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ABSTRACT

Understanding molecular structure and related knowledge is crucial for scientific
research. Recent studies integrate molecular graphs with their textual descrip-
tions to enhance molecular representation learning. However, they focus on the
whole molecular graph and neglect frequently occurring subgraphs, known as
motifs,which are essential for determining molecular properties. Without such fine-
grained knowledge, these models struggle to generalize to unseen molecules and
tasks that require motif-level insights. To bridge this gap, we propose FineMolTex,
a novel Fine-grained Molecular graph-Text pre-training framework to jointly learn
coarse-grained molecule-level knowledge and fine-grained motif-level knowledge.
Specifically, FineMolTex consists of two pre-training tasks: a contrastive alignment
task for coarse-grained matching and a masked multi-modal modeling task for
fine-grained matching. In particular, the latter predicts the labels of masked motifs
and words, leveraging insights from each other, thereby enabling FineMolTex to
understand the fine-grained matching between motifs and words. Finally, we con-
duct extensive experiments across three downstream tasks, achieving up to 230%
improvement in the text-based molecule editing task. Additionally, our case studies
reveal that FineMolTex successfully captures fine-grained knowledge, potentially
offering valuable insights for drug discovery and catalyst design.

1 INTRODUCTION

Comprehending molecular structure and related knowledge is pivotal in scientific investigations
spanning diverse fields, including chemistry, drug discovery, and materials science (Gilmer et al.,
2017). Recent advancements in artificial intelligence and machine learning have yielded promising
outcomes for molecule-based tasks such as retrosynthesis (Yan et al., 2020) and drug discovery
(Gilmer et al., 2017). The majority of these studies (Krenn et al., 2020; Duvenaud et al., 2015; Liu
et al., 2019a; Toshev et al., 2023; Atz et al., 2021) concentrate solely on the molecular structure, such
as SMILES strings, molecular graphs, and geometric structures. They learn molecular representations
under supervised signals such as toxicity level and drug activity. However, this supervised learning
requires extensive and costly labeling of pre-defined categories, limiting the application of previous
methods to unseen categories and tasks.

Fortunately, compared to task-specific labeled data, textual descriptions of molecules are fairly
abundant. These descriptions can be found in chemical database annotations, research papers in
chemistry and biology, and drug instruction sheets (Liu et al., 2023a), providing general information
on molecular usage, efficacy, chemical properties, and even detailed insights into specific functional
groups and chemical moieties (Kim et al., 2021). Hence, several studies explore molecular structures
along with their corresponding descriptions. MoleculeSTM (Liu et al., 2023a) and MoMu (Su et al.,
2022) align the whole molecular graphs with their textual descriptions employing a contrastive
learning approach as shown in Figure 1(a). MolCA (Liu et al., 2023b) further utilizes a cross-modal
projector to map the graph embedding space to the input space of the language model. In this way,
these studies reduce the reliance on task-specific labels.

However, these approaches primarily focus on the overall structure of the molecule level, failing to
capture fine-grained knowledge of the sub-molecule level, such as functional groups. A natural tool to
model sub-molecular structures is the motif (Zhang et al., 2021), which refers to frequently recurring,
significant subgraphs within molecular graphs. Motifs often play a key role in determining the
properties of the whole molecular graph (Zhang et al., 2021), and motif-level knowledge is frequently
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This molecule is aromatic and 
contains a carboxyl group.

(a) Molecule-level learning (b) Motif-level learning

This molecule is aromatic and 
contains a carboxyl group.

This molecule is 
aromatic and 
contains a 
carboxyl group.

carboxylic
<MASK>

aromatic... ...

... ...

carboxylic

<MASK>

Coarse-grained matching Fine-grained matchingContrastive alignment Masked multimodal modeling

This molecule is an alkyl-
benzene carrying an ethyl 
substituent.

This molecule is 
chloride

Graph-text retrieval

Text-based molecule editing
(c) Downstream tasks

unseen

Figure 1: Comparison of molecule- and motif-level learning, and illustration of downstream tasks.

depicted in textual descriptions. As shown in Figure 1(b), a benzene ring indicating aromaticity
property is reflected by the mention of “aromatic”, and a carboxyl group is reflected by its name
“carboxyl” in the description, revealing a fine-grained matching between motifs and texts.

Modeling the fine-grained motif-level knowledge is crucial for two reasons. First, motif-level
knowledge is necessary for the generalization to unseen molecules, which are still largely composed
of various motifs that have been seen before. For example, consider the zero-shot graph-text retrieval
task shown in Figure 1(c), which aims to find the molecule most relevant to the given text. Even if
the model has not been trained on the candidate molecules, it has seen many of the motifs within the
unseen molecules such as the benzene and the ethyl group, corresponding to the words “benzene”
and “carboxylic”, respectively. Thus, the model can easily recognize the relevant molecule. Second,
it bridges the gap for downstream tasks that require fine-grained knowledge. For example, in the
molecule editing task illustrated in Figure 1(c), the model aims to modify part of the molecular
structure based on textual instruction. This requires the model to understand the names or properties
of the motifs like “chloride”.

Despite the significance of this fine-grained knowledge, it is challenging to jointly learn both molecule-
and motif-level knowledge, and also non-trivial to capture fine-grained matching without supervised
signals. To overcome these issues, in this work, we propose a novel Fine-grained Molecular graph-
Text framework (FineMolTex) to learn fine-grained motif-level knowledge, as well as coarse-grained
molecule-level knowledge. First, we extract each motif or word token with an individual embedding
for fine-grained knowledge and utilize two global tokens to holistically represent a molecular graph
and its corresponding text description as coarse-grained knowledge. Second, to align coarse- and
fine-grained matching, we propose two pre-training tasks respectively: the contrastive alignment
task based on the global tokens, and the masked multi-modal learning task based on the motif and
word tokens. Specifically, in the masked multi-modal modeling task illustrated in Figure 1(b), we
randomly mask some motif and word tokens, and further incorporate a cross-attention transformer
layer to integrate the embeddings of motifs and words. By predicting the labels of masked motifs and
words based on information from each other, the learning of fine-grained alignment knowledge is
enhanced. In summary, we outline our contributions as follows:

• We are the first to reveal that learning fine-grained motif-level knowledge provides key insight for
bridging molecular graphs and text descriptions, further empowering the ability to generalize to
unseen molecules and tasks.

• We introduce a novel framework named FineMolTex, consisting of two self-supervised pre-training
tasks, to simultaneously learn coarse- and fine-grained knowledge. In particular, the masked
multi-modal learning task enhances the prediction for masked tokens leveraging information from
the other modality, promoting the learning of fine-grained alignment information.

• Experimental results across three downstream tasks underscore the effectiveness of FineMolTex,
with a notable improvement of up to 230% in the text-based molecule editing task. Furthermore,
case studies demonstrate that FineMolTex effectively aligns motifs and words, further facilitating
applications such as drug discovery and catalyst design.

2 RELATED WORK

We provide a brief review on molecular multi-modal learning. Prior works predominantly concentrate
on modeling the chemical structures such as 1D SMILES (Krenn et al., 2020), 2D molecular graphs
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(Duvenaud et al., 2015; Liu et al., 2019a; Zhang et al., 2021), and 3D geometric structures (Toshev
et al., 2023; Atz et al., 2021; Wang et al., 2023). They utilize supervised signals on a predetermined
set, and thus cannot generalize to unseen categories without labeled examples. Recently, KV-PLM
(Zeng et al., 2022) bridges this gap by linking SMILES with biomedical texts through a unified
language modeling framework. Nonetheless, 1D SMILES may omit certain structural details and
fail to identify structural similarities among molecules due to its non-uniqueness. To address these
limitations, MoleculeSTM (Liu et al., 2023a) and MoMu (Su et al., 2022) employ a contrastive
learning approach to align the molecular graph with its corresponding text, thus performing well on
unseen molecules and texts. However, these models are less effective on molecule-to-text generation
tasks because language models are not yet well-versed in interpreting graphs as generative conditions.
Therefore, MolCA (Liu et al., 2023b) introduces a cross-modal projector to align the embedding
space of the molecular graph with the language model’s input space, enabling the comprehension of
2D graphs as generative conditions. This approach has also been extended to 3D graph structures,
where 3D-MoLM (Li et al., 2024) uses a cross-modal projector to synchronize the embedding space
of the 3D geometric structure with that of the language model. Additionally, various efforts have been
devoted to tackling specific molecular tasks based on textual data, including zero-shot instruction
molecular learning (Zhao et al., 2023), molecular reaction prediction (Shi et al., 2023), and molecular
relational modeling (Fang et al., 2024).

More related works on graph-based molecular learning, as well as more general multi-modal learning,
can be found in Appendix A.

3 THE PROPOSED APPROACH

We propose FineMolTex, a novel fine-grained molecular graph-text framework, learning both
molecule- and motif-level knowledge. The model architecture is outlined in Figure 2. This section
first introduces the key components in the architecture and then describes the two pre-training tasks.

3.1 KEY COMPONENTS OF FINEMOLTEX

To capture coarse- and fine-grained knowledge, we propose FineMolTex, consisting of five key
components: 1) the tokenization component to decompose molecular graphs and texts into motif and
word tokens; 2) a graph encoder to capture the structure of molecules and motifs; 3) a text encoder
to extract the knowledge from texts and words, 4) a cross-attention layer to integrate information
from different modalities; 5) a Transformer layer to generate embeddings for each token based on its
contextual tokens from the same modality.

Tokenization. As shown in Figure 2, for fine-grained modeling, we fragment the molecular graphs
and texts into motif tokens and word tokens. We employ the BRICS (Degen et al., 2008) algorithm
to transform the molecular graph into a motif tree, and then generate a motif sequence following
a breadth-first search order. Then we utilize the post-processing procedure (Zhang et al., 2021)
to consolidate the motif vocabulary. We break the textual description into word tokens using the
word tokenizer of SciBERT (Beltagy et al., 2019). For coarse-grained modeling, the global tokens
of molecule and text, <MOL> and <CLS>, are inserted at the beginning of the motif and word
sequences, respectively, resulting in the sequences m0,m1, . . . ,mJ and t0, t1, . . . , tD, where J and
D are the lengths of the sequences.

Graph Encoder. Let G = (V, E ,X) represent a molecular graph with N atoms, where V =
{v1, v2, . . . , vN} is the set of atoms, E ⊆ V × V denotes the bonds, and X = [x1,x2, . . . ,xN] ∈
RN×ζ is the atom feature matrix. Here, xi is the feature vector of atom vi, and ζ is the dimension of
atom features. We utilize GraphMVP (Liu et al., 2019b), a pre-trained Graph Isomorphism Network
(GIN), to encode each motif token. GraphMVP employs multi-view pre-training to connect 2D
topologies and 3D geometries, leveraging the GEOM dataset (Axelrod & Gómez-Bombarelli, 2022),
which contains 250K molecular conformations. Denoting the GraphMVP encoder as fGraphMVP, we
encode each atom v into an embedding as follows:

gv = fGraphMVP(xv,xu), u ∈ N (v), (1)

where N (v) denotes the set of neighboring atoms of v. Then we pool the atom embeddings into a
motif-level embedding, gG , as follows:
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Figure 2: Architecture of FineMolTex. The input is a graph-text pair with both a molecular structure
and a corresponding description. The components in the same color share the same weights.

gG = READOUT({gv|v ∈ G}), for G ∈ {m1,m2, . . . ,mJ}, (2)

where READOUT(·) is permutation invariant, implemented as the average function in our model.

To preserve the intrinsic connectivity of the motifs in the original molecule, we generate position
embeddings based on the breadth-first search order and incorporate them into the motif embeddings
gm0 ,gm1 , . . . ,gmJ

, resulting in updated embeddings g′
m0

,g′
m1

, . . . ,g′
mJ

.

Text Encoder. We use SciBERT (Beltagy et al., 2019), which has been pre-trained on texts from the
chemical and biological domains, as our text encoder, denoted as fbert. It can encode a text sequence
as:

bt0 ,bt1 , . . . ,btD = fbert(t0, t1, . . . , tD). (3)

Subsequently, we add the position embeddings to the token embeddings following previous work
(Beltagy et al., 2019), yielding b′

t0 ,b
′
t1 , . . . ,b

′
tD .

Transformer Layer. To capture the contextual information for each token, we use “encoder-style”
Transformer layers (Vaswani et al., 2017), which consist of a multi-head self-attention layer and a fully
connected feed-forward network. This enables the tokens to gather information from other tokens in
the same modality. We utilize ftrmT

and ftrmM
for the text and molecule modality, respectively, as

follows.

zt0 , zt1 , . . . , ztD = ftrmT
(b′

t0 ,b
′
t1 , . . . ,b

′
tD), (4)

zm0 , zm1 , . . . , zmJ
= ftrmM

(g′
m0

,g′
m1

, . . . ,g′
mJ

). (5)

Cross-attention Layer. We integrate information from different modalities via cross-attention layers
fcrsM and fcrsT for molecular graph and text, respectively. Consider the cross-attention layer fcrsM for
molecular graph: the queries are from the same modality, Qm = ZmWQ

m , while the keys and values
are from the text modality, Kt = ZtW

K
t and Vt = ZtW

V
t . Here WQ

m , WK
t , WV

t are learnable
weights, Zm = [zm0 , zm1 , . . . , zmJ

], and Zt = [zt0 , zt1 , . . . , ztK ]. Subsequently, the output of
scaled dot-product attention is computed as:

Attention(Qm,Kt, Vt) = softmax
(
QmKT

t√
dk

)
Vt, (6)

where dk is the dimension of queries and keys. The cross-attention layer for text is designed similarly.
Hence, the encoding of each token accounts for tokens from the other modality, enabling the learning
of fine-grained alignment at the motif level. The outputs of the cross-attention layer are:

ht0 ,ht1 , . . . ,htD = fcrsT (zt0 , zt1 , . . . , ztD), (7)
hm0 ,hm1 , . . . ,hmJ

= fcrsM (zm0 , zm1 , . . . , zmJ
). (8)
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3.2 PRE-TRAINING TASKS

We propose two pre-training tasks, the contrastive alignment task for coarse-grained alignment, and
the masked multi-modal modeling task for fine-grained alignment.

Contrastive Alignment. For coarse-grained alignment at the molecule level, we align the graph-text
pairs from the same molecules and contrast the pairs from different molecules, which can be achieved
by optimizing the following loss:

Lcon =− 1

2
Em0,t0

[
log

exp(cos(zm0 , zt0)/τ)

exp(cos(zm0 , zt0)/τ) +
∑

t′0
exp(cos(zm0 , zt′0)/τ)

+ log
exp(cos(zt0 , zm0)/τ)

exp(cos(zt0 , zm0)/τ) +
∑

m′
0
exp(cos(zt0 , zm′

0
)/τ)

]
, (9)

where zm0 , zm′
0
, zt0 , and zt′0 denote the output embeddings from the Transformer layer, t′0 and

m′
0 are the negative instances sampled from the same batch of graph-text pairs, and cos(·, ·)/τ

is the cosine similarity scaled by the temperature hyperparameter τ . In this way, we capture the
molecule-level knowledge, aligning the embedding space of molecular graphs and texts holistically.

Masked Multi-modal Modeling. For fine-grained alignment at the motif level, we mask some of the
tokens and predict their labels. Based on the fragmented motifs of all molecules in the pre-training
dataset, we construct a motif dictionary that includes motifs along with their labels and frequency.
Then we randomly mask approximately 20% of the motif tokens that have neither too high nor too low
a frequency in the motif dictionary, as well as 15% of the word tokens. The token embeddings of the
motifs and words are updated utilizing ℓtrmM

and ℓtrmT
transformer layers, respectively. Subsequently,

information from the two modalities is integrated via our cross-attention layer. This entire process is
iterated for ℓ times.

Based on the output embeddings of fine-grained tokens from the cross-attention layer ht1 , . . . ,htD
and hm0 ,hm1 , . . . ,hmJ

, we utilize two classifiers ρm and ρt to predict the labels of the masked
motifs and words: ŷmi = ρm(hmi

), ŷtj = ρt(htj), where ŷmi is the predicted label of motif mi,
and ŷtj is the predicted label of word tj . Given the ground truth labels ymi

and ytj , the model is
trained by reconstructing the masked tokens as:

Lpre = β
∑
i

CE(ŷmi , ymi) + α
∑
j

CE(ŷtj , ytj ), (10)

where α, β are hyperparameters, and CE(·, ·) is the cross-entropy loss. The key to achieving fine-
grained alignment lies in the cross-attention layer, which enables the model to predict the labels
of masked tokens based on tokens from the other modality. For instance, as illustrated in Figure 2,
predicting the label of SO−

3 solely based on the unmasked motif tokens is challenging. However, by
leveraging the embeddings of word tokens, particularly “propanesulfonic” which includes the SO−

3
group, we can gain relevant information about the masked token. Consequently, the model implicitly
learns fine-grained alignment knowledge, thereby augmenting its motif-level knowledge.

Overall Loss. FinMolTex is optimized by the overall loss L = Lcon + Lpre. Thus, FineMolTex is
able to jointly learn the molecule- and motif-level knowledge.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of FineMolTex.
Before evaluating, we first conduct the two pre-training tasks on the PubChemSTM dataset (Liu et al.,
2023a), which includes 281K graph-text pairs from PubChem (Kim et al., 2021). Each molecular
graph is paired with a textual description that elaborates on its chemical and physical properties or
highlights its high-level bioactivities. Details of the pre-training data and process can be found in
Appendix C.1.1 and C.4.

The goal of our experiments is to answer the following research questions (RQs).

RQ1. Can FineMolTex better generalize to unseen molecules?
RQ2. Can FineMolTex bridge the gap to tasks centered on motif-level knowledge?

5
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Table 1: Accuracy (%±σ) of graph-text retrieval task on DrugBank-Pharmacodynamics.

Given Molecular Graph Given Text
T 4 10 20 4 10 20

KV-PLM 68.38±0.03 47.59±0.03 36.54±0.03 67.68±0.03 48.00±0.02 34.66±0.02
MolCA 83.75±0.54 74.25±0.26 66.14±0.21 81.27±0.33 69.46±0.17 62.13±0.16

MoMu-S 70.51 ±0.04 55.20±0.15 43.78±0.10 70.71±0.22 54.70±0.31 44.25±0.43
MoMu-K 69.40 ±0.11 53.14±0.26 42.32±0.28 68.71±0.03 53.29±0.05 43.83±0.12

MoleculeSTM 92.14±0.02 86.27±0.02 81.08±0.05 91.44±0.02 86.76±0.03 81.68±0.03
FineMolTex 95.86±0.34 91.95±0.06 85.80±0.05 95.80±0.06 92.18±0.12 85.01±0.32

Table 2: Accuracy (%±σ) of graph-text retrieval task on molecule-ATC.

Given Molecular Graph Given Text
T 4 10 20 4 10 20

KV-PLM 60.94±0.00 42.35±0.00 30.32±0.00 60.67 ±0.00 40.19±0.00 29.02±0.00
MolCA 67.34±0.05 53.51±0.12 44.10±0.03 65.18±0.34 51.01±0.26 41.30±0.51

MoMu-S 64.72±0.04 48.72±0.03 37.64±0.02 64.98±0.13 49.58±0.05 39.04±0.16
MoMu-K 61.79±0.14 45.69±0.22 34.55±0.09 63.32±0.15 47.55±0.06 37.68±0.18

MoleculeSTM 69.33±0.03 54.83±0.04 44.13±0.05 71.81±0.05 58.34±0.07 47.58±0.05
FineMolTex 75.43±0.15 60.66±0.08 49.45±0.24 75.22±0.12 60.29±0.04 48.42±0.15

RQ3. Can FineMolTex perform better on single-modality tasks?
RQ4. Has FineMolTex learned fine-grained knowledge?
RQ5. Are the token masking and cross-attention layers beneficial?

4.1 GENERALIZATION TO UNSEEN MOLECULES (RQ1)

To answer RQ1, we conduct a zero-shot graph-text retrieval task to examine the generalizability
of FineMolTex on unseen molecules and texts. Given a molecular graph and T candidate textual
descriptions, the goal is to identify the textual description that best aligns with the molecular graph.
Conversely, given a textual description and T candidate molecular graphs, identify the molecular
graph that best matches the text. This task can be addressed by calculating the similarity of the
molecular graphs and texts in the joint embedding space, thus allowing zero-shot inference.

Datasets and Baselines. We utilize DrugBank-Pharmacodynamics, molecule-ATC, and DrugBank-
Description (Liu et al., 2023a) extracted from the DrugBank database (Wishart et al., 2018) for
evaluation. These datasets include molecular graphs and their chemical descriptions. Details of the
datasets can be found in Appendix C.1.2. We compare with five multimodal molecular models:
KV-PLM (Zeng et al., 2022), MolCA (Liu et al., 2023b), MoMu-S (Su et al., 2022), MoMu-K (Su
et al., 2022), and MoleculeSTM (Liu et al., 2023a). Specifically, KV-PLM uses SMILES to represent
the structure of the molecule, while others use graph structures.

Results. We report the results on the first two datasets in Tables 1 and 2, and defer those on
DrugBank-Description to Appendix D.1 due to space limit. We make the following observations. 1)
Across different values of T , FineMolTex consistently outperforms the baselines that neglect motif-
level knowledge. The superior performance demonstrates that fine-grained motif-level knowledge
facilitates generalization to unseen molecules, which likely contain seen motifs. 2) FineMolTex
maintains strong performance in both directions (given graph, and given text). The symmetry further
indicates that the embedding spaces of both modalities are well-aligned and similarly well-learned.
3) We observe that KV-PLM, which utilizes SMILES to capture molecular structures, is less effective
than other models employing graphs, consistent with previous findings (Liu et al., 2023a) that 2D
graph structure is more expressive than 1D SMILES.

4.2 APPLICATION TO MOTIF-CENTERED TASKS (RQ2)

To answer RQ2, we employ a zero-shot text-based molecule editing task, which is highly relevant
to practical applications including catalyst design and targeted drug discovery. Specifically, we utilize
FineMolTex to collaborate with a molecule generation module, following the design in (Liu et al.,

6
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Figure 3: Hit ratios of 12 text-based molecule editing tasks.

Prompt: This molecule contains hydroxyl groups. Prompt: This molecule is chloride.

Prompt: This molecule is insoluble in water. (LogP   )

LogP: 1.6375         LogP: 1.6375      LogP: 2.2774

Prompt: This molecule is soluble in water. (LogP   )
  Input Mol           MoleculeSTM           FineMolTex

LogP:1.4823        LogP: 2.0873           LogP:0.9824

  Input Mol           MoleculeSTM           FineMolTex   Input Mol           MoleculeSTM           FineMolTex

  Input Mol           MoleculeSTM           FineMolTex

Figure 4: Visual analysis of the output molecules of MoleculeSTM and Motif-MolTex on 4 text-based
molecule editing tasks. Differences between the input and output molecule of FineMolTex are
highlighted in red and green circles. Lower LogP indicates higher water solubility.

2023a), to modify a specified molecule according to a text prompt. Hence, motif-level knowledge
is essential for this task, as the model needs to replace certain motifs with others that are related
to specific properties and names as indicated in the text prompt. We defer the technical details to
Appendix B. We randomly sample 200 molecules from ZINC (Irwin et al., 2012), and select 12 text
prompts, including 8 prompts pertaining to physical properties (Liu et al., 2023a), and 4 based on the
names of the motifs. We utilize MoleculeSTM, MoMu, and MolCA as baselines.

Evaluation. We employ different methods to assess whether the generated molecules satisfy the two
types of prompts. For the 8 prompts on physical properties, we employ three measures: LogP, QED,
and tPSA, which measures solubility (Leo et al., 1971), drug-likeness (Bickerton et al., 2012), and
permeability (Ertl et al., 2000), respectively. We consider the editing to be successful if the difference
in measurements between the input and output molecules exceeds a specified threshold ∆, which we
have set to 0 following one of the settings in literature (Liu et al., 2023a). For the 4 prompts based on
motif names, we use RDKit (Landrum, 2024) to verify the presence of the indicated motifs. For all
12 prompts, we report the hit ratio: the proportion of generated molecules that meet our expectations.

Results. As shown in Figure 3, FineMolTex shows superior performance on these prompts, especially
on the 4 prompts with motif names. Notably, we achieve a relative gain of up to 230% over the best-
performing baseline, demonstrating that FineMolTex has an advanced understanding of motif-level
knowledge. We also visualize the output molecules of MoleculeSTM and FineMolTex in Figure 4.
It can be observed that while MoleculeSTM produces incorrect molecules, FineMolTex accurately
generates the intended molecules. Specifically, when prompted to generate molecules that are soluble
in water, FineMolTex successfully creates molecules with lower LogP than the input molecule,
as lower LogP indicates higher water solubility. Similarly, when prompted to generate molecules
with hydroxyl groups or chlorine atoms, FineMolTex correctly does so. These results confirm that
FineMolTex possesses a deeper understanding of motif-level knowledge, thereby enhancing the
generative capabilities. More visual results can be seen in Appendix D.2.
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Table 3: Downstream results (%±σ) on eight binary classification datasets from MoleculeNet.

Model BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg

AttrMask 67.8±2.6 75.0±0.2 63.6±0.8 58.1±1.2 75.4±8.8 73.8±1.2 75.4±0.5 80.3±0.0 71.2
ContextPred 63.1±3.5 74.3±0.2 61.6±0.5 60.3±0.8 80.3±3.8 71.4±1.4 70.7±3.6 78.8±0.4 70.1
InfoGraph 64.8±0.6 76.2±0.4 62.7±0.7 59.1±0.6 76.5±7.8 73.0±3.6 70.2±2.4 77.6±2.0 70.0
MolCLR 67.8±0.5 67.8±0.5 64.6±0.1 58.7±0.1 84.2±1.5 72.8±0.7 75.9±0.2 71.1±1.2 71.3

GraphMVP 68.1±1.4 77.1±0.4 65.1±0.3 60.6±0.1 84.7±3.1 74.4±2.0 77.7±2.5 80.5±2.7 73.5
GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.7 69.8±2.7 78.5±1.2 75.4±1.4 70.8
KV-PLM 70.5±0.5 72.1±1.0 55.0±1.7 59.8±0.6 89.2±2.7 54.6±4.8 65.4±1.7 78.5±2.7 68.2
MoMu-S 70.5±2.0 75.6±0.3 75.6±0.3 60.5±0.9 79.9±4.1 70.5±1.4 75.9±0.8 76.7±2.1 71.6
MoMu-K 70.1±1.4 75.6±0.5 63.0±0.4 60.4±0.8 77.4±4.1 71.1±2.7 76.2±0.9 77.1±1.4 71.4
MolCA 70.0±0.5 77.2±0.5 64.5±0.8 63.0±1.7 89.5±0.7 72.1±1.3 77.2±0.6 79.8±0.5 74.2

MoleculeSTM 70.0±0.5 76.9±0.5 65.1±0.4 61.0±1.05 92.5±1.1 73.4±2.9 77.0±1.8 80.8±1.3 74.6
FineMolTex 71.0±0.4 77.1±0.5 66.0±1.2 65.0±2.3 92.7±0.8 76.2±1.2 78.9±0.6 84.6±1.4 76.4

4.3 APPLICATION TO SINGLE-MODALITY TASK (RQ3)

While FineMolTex can simultaneously utilize pre-trained knowledge from both graphs and texts, we
also verify its effectiveness on single-modality tasks, namely, molecular property prediction tasks.
We use MoleculeNet (Wu et al., 2018) as the dataset, which only provides molecular graphs as input
without texts. More specifically, there are eight binary classification tasks, and we report ROC-AUC
for evaluation. More detailed dataset descriptions are provided in Appendix C.1.3.

Baselines. We compare FineMolTex against nine baselines, including 1) five pre-trained GNN
models: AttrMasking (Hu et al., 2019), ContextPred (Hu et al., 2019), InfoGraph (Sun et al., 2019),
MolCLR (Wang et al., 2021b), and GraphMVP (Liu et al., 2019b); 2) three graph-text multimodal
models: MoMu-S (Su et al., 2022), MoMu-K (Su et al., 2022), and MoleculeSTM (Liu et al., 2023a),
and 3) one SMILES-text multimodal model: KV-PLM (Zeng et al., 2022).

Results. As shown in Table 3, FineMolTex consistently outperforms all baselines, achieving relative
gains of 3.2%, 2.4%, and 4.7% on SIDER, MUV, and BACE, respectively, compared to the best
baseline. The promising performance of FineMolTex indicates that it implicitly utilizes pre-trained
knowledge from the text modality even when the input consists solely of graphs. Additionally,
KV-PLM exhibits a notable performance gap from other models, due to its use of 1D SMILES strings
for molecular structure and a smaller pre-training dataset.

4.4 ANALYSIS OF LEARNED FINE-GRAINED KNOWLEDGE (RQ4)

We evaluate whether FineMolTex captures fine-grained alignment information in the joint embedding
space, and assess if it can predict the labels of masked motifs based on fine-grained knowledge.

Visualization of Motif and Word Embeddings. To evaluate whether FineMolTex captures fine-
grained alignment knowledge, we select motif and word tokens from 1,500 graph-text pairs in the
PubChemSTM dataset, excluding meaningless words such as “this” and “a”. In total, we visualize
3,469 motif tokens and 6,914 text tokens with t-SNE (Maaten & Hinton, 2008) in Figure 5a, where
triangles denote text tokens, and circles denote motif tokens, with different colors indicating various
labels. To examine the details of the tokens, we zoom into several regions in the figure, retaining
only the colors and legends of the tokens we are interested in. For brevity, we utilize SMILES to
represent the motif structures. We observe that text and motif tokens corresponding to each other are
also close in the embedding space. For instance, in the pink frame, the word “ammonium” is close to
the motif tokens “[NH2+]=O”, “C=[NH2+]”, and “[NH3+]O”, which are related to “ammonium.”
In the blue frame, the word “poison” is adjacent to the motifs “[AsH3]” and “O[AsH2]”, which are
poisonous. In the orange frame, the word “sulf” is close to the motif tokens “OS”, “CCSSCC”, and
“CC1=CSC(C)=N1”, all of which represent sulfides. These results demonstrate that FineMolTex
learns the connections between motifs and their chemical names and properties, thereby significantly
enhancing its expressiveness.

Predictions Based on Fine-grained knowledge. To further verify that FineMolTex can utilize the
learned fine-grained alignment knowledge for predictions, we utilize Local Interpretable Model-
Agnostic Explanation (LIME) (Ribeiro et al., 2016), a well-established tool that can explain the
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(a) Visualization of motif tokens and word
tokens using t-SNE. Triangles denote word
tokens; circles denote motif tokens.

triazole

aromatic

Molecules Interpretive 
weights

Texts with highlighted words 
& fine-grained knowledge

organonitrogen

aniline

(1)

(2)

(3)

(b) Explaination of the prediction of certain masked motifs based
on text tokens utilizing LIME.

Figure 5: Case studies validating motif-level knowledge learned by our model.

Table 4: Ablation study (%±σ) on molecule-ATC and DrugBank-Pharmacodynamics.

molecule-ATC DrugBank-Pharmacodynamics
Given Molecular Graph Given Text Given Molecular Graph Given Text

w/o mmm 70.33±0.28 70.86±0.16 92.56±0.10 92.12±0.25
motif mask only 72.85±0.46 71.15±0.24 93.45±0.44 92.98±0.18
word mask only 74.27±0.07 72.11±0.13 94.86±0.32 93.88±0.15

w/o cross-attention 71.44±0.32 70.92±0.18 92.66±0.08 92.85 ±0.24
FineMolTex 75.43±0.15 75.22±0.12 95.86±0.34 95.80±0.06

predictions of certain masked motifs based on text tokens. By perturbing the input text, LIME
observes how the model’s predictions change with variations in the input text. Then, LIME fits these
perturbed texts and the prediction results to an interpretable model such as a linear model. This
approach allows us to quantify the significance of each text token in predicting the motifs, thereby
revealing the fine-grained knowledge learned by FineMolTex. The results are shown in Figure 5b
(with more cases in Appendix D.4), where text tokens with higher interpretive weights are more
crucial for predictions, and thus more relevant to the masked motifs. Specifically, the word with the
highest interpretive weights in (1) is “triazoles”, which directly is to the name of the masked motif. In
(2), the word “aniline” refers to another motif that is very similar to the masked motif, and “aromatic”
is the property related to the masked motif. In (3), the masked motif is a kind of “organonitrogen”.
These findings demonstrate that FineMolTex has effectively acquired motif-level knowledge.

4.5 ABLATION STUDY FOR MASKING AND CROSS-ATTENTION LAYERS (RQ5)

To thoroughly explore the impact of the key components in FineMolTex, we compare to several
variants, including w/o mmm, which drops the masked multimodal modeling task altogether; motif
mask only, which only mask motif tokens; word mask only, which only mask word tokens; w/o
cross-attention, which excludes cross-attention layers. We evaluate these variants on the graph-text
retrieval task used in RQ1, on two datasets with T = 4. As reported in Table 4, FineMolTex
consistently surpasses the other variants. Specifically, without the masked multimodal modeling task,
“w/o mmm” fails to capture fine-grained knowledge at all, resulting in the poorest performance. “motif
mask only” and “word mask only” outperform “w/o mmm,” because they still enable some level
of fine-grained knowledge learning by either predicting motifs based on word tokens or predicting
word tokens based on motif tokens. However, they are less effective than FineMolTex, which masks
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both words and motifs for mutual alignment. Lastly, without the cross-attention layers, “w/o cross-
attention” cannot integrate token embeddings from different modalities, thereby hampering its ability
to effectively learn fine-grained knowledge. These observations demonstrate the effectiveness of each
component.

Additional experimental results, including further ablation studies and a comparison of pre-training
and inference times, are provided in Appendix D.

5 CONCLUSIONS

In this paper, we reveal that fine-grained motif-level knowledge is crucial for molecular representation
learning. We propose FineMolTex to jointly learn both coarse- and fine-grained knowledge through
a contrastive alignment task and a masked multimodal learning task, respectively. By masking the
fine-grained tokens and predicting their labels using tokens from the other modality, we can effectively
learn fine-grained alignment between motifs and words. Experimental results on three downstream
tasks and two case studies demonstrate the effectiveness of FineMolTex.
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