, width, activation, normalization, and pooling. The result demonstrates that the synthetic
datasets distilled by ConTra can perform well in downstream task.

7 CONCLUSION

In this work, we systematically study the interactions between matching different segments in
trajectory matching. We further analyze the potential effect of the negative correlation from the
perspectives of accumulated trajectory error and catastrophic forgetting and argue that such correlation
cannot be ignored. Based on these analyses, we propose a simple yet effective method, ConTra, and
validate its effectiveness through extensive experiments.
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A PROOF

A.1 PROOF OF THEOREM 1.

Firstly, we consider the accumulated error of (t+ 1)th segment ϵt+1:

ϵt+1 =θ̂t+2,0 − θ∗t+2,0 = θ̂t+1,N − θ∗t+1,M

=(θ̂t+1,0 + US(fθ∗
t+1,0+ϵt , N))− (θ∗t+1,0 + UT (fθ∗

t+1,0
,M))

=ϵt + (US(fθ∗
t+1,0+ϵt , N)− US(fθ∗

t+1,0
, N)) + (US(fθ∗

t+1,0
, N)− UT (fθ∗

t+1,0
,M)),

(9)

According to Definition. 1 and Definition. 2, It+1 = US(fθ∗
t+1,0+ϵt , N) − US(fθ∗

t+1,0
, N)), and

δt+1 = (US(fθ∗
t+1,0

, N)− UT (fθ∗
t+1,0

,M)). Then we have:

ϵt+1 =ϵt + It+1 + δt+1. (10)

δt+1 is the matching error of segment t+ 1 that we try to minimize during optimizing the synthetic
dataset in distillation step. Assuming there are T segments in total, the final accumulated trajectory
error, ϵT−1, follows recursively that:

ϵT−1 =

T−1∑
i=1

Ii +
T−1∑
i=0

δi, where δ0 = ϵ0, (11)

where I0 = 0 and δ0 = ϵ0 because there is no accumulated error before the first segment.

B CURRICULUM LEARNING

Zhang et al. (2024) tries to incorporate curriculum learning into the generation of expert trajectories in
graph condensation task. Inspired by them, we prepare curriculum-based trajectory expert trajectory
on image datasets. The core idea of curriculum learning is to arrange samples from simple to
complex, allowing the model to mimic the human learning process by starting with simple samples
and gradually progressing to more complex ones (Bengio et al., 2009b; Krueger & Dayan, 2009).

In TM-based distillation methods, the size of the IPC indicates the information capacity of the
synthetic dataset. Therefore, when the IPC is small, it is crucial to focus more on the simple samples
that constitute the majority of the real dataset. We define the learning difficulty of samples based on
the order in which they are correctly classified during the model’s training process on the real dataset.
Samples that are classified correctly earlier are considered easy samples, while those classified
correctly later are deemed more complex. After assigning sample difficulty, we sort the entire training
set according to sample difficulty. Initially, the training set includes only simple samples; as training
progresses, complex samples are incrementally introduced using a linear function. To manage this
progression, we use a pacing function h(e) that maps each training epoch e to the proportion of
samples selected from the ordered training set. The pacing function h(e) is defined as follows:

h(t) = min(1, λ+ (1− λ)
e

γ
, (12)

where λ is the initial proportion of the training set, and γ is the threshold of epoch when the full
dataset is used. The expert trajectory obtained in this way ensures that early epochs mainly contains
easy patterns. We only use this trick for low IPC experiments, as we find it doesn’t work for IPC
larger than 10.

C ALGORITHM

The algorithm of concurrent training is shown in Algorithm 1. In line 1-2, we initialize the synthetic
dataset S from the real dataset T . Line 3 to 20 are the distillation loop. In each iteration, we randomly
sample an expert trajectory from {τ∗} (line 4) and sample one segment from it (line 5). Meanwhile,
we choose K segments with a distance R between each from the expert trajectory (line 7). Then we
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initialized a student networks for each segment (line 6 and 8 to 10). From line 11 to 17, we update the
student networks on the synthetic dataset to get their parameters after N steps. Finally, we compute
the matching loss using Eq. 8 (line 18) and update the synthetic dataset and the learning rate of
student networks by backpropagation (line 19).

Algorithm 1: Concurrent Training-based Trajectory Matching
Input: {τ∗}: set of expert parameter trajectories obtained on T .
Input: M : # length of each segment in the the expert trajectory.
Input: N : # update steps of student network per distillation iteration.
Input: R: distance between each segment.
Input: β: coefficient to balance the sampling and concurrent training.
Input: T− < T+: the lower and upper bound of the expert trajectory that used to match.
Output: The distilled dataset S

1 Initialize distilled dataset S ∼ T ;
2 Initialize the learning rate α for training model on S;
3 for iter=1, ..., Iterationmax do
4 Sample an expert trajectory τ∗ ∼ {τ∗} with τ∗ = {Θ∗

t }T−1
t=0 ;

5 Sample a start point between T− and T+;
6 Initialize a student network with expert params θ̂t,0 := θ∗t,0;
7 Choose K segments within T− and T+ with the distance R between each of them;
8 for i=0, ..., K − 1 do
9 Initialize a student network with expert params θ̂T−+iR,0 := θ∗T−+iR,0;

10 end
11 for n=0, ..., N − 1 do
12 bt,n ∼ S ▷ Sample a mini-batch from distilled dataset;

13 θ̂t,n+1 = θ̂t,n − α∇ℓ
(
A (bt,n) ; θ̂t,n

)
▷ Update the model on S;

14 for i=0, ..., K − 1 do
15 θ̂T−+iR,n+1 = θ̂T−+iR,n − α∇ℓ

(
A (bt,n) ; θ̂T−+iR,n

)
;

16 end
17 end
18 Compute the loss L using Eq. 8;
19 Update S and α with respect to L;
20 end
21 return the distilled syntactic dataset S;

D MORE DETAILS OF EXPERIMENTS

Distillation settings. Consistent with previous work (Cazenavette et al., 2022; Guo et al., 2023),
we conduct 10000 iterations of distillation to ensure adequate convergence employ ZCA whitening as
in all experiments as default (Nguyen et al., 2020; 2021).

Evaluation settings. Following previous methods (Cazenavette et al., 2022; Guo et al., 2023), we
train a randomly initialized neural network on the synthetic dataset and then assess its performance
on the validation set of the true dataset using the top-1 accuracy metric. All reported results represent
the mean and standard deviation from 5 repeated runs. For performance of baseline in Table 1, we
use results reported in their respective literature to ensure a fair comparison as done in previous
work (Guo et al., 2023; Chen et al., 2023).

Architecture. We use the same network architecture as previous work (Cazenavette et al., 2022),
a 3-layer ConvNet for CIFAR-10 and a 4-layer Convnet for Tiny ImageNet. Each layer of ConNet
comprises a 128-kernel convolutional layer, an instance normalization layer (Ulyanov et al., 2016),
a ReLU activation function, and an average pooling layer. Except for the cross-architecture
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generalization experiments, the same network architecture is used for both distillation and evaluation
in all other experiments.

Computational resources. We conduct our experiments using 1-4 NVIDIA H800 GPUs. The
number of GPUs utilized depends on the size of the dataset and the IPC. If computational resources are
limited, employing techniques from TESLA (Cui et al., 2023) to reduce the storage of computational
graphs can enable all experiments to be conducted on a single 80GB GPU.

Hyper-parameters. We provide the hyper-parameters of our method in Table 5, where R is the
distance between the start point of each task and K is the number of tasks. Notably, the segments are
not necessarily consecutive, namely R could be larger than the length of a segment, and We set K
and R to appropriate values to ensure that multiple tasks can cover the entire region between T− and
T+.

Table 5: Hyper-parameters

Dataset IPC β R K N M T− T+ Synthetic Learning Rate Learning Rate
Batch Size (Label) (Pixel)

CIFAR-10

1 0 2 3 80 2 0 4 10 5 100
10 0.2 4 4 80 2 0 20 100 2 100
50 0.2 8 4 80 2 0 40 500 2 1000

500 0.3 6 4 80 2 40 60 1000 10 50
1000 0.3 6 4 80 2 40 60 1000 10 50

CIFAR-100

1 0.2 5 5 40 3 0 30 100 10 1000
10 0.2 10 4 80 2 0 50 1000 10 1000
50 0.2 12 4 80 2 20 70 1000 10 1000

100 0.2 12 4 80 2 30 70 1000 10 50

Tiny
1 0.3 7 3 60 2 0 20 200 10 10000

10 0.3 12 4 60 2 10 50 250 10 100
50 0.3 8 4 80 2 40 70 250 10 100

E ADDITIONAL EXPERIMENTS

E.1 STABILITY OF TRAJECTORY MATCHING
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(b) CIFAR-10(IPC=10)
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(c) CIFAR-10(IPC=50)
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(d) CIFAR-10(IPC=50)

Figure 5: The learnable learning rate α and the matching loss during training on CIFAR-10, with
IPC=10 and 50. The curve of our methods is much more smoothed

The negative correlations in matching different segments introduce another disadvantage to previous
sampling-based TM methods, making the training highly unstable. Specifically, the matching loss
frequently oscillates and cannot reduce to a relatively low level. Similarly, the learnable learning
rates for the synthetic dataset exhibit the same issue, struggling to converge to a stable value.

Since we also employ the soft label trick from DATM, the primary difference between our method
and DATM lies in our adoption of concurrent training. We compare the learning curves of ConTra
and DATM in terms of learnable learning rate α and matching loss in Figure 5. The learning rate
curve for ConTra is generally smoother and converges gradually. Although both methods exhibit
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oscillations in the loss curves, the amplitude of oscillations for ConTra is significantly smaller than
that of DATM, and the loss for ConTra is noticeably lower than DATM’s loss. Without concurrent
training, the negative correlation between different segments causes the loss of unsampled segments
to increase. When these segments are sampled again, the loss rises to a higher value, resulting in
substantial oscillations in the loss curve. Furthermore, the varying differences in matching loss across
different segments may necessitate different learning rates, making it difficult for the learning rate to
converge to a stable value.

E.2 SCALABILITY

ConTra can scale up to ImageNet-1K by using TESLA (Cui et al., 2023). Specifically, TESLA only
requires storing a single gradient computational graph even when unrolling N steps updates of the
synthetic dataset. We list the experimental results in Table 6, which demonstrate that concurrent
learning can also yield improvements on large-scale datasets.

Table 6: Performance on ImageNet-1K (IPC=10)

Method TESLA ConTra
Accuracy (IPC=10) 17.8 20.4

E.3 DONSTREAM TASK

The synthetic datasets generated via distillation are applicable not only to straightforward classification
tasks but also to a range of downstream applications. For example, these datasets can function as
proxies to accelerate model evaluation in Neural Architecture Search (NAS). Following (Zhao et al.,
2021), we implement NAS on CIFAR-10 with the search space of 720 ConvNets varying in network
depth, width, activation, normalization, and pooling. We try to identify the best network by training
them for 100 epochs on the small synthetic dataset (IPC=10) for 100 epochs. For more details,
please refer to (Zhao et al., 2021). The comparison with DC (Zhao et al., 2021) and Random is
shown in Table 7. The two metrics used are the average test accuracy of the best-selected model
and Spearman’s rank correlation coefficient, which measures the agreement between the validation
accuracy of the top 10 models trained on the proxy and the entire dataset. ConTra achieves higher
accuracy and rank correlation than DC, indicating that it can reliably rank candidate architectures.

Table 7: NAS on CIFAR-10

Method Random DC ConTra Whole Dataset
Accuracy(%) 76.2 84.5 85.0 85.9
Correlation -0.21 0.79 0.83 1.00

E.4 GENERALIZATION ACROSS VIT

Experiments in Section 6.3 verify that synthetic datasets exhibit good cross-architecture generalization
across various CNN-based models. Another question worth exploring is whether similar results can
be achieved under completely different architectures, e.g., VITs. We train VITs on the synthetic
datasets distilled by ConvNet. The test accuracy is listed in Table 8. We have two observations: (1)
The performance is poor when the IPC is small. We speculate that this is because the VIT model is
too large to achieve good results when training data is extremely limited; (2) On CIFAR-10, with
IPC=1000, the performance improves significantly but is still far inferior to ConvNet. We hypothesize
the reason is that the data distilled from gradient information based on ConvNet cannot be effectively
applied to the different architecture of VITs.

E.5 VISUALIZATION

We provide the visualization of Tiny Imagenet across different IPCs. In this part, our results are
basically consistent with the visualizations in previous literature (Cazenavette et al., 2022; Zhang
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Table 8: Cross-architecture generalization for VITs

Method VIT-Tiny VIT-small VIT-base ConvNet
CIFAR-10 (IPC=1000) 66.8 66.0 63.7 86.1
CIFAR-100 (IPC=10) 10.7 11.48 12.5 48.9

et al., 2023; Guo et al., 2023). When IPC is small, the synthetic dataset primarily consist of highly
abstract images, representing the extraction of some class-wise generic easy patterns. As the IPC
increases, the images gradually exhibit textures and details, enhancing their recognizability. A
sufficient information capacity ensures that the synthetic dataset can retain patterns from both easy
and hard samples.

E.6 LIST OF SYMBOLS

Table 9: Cross-architecture generalization for VITs

Symbol Definition
T Real dataset
S Synthetic dataset
C Number of classess
τ∗ A complete expert trajectory
Θ∗

t Parameters of the tth segment in the expert trajectory
θ∗t,0 The starting parameters of tth segment in the expert trajectory
θ∗t,i The parameter obtained after i optimization updates of θ∗t,0
θ̂t,0 The starting parameters of tth segment in the student trajectory
θ̂∗t,i The parameter obtained after i optimization updates of θ̂∗t,0
T Number of segments in teacher trajectories
M The length of the expert trajectory
N The length of the student trajectory
L Matching loss
A A differentiable augmentation function in Eq. 1
α A learnable learning rate in Eq. 1
ϵt Accumulated error in the tth segment during evaluation
It Initialization error in the tth segment during evaluation
δt Matching error in the tth segment during evaluation

US(fθ, N) The updates of model f after N steps gradient decent on the synthetic dataset S
UT (fθ, N) The updates of model f after N steps gradient decent on the real dataset T

R The distance between each segment that are simultaneously matched
K Number of tasks
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Figure 6: Tiny ImageNet (IPC=1): The visualization of the synthetic dataset (1/2).
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Figure 7: Tiny ImageNet (IPC=1): The visualization of the synthetic dataset (2/2).
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Figure 8: Tiny ImageNet (IPC=10): The visualization of the synthetic dataset (1/2).
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Figure 9: Tiny ImageNet (IPC=10): The visualization of the synthetic dataset (2/2).
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Figure 10: Tiny ImageNet (IPC=50): The visualization of the synthetic dataset (1/2).
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Figure 11: Tiny ImageNet (IPC=50): The visualization of the synthetic dataset (2/2).
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