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Abstract

Training reinforcement learning agents with human feedback is crucial when task objec-
tives are difficult to specify through dense reward functions. While prior methods rely on
offline trajectory comparisons to elicit human preferences, such data is unavailable in on-
line learning scenarios where agents must adapt on the fly. Recent approaches address this
by collecting real-time scalar feedback to guide agent behavior and train reward models
for continued learning after human feedback becomes unavailable. However, scalar feed-
back is often noisy and inconsistent, limiting the accuracy and generalization of learned
rewards. We propose PREF-GUIDE, a framework that transforms real-time scalar feedback
into preference-based data to improve reward model learning for continual policy training.
PREF-GUIDE Individual mitigates temporal inconsistency by comparing agent behav-
iors within short windows and filtering ambiguous feedback. PREF-GUIDE Voting further
enhances robustness by aggregating reward models across a population of users to form con-
sensus preferences. Across three challenging environments, PREF-GUIDE significantly out-
performs scalar-feedback baselines, with the voting variant exceeding even expert-designed
dense rewards. By reframing scalar feedback as structured preferences with population feed-
back, PREF-GUIDE offers a scalable and principled approach for harnessing human input
in online reinforcement learning.

1 Introduction

Incorporating human feedback into reinforcement learning (RL) has become increasingly important for train-
ing agents in environments where task goals are difficult to formalize (Christiano et al.| (2017)); |Cao et al.
(2021)); Ratailov et al.| (2023)); Ramesh et al.| (2024); Zhang et al.| (2024b); |Ji et al.| (2024). While manually
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Figure 1: Pref-GUIDE. Real-time scalar human feedback is often inconsistent, noisy, and varies across
individuals. PREF-GUIDE addresses this by (a) converting scalar feedback into local pairwise preferences to
achieve temporal consistency, and (b) aggregating reward models across human evaluators to form consensus-
based rewards. (c¢) These improvements yield more robust reward learning and enable effective continual
policy training after human feedback becomes unavailable.
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designed reward functions can work well in constrained or well-specified settings, they often fail to capture
the full complexity of real-world objectives or align with human intent. In such cases, human feedback offers
a more flexible and adaptive alternative for guiding agent behavior.

Two major paradigms have emerged to leverage human feedback in RL. Preference-based RL |Christiano
et al.| (2017); |Cao et al.| (2021); [Ouyang et al.| (2022); [Rafailov et al.| (2023); |Ramesh et al.| (2024) uses
offline datasets of pairwise trajectory comparisons to train reward models that reflect human judgments.
These models are then used to generate reward signals during policy learning. Alternatively, real-time
scalar feedback [MacGlashan et al. (2017)); |[Arumugam et al.| (2019)); [Knox & Stone| (2009); Warnell et al.
(2018);|Zhang et al.| (2024Db) allows humans to directly influence the learning process by providing moment-to-
moment evaluations during agent interaction. GUIDE [Zhang et al.[(2024b)), a recent method in this category,
introduces a two-phase framework: during the human-in-the-loop phase, scalar feedback is combined with
environment rewards to guide agent learning; in the subsequent post-human-guidance phase, a regression
model trained on the collected human feedback continues to guide the agent after the human input is no
longer available.

While effective in early demonstrations, both paradigms face critical limitations. Preference-based methods
rely on rich trajectory sets and offline human labeling, making them unsuitable for real-time and interactive
settings [Wirth et al| (2017a). Moreover, the co-evolution of the policy and reward model can introduce
instability |Wirth et al.| (2017a). Real-time scalar feedback, while more adaptable, suffers from two key
challenges, especially in obtaining an effective reward model for post-human-guidance phase:

Human feedback is inconsistent over time. Evaluators naturally shift their expectations over the course
of training |Wang et al.| (2022), which makes it difficult to learn stable reward functions from raw feedback.
For example, in an object search task, exploratory behavior may initially be rewarded but later penalized
once goal-directed behavior is expected. This temporal inconsistency introduces non-stationarity, making it
difficult for a regression model to generalize feedback into a stable reward model.

Human feedback is not always reliable. Variability in cognitive ability, fatigue, attention lapses, and
evaluation |Wang et al.| (2022); |Wirth et al| (2017a); [Zhang et al.| (2024aib) contribute to intra- and inter-
evaluator noise. These inconsistencies reduce the signal-to-noise ratio in scalar feedback, ultimately degrading
policy performance when learned directly.

Our goal in this study is to improve the post-human-guidance phase of real-time human-guided RL. While
we adopt the same human-in-the-loop phase as GUIDE, our contributions focus on transforming and
aggregating the collected human feedback to support more stable and effective continual training without
requiring additional human input. To this end, we propose PREF-GUIDE (Figure , a framework that
transforms noisy real-time scalar feedback into structured preference data to train more robust reward
models. PREF-GUIDE consists of two key components:

Pref-GUIDE Individual transforms scalar human feedback from each evaluator into temporally local
pairwise preferences. This design is motivated by our observation (Section that human feedback tends
to be relatively consistent within short time intervals. By comparing agent behaviors within short temporal
windows, we generate multiple preference pairs from each scalar signal, which effectively reuses feedback
to create more training data while maintaining temporal coherence. We further introduce a no-preference
margin |Lee et al.| (2021b)) to handle ambiguous or low-confidence feedback.

Pref-GUIDE Voting builds on this idea by aggregating individual reward models across a population of
human evaluators. Since feedback quality varies across individuals due to noise or evaluator bias Wang
et al.| (2025); Meyers et al.| (2023); ivon Rueden et al.[(2015]), we use a consensus-based relabeling strategy to
extract a more robust reward signal. By combining predictions from multiple evaluator-specific models, we
reduce individual noise and improve the robustness of the learned reward (Figure [1)).

We evaluate PREF-GUIDE across three challenging visual RL environments |Zhang et al.| (2024a3b|), where
agents must act based on partial visual observations. Our results show that PREF-GUIDE Individual
outperforms regression-based baselines when feedback quality is high, and PREF-GUIDE Voting maintains
strong performance across diverse user inputs. In more complex tasks, our method even surpasses policies
trained with expert-designed dense rewards, demonstrating the power of structured and population preference
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learning from real-time human feedback. Extensive ablation studies further validate our design choices and
provide insight into their contributions.

By converting noisy and unreliable human signals into structured and population-aggregated preference data,
PREF-GUIDE offers a scalable and principled framework to leverage human feedback in RL, towards more
consistent improvements even after human supervision ends.

2 Related Work

2.1 Real-Time Human-in-the-Loop Reinforcement Learning

Incorporating real-time human feedback into RL has been studied through several paradigms, each grounded
in different assumptions about the nature and role of feedback. One major class of methods, such as TAMER
Knox & Stone (2009) and Deep TAMER |Warnell et al| (2018), treats human input as a one-step reward
signal, allowing agents to update their policies myopically based on predicted human evaluations. A second
line of work, such as COACH [MacGlashan et al.|{(2017) and Deep COACH |Arumugam et al.| (2019)), interprets
feedback as an advantage estimate, providing a more temporally grounded signal that can reduce the effects
of inconsistent feedback. More recently, GUIDE Zhang et al.|(2024b]) has shown that using real-time scalar
human feedback directly as a dense reward signal can provide superior performance in challenging visual RL
tasks.

On the other hand, while prior approaches have shown the promise of real-time human feedback in RL, they
typically assume continuous human involvement. GUIDE overcomes this assumption by training a regression
reward model from the human feedback data to provide continual training signals after the human feedback
is no longer available. However, there are two key limitations in GUIDE. First, GUIDE relies on point-wise
scalar prediction, which limits its ability to capture the evolving nature of human evaluations. Second,
GUIDE’s performance strongly correlates with the individual human evaluators, where agents guided by
human evaluators with stronger cognitive skills in certain aspects perform much better. To have human-
guided RL algorithms agnostic to human individual differences, such correlation is undesirable.

Our work PREF-GUIDE builds on the real-time human-guided RL framework proposed in GUIDE, but
addresses these limitations through two novel algorithm designs. PREF-GUIDE considers that human
evaluation criteria evolve over time by grounding scalar feedback into pairwise preference labels within a
short time window. Moreover, to mitigate human biases and individual differences, PREF-GUIDE aggregates
individual reward models into consensus-based labels, improving the robustness of the reward model based
on the feedback from population users.

2.2 Preference-Based Reinforcement Learning

Preference-based RL (PbRL) Wirth et al.| (2017b)) obtains human feedback to train RL agents by collect-
ing pairwise trajectory comparisons and inferring a latent reward function by modeling human preferences
Bradley & Terry| (1952)); (Christiano et al.| (2017). The learned reward model will be used to supervise policy
learning with dense reward estimates.

A rich body of work has expanded the PbRL framework to improve data efficiency and label quality. This
includes integrating human demonstrations for pretraining Ibarz et al.| (2018), introducing soft labels to
capture uncertainty [Cao et al.| (2021)), leveraging relabeling and unsupervised pretraining Lee et al.| (2021a),
and more recently, using foundation models to automate preference labeling [Wang et al.| (2024)); Jian et al.
(2025). These methods typically operate in an offline or evolution loop setting, where the agent’s policy
is periodically updated based on human feedback collected over batches of offline rollouts |Christiano et al.
(2017); Ibarz et al.| (2018]); |Lee et al.| (2021a3b)).

However, such iterative co-evolution of policy and reward model can introduce training instability, as both
the learned behaviors and feedback targets shift over time Wirth et al.| (2017a)). Moreover, the requirement
for human queries on offline datasets or parallel policy rollouts makes it unclear to apply PbRL approaches
directly in real-time decision-making tasks.
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Figure 2: Method Overview. (a) PREF-GUIDE Individual converts real-time scalar feedback from
each human evaluator into a localized preference dataset, then trains evaluator-specific reward models.
(b) PREF-GUIDE Voting aggregates predictions from these individual models to relabel trajectory pairs
through consensus voting, providing a population-informed preference dataset and a robust reward model.
(c¢) The aggregated reward model is used to guide RL training during the post-human-guidance phase.

Our method, PREF-GUIDE, adapts the strengths of PbRL to the real-time feedback setting. Rather than
requiring humans to explicitly compare trajectories, we transform real-time scalar feedback, naturally pro-
vided in real-time settings, into temporally grounded pairwise preferences. This allows us to retain the
expressivity and consistency benefits of PbRL without the overhead of repeated and offline query loops.
Furthermore, while most existing PbRL work either trains evaluator-specific models or pools preference data
from all evaluators without addressing inter-evaluator variability, PREF-GUIDE introduces a population-
level aggregation mechanism. Through PREF-GUIDE Voting, we combine individual reward models into
soft consensus labels, improving the robustness of the learned reward signal in continual learning against
individual differences.

3 Preliminaries

3.1 Real-Time Human-Guided Reinforcement Learning

In real-time human-guided RL, a human observer provides scalar feedback while watching the agent interact
with the environment. Let 7 = (sg, ag, $1,a1,...,ST,ar) € (S X A)T denote a trajectory consisting of states
and actions, where s; € S and a; € A represent the state and action at time step ¢t. The human provides a
scalar evaluation f € R for the trajectory 7, reflecting their assessment of the agent’s behavior to the task
objective.

Different methods adopt different formats for scalar feedback. For instance, in TAMER [Knox & Stone
(2009), f is a discrete value selected from {—1,0,1} to represent negative, neutral, or positive responses.
GUIDE |Zhang et al.| (2024b) further improves this by using a continuous value in the range [—1, 1] to capture
more nuanced human feedback on a spectrum from negative to positive.

GUIDE Zhang et al.| (2024b) algorithm. GUIDE is a recent framework in real-time human-guided RL
to enable higher performance and faster convergence of RL agents using real-time human feedback. There
are two main phases in GUIDE:

Human-in-the-loop phase: The continuous value feedback signals from human evaluators are directly
combined with sparse terminal rewards to guide the policy training. Meanwhile, these feedback signals are
stored as a dataset Dyeal-time = { (73, f,)}f\;l for training a reward model with a regression loss.

Post-human-guidance phase: Once human evaluators exit the loop, the reward model will be used to
estimate human feedback to continue guiding the training.



Under review as submission to TMLR

3.2 Preference-Based Reinforcement Learning

Preference-based reinforcement learning (PbRL) is commonly used when pairwise preference labels are avail-
able, either from existing offline datasets or from parallel rollouts that allow trajectory comparisons. Rather
than relying on scalar feedback values, PbRL uses human judgments over pairs of trajectories to learn a
reward model. This reward model estimates latent reward values consistent with the provided preferences
and can be integrated into standard reinforcement learning pipelines to guide policy optimization.

In PbRL, a preference dataset Dprer = {(7’{47 78, y:) 1M, is collected by askmg humans to compare palrs of
trajectories. Each label y; indicates which trajectory is preferred: y; = 1 if T - T , yi = 0 if T - T and
y; = 0.5 if the annotator expresses no preference.

We assume preferences are generated according to a latent reward function 79 : (Sx.A)7 — R, parameterized
by 6. Following the Bradley-Terry model Bradley & Terry| (1952)), the probability that trajectory 74
preferred over 78 is the softmax likelihood of the reward model predictions:

P14 = 18) =

exp(ro(14))
)

exp(rg(74)) + exp(rg(7B))’

The reward model is trained by minimizing the binary cross-entropy loss over the set of preference pairs:

M
Lopret(0 Z y; log P( 7' - T; By 4+ (1 —y)log P(TZ-B - TiA)] .
i=1

Once learned, the reward model ry can be used to generate dense reward estimates for new trajectories,
enabling the use of standard RL algorithms for policy optimization.

4 Method

Our method, termed PREF-GUIDE, is designed to improve the post-human-guidance phase of real-time
human-guided RL. While recent methods have focused on improving the initial phase where human evaluators
provide real-time scalar feedback, our focus is on what happens after the human is no longer available. This
phase is critical for scaling real-time human-guided RL, as continuous human supervision, though intuitive
and effective, is costly, time-consuming, and ultimately unsustainable. An overview of PREF-GUIDE is
shown in Figure

To address this, PREF-GUIDE introduces two key improvements aimed at making better use of the lim-
ited human feedback collected during training: (1) converting scalar feedback into temporally local pairwise
preferences to enhance consistency and data efficiency, and (2) aggregating feedback across multiple human
evaluators to reduce individual noise and bias. These improvements are realized through two complementary
modules: PREF-GUIDE Individual, which transforms individual feedback streams into structured prefer-
ence data, and PREF-GUIDE Voting, which combines reward models from multiple evaluators to generate
robust, consensus-based labels. We describe each component in detail in the following sections.

Human guidance data. Our dataset Dyealtime comes from GUIDE |[Zhang et al.[ (2024bl), which contains
interactions from 50 human evaluators across three challenging visual RL environments: Bowling, Find
Treasure, and Hide and Seek 1v1. The scale of this dataset is the largest human study so far in real-time
human-guided RL. For each evaluator, the dataset includes 5 minutes of feedback in Bowling and 10 minutes
each in Find Treasure and Hide and Seek 1vl. Each data point consists of a short trajectory comprising
three consecutive image observations and the corresponding agent actions, paired with a continuous scalar
feedback signal provided by the human. To support our continual learning experiments, we also utilized
training checkpoints from the start of the post-human phase, which include saved replay buffers, model
weights, and optimizer states.
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Figure 3: Human feedback is temporally inconsistent for similar trajectories. We visualize t-SNE
embeddings of trajectory representations from evaluator 0 in all three tasks. Each point represents a trajec-
tory, color-coded by it’s corresponding scalar human feedback. Despite many trajectories being behaviorally
similar (i.e., embedded closely), their feedback values vary widely. This observation highlights the temporal
drift and inconsistency in human evaluations, motivating our approach to convert scalar feedback into tem-
porally local preference pairs.

4.1 Inspiration: Human Feedback is Inconsistent Over Time

When a human evaluator observes an agent learning, we hypothesize that the criteria used to provide scalar
feedback may shift over time. Early in training, humans often reward exploratory or “trying” behaviors,
but later they expect more goal-directed performance. As a result, the same agent behavior might be rated
positively at one point and negatively at another.

To validate our hypothesis, we processed each human evaluator’s Dieal-time Dy encoding the trajectories
using a pretrained image encoder, DINO [Oquab et al| (2023), followed by a t-SNE [Van der Maaten &|
projection for visualization. The colors represent different values of the human feedback. As
shown in Figure [3] there is no clear alignment between similar trajectory embeddings and scalar feedback.
This result supports our hypothesis that feedback criteria shift as humans adjust their expectations during
guidance. Visualizations from other evaluators are provided in the Appendix

This observation raises a concern for existing methods like GUIDE, which directly train a regression model to
predict scalar feedback given trajectory input. If the same behavior is labeled inconsistently, regression-based
models may fail to capture meaningful reward signals, resulting in unstable learning.

4.2 Pref-GUIDE Individual
To address the challenge of temporal inconsistency in scalar feedback, we propose PREF-GUIDE
Individual, which converts real-time scalar feedback Dieal-time into a preference-based dataset Dpyes.

A naive approach to handling scalar feedback would be to directly regress on it across the full training
sequence. However, this fails to account for the shift in human evaluation criteria over time, and learns from
globally inconsistent and noisy signals. Our key insight is that, although feedback may drift over time, it
tends to be relatively consistent within short local intervals. By focusing on temporally local comparisons
and introducing a mechanism to handle ambiguity, we construct more stable and informative training signals.

We introduce two techniques to realize this idea:

Moving Window Sampling: We define a window

W, = {(Ti7 fl)’ (Ti+17 fi+1)7 sy (Ti+n—1; fi+n—1)}
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containing n consecutive trajectory-feedback pairs. In practice, we set n = 10, which corresponds to 5 seconds
of human guidance in our environments. Within this short window, we assume the human’s evaluation
standard is approximately stationary. We then generate (g) trajectory pairs from each window, assigning
preference labels by directly comparing their scalar feedback values.

No Preference Range: Even within short windows, small feedback differences may not indicate meaningful
preferences. Treating any difference as a strict ordering will lead to overfitting on noisy comparisons. To
address this, we introduce a no-preference threshold 4§, set to 5% of the total feedback range. If the difference
|fA — fB| < 4, the trajectories are treated as equally preferred and labeled with 0.5.

Using the resulting dataset Dprcr, we train an evaluator-specific reward model réj ) using the Bradley-Terry
model from Section [3.2] for each evaluator j. This reward model is then used for continual learning once
human feedback is no longer available. The full procedure is detailed in Algorithm

4.3 Pref-GUIDE Voting

While PREF-GUIDE Individual mitigates temporal inconsistency within a single evaluator’s feedback, it
does not address the variability in feedback quality across individuals. In practice, human evaluators differ
significantly in how they interpret agent behavior, the consistency of their feedback, and their attentiveness
during the training process. As observed in GUIDE, some participants provide rich, informative feedback,
while others are noisier, inconsistent, or even disengaged. When building real-world human-guided RL
systems, relying on any single individual introduces the risk of overfitting to that evaluator’s unique biases,
cognitive patterns, or momentary lapses.

Our idea is to leverage the collective intelligence of multiple human evaluators to avoid the risk of overfitting.
A straightforward approach might train a single reward model using pooled data from all evaluators. How-
ever, this method fails to account for evaluator-specific noise and can conflate incompatible reward signals,
leading to unstable or diluted supervision.

To overcome this, we propose PREF-GUIDE Voting, which aggregates the predictions of independently
trained evaluator-specific reward models to produce consensus preference labels. By treating each model
as an independent judgment source, we can extract commonalities across diverse feedback patterns and
downweight idiosyncratic or unreliable signals. Our key hypothesis is that while any individual may be
noisy, the aggregated signal across multiple evaluators captures more reliable preferences, resulting in a
more robust reward function for continual policy learning. The full procedure is detailed in Algorithm

Specifically, instead of relying on the predicted reward from the original reward model, we query all evaluator-
specific reward models ry (S = 50) for their reward predictions on each other’s input trajectories to cast a
vote based on their respective judgments. These votes are averaged and then normalized to yield a consensus
label in the range of [0, 1], with intermediate values reflecting uncertainty or disagreement.

5 Experiments and Results

Our experiments aim to evaluate the effectiveness of PREF-GUIDE in improving reward model learning for
continual policy training. Our experiments were performed in three challenging visual RL experiments from
GUIDE [Zhang et al.| (2024b): Bowling, Find Treasure, and Hide and Seek 1v1. The tasks present partial
observability and require long-horizon decision making, making them suitable for testing reward learning
from human feedback.

Each run consisted of a real-time human-in-the-loop phase, followed by a post-human-guidance phase
for continual learning without human input. The human-in-the-loop phase lasted 5 minutes for Bowling and
10 minutes for Find Treasure and Hide and Seek 1v1. After this, agents continued to train using learned
reward models for 15 minutes for Bowling and 50 minutes for the other two tasks. To accurately track policy
performance over time, we saved the policies at regular intervals for performance evaluation: every 1 minute
for Bowling, and every 2 minutes for the other two tasks.
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Figure 4: Results. Each column shows a different task. The top row reports results using only the top 15
evaluators (high-quality feedback), while the bottom row includes all 50 evaluators (mixed feedback). Curves
after the dash vertical line denotes the performance during post-human-guidance phase. PREF-GUIDE
Individual outperforms GUIDE when the feedback quality is high, while PREF-GUIDE Voting gives the
best results across all conditions and even surpasses expert-designed rewards in more complex tasks.

Following GUIDE, we adopt their grouping strategy in evaluations based on the cognitive test scores of
human evaluators. Results are reported for two groups: the Top 15 evaluators and the All 50 evaluators. It
has been found that the top 15 evaluators who obtained higher cognitive test scores provide higher quality
guidance on training RL agents Zhang et al.| (2024b). We conducted our ablation studies on the top 15 group
to isolate design contributions under controlled experiments.

Baselines and Evaluation Goals. We compare against the following baselines:

« DDPG [Lillicrap et al| (2015): the base reinforcement learning algorithm used in GUIDE as the RL
backbone, trained only with sparse environmental rewards.

e DDPG Heuristic: a version of DDPG augmented with expert-designed dense rewards, applicable only
to Find Treasure and Hide and Seek 1v1. This serves as an approximate upper bound for the performance
achievable with manually crafted rewards. Specifically, the dense rewards are designed based on distance
measurements and exploration area tracking.

o GUIDE [Zhang et al. (2024b): the primary baseline, which uses a regression model trained on real-time
scalar feedback to guide continual learning after human supervision ends.

Key Questions: These baselines allow us to answer the following key questions:

e Can PREF-GUIDE outperform existing scalar-feedback regression approaches in continual training?
o How robust is it when feedback quality varies across evaluators?
e Can learned rewards from human feedback rival or surpass expert-designed dense rewards?



Under review as submission to TMLR

1.0|Bowling 10min 1.0 15min 1.0 20min
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 30 50 70 0.0 30 50 70 0.0 30 50 70
o 1.0|Find Treasure ~ 20min 1.0 40mi 1.0 60min
g g
T 0.8 0.8 ] 0.8 ——
s
0.6 0.6 0.6
k]
2 0.4 0.4 0.4
8
§02 0.2 0.2
&
& —
0.0 0 0.0 70 0.0 70 50 60
1.0 Hide and Seek  20min =1 GUIDE 1.0 40min 100 60mi
Pref-GUIDE
0.8 i = rdividual 0.8 I 0.8
Pref-GUIDE
= Vgetlng |
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 95 0.0 55 0.0 55 75 9%
Mllestones

Figure 5: Pref~-GUIDE Voting enhances robustness across different evaluators. Each subplot
shows the percentage of evaluators (y-axis) whose agents reached specific performance milestones (x-axis)
at different time points (title of each plot). Each row shows one task. PREF-GUIDE Voting consistently
enables a larger fraction of evaluators to train high-performing agents across milestones and time.

5.1 Results

Results are presented in Figure 4| When trained using feedback from the Top 15 evaluators, PREF-GUIDE
Individual significantly outperforms GUIDE in all environments. This confirms our hypothesis that con-
verting scalar feedback into localized preferences leads to more consistent and stable reward models, given
that the feedback is of sufficient quality.

However, when evaluated across All 50 evaluators, PREF-GUIDE Individual shows degraded performance
in the Find Treasure environment, falling slightly below GUIDE. This highlights a key limitation of relying
on single-subject feedback, where biases and noise from low-quality evaluators can undermine learning. The
next key question becomes how to tackle such challenges when a group of evaluators without filtering is
presented.

As shown in the results, PREF-GUIDE Voting indeed can maintain high performance across both evaluator
groups. By aggregating reward models across evaluators, it effectively neutralizes individual biases and
noise. Importantly, PREF-GUIDE Voting not only benefits the results when all evaluators are presented
without pre-filtering but also performs the best even when the Top 15 evaluators are selected with a cognitive
test ranking. Furthermore, in both Find Treasure and Hide and Seek 1vl, PREF-GUIDE Voting not only
surpasses GUIDE but even exceeds the performance of DDPG Heuristic, suggesting that collective human
feedback, when properly structured, can yield reward models more effective than expert-designed rewards.

We further compared the performance of GUIDE, PREF-GUIDE Individual (ours), and PREF-GUIDE
Voting (ours) in Figure [5l For each algorithm, we computed the proportion of evaluators (y-axis) whose
agents achieved a given performance threshold (x-axis). Each row shows a different task, and each column
shows different training time points. PREF-GUIDE Voting consistently shows the highest performance in
all settings. The results support our hypothesis that aggregating reward models at the population level
yields more stable and robust supervision. This, in turn, leads to more reliable policy improvements given
different evaluators.
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Figure 6: We evaluate the two key design choices: moving window sampling and no preference range.
Removing either component leads to a noticeable drop in performance.

5.2 Ablation Studies

Ablation studies on Pref-GUIDE Individual. We conducted ablations to understand the importance
of the two core design choices in PREF-GUIDE Individual: (1) Moving Window Sampling, which localizes
feedback comparisons, and (2) No Preference Range, which filters ambiguous pairs. As shown in Figure @
removing either component leads to a noticeable drop in policy performance. Without the moving window,
preferences are extracted from globally inconsistent feedback. The coherence is reduced. Without the
no-preference margin, the model overfits to subtle, noisy changes in the feedback values, mistaking noise
for meaningful preferences. These results demonstrate that both components are essential for extracting
consistent and robust training signals from scalar human feedback.

Ablation studies on Pref~-GUIDE Voting. We also evaluated the design of our consensus relabeling
strategy. Our method uses normalized vote aggregation where soft preference labels reflect the degree of
agreement across reward models. We first compared this to a straightforward approach, which combined
all the evaluators’ data to train a single reward model and used this reward model for every evaluator’s
continual training. Furthermore, we compared this to a simpler binary majority vote strategy, which ignores
disagreement magnitude and directly applies the majority vote direction as the label.

As shown in Figure [7] normalized aggregation yields consistently better performance across all three tasks.
Even though combining all the data to train a single reward model has better performance on bowling, in
more complex tasks, Find Treasure and hide and Seek 1v1, it cannot outperform PREF-GUIDE Voting.
Combining all the evaluators’ data, although bringing more data during reward model training, also intro-
duced conflicting labels on similar trajectories due to individual evaluator bias and noise to undermine the
reward model. This suggests that capturing the confidence of the population, not just the summary of the
majority, or combining all the data naively, results in smoother gradients and more informative training
signals. These findings validate our design choice for robust population-level reward learning.

5.3 Qualitative Visualizations of Voting Preferences

To better understand the behavior of PREF-GUIDE Voting, we visualize population-level preferences over
several trajectory pairs from the Find Treasure environment. Figure [§] shows that population preferences
align well with task-relevant behavior. For instance, in pair A, the population prefers the agent that actively
explores the map over one that stalls near the starting area. In pairs B and C, the agent that moves toward
the discovered treasure is preferred over one that moves away. In pair D, the population shows no preference
between the two equally exploratory trajectories. These results indicate that the voting mechanism produces
intuitive and consistent judgments.
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Figure 7: We compared three reward model training variants using population feedback: (1) our method
with normalized voting, (2) binary majority vote relabeling, and combining all feedback data into a single
training set. Normalized voting consistently outperforms others, highlighting the value of capturing the
degree of agreement among evaluators rather than relying on binary or pooled labels.

A Trajectory 1 Trajectory 2 Trajectory 1 Trajectory 2

Figure 8: Examples of population voting on Find Treasure trajectories. (A—C) The population prefers
exploratory behavior and movement toward discovered treasures. (D) No strong preference when both
trajectories are similarly exploratory. Normalized scores reflect consensus strength.

5.4 Pref-GUIDE Voting Enables Reward Learning Agnostic to Individual Differences

To understand how different evaluator groups contribute to the final reward model in PREF-GUIDE Voting,
we analyzed the voting contributions of subgroups categorized by cognitive test scores: Top 15 (highest
performers), Middle 20, and Bottom 15. Table shows the proportion of each group’s contributions to
winning votes across three environments.

Interestingly, we find that each subgroup’s contribution is roughly proportional to its representation in the
overall population. This suggests that no subgroup disproportionately dominates the voting outcomes and
that the final preference labels reflect a balanced aggregation across all evaluators.

However, this observation raises a deeper question. When comparing the performance of PREF-GUIDE
Voting between Top 15 and All 50 evaluators in Figure [4] they are quite similar. This is not the case for
other methods and baselines, where Top 15 evaluators always generate higher performance on the guided
agents than All 50 evaluators. The question is: if the lower-performing groups in cognitive tests contribute
equally to the voting outcomes, why does PREF-GUIDE Voting under All 15 evaluators still match the
performance of Top 15 feedback alone?

We believe that the answer lies in the balancing effect of the consensus-based aggregation. While the Top 15
group alone yields stronger raw feedback signals, as reflected in the superior performance of PREF-GUIDE
Individual on this subgroup, the PREF-GUIDE Voting mechanism can filter and dilute the noise intro-
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Group Bowling Find Treasure Hide and Seek 1v1
Top 15 (30%) 30.78% 29.85% 30.96%
Middle 20 (40%) 39.22% 40.38% 40.08%
Bottom 15 (30%) 30.00% 29.77% 28.96%

Table 1: Distribution of winning votes across evaluator groups. Each group’s contribution to the consensus
aligns with its population size, indicating balanced influence across cognitive subgroups.

duced by less consistent evaluators, while still preserving useful signals from across the population. This
trade-off results in a robust reward model that performs similarly whether trained on just the Top 15 or on
all 50 evaluators.

Our results suggest that PREF-GUIDE Voting makes the agent’s performance more agnostic to the
quality of individual human feedback. It balances signal and noise in a way that enables learning from
a broad population, without being overly sensitive to individual differences among human evaluators.

6 Conclusion

We introduced PREF-GUIDE, a method that converts real-time scalar human feedback into preference-
based data to train reward models for continual policy learning. PREF-GUIDE Individual mitigates
temporal inconsistency by transforming continuous feedback labels into moving-window sampled preference
labels. PREF-GUIDE Voting enhances robustness by aggregating reward models across individuals into
a consensus-driven signal. Across three visual RL environments, PREF-GUIDE Individual outperforms
regression-based baselines such as GUIDE when feedback is of high quality, and PREF-GUIDE Voting
maintains strong performance even under noisy conditions, surpassing both GUIDE and expert-designed
dense rewards. Together, these results highlight the scalability and stability of structured preference learning
from real-time human input. Some future directions can take PREF-GUIDE to study the incorporation of
richer multimodal human feedback and adapting it to broader domains such as robotics and multi-agent
settings.
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A Appendix

A.1 Visualization of Trajectories vs Human Feedback

We provided the visualization of trajectories vs human feedback for all evaluators in Figure [J} For each

evaluator’s plot (evaluator’s id is on the top left corner for each set of plots), the tasks are Bowling, Find
Treasure, and Hide and Seek 1v1 (from left to right).

Find Hide and Seek Find Hide and Seek Find Hide and Seek Find Hide and Seek
Bowling  Treasure v Bowling  Treasure 1 Bowling  Treasure vl Bowling vl
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Figure 9: Visualization of Trajectories vs Human Feedback for All 50 Evaluators. There is no clear alignment
for most evaluators in the three tasks.
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A.2 Pref-GUIDE Individual Algorithm

The algorithm of PREF-GUIDE Individual is summarized in Algorithm

Algorithm 1 PREF-GUIDE Individual

Require: Real-time dataset Dyeal time = { (i, fi)} Y1, window size n, no preference range §
1: Initialize Dpyer < 0, 79
2: fori=1to N —-n+1do

3:  Define window W; = {(7;, f;) ;J;’;_l

4 for each pair (74, f4), (75, fB) € W) such that A < B do
5: if [f4 — fB| < § then

6: Dpret + Dpret U {((74,78),0.5)}

7 else if f4 > fP then

8: Dpref(—Dprer{((TA,TB),l)}

9: else

10: Dpret + Dpret U {((74,78),0)}

11: end if

12:  end for

13: end for

14: Train rg using Dpret
15: Use 1y for continual learning

A.3 Pref-GUIDE Voting Algorithm

The algorithm of PREF-GUIDE Voting is summarized in Algorithm

Algorithm 2 PREF-GUIDE Voting
Require: Real-time dataset Drcaltime = {(7i, fi)},, window size n, no preference range d, evaluator-
specific PREF-GUIDE Individual reward models {réj) 35:1
1: Initialize Dprefvoting < 0
2: fori=1to N —n+1do
3: Define window W; = {(Tj, fj)}i+TL~_1

m=1t

4. for each pair (74, f4), (rB, fB) € W, such that A < B do
5: Initialize vote count ¢ «+ 0

6: for j=1to S do

7 if |7‘((,J)(TA) — Téj)(TB” < § then
8: c<+c+05 '

9: else if Téj)(TA) > Té])(TB) then
10: c+—c+1

11: else

12: c+—c+0

13: end if

14: end for

Dpref—voting U {((TA7 TB)? %)}
15:  end for
16: end for
17: Train final voting-based reward model Ry using Dpretvoting
18: Use Ry for continual learning
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