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Abstract
We develop a variant of the stochastic prox-linear
method for minimizing the Conditional Value-at-
Risk (CVaR) objective. CVaR is a risk measure
focused on minimizing worst-case performance,
defined as the average of the top quantile of the
losses. In machine learning, such a risk measure
is useful to train more robust models. Although
the stochastic subgradient method (SGM) is a nat-
ural choice for minimizing the CVaR objective,
we show that our stochastic prox-linear (SPL+)
algorithm can better exploit the structure of the ob-
jective, while still providing a convenient closed
form update. Our SPL+ method also adapts to
the scaling of the loss function, which allows for
easier tuning. We then specialize a general conver-
gence theorem for SPL+ to our setting, and show
that it allows for a wider selection of step sizes
compared to SGM. We support this theoretical
finding experimentally.

1. Introduction
The most common approach to fit a model parametrized by
θ ∈ Rd to data, is to minimize the expected loss over the
data distribution, that is

min
θ∈Rd

RERM(θ) = Ez∼P [`(θ; z)]. (1)

But in many cases, the expected loss may not be the suitable
objective to minimize. When robustness or safety of the
model are concerned, the emphasis should rather be on the
extreme values of the distribution rather than the average
value. For instance, in distributionally robust optimization,
the goal is to optimize the model for the worst case distribu-
tion around some fixed distribution (Duchi & Namkoong,
2018). In extreme risk-averse settings, such as when safety
is the top priority, it is desirable to minimize the maximum
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loss within a training set (Shalev-Shwartz & Wexler, 2016).
These applications can all be formulated as minimizing the
expectation of the losses that are above some cutoff value,

min
θ∈Rd

RCVaR(θ) = Ez∼P [`(θ; z) | `(θ; z) ≥ αβ(θ)] , (2)

where αβ(θ) is the upper β–quantile of the losses. For
example, for β = 0.9, the problem in (2) is to minimize the
expectation of the worst 10% of the losses.

In this work, we propose a variant of the stochastic prox-
linear (SPL) method pioneered by Burke & Ferris (1995);
Lewis & Wright (2016); Duchi & Ruan (2018) for solv-
ing (2). The possibility of applying SPL to CVaR minimiza-
tion was mentioned in Davis & Drusvyatskiy (2019), but not
explored. We introduce a variant of SPL called SPL+, that
adapts to the scaling of the loss function, which in turn al-
lows for a default parameter setting. We first derive a closed-
form update for SPL+, and show why it is particularly well
suited for minimizing CVaR. We give its convergence rates
for convex and Lipschitz losses by adapting existing results
from Davis & Drusvyatskiy (2019). Through several ex-
periments comparing the stochastic prox-linear method to
stochastic subgradient we show that SPL and SPL+ are
more robust to the choice of step size. We conclude with
a discussion on several future applications for minimizing
CVaR in machine learning.

1.1. Background

The CVaR objective was first introduced in finance as an
alternative measure of risk, also known as the expected short-
fall (Artzner et al., 1999; Embrechts et al., 1999). Many
applications in finance can be formulated as CVaR minimiza-
tion problems, such as portfolio optimization (Krokhmal
et al., 2002; Mansini et al., 2007), insurance (Embrechts
et al., 2013) and credit risk management (Andersson et al.,
2001). The seminal work of Rockafellar & Uryasev (2000)
proposed a variational formulation of the CVaR objective
that is amenable to standard optimization methods. This for-
mulation has since inspired considerable research in applica-
tions spanning machine learning and adjacent fields, such as
ν-SVM (Takeda & Sugiyama, 2008; Gotoh & Takeda, 2016),
robust decision making and MDPs (Chow et al., 2015; Chow
& Ghavamzadeh, 2014; Chow et al., 2017; Cardoso & Xu,
2019; Sani et al., 2012), influence maximization and sub-
modular optimization (Maehara, 2015; Ohsaka & Yoshida,
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2017; Wilder, 2018), fairness (Williamson & Menon, 2019),
and federated learning (Laguel et al., 2021b).

Though it finds many applications, the CVaR objective is
typically difficult to minimize. It is nonsmooth even when
the individual losses `(·; z) are continuously differentiable.
Indeed, if P does not admit a density — which is the case
for all empirical distributions over training data — the varia-
tional objective is not everywhere differentiable. To address
this, Laguel et al. (2021a) developed subdifferential calculus
for a number of equivalent CVaR formulations and proposed
minimizing a smoothed version of the dual objective. On the
other hand, several works (Soma & Yoshida, 2020; Holland
& Haress, 2021) apply the stochastic subgradient method
directly to the variational formulation proposed by Rock-
afellar & Uryasev (2000), which is well-defined regardless
of the distribution P . However, as we elaborate in Section 3,
this approach is oblivious to the special structure of the
variational form of the CVaR objective.

2. Problem setup
Let `(θ; z) be the loss associated with the model parameters
θ ∈ Rd and a measurable random variable z(ω) on some
background probability space (Ω,F ,P).

When z follows a distribution P with density p(z), the
cumulative distribution function on the loss for a fixed θ
is given by P[`(θ; z) ≤ α] =

∫
`(θ;z)≤α p(z) dz, which we

assume is everywhere continuous with respect to α. Let
β be a confidence level, for instance β = 0.9. The Value-
at-Risk (VaR) of the model is the lowest α such that with
probability β, the loss will not exceed α. Formally,

VaRβ(θ) := min {α ∈ R : P[`(θ; z) ≤ α] ≥ β} . (3)

The Conditional Value-at-Risk (CVaR) is the expectation of
the upper tail starting at VaRβ , illustrated in Figure 1:

CVaRβ(θ) := Ez∼P [`(θ; z) | `(θ; z) ≥ VaRβ(θ)]. (4)

Clearly, the CVaR upper bounds the VaR for the same β.
Our goal is to minimize CVaRβ over θ ∈ Rd, but directly
minimizing (4) is not straightforward. Fortunately, Rockafel-
lar & Uryasev (2000) introduced a variational formulation
where the solution to

θ∗, α∗ ∈ arg min
θ∈Rd,α∈R

Fβ(θ, α) where, (5)

Fβ(θ, α) := α+
1

1− βEz∼P [max {`(θ; z)− α, 0}]

is such that θ∗ is the solution to (4), and we obtain α∗ =
VaRβ(θ) as a byproduct.

3. The Stochastic Subgradient Method
A natural choice for minimizing (5) is the stochastic subgra-
dient method (SGM). Letting ∂f denote the convex subd-
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Figure 1: Expectation, VaR, and CVaR.

ifferential of f , at each step t we sample z ∼ P uniformly
and compute a subgradient gt from the subdifferential

∂Fβ(θt, αt; z) =

(
0
1

)
+

ut
1− β

(
∂`(θt; z)
−1

)
(6)

where ut = ∂max{u, 0}|u = `(θt; z)− αt . Given some step
size sequence {λt} > 0, and denoting x = (θ, α)T, SGM
then takes the step

xt+1 = xt − λtgt, where gt ∈ ∂Fβ(θt, αt; z). (7)

Substituting in the subgradient gt given in (6) into (7) gives

θt+1 = θt −
λt

1− β ut∂`(θt; z), (8)

αt+1 = αt − λt +
λt

1− β ut, (9)

For reference, the complete SGM algorithm is given in Al-
gorithm 1. SGM is very sensitive to the step size choice
and may diverge if not carefully tuned. This issue can be
explained from a modeling perspective (Davis & Drusvy-
atskiy, 2019). Indeed, SGM can be written as a model-based
method where at each iteration t, it uses the following lin-
earization of the sampled Fβ(x; z) at the current point xt:

mSGM
t (x; z) := Fβ(xt; z) + 〈gt, x− xt〉. (10)

This provides an approximate, stochastic model of the ob-
jective Fβ(x). The SGM update is then a proximal step on
this model, that is

xt+1 = arg min
x∈Rd+1

mt(x; z) +
1

2λt
‖x− xt‖2 (11)

using mt = mSGM
t . The issue with mt = mSGM

t (x; z) is
that it uses a linearization to approximate the max{·, 0}
function. This linearization can take negative values, which

2



A Model-Based Method for Minimizing CVaR and Beyond 3

Algorithm 1 SGM: Stochastic subgradient method for
CVaR minimization

1: initialize: θ0 ∈ Rd, α0 ∈ R, hyperparameter: λ > 0
2: for t = 0, 1, 2, . . . , T do
3: Sample data point z ∼ P , compute `(θt; z) and
vt ∈ ∂`(θt; z)

4: λt ← λ/
√
t+ 1

5: if αt ≥ `(θt; z) then . αt too big
6: θt+1 ← θt
7: αt+1 ← αt − λt
8: else . αt too small
9: θt+1 ← θt − λt

1−β vt

10: αt+1 ← αt + λt
1−ββ

11: end if
12: end for
13: return x̄T = 1

T+1

∑T+1
t=1 (θt, αt)

T

is a poor approximation of the non-negative max{·, 0} op-
eration. The main insight of the SPL method is to leverage
the structure of Fβ(x) as a truncated function. This struc-
ture allows for a more accurate model that still has an easily
computable proximal operator.

4. The SPL method for CVaR minimization

4.1. A tighter model

Here we introduce an alternative model for our objective
that only linearizes inside the max{·, 0}, which is a strictly
more accurate model when the objective is convex (Asi &
Duchi, 2019a). In particular, for some vt ∈ ∂`(θt; z) and
`t := `(θt; z), we use

mSPL
t (x; z) = α+

max {`t + 〈vt, θ − θt〉 − α, 0}
1− β (12)

The algorithm resulting from (11) using mt = mSPL
t is

known as the stochastic prox-linear (SPL) method (Duchi
& Ruan, 2018). Figure 2 illustrates that (12) better approxi-
mates the level sets of the loss function as compared to (10).

4.2. Separate regularization parameters

Now that we have determined a tighter model (12), it re-
mains now to select a default step size sequence λt for the
proximal step (11). But, as we will argue next, having the
same default step size sequence for both α and θ could lead
to inconsistencies due to the dependency on the scale of the
loss function.

To explain this dependency, let units(`) denote the units of
our loss function `(θt; z). For instance, our loss could be a
cost measured in dollars. Since α approximates a quantile
of the losses, it must also have the same units as the loss.
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Figure 2: Comparison of SGM and SPL models on the
CVaR objective with a single `(θ) = log(1 + exp(θ)) +
0.01

2 θ2. Filled contours are the level sets of the objective,
while the dashed contour lines are the level sets of the re-
spective model mt constructed at (θt, αt). With the same
step size, the SGM model results in an update that increases
the objective, whereas the SPL model does not. Note that
because the subgradient of the objective is 0 in θ, the SGM
model is constant in θ.

Consequently, our model in (12) also has the same units as
the loss function. A clash of units appears when we consider
the regularization term in (11), that is the term

1

2λt
‖x− xt‖2 =

1

2λt

(
‖θ − θt‖2 + (α− αt)2

)
.

This regularization term must also have the same units as the
loss so that the entire objective in (11) has consistent units.
But since units(α) = units(`), the term 1

2λt
(α − αt)2 can

only have the same units as the loss if units(λt) = units(`).
In direct contradiction, the term 1

2λt
‖θ − θt‖2 can only

have the same units as the loss if units(λt) = 1/units(`),
since θ parametrizes the objective and thus does not carry the
units of the loss. There is no choice of λt which would result
in the objective of (11) having consistent units; consequently,
there is no default, scale-invariant λt that would work across
different loss functions.

One simple way to fix this clash of units, is to disentangle
λt into two regularization parameters λθ,t, λα,t > 0 and
update the iterates according to

θt+1, αt+1 = arg min
θ∈Rd,α∈R

mSPL
t (x; z) +

1

2λθ,t
‖θ − θt‖2

+
1

2λα,t
(αt − α)2. (13)

Now we can make the units match across (13) by choosing

units(λα,t) = units(`) and units(λθ,t) =
1

units(`)
. (14)

As suggested by our theory in (26), if we had access to the
average Lipschitz constant L of the the individual losses `,
then we should choose

λα,t =
λ|αt − α∗|√

t
and λθ,t =

λ ‖θt − θ∗‖
L
√
t

, (15)
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where λ > 0 is a numerical constant. Although this gives
us consistency in the units, estimating L can be difficult in
practice. Thus, instead we approximate the scaling by using
the initial loss `0 := Ez[`(θ0; z)] and choose

λα,t =
λ`0√
t

and λθ,t =
λ

`0
√
t
, (16)

while setting λ using a grid search. We will use (16) as our
default setting for λθ,t and λα,t. Importantly, although we
have separate regularization terms, there is still only one
hyperparameter λ to be set.

4.3. Closed form update

Lemma 1 (Closed form updates of SPL+). The closed form
solution to (13) is given by the updates

θt+1 = θt − λθ,t min

{
1

1− β , γt
}
∇`(θt; z), (17)

αt+1 = αt − λα,t + λα,t min

{
1

1− β , γt
}
, (18)

where γt =
max {`(θt; z)− αt + λα,t, 0}
λθ,t ‖∇`(θt; z)‖2 + λα,t

. (19)

We first give a sketch of how the updates are derived.

Proof. For one step update, we can drop the subscript t
without loss of generality. The key step is to rewrite (13) in
the form of a proximal step on a truncated model, namely,

xt+1 = arg min
x∈Rd+1

max {c+ 〈a, x− xt〉, 0}+
1

2λ
‖x− xt‖2

where x = (θ, α̂)> is the concatenation of θ and a scaled
version of α. The solution to this has a nice form given in
Lemma 2 in the appendix,

xt+1 = xt −min

{
λ,

max {c, 0}
‖a‖2

}
︸ ︷︷ ︸

=:η

a.

One can show that by redefining variables as

α̂ =

√
λθ
λα
α and α̂t =

√
λθ
λα
αt −

√
λθλα,

we can absorb the leading α in the model (12) into its regu-
larization term, giving us

α+
1

2λα
(α− αt)2 =

1

2λθ
(α̂− α̂t)2 + Const. .

After some simple manipulation on the linearization term
of (13), we get that

c =
1

1− β

(
`(θt; z)−

√
λα
λθ
α̂t

)
, a =

1

1− β

(
∇`(θt; z)
−
√

λα
λθ
.

)
.

Plugging a, c into the update of the truncated model above,

η = min

λθ, max
{
`(θt; z)−

√
λα
λθ
α̂t, 0

}
1

(1−β) (‖∇`(θt; z)‖2 + λα
λθ

)

 .

Substituting out α̂t for αt and multiplying by a gives us the
desired θt+1 and αt+1.

The detailed proof can be found in Appendix A, with a
breakdown of the updates in Algorithm 2. Alternative to our
technique, one can also derive these updates by enumerating
the KKT conditions after formulating (13) as a constrained
minimization problem with an additional slack variable.

Examining the update in Lemma 1, we can see that the cost
of computing each iteration of SPL+ is of the same order
as computing an iteration of SGM. Finally, if we set the
regularization parameters according to the guide in (14),
we can see by examining the units of SPL+ that γt in (19)
is unitless. As a result, the units are consistent across the
updates of both θ in (17) and α in (18). Next, we discuss
two applications of SPL+ which correspond to two extreme
settings for the CVaR objective.

Algorithm 2 SPL+: Stochastic prox-linear method for
CVaR minimization with separate regularization

1: initialize: θ0 ∈ Rd, α0 ∈ R, hyperparameter: λ > 0
2: for t = 0, 1, 2, . . . , T do
3: Sample data point z ∼ P
4: Compute `(θt; z) and vt ∈ ∂`(θt; z)
5: λθ,t ← λ/(`0

√
t+ 1)

6: λα,t ← λ`0/
√
t+ 1

7: if αt > `(θt; z) + λα,t then . αt too big
8: θt+1 ← θt
9: αt+1 ← αt − λα,t

10: else if αt < `(θt; z)− λθ,t
1−β ‖vt‖

2 − λα,tβ
1−β then .

αt too small
11: θt+1 ← θt − λθ,t

1−β vt

12: αt+1 ← αt +
λα,t
1−ββ

13: else . αt in middle range
14: ν ← `(θt;z)+λα,t−αt

λθ,t‖vt‖2+λα,t

15: θt+1 ← θt − λθ,tν∇`(θt; z)
16: αt+1 ← αt − λα,t + λα,tν
17: end if
18: end for
19: return x̄T = 1

T+1

∑T+1
t=1 (θt, αt)

T

4.4. Solving the max loss problem

The SPL+ method can been seen as an extension of recent
class of adaptive methods (Gower et al., 2022) for minimiz-
ing the max loss, as we detail next. If P is the empirical
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distribution over n training examples, setting β = n−1/n
turns the CVaR minimization problem into the max loss
minimization problem

min
θ∈Rd

f(θ) = max
i=1,...,n

`(θ; zi). (20)

Indeed, if β = n−1/n then the Value-at-Risk (3) would have
to be the max loss, that is, α = maxi=1,...,n `(θ; zi). Plug-
ging this into (5) we have that the second term in Fβ(θ, α)
is zero, leaving only Fβ(θ, α) = α = maxi=1,...,n `(θ; zi).

The max loss problem is an interesting problem in its own
right (Shalev-Shwartz & Wexler, 2016). Recently Gower
et al. (2022) proposed the Polyak with slack methods for
solving (20). Our SPL+ improves upon the Polyak with
slack methods in two ways: first, SPL+ can be applied to
minimizing CVaR for any β, and not just the max loss prob-
lem; second, SPL+ can enjoy a default parameter setting due
to the two regularization parameters and the consideration
around units in (14).

Finally we show that in this setting SPL+ can also been seen
as a stochastic algorithm that minimizes the Lagrangian of
a slack formulation of Equation (20), where the Lagrange
multiplier is equal to 1/1−β. We establish this equivalence
in Appendix D.

4.5. Solving ERM

When P is the empirical distribution over n training exam-
ples, and if β = 1

n , then minimizing the CVaR objective in
(5) is equivalent to minimizing the expected risk. This is be-
cause α = mini=1,...,n `(θ, zi) due to (3), and consequently
from (4) we have that

CVaRβ(θ) = Ez∼P [`(θ; z) | `(θ; z) ≥ min
i=1,...,n

`(θ, zi)]

= Ez∼P [`(θ; z)].

Thus minimizing (5) is equivalent to minimizing the ex-
pected risk. As a consequence, SPL+ can also be used as
an adaptive method for minimizing the expected risk.

5. Convergence theory
We instantiate the convergence analyses from Davis &
Drusvyatskiy (2019) in the case of CVaR minimization, and
compare the rates for SGM and SPL+ for losses satisfying
the following Assumption.
Assumption 5.1 (Convex, subdifferentiable, and Lipschitz).
There exist square integrable random variables M : Ω→ R
such that for a.e. z ∈ Ω and all θ ∈ Rd, the sample losses
`(θ; z) are convex, subdifferentiable1, and M(z)-Lipschitz.

1Historically, the prox-linear method was proposed for compos-
ite optimization problems where the inner function is C1 (Burke
& Ferris, 1995). Here we slightly abuse the terminology and allow
for general subdifferentiable losses `(·; z).

Theorem 5.2 (Convergence rates of SGM and SPL+). Sup-
pose Assumption 5.1 holds. Let x∗ = (θ∗, α∗)T be a mini-
mizer of Fβ(θ, α), and x0 ∈ Rd an arbitrary initialization.
Let (xt)

T
t=0 be the iterates given by SGM or SPL+, and

x̄T = 1
T+1

∑T+1
t=1 xt be the averaged iterate.

SGM. If λt = λ√
T+1

then the iterates (xt) given by SGM
in (7) satisfy

E [Fβ(x̄T )− Fβ(x∗)]

≤ 1

2

‖θ0 − θ∗‖2

λ
√
T + 1

+
1

2

(α0 − α∗)2

λ
√
T + 1

+
λL2

SGM√
T + 1

, (21)

where

L2
SGM = Ez

[
M(z)2 + 1

(1− β)2
+ 1

]
(22)

SPL+. If λα,t = λα√
T+1

and λθ,t = λθ√
T+1

, then the iterates
(xt) given by SPL+ given in Lemma 1 satisfy

E [Fβ(x̄T )− Fβ(x∗)]

≤ 1

2

‖θ0 − θ∗‖2

λθ
√
T + 1

+
1

2

(α0 − α∗)2

λα
√
T + 1

+
λαL

2
SPL√

T + 1
, (23)

where

L2
SPL+ = Ez

[
λθ
λα
M(z)2 + 1

(1− β)2

]
. (24)

This result follows by adapting Theorem 4.4 in Davis &
Drusvyatskiy (2019), and we verify the assumptions neces-
sary in Appendix B. In particular, the best bound achieved
by SGM via minimizing in λ the RHS of (21) is with

λ =
‖x0 − x∗‖
LSGM

√
2

(25)

yielding the rate

E [Fβ(x̄T )− Fβ(x∗)] ≤
√

2 ‖x0 − x∗‖ LSGM√
T + 1

.

Similarly, for SPL+, the best bound is achieved at

λα =
|α0 − α∗| (1− β)√

2
, λθ =

‖θ0 − θ∗‖ (1− β)√
2Ez[M(z)]

,

(26)

giving us the rate

E [Fβ(x̄T )− Fβ(x∗)] ≤ ‖θ0 − θ∗‖Ez[M(z)] + |α0 − α∗|√
2(1− β)

√
T + 1

+
‖θ0 − θ∗‖Ez[M(z)2]/Ez[M(z)] + |α0 − α∗|√

2(1− β)
√
T + 1

.
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We can now use Theorem 5.2 to directly compare the con-
vergence rate of SGM in (21) and SPL+ in (23). First,
both methods converge at the O (1/

√
T+1) rate. The main

difference is in the constants. To ease the comparison, let
λα = λθ = λ. In this case, we can see that the Lipschitz
constant of SGM in (22) is always greater than the Lipschitz
constant of SPL+ in (24), thus SPL+ has a better constant
in its rate of convergence. This is another way to confirm
that SPL+ uses a better model of the objective function as
compared to SGM. Yet another advantage of SPL+ is the
flexibility of having two regularization parameters λθ and
λα, which allows for a method that is independent of the
units of the loss.

6. Experiments
We design several experiments to compare, and test the
sensitivity of SGM, SPL with only one regularization, that
is the updates in Lemma 1 where λθ,t = λα,t = λt, and our
proposed SPL+ updates.

6.1. Synthetic data

First we study the sensitivity of the methods to choices
of λ when minimizing the CVaR objective (5). We use
three different synthetic distributions, similar to the setup
of Holland & Haress (2021), where we experiment various
combinations of loss functions `(·; z) and data distributions
controlled by noise ζ (Table 2). For all problems we set
the dimension to be d = 10. For regression problems,
θgen ∼ U([0, 1]d),

and for classification (logistic regression) we use θgen ∼
U([0, 10]d) to increase linear separability. The loss func-
tions and target generation schemes are listed in Table 2.
Each target of the corresponding problem contains an error
ε from one of the distributions in Table 1, which controls
the difficulty level of the problem.

Distribution of ζ Parameters

Normal(µ, σ2) µ = 0, σ = 2
Gumbel(µ, β) µ = 0, β = 4
LogNormal(µ, σ2) µ = 2, σ = 1

Table 1: Error distributions in 1D.

Since the expectation in the CVaR objective (5) is difficult
to compute in closed form, we evaluate the suboptimality
gaps using an empirical average over N = 106 data points
sampled i.i.d. from the corresponding distribution under a
single fixed seed. This is done for each error distribution and
loss function combination, each giving us the discretization

F̃β(θ, α) = α+
1

1− β
1

N

N∑
i=1

max {`(θ; zi)− α, 0} .(27)

We set β = 0.95 for all experiments, and thus have omitted
β from all plot descriptions. We run full-batch L-BFGS
to obtain the optimal values for comparison, recorded as
θ∗, α∗, and F ∗ := F̃β(θ∗, α∗). For initialization, we set
α0 ∼ U(0, 1) and θ0 ∼ N (0, Id) at initialization for all
algorithms we compare. They are run for T = 100, 000 it-
erations using 5 different seeds that control the randomness
of initialization and sampling during the course of optimiza-
tion. In the sensitivity plots (Figures 3 and 8), solid lines
show the median values, while the shaded regions indicate
the range over the random seeds. All objective evaluations
are on F̃β(θ̄t, ᾱt) using the averaged iterates.

We employ a decreasing step size λt = λ/
√
t+1 for

SGM and SPL, while λt,α = λ`0/
√
t+1 and λt,θ =

λ/`0
√
t+1 for SPL+. We study the sensitivity of the

methods to λ, varied over a logarithmically-spaced grid
10−6, 10−5, . . . , 104, densified around λ = 1 using the ex-
tra grid 10−1.5, 10−0.5, . . . , 101.5.

Figure 3 shows the final suboptimality achieved by SGM,
SPL, and SPL+ for different values of λ. For smooth losses
(squared and logistic) we see that SPL and SPL+ are sig-
nificantly more robust and admit a much larger range of λ
for which they achieve a low suboptimality. Interestingly,
for the absolute loss, the difference is barely noticeable. We
also observe that SPL+ often admits a wider basin of good
settings for λ as compared to SGM and even SPL. More-
over, λ = 1 is often in the set of good parameter choices
for SPL+. This suggest that our scaling of λ`0 and λ/θ0, as
motivated by balancing units, lead to a more stable and easy
to tune method by choosing λ around 1. In Figure 8, we
perform the sensitivity analysis under a fixed accuracy target
F̃ (θ, α)− F̃ ∗ ≤ ε, and draw similar stability conclusions.

6.2. Real data

Finally, we present the same experiment on four real
datasets: YearPredictionMSD, E2006-tfidf, (bi-
nary) mushrooms and (binary) Covertype, all from the
LIBSVM repository (Chang & Lin, 2011). Similar to the
synthetic experiments, we set β = 0.95 and compute θ∗

and α∗ using L-BFGS. The objective is now by default the
empirical CVaR in (27) since P is the empirical distribution,

Fβ(θ, α) = α+
1

1− β
1

n

n∑
i=1

max {`(θ; zi)− α, 0}

where n is the number of examples in the training
split. The loss function `(·; zi) is the squared loss for
YearPredictionMSD and E2006-tfidf, and logis-
tic loss for mushrooms and Covertype. For the com-
parison between SGM, SPL, and SPL+, we run the methods
for 200N iterations (except on E2006-tfidf where we
only run for 10N iterations due to its size). All convergence

6



A Model-Based Method for Minimizing CVaR and Beyond 7

Table 2: Loss functions and data generation used for synthetic problems. The error distributions for ζ are described in
Table 1. We use σ(·) to denote the sigmoid function, and all x’s are sampled uniformly from the unit sphere.

Task Loss `(θ;x, y) Target

Regression 1
2 (xTθ − y)2 y = xTθgen + ζ

Regression |xTθ − y| y = xTθgen + ζ
Classification log (1 + exp (−yxTθ)) y = 1 w.p. σ(xTθgen + ζ) and −1 otherwise.
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Figure 3: Sensitivity of final suboptimality to step size choices under a fixed T = 105 budget. The first two rows are
regression tasks under the `1 and `2 losses, while the third row correspond to a binary classification task under the logistic
loss. The columns correspond to different noise distributions in the data generation that controls the difficulty of the problem.
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,ᾱ
t
)
−
F
∗

0 2 4 6 8

Iterations t ×107

2× 100

3× 100

4× 100

F
(θ̄
t
,ᾱ
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Figure 4: Sensitivity and convergence plots on the
YearPredictionMSD linear regression task (overdeter-
mined).

plots are based on the best λ at the end of training for each
method.

For the least squares problem in Figure 4 and Figure 5,
we again see that both SPL and SPL+ can tolerate a much
larger range of step sizes. The best λ is attained at or near
λ = 1 for SPL+, which, although performs slightly worse
than SPL with the best selected λ, allows us to consistently
choose λ = 1 as a default. For the logistic regression
problem in Figure 7 and Figure 6, SPL and SPL+ are again
similar or better than SGM, although λ = 1 is no longer
close to optimal for SPL and SPL+.

7. Conclusion and future work

Our numerical evidence suggests that for the CVaR mini-
mization problem, while both SGM and SPL can be tuned
to achieve similar performance, SPL+ is often the most tol-
erant to misspecified step sizes. To further speed up SPL+

and make it more competitive over SGM, in future work we
will consider using non-uniform sampling to bias towards
training examples with higher losses (as in Curi et al. (2020);
Sagawa et al. (2020)).

Efficient CVaR minimization with a stochastic algorithm
opens up the possibility for new applications in machine
learning. For instance, we could consider models that trade-
off between low average risk and heavy tails by adding the
CVaR objective as a regularizer:

min
θ∈Rd

RERM(θ) + ρRCVaRβ (θ)
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Figure 5: Sensitivity and convergence plots on the
E2006-tfidf linear regression task (underdetermined).

where ρ > 0 is a parameter that captures this trade-off.
Controlling this trade-off is important as machine learning
models are increasingly deployed in safety-critical appli-
cations that call for control over the likelihood of failure.
As future work, we also see applications in training neural
networks, where CVaR can be used to disincentivize the
activations from being saturated too often, and thus help
in speeding up training. This would offer an alternative to
normalization layers, such as batchnorm or layernorm.
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A. SPL+ derivation for CVaR minimization

Before deriving the updates, we first introduce the following lemma based on the truncated model from Asi & Duchi
(2019b).
Lemma 2 (Truncated model). Consider the problem

xt+1 = arg min
x∈Rn

max {c+ 〈a, x− xt〉, 0}+
1

2λ
‖x− xt‖2 .

for some scalar c and vector a ∈ Rn. The solution can be written in closed form as

xt+1 = xt −min

{
λ,

max {c, 0}
‖a‖2

}
a

Proof. Note that xt+1 is the proximal point of the function

f(x) = h(〈a, x〉+ b), with h(z) = max {z, 0} , b = c− 〈a, xt〉 .

centered at x ≡ xt. Using Beck (2017, Theorem 6.15), we have

proxλf (x) = x+
a

‖a‖2
(

proxλ‖a‖2h(〈a, x〉+ b)− (〈a, x〉+ b)
)

= xt +
a

‖a‖2
(

proxλ‖a‖2 max{·, 0}(c)− c
)

(28)

In turn, the max function is the support function of the interval [0, 1]. By Beck (2017, Theorem 6.46), it follows that

proxλ‖a‖2 max{·, 0}(c) = c− λ ‖a‖2 proj[0,1]

(
c

λ ‖a‖2

)
. (29)

Plugging (29) into (28), we obtain

proxλf (xt) = xt −
a

‖a‖2
· λ ‖a‖2 proj[0,1]

(
c

λ ‖a‖2

)

= xt − λa · proj[0,1]

(
c

λ ‖a‖2

)
.

Writing proj[0,1](v) = min {max {v, 0} , 1} yields the result.

Lemma 1 (Closed form updates of SPL+). The closed form solution to (13) is given by the updates

θt+1 = θt − λθ,t min

{
1

1− β , γt
}
∇`(θt; z), (17)

αt+1 = αt − λα,t + λα,t min

{
1

1− β , γt
}
, (18)

where γt =
max {`(θt; z)− αt + λα,t, 0}
λθ,t ‖∇`(θt; z)‖2 + λα,t

. (19)

Proof. We now derive the the SPL+ updates. Recall that for the CVaR objective, using the model mSPL
t in (13), the

stochastic model-based approach solves the following problem in Equation 13 at each iteration, that is

arg min
θ,α

α+
1

1− β max {`(θt; z) + 〈vt, θ − θt〉 − α, 0}+
1

2λθ
‖θ − θt‖2 +

1

2λα
(α− αt)2 (30)

11
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where vt ∈ ∂`(θt; z), and we have temporarily dropped the time-dependence on λα,t and λθ,t. To arrive at the closed form
solution, we will re-write (30) to fit the format of Lemma 2, and then apply the lemma. To this end, we combine the α in
front with its regularization term,

α+
1

2λα
(α− αt)2 = α+

1

2λα
(α2 − 2ααt + (αt)

2)

=
1

2λα
((α− αt)2 + 2λαα)

=
1

2λα
((α− αt)2 + 2λαα− 2λααt + λ2

α) +
1

2λα
(2λααt − λ2

α)

=
1

2λα
((α− αt)2 + 2λα(α− αt) + λ2

α) + Const.

=
1

2λα
(α+ λα − αt)2 + Const.

We now combine it with the regularization on θ

1

2λθ
‖θ − θt‖2 + α+

1

2λα
(α− αt)2︸ ︷︷ ︸

(∗)

=
1

2λθ

(
‖θ − θt‖2 +

λθ
λα

(α− αt + λα)2

)
+ Const.

=
1

2λθ

‖θ − θt‖2 +

(√
λθ
λα

(α− αt) +
√
λθλα

)2
+ Const.

Now we define a rescaled variable α and constant αt as

α̂ =

√
λθ
λα
α and α̂t =

√
λθ
λα
αt −

√
λθλα (31)

to arrive at

(∗) =
1

2λθ

(
‖θ − θt‖2 + (α̂− α̂t)2

)
+ Const.

As a side note: to see that the units argument is appropriate, observe that α̂ now has units(θ) since λθ has units inversely
proportional to λα. This lets us concatenate α with θ for form a new variable vector x ∈ Rd+1 to have the same units overall.
Now define

x =

(
θ
α̂

)
and xt =

(
θt
α̂t

)
. (32)

The linearization inside max {·, 0} in (30) can be written as

`(θt; z) + 〈∇`(θt; z), θ − θt〉 − α = `(θt; z) + 〈∇`(θt; z), θ − θt〉 −
√
λθ
λα

√
λα
λθ
α (33)

= `(θt; z) + 〈∇`(θt; z), θ − θt〉 −
√
λα
λθ
α̂+

√
λα
λθ
α̂t −

√
λα
λθ
α̂t

= `(θt; z)−
√
λα
λθ
α̂t +

(
∇`(θt; z) −

√
λα
λθ

)(
θ − θt
α̂− α̂t

)
,

and so minimizing the model mt is then equivalent to minimizing the following model m̂t

min
x∈Rd+1

max {c+ 〈a, x− xt〉, 0}+
1

2λθ
‖x− xt‖2

12
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up to constants, where

c =
1

1− β

(
`(θt; z)−

√
λα
λθ
α̂t

)
and a =

1

1− β

(
∇`(θt; z)
−
√

λα
λθ
.

)
.

From Lemma 2, the update is given by
x∗ = xt − η · a

where step size is given by

η := min

{
λθ,

max {c, 0}
‖a‖2

}
(34)

Plugging in a, c into η gives

θt+1 = θt −min

λθ, 1

1− β
max

{
`(θt; z)−

√
λα
λθ
α̂t, 0

}
1

(1−β)2 (‖∇`(θt; z)‖2 + λα
λθ

)

 ∇`(θt; z)1− β

α̂t+1 = α̂t +
1

1− β

√
λα
λθ

min

λθ, 1

1− β
max

{
`(θt; z)−

√
λα
λθ
α̂t, 0

}
1

(1−β)2 (‖∇`(θt; z)‖2 + λα
λθ

)

 .

Finally, substituting back using (31), that is α̂t+1 =
√

λθ
λα
αt+1 and α̂t =

√
λθ
λα
αt −

√
λθλα and simplifying gives (17)

and (18).

Lemma 3. Each SPL+ update in Algorithm 2 is equivalent to the updates given by Equation 18 and Equation 17.

Proof. We can enumerate all the cases:

1. If c < 0, which implies checking for

`(θt; z) <

√
λα
λθ
α̂t =

√
λα
λθ

(√
λθ
λα
αt −

√
λθλα

)
= αt − λα

then from (34) η = 0, and the updates are

θt+1 = θ∗ = θt

αt+1 = α̂∗ = α̂t

Multiplying the second equation by
√

λα
λθ

on both sides, we get

√
λα
λθ

√
λθ
λα
α∗ =

√
λα
λθ

(√
λθ
λα
αt −

√
λθλα

)
αt+1 = αt − λα.

2. If c > λθ ‖a‖2 (> 0), which implies checking for the condition

1

1− β

(
`(θt; z)−

√
λα
λθ
α̂t

)
>

1

(1− β)2

(
λθ ‖∇`(θt; z)‖2 + λα

)
`(θt; z)− αtλα >

1

1− β
(
λθ ‖∇`(θt; z)‖2 + λα

)
.

13
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Then η = λθ, and the updates reduce to

θt+1 = θt − λθ
1

1− β∇`(θt; z)

αt+1 = α̂∗ = α̂t − λθ
1

1− β

(
−
√
λα
λθ

)

= αt − λα +
1

1− β λα.

3. Otherwise it must be the case that 0 < c
‖a‖2 < λθ, so η = c

‖a‖2 , and the updates are given by(
θt+1

αt+1

)
=

(
θ∗

α̂∗

)
=

(
θt
α̂t

)
− c

‖a‖2
· a

=

(
θt
α̂t

)
−
`(θt; z)−

√
λα
λθ
α̂t

‖∇`(θt; z)‖2 + λα
λθ

·
(
∇`(θt; z)
−
√

λα
λθ

)

=

(
θt
α̂t

)
− `(θt; z)− αt + λα

λθ ‖∇`(θt; z)‖2 + λα︸ ︷︷ ︸
=:ν

λθ ·
(
∇`(θt; z)
−
√

λα
λθ

)

Converting α̂t to αt and α̂∗ to α∗, we get that the updates are

θt+1 = θt − λθν∇`(θt; z)
αt+1 = αt − λα + λαν.

Note that the regularization parameters λθ and λα can both be written in a time-dependent form as λθ,t and λα,t.
This concludes our derivation for the updates of SPL+ given in Algorithm 2. As a comparison, we also include the
closed-form updates for SGM applied to CVaR minimization in Algorithm 1.

14
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B. Proof of Theorem 5.2
Theorem 5.2 (Convergence rates of SGM and SPL+). Suppose Assumption 5.1 holds. Let x∗ = (θ∗, α∗)T be a minimizer
of Fβ(θ, α), and x0 ∈ Rd an arbitrary initialization. Let (xt)

T
t=0 be the iterates given by SGM or SPL+, and x̄T =

1
T+1

∑T+1
t=1 xt be the averaged iterate.

SGM. If λt = λ√
T+1

then the iterates (xt) given by SGM in (7) satisfy

E [Fβ(x̄T )− Fβ(x∗)]

≤ 1

2

‖θ0 − θ∗‖2

λ
√
T + 1

+
1

2

(α0 − α∗)2

λ
√
T + 1

+
λL2

SGM√
T + 1

, (21)

where

L2
SGM = Ez

[
M(z)2 + 1

(1− β)2
+ 1

]
(22)

SPL+. If λα,t = λα√
T+1

and λθ,t = λθ√
T+1

, then the iterates (xt) given by SPL+ given in Lemma 1 satisfy

E [Fβ(x̄T )− Fβ(x∗)]

≤ 1

2

‖θ0 − θ∗‖2

λθ
√
T + 1

+
1

2

(α0 − α∗)2

λα
√
T + 1

+
λαL

2
SPL√

T + 1
, (23)

where

L2
SPL+ = Ez

[
λθ
λα
M(z)2 + 1

(1− β)2

]
. (24)

Proof. For our proof, we Recall Equation 30 (restated here)

arg min
θ,α

α+
1

1− β max {`(θt; z) + 〈vt, θ − θt〉 − α, 0}+
1

2λθ
‖θ − θt‖2 +

1

2λα
(α− αt)2

is the subproblem we solve to obtain the updates with separate regularization. Again, we have temporarily dropped the

time-dependency on λα,t and λθ,t. The arg min is the same if we scale the entire expression by
√

λθ
λα

:

arg min
θ,α

√
λθ
λα
α+

1

1− β max

{√
λθ
λα

(`(θt; z) + 〈vt, θ − θt〉)−
√
λθ
λα
α, 0

}

+
1

2
√
λθλα

‖θ − θt‖2 +
1

2λα

√
λθ
λα

λα
λθ

(√
λθ
λα
α−

√
λθ
λα
αt

)2

(35)

Let α̂ :=
√

λθ
λα
α and α̂t :=

√
λθ
λα
αt Note that this is a simpler definition of α̂t than what we used in the derivation of the

updates, since we no longer have to absorb the leading α into the regularization. The subproblem (35) can be solved in term
of the variables θ and α̂, and the scaled linearization

arg min
θ,α̂

α̂+
1

1− β max
{(

ˆ̀(θt; z) + 〈v̂t, θ − θt〉
)
− α̂, 0

}
+

1

2
√
λθλα

(
‖θ − θt‖2 + (α̂− α̂t)2

)
(36)

where ˆ̀(θt; z) :=
√

λθ
λα
`(θt; z), and its scaled subgradient is v̂t :=

√
λθ
λα
vt. Now define the scaled CVaR objective to be

F̂β(θ, α̂) = α̂+
1

1− βEz∼P
[
max

{
ˆ̀(θ; z)− α̂, 0

}]
(37)

15
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and the updates in the scaled subproblem (36) gives the SPL+ method for solving this scaled CVaR problem. By Lemma 4
we have that the assumptions required to invoke Theorem 4.4 in Davis & Drusvyatskiy (2019) now hold. In particular

since `(θ; z) is M(z)–Lipschitz we have that ˆ̀(θ; z) is
√

λθ
λα
M(z)–Lipschitz. We first consider the convergence of SPL+ in

terms of the scaled objectives. Denoting ∆ = ‖x0 − x∗‖ , λ̂ :=
√
λθλα, x = (θ, α̂)>, x∗ = (θ∗, α̂∗)> a minimizer of F̂β .

Using a constant step size of λ̂t = λ̂√
T+1

, from Theorem 4.4 in Davis & Drusvyatskiy (2019) the convergence rate is

E
[
F̂β(x̄T )− F̂β(x∗)

]
≤

1
2∆2 + L2

SPL+ λ̂
2

λ̂
√
T + 1

. (38)

Finally, multiplying (37) through by
√

λα
λθ

we have that√
λα
λθ
F̂β(θ, α̂) = α+

1

1− βEz∼P [max {`(θ; z)− α, 0}] = Fβ(θ, α).

Furthermore, multiplying (39) through by
√

λα
λθ

and substituting back λ̂ :=
√
λθλα and

∆2 = ‖θ0 − θ∗‖2 + (α̂0 − α̂∗)2 = ‖θ0 − θ∗‖2 +
λθ
λα

(α0 − α∗)2

gives

E [Fβ(x̄T )− Fβ(x∗)] ≤
√
λα
λθ

1
2∆2 + L2

SPL+λθλα√
λθλα

√
T + 1

(39)

=
1
2 ‖θ0 − θ∗‖2 + 1

2
λθ
λα

(α0 − α∗)2 + L2
SPL+λθλα

λθ
√
T + 1

(40)

=
1

2

‖θ0 − θ∗‖2

λθ
√
T + 1

+
1

2

(α0 − α∗)2

λα
√
T + 1

+
L2

SPL+λα√
T + 1

(41)

which concludes the proof of convergence of SPL+. As for the proof of SGM, it only remains to choose λθ = λα = λ

To apply Theorem 4.4 in Davis & Drusvyatskiy (2019), we must first verify their assumptions (B1)-(B4) hold. We will
enumerate these under their following general setup: writing the CVaR objective in Equation 5 as

Fβ(x) = f(x) + r(x), (42)

where r(x) = 0 for SGM while r(x) = α̂ for SPL+. In the SPL+ case, we further write f(x) = Ez[h(c(x; z))] where
h(·) = 1

1−β max {·, 0} and c(x; z) = ˆ̀(θ; z)− α̂. Recall that the stochastic one-sided models used are

SGM fSGM
t (x; z) = Fβ(xt; z) + 〈gt, x− xt〉 where gt ∈ ∂Fβ(xt; z), x = (θ, α)> (43)

SPL+ fSPL
t (x; z) = h(c(xt; z) + 〈ut, x− xt〉) where ut ∈ ∂c(xt; z), x = (θ, α̂)> (44)

and the update in Equation 11 is equivalent to

xt+1 = arg min
x∈Rd+1

r(x) + ft(x; z) +
1

2λt
‖x− xt‖2 (45)

The assumptions we need to verify are given in the following Lemma, which are adapted from Davis & Drusvyatskiy (2019).

Lemma 4. Let `(θ; z) be M(z)–Lipschitz and convex. Consider the two alternative definitions for ft(x; z) given in (43)
and (44). We have that the following assumptions hold.

(B1) (Sampling) It is possible to generate i.i.d. realizations z1, z2, · · · ∼ P .

16
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(B2) (One-sided accuracy) There is an open set U containing dom r and a measurable function (x, y; z) 7→ gx(y; z),
defined on U × U × Ω, satisfying

Ez [ft(xt; z)] = f(xt) ∀xt ∈ U,

and

Ez [ft(x; z)− f(x)] ≤ τ

2
‖xt − x‖2 ∀xt, x ∈ U.

(B3) (Weak-convexity) The function ft(x; z) + r(x) is η-weakly convex for all x ∈ U , a.e. z ∈ Ω.

(B4) (Lipschitz property) There exists a measurable function L : Ω→ R+ satisfying
√
Ez[L(z)2] ≤ L and such that

ft(xt; z)− ft(x; z) ≤ L(z) ‖xt − x‖ ∀xt, x ∈ U and a.e. z ∼ P,

where

L2
SGM = Ez

[
M(z)2 + 1

(1− β)2
+ 1

]
for SGM where ft(x; z) is (43), (46)

L2
SPL+ = Ez

[
λθ
λα
M(z)2 + 1

(1− β)2

]
for SPL+ where ft(x; z) is (44). (47)

Proof. Assumption (B1) follows trivially from i.i.d. sampling, while (B2) follows from convexity of `(·; z) or ˆ̀(·; z), giving
us τ = 0. Since r(x) is also convex in both methods and both models are convex, (B3) holds with η = 0.

To prove item (B4) for SGM, where f t = fSGM
t is given in (43), first note that from (6) for gt ∈ ∂Fβ(xt; z) and

ut ∈ ∂`(θt; z) we have that

‖gt‖2 = 1 {`(θt; z)− αt ≥ 0} ‖ut‖
2

(1− β)2
+

(
1− 1 {`(θt; z)− αt ≥ 0}

(1− β)

)2

≤ 1 {`(θt; z)− αt ≥ 0} M(z)2

(1− β)2
+ 1− 2

1 {`(θt; z)− αt ≥ 0}
(1− β)

+
(1 {`(θt; z)− αt ≥ 0})2

(1− β)2

≤ M(z)2

(1− β)2
+ 1 +

1

(1− β)2
, (48)

where in the first inequality we used that `(·; z) is M(z)–Lipschitz to bound ‖ut‖ ≤M(z), and in the second inequality we
used that the indicator function 1 {`(θt; z)− αt ≥ 0} is positive and upper bounded by 1. Consequently,

‖gt‖ ≤
√

1 +
M(z)2 + 1

(1− β)2
. (49)

Thus using the above and that max {·, 0} is 1-Lipschitz:

ft(xt; z)− ft(y; z) ≤ ‖gt‖ ‖xt − y‖

≤
√

1 +
M(z)2 + 1

(1− β)2︸ ︷︷ ︸
=:L(z)

‖xt − y‖ . (By (49))

This gives us L2
SGM = Ez[L(z)2] = Ez

[
1 + M(z)2+1

(1−β)2

]
.
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For SPL+ and f t = fSPL
t defined in (44) we have that

(1− β)(ft(xt; z)− ft(y; z)) = max
{

ˆ̀(θt; z)− α̂t, 0
}
−max

{
ˆ̀(θt; z)− 〈v̂t, θ − θt〉 − α̂, 0

}
≤ max {〈v̂t, θ − θt〉+ (α̂− α̂t), 0} (max {a, 0} −max {b, 0} ≤ max {a− b, 0})

= max

{〈(
v̂t
1

)
,

(
θ − θt
α̂− α̂t

)〉
, 0

}
≤
∥∥∥∥(v̂t1

)∥∥∥∥∥∥∥∥( θ − θtα̂− α̂t

)∥∥∥∥ (Cauchy-Schwarz)

≤
√

1 + ‖v̂t‖2 ‖xt − y‖

≤
√

1 +
λθ
λα
M(z)2 ‖xt − y‖ (Since v̂t is scaled vt)

Dividing both sides by (1− β) gives us

ft(xt; z)− ft(y; z) ≤


√

λθ
λα
M(z)2 + 1

1− β


︸ ︷︷ ︸

=:L(z)

‖xt − y‖ .

Taking expectation over z yields

L2
SPL+ = Ez[L(z)2] = Ez

[
λθ
λα
M(z)2 + 1

(1− β)2

]
.

18
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C. Additional experiment results
Figure 8 shows a similar sensitivity analysis to Figure 3 in the main text. Instead of the sensitivity of final suboptimality,
here we show the sensitivity of the minimum number of iterations to reach ε-suboptimality F̃ (θ, α)− F̃ ∗ ≤ ε.

104

105

N
u

m
b

er
o
f

it
er

a
ti

o
n

s

ζ ∼Normal

ε = 0.1

104

105

ζ ∼Gumbel

ε = 1

102

103

104

105

ζ ∼LogNormal

S
q
u

a
red

lo
ss

ε = 100

105

N
u

m
b

er
o
f

it
er

a
ti

o
n

s

ε = 0.01

105

3× 104

4× 104

6× 104

ε = 0.01

102

103

104

105

A
b

so
lu

te
lo

ss

ε = 0.1

10−6 10−4 10−2 100 102 104

λ

105

5× 104

6× 104

7× 104

8× 104

9× 104

N
u

m
b

er
o
f

it
er

a
ti

o
n

s

ε = 0.01

10−6 10−4 10−2 100 102 104

λ

105

3× 104

4× 104

6× 104

ε = 0.01

10−6 10−4 10−2 100 102 104

λ

105

2× 104

3× 104

4× 104

6× 104

L
o
g
istic

lo
ss

ε = 0.01

SGM SPL SPL+

Figure 8: Sensitivity of minimum number of iterations to achieve ε suboptimality to step size choices. The first two rows
are regression tasks under the `1 and `2 losses, while the third row correspond to a binary classification task under the
logistic loss. The columns correspond to different noise distributions in the data generation that controls the difficulty of the
problem.
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D. Relationship to max loss minimization
Lemma 5. The SPL+ updates in Lemma 1 minimizes the prox-linear model of the Lagrangian of the max loss objective,

min
θ∈Rd

f(θ) = max
i=1,...,n

`(θ; zi)

with β = 1− 1/n.

Proof. The equivalent slack formulation to the max loss objective is

min
s,θ

s

s.t. `(θ; zi) ≤ s ∀i = 1, . . . , n

Note that we can add a dummy constraint to have the equivalent problem

min
s,w

s

s.t. `(θ; zi) ≤ s ∀i = 1, . . . , n

0 ≤ 0

m
min
s,w

s

s.t. max {`(θ; zi)− s, 0} ≤ 0

Then the Lagrangian is given by

L(s, θ,Γ) = s+
1

n

n∑
i=1

Γi max {`(θ; zi)− s, 0} (50)

Note that we have included a 1/n scaling for each constraint, which is fine because they are positive and so can be absorbed
into the Lagrange multipliers. The dual problem is given by

max
Γ∈Rn

g(Γ) = min
s,θ
L(s, θ,Γ)

s.t. Γi ≥ 0 ∀i = 1, . . . , n

And so given a set of Γ, we need to minimize the Lagrangian over s and θ. We can treat this as the base objective, the basis
of our stochastic model construction. At each iteration t, we will use the following model

mt(s, θ) = s+ Γi max {`(θt; zi) + 〈∇`(θt; zi), θ − θt〉 − s, 0}

And then using the stochastic model-based approach, the updates are given by

θt+1, st+1 = arg min
s,θ

mt(s, θ) +
1

2λθ
‖θ − θt‖2 +

1

2λs
(s− st)2

Observe that this corresponds exactly to our SPL+ updates for the CVaR objective. Specifically, we can recover that by taking
s = α and Γi = 1

1−β . Now let’s analyze the KKT conditions to see what Γ should be. Let u∗i = ∂max{u, 0}|u=f(θ∗;zi)−s∗

0 ∈ ∂sL(s∗, θ∗,Γ∗) = 1− 1

n

n∑
i=1

Γ∗i u
∗
i ⇐⇒ 1 ∈ 1

n

n∑
i=1

Γ∗i u
∗
i

0 ∈ ∂θL(s∗, θ∗,Γ∗) =
1

n

n∑
i=1

Γ∗i u
∗
i∇`(θ∗; zi)

max {`(θ∗; zi)− s∗, 0} ≤ 0 ∀i
Γ∗i ≥ 0 ∀i

Γ∗i (max {`(θ∗; zi)− s∗, 0}) = 0 ∀i
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First, based on the constraints, we must have `(θ∗; zi) ≤ s∗ for all i. Now suppose none of the constraints are tight, i.e.
`(θ∗; zi) < s∗ for all i. Then u∗i = 0 for all i so the first KKT condition would collapse. This means that the active constraint
set I = {i = 1, . . . , n : `(θ∗; zi) = s∗} must be non-empty. We can use this to simplify the first two conditions to

1 ∈ 1

n

∑
i∈I

Γ∗i [0, 1]

0 ∈ 1

n

∑
i∈I

Γ∗i [0, 1]∇`(θ∗; zi)

which holds for Γ∗i ≥ n for i ∈ I. If we let Γ∗i = n for all i, then we will need β = 1− 1/n to recover the CVaR objective,
which makes sense in the max loss minimization problem with n training examples, so we can take P = Pn the empirical
distribution.

21


	Introduction
	Background

	Problem setup
	The Stochastic Subgradient Method
	The SPL method for CVaR minimization
	A tighter model
	Separate regularization parameters
	Closed form update
	Solving the max loss problem
	Solving ERM

	Convergence theory
	Experiments
	Synthetic data
	Real data

	Conclusion and future work
	SPL+ derivation for CVaR minimization
	Proof of thm:general-convex-rate
	Additional experiment results
	Relationship to max loss minimization

