TOWARDS FINE-GRAINED MOLECULAR GRAPH-TEXT PRE-TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding molecular structure and related knowledge is crucial for scientific research. Recent studies integrate molecular graphs with their textual descriptions to enhance molecular representation learning. However, they focus on the whole molecular graph and neglect frequently occurring subgraphs, known as motifs, which are essential for determining molecular properties. Without such finegrained knowledge, these models struggle to generalize to unseen molecules and tasks that require motif-level insights. To bridge this gap, we propose FineMolTex, a novel Fine-grained Molecular graph-Text pre-training framework to jointly learn coarse-grained molecule-level knowledge and fine-grained motif-level knowledge. Specifically, FineMolTex consists of two pre-training tasks: a contrastive alignment task for coarse-grained matching and a masked multi-modal modeling task for fine-grained matching. In particular, the latter predicts the labels of masked motifs and words, leveraging insights from each other, thereby enabling FineMolTex to understand the fine-grained matching between motifs and words. Finally, we conduct extensive experiments across three downstream tasks, achieving up to 230% improvement in the text-based molecule editing task. Additionally, our case studies reveal that FineMolTex successfully captures fine-grained knowledge, potentially offering valuable insights for drug discovery and catalyst design.

027 028 029

025

026

003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Comprehending molecular structure and related knowledge is pivotal in scientific investigations spanning diverse fields, including chemistry, drug discovery, and materials science (Gilmer et al., 2017). Recent advancements in artificial intelligence and machine learning have yielded promising outcomes for molecule-based tasks such as retrosynthesis (Yan et al., 2020) and drug discovery (Gilmer et al., 2017). The majority of these studies (Krenn et al., 2020; Duvenaud et al., 2015; Liu et al., 2019a; Toshev et al., 2023; Atz et al., 2021) concentrate solely on the molecular structure, such as SMILES strings, molecular graphs, and geometric structures. They learn molecular representations under supervised signals such as toxicity level and drug activity. However, this supervised learning requires extensive and costly labeling of pre-defined categories, limiting the application of previous methods to unseen categories and tasks.

040 Fortunately, compared to task-specific labeled data, textual descriptions of molecules are fairly 041 abundant. These descriptions can be found in chemical database annotations, research papers in 042 chemistry and biology, and drug instruction sheets (Liu et al., 2023a), providing general information 043 on molecular usage, efficacy, chemical properties, and even detailed insights into specific functional 044 groups and chemical moieties (Kim et al., 2021). Hence, several studies explore molecular structures along with their corresponding descriptions. MoleculeSTM (Liu et al., 2023a) and MoMu (Su et al., 2022) align the whole molecular graphs with their textual descriptions employing a contrastive 046 learning approach as shown in Figure 1(a). MolCA (Liu et al., 2023b) further utilizes a cross-modal 047 projector to map the graph embedding space to the input space of the language model. In this way, 048 these studies reduce the reliance on task-specific labels.

However, these approaches primarily focus on the overall structure of the molecule level, failing to
capture fine-grained knowledge of the sub-molecule level, such as functional groups. A natural tool to
model sub-molecular structures is the motif (Zhang et al., 2021), which refers to frequently recurring,
significant subgraphs within molecular graphs. Motifs often play a key role in determining the
properties of the whole molecular graph (Zhang et al., 2021), and motif-level knowledge is frequently

055

063

064 065

066

067

068

Figure 1: Comparison of molecule- and motif-level learning, and illustration of downstream tasks.

depicted in textual descriptions. As shown in Figure 1(b), a benzene ring indicating aromaticity property is reflected by the mention of "aromatic", and a carboxyl group is reflected by its name "carboxyl" in the description, revealing a fine-grained matching between motifs and texts.

069 Modeling the fine-grained motif-level knowledge is crucial for two reasons. First, motif-level knowledge is necessary for the generalization to unseen molecules, which are still largely composed 071 of various motifs that have been seen before. For example, consider the zero-shot graph-text retrieval 072 task shown in Figure 1(c), which aims to find the molecule most relevant to the given text. Even if the model has not been trained on the candidate molecules, it has seen many of the motifs within the 073 unseen molecules such as the benzene and the ethyl group, corresponding to the words "benzene" 074 and "carboxylic", respectively. Thus, the model can easily recognize the relevant molecule. Second, 075 it bridges the gap for downstream tasks that require fine-grained knowledge. For example, in the 076 molecule editing task illustrated in Figure 1(c), the model aims to modify part of the molecular 077 structure based on textual instruction. This requires the model to understand the names or properties of the motifs like "chloride". 079

Despite the significance of this fine-grained knowledge, it is challenging to jointly learn both moleculeand motif-level knowledge, and also non-trivial to capture fine-grained matching without supervised 081 signals. To overcome these issues, in this work, we propose a novel **Fine**-grained **Mol**ecular graph-Text framework (FineMolTex) to learn fine-grained motif-level knowledge, as well as coarse-grained 083 molecule-level knowledge. First, we extract each motif or word token with an individual embedding 084 for fine-grained knowledge and utilize two global tokens to holistically represent a molecular graph 085 and its corresponding text description as coarse-grained knowledge. Second, to align coarse- and fine-grained matching, we propose two pre-training tasks respectively: the contrastive alignment 087 task based on the global tokens, and the masked multi-modal learning task based on the motif and 880 word tokens. Specifically, in the masked multi-modal modeling task illustrated in Figure 1(b), we randomly mask some motif and word tokens, and further incorporate a cross-attention transformer 089 layer to integrate the embeddings of motifs and words. By predicting the labels of masked motifs and 090 words based on information from each other, the learning of fine-grained alignment knowledge is 091 enhanced. In summary, we outline our contributions as follows: 092

- We are the first to reveal that learning fine-grained motif-level knowledge provides key insight for 094 bridging molecular graphs and text descriptions, further empowering the ability to generalize to unseen molecules and tasks. 096
 - We introduce a novel framework named FineMolTex, consisting of two self-supervised pre-training tasks, to simultaneously learn coarse- and fine-grained knowledge. In particular, the masked multi-modal learning task enhances the prediction for masked tokens leveraging information from the other modality, promoting the learning of fine-grained alignment information.
- 100 • Experimental results across three downstream tasks underscore the effectiveness of FineMolTex, 101 with a notable improvement of up to 230% in the text-based molecule editing task. Furthermore, 102 case studies demonstrate that FineMolTex effectively aligns motifs and words, further facilitating 103 applications such as drug discovery and catalyst design.
- 104 105

106

098

099

2 **RELATED WORK**

We provide a brief review on molecular multi-modal learning. Prior works predominantly concentrate 107 on modeling the chemical structures such as 1D SMILES (Krenn et al., 2020), 2D molecular graphs 108 (Duvenaud et al., 2015; Liu et al., 2019a; Zhang et al., 2021), and 3D geometric structures (Toshev 109 et al., 2023; Atz et al., 2021; Wang et al., 2023). They utilize supervised signals on a predetermined 110 set, and thus cannot generalize to unseen categories without labeled examples. Recently, KV-PLM (Zeng et al., 2022) bridges this gap by linking SMILES with biomedical texts through a unified 111 112 language modeling framework. Nonetheless, 1D SMILES may omit certain structural details and fail to identify structural similarities among molecules due to its non-uniqueness. To address these 113 limitations, MoleculeSTM (Liu et al., 2023a) and MoMu (Su et al., 2022) employ a contrastive 114 learning approach to align the molecular graph with its corresponding text, thus performing well on 115 unseen molecules and texts. However, these models are less effective on molecule-to-text generation 116 tasks because language models are not yet well-versed in interpreting graphs as generative conditions. 117 Therefore, MolCA (Liu et al., 2023b) introduces a cross-modal projector to align the embedding 118 space of the molecular graph with the language model's input space, enabling the comprehension of 119 2D graphs as generative conditions. This approach has also been extended to 3D graph structures, 120 where 3D-MoLM (Li et al., 2024) uses a cross-modal projector to synchronize the embedding space 121 of the 3D geometric structure with that of the language model. Additionally, various efforts have been 122 devoted to tackling specific molecular tasks based on textual data, including zero-shot instruction 123 molecular learning (Zhao et al., 2023), molecular reaction prediction (Shi et al., 2023), and molecular relational modeling (Fang et al., 2024). 124

More related works on graph-based molecular learning, as well as more general multi-modal learning, can be found in Appendix A.

127 128 129

130

131

132

3 THE PROPOSED APPROACH

We propose FineMolTex, a novel fine-grained molecular graph-text framework, learning both molecule- and motif-level knowledge. The model architecture is outlined in Figure 2. This section first introduces the key components in the architecture and then describes the two pre-training tasks.

133 134 135

3.1 Key Components of FineMolTex

To capture coarse- and fine-grained knowledge, we propose FineMolTex, consisting of five key components: 1) the tokenization component to decompose molecular graphs and texts into motif and word tokens; 2) a graph encoder to capture the structure of molecules and motifs; 3) a text encoder to extract the knowledge from texts and words, 4) a cross-attention layer to integrate information from different modalities; 5) a Transformer layer to generate embeddings for each token based on its contextual tokens from the same modality.

142 Tokenization. As shown in Figure 2, for fine-grained modeling, we fragment the molecular graphs 143 and texts into motif tokens and word tokens. We employ the BRICS (Degen et al., 2008) algorithm 144 to transform the molecular graph into a motif tree, and then generate a motif sequence following 145 a breadth-first search order. Then we utilize the post-processing procedure (Zhang et al., 2021) 146 to consolidate the motif vocabulary. We break the textual description into word tokens using the 147 word tokenizer of SciBERT (Beltagy et al., 2019). For coarse-grained modeling, the global tokens 148 of molecule and text, <MOL> and <CLS>, are inserted at the beginning of the motif and word sequences, respectively, resulting in the sequences m_0, m_1, \ldots, m_J and t_0, t_1, \ldots, t_D , where J and 149 D are the lengths of the sequences. 150

151 **Graph Encoder.** Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ represent a molecular graph with N atoms, where $\mathcal{V} =$ 152 $\{v_1, v_2, \ldots, v_N\}$ is the set of atoms, $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ denotes the bonds, and $\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2}, \ldots, \mathbf{x_N}] \in \mathcal{V}$ 153 $\mathbb{R}^{N \times \zeta}$ is the atom feature matrix. Here, \mathbf{x}_i is the feature vector of atom v_i , and ζ is the dimension of atom features. We utilize GraphMVP (Liu et al., 2019b), a pre-trained Graph Isomorphism Network 154 (GIN), to encode each motif token. GraphMVP employs multi-view pre-training to connect 2D 155 topologies and 3D geometries, leveraging the GEOM dataset (Axelrod & Gómez-Bombarelli, 2022), 156 which contains 250K molecular conformations. Denoting the GraphMVP encoder as f_{GraphMVP} , we 157 encode each atom v into an embedding as follows: 158

- 159
- 160

$$\mathbf{g}_{\mathbf{v}} = f_{\text{GraphMVP}}(\mathbf{x}_{\mathbf{v}}, \mathbf{x}_{\mathbf{u}}), \ u \in \mathcal{N}(v), \tag{1}$$

where $\mathcal{N}(v)$ denotes the set of neighboring atoms of v. Then we pool the atom embeddings into a motif-level embedding, $\mathbf{g}_{\mathcal{G}}$, as follows:

Figure 2: Architecture of FineMolTex. The input is a graph-text pair with both a molecular structure and a corresponding description. The components in the same color share the same weights.

$$\mathbf{g}_{\mathcal{G}} = \mathsf{READOUT}(\{\mathbf{g}_{\mathbf{v}} | v \in \mathcal{G}\}), \quad \text{for} \quad \mathcal{G} \in \{m_1, m_2, \dots, m_J\}, \tag{2}$$

where READOUT(\cdot) is permutation invariant, implemented as the average function in our model.

To preserve the intrinsic connectivity of the motifs in the original molecule, we generate position embeddings based on the breadth-first search order and incorporate them into the motif embeddings $g_{m_0}, g_{m_1}, \dots, g_{m_J}$, resulting in updated embeddings $g'_{m_0}, g'_{m_1}, \dots, g'_{m_J}$.

Text Encoder. We use SciBERT (Beltagy et al., 2019), which has been pre-trained on texts from the chemical and biological domains, as our text encoder, denoted as f_{bert} . It can encode a text sequence as:

$$\mathbf{b}_{\mathbf{t}_0}, \mathbf{b}_{\mathbf{t}_1}, \dots, \mathbf{b}_{\mathbf{t}_D} = f_{\text{bert}}(t_0, t_1, \dots, t_D).$$
(3)

Subsequently, we add the position embeddings to the token embeddings following previous work (Beltagy et al., 2019), yielding $b'_{to}, b'_{t_1}, \dots, b'_{t_D}$.

Transformer Layer. To capture the contextual information for each token, we use "encoder-style" Transformer layers (Vaswani et al., 2017), which consist of a multi-head self-attention layer and a fully connected feed-forward network. This enables the tokens to gather information from other tokens in the same modality. We utilize f_{trm_T} and f_{trm_M} for the text and molecule modality, respectively, as follows.

$$\mathbf{z}_{\mathbf{t}_0}, \mathbf{z}_{\mathbf{t}_1}, \dots, \mathbf{z}_{\mathbf{t}_D} = f_{\operatorname{trm}_T}(\mathbf{b}'_{\mathbf{t}_0}, \mathbf{b}'_{\mathbf{t}_1}, \dots, \mathbf{b}'_{\mathbf{t}_D}),$$
(4)

209 210

215

179

181

183

185

192

$$\mathbf{z}_{\mathbf{m}_0}, \mathbf{z}_{\mathbf{m}_1}, \dots, \mathbf{z}_{\mathbf{m}_J} = f_{\operatorname{trm}_M}(\mathbf{g}'_{\mathbf{m}_0}, \mathbf{g}'_{\mathbf{m}_1}, \dots, \mathbf{g}'_{\mathbf{m}_J}).$$
(5)

Cross-attention Layer. We integrate information from different modalities via cross-attention layers f_{crs_M} and f_{crs_T} for molecular graph and text, respectively. Consider the cross-attention layer f_{crs_M} for molecular graph: the queries are from the same modality, $Q_m = Z_m W_m^Q$, while the keys and values are from the text modality, $K_t = Z_t W_t^K$ and $V_t = Z_t W_t^V$. Here W_m^Q , W_t^K , W_t^V are learnable weights, $Z_m = [\mathbf{z_{m_0}}, \mathbf{z_{m_1}}, \dots, \mathbf{z_{m_J}}]$, and $Z_t = [\mathbf{z_{t_0}}, \mathbf{z_{t_1}}, \dots, \mathbf{z_{t_K}}]$. Subsequently, the output of scaled dot-product attention is computed as:

Attention
$$(Q_m, K_t, V_t) = \operatorname{softmax}\left(\frac{Q_m K_t^T}{\sqrt{d_k}}\right) V_t,$$
 (6)

where d_k is the dimension of queries and keys. The cross-attention layer for text is designed similarly. Hence, the encoding of each token accounts for tokens from the other modality, enabling the learning of fine-grained alignment at the motif level. The outputs of the cross-attention layer are:

$$\mathbf{h}_{\mathbf{t}_0}, \mathbf{h}_{\mathbf{t}_1}, \dots, \mathbf{h}_{\mathbf{t}_D} = f_{\mathrm{crs}_T}(\mathbf{z}_{\mathbf{t}_0}, \mathbf{z}_{\mathbf{t}_1}, \dots, \mathbf{z}_{\mathbf{t}_D}), \tag{7}$$

$$\mathbf{h}_{\mathbf{m}_{0}}, \mathbf{h}_{\mathbf{m}_{1}}, \dots, \mathbf{h}_{\mathbf{m}_{J}} = f_{\operatorname{crs}_{M}}(\mathbf{z}_{\mathbf{m}_{0}}, \mathbf{z}_{\mathbf{m}_{1}}, \dots, \mathbf{z}_{\mathbf{m}_{J}}).$$
(8)

216 3.2 PRE-TRAINING TASKS 217

218 We propose two pre-training tasks, the contrastive alignment task for coarse-grained alignment, and 219 the masked multi-modal modeling task for fine-grained alignment.

Contrastive Alignment. For coarse-grained alignment at the molecule level, we align the graph-text pairs from the same molecules and contrast the pairs from different molecules, which can be achieved by optimizing the following loss:

$$L_{\rm con} = -\frac{1}{2} \mathbb{E}_{m_0, t_0} \left[\log \frac{\exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t_0}})/\tau)}{\exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t_0}})/\tau) + \sum_{t'_0} \exp(\cos(\mathbf{z_{m_0}}, \mathbf{z_{t'_0}})/\tau)} + \log \frac{\exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m_0}})/\tau)}{\exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m_0}})/\tau) + \sum_{m'_0} \exp(\cos(\mathbf{z_{t_0}}, \mathbf{z_{m'_0}})/\tau)} \right],$$
(9)

229 where $\mathbf{z}_{m_0}, \mathbf{z}_{m'_0}, \mathbf{z}_{t_0}$ and $\mathbf{z}_{t'_0}$ denote the output embeddings from the Transformer layer, t'_0 and 230 m'_0 are the negative instances sampled from the same batch of graph-text pairs, and $\cos(\cdot, \cdot)/\tau$ 231 is the cosine similarity scaled by the temperature hyperparameter τ . In this way, we capture the 232 molecule-level knowledge, aligning the embedding space of molecular graphs and texts holistically. 233

Masked Multi-modal Modeling. For fine-grained alignment at the motif level, we mask some of the 234 tokens and predict their labels. Based on the fragmented motifs of all molecules in the pre-training 235 dataset, we construct a motif dictionary that includes motifs along with their labels and frequency. 236 Then we randomly mask approximately 20% of the motif tokens that have neither too high nor too low 237 a frequency in the motif dictionary, as well as 15% of the word tokens. The token embeddings of the 238 motifs and words are updated utilizing ℓ_{trm_M} and ℓ_{trm_T} transformer layers, respectively. Subsequently, 239 information from the two modalities is integrated via our cross-attention layer. This entire process is 240 iterated for ℓ times.

241 Based on the output embeddings of fine-grained tokens from the cross-attention layer h_{t_1}, \ldots, h_{t_D} 242 and $h_{m_0}, h_{m_1}, \dots, h_{m_J}$, we utilize two classifiers ρ_m and ρ_t to predict the labels of the masked 243 motifs and words: $\hat{y}_{m_i} = \rho_m(\mathbf{h}_{\mathbf{m}_i}), \hat{y}_{t_j} = \rho_t(\mathbf{h}_{t_j})$, where \hat{y}_{m_i} is the predicted label of motif m_i , and \hat{y}_{t_j} is the predicted label of word t_j . Given the ground truth labels y_{m_i} and y_{t_j} , the model is 244 245 trained by reconstructing the masked tokens as: 246

247

220

221

222

228

 $L_{\text{pre}} = \beta \sum_{i} \text{CE}(\hat{y}_{m_i}, y_{m_i}) + \alpha \sum_{j} \text{CE}(\hat{y}_{t_j}, y_{t_j}),$ (10)

249 where α , β are hyperparameters, and CE(\cdot, \cdot) is the cross-entropy loss. The key to achieving finegrained alignment lies in the cross-attention layer, which enables the model to predict the labels 250 of masked tokens based on tokens from the other modality. For instance, as illustrated in Figure 2, 251 predicting the label of SO_3^- solely based on the unmasked motif tokens is challenging. However, by leveraging the embeddings of word tokens, particularly "propanesulfonic" which includes the SO_3 253 group, we can gain relevant information about the masked token. Consequently, the model implicitly 254 learns fine-grained alignment knowledge, thereby augmenting its motif-level knowledge. 255

Overall Loss. FinMolTex is optimized by the overall loss $L = L_{con} + L_{pre}$. Thus, FineMolTex is able to jointly learn the molecule- and motif-level knowledge.

4 EXPERIMENTS

259 260

256

257

258

261

In this section, we conduct extensive experiments to demonstrate the effectiveness of FineMoITex. 262 Before evaluating, we first conduct the two pre-training tasks on the PubChemSTM dataset (Liu et al., 2023a), which includes 281K graph-text pairs from PubChem (Kim et al., 2021). Each molecular 264 graph is paired with a textual description that elaborates on its chemical and physical properties or 265 highlights its high-level bioactivities. Details of the pre-training data and process can be found in Appendix C.1.1 and C.4. 266

267 The goal of our experiments is to answer the following research questions (RQs). 268

RQ1. Can FineMolTex better generalize to unseen molecules? 269

RQ2. Can FineMolTex bridge the gap to tasks centered on motif-level knowledge?

Table 1: Accuracy ($\% \pm \sigma$) of graph-text retrieval task	on DrugBank-Ph	armacodynamics
--	----------------	----------------

	Giv	Given Molecular Graph			Given Text			
T	4	10	20	4	10	20		
KV-PLM	$68.38 {\pm} 0.03$	$47.59 {\pm} 0.03$	$36.54{\pm}0.03$	$67.68 {\pm} 0.03$	$48.00 {\pm} 0.02$	$34.66 {\pm} 0.02$		
MolCA	$83.75 {\pm} 0.54$	$74.25 {\pm} 0.26$	66.14 ± 0.21	81.27 ± 0.33	$69.46 {\pm} 0.17$	62.13 ± 0.16		
MoMu-S	70.51 ± 0.04	55.20 ± 0.15	$43.78 {\pm} 0.10$	70.71 ± 0.22	54.70 ± 0.31	44.25 ± 0.43		
MoMu-K	69.40 ± 0.11	$53.14 {\pm} 0.26$	42.32 ± 0.28	68.71 ± 0.03	53.29 ± 0.05	43.83 ± 0.12		
MoleculeSTM	1 92.14±0.02	86.27 ± 0.02	$81.08 {\pm} 0.05$	$91.44 {\pm} 0.02$	86.76 ± 0.03	$81.68 {\pm} 0.03$		
FineMolTex	95.86±0.34	91.95±0.06	$85.80 {\pm} 0.05$	95.80±0.06	$92.18{\pm}0.12$	85.01±0.32		

Table 2: Accuracy ($\% \pm \sigma$) of graph-text retrieval task on molecule-ATC.

	Giv	en Molecular Gr	aph	Given Text			
T	4	10	20	4	10	20	
KV-PLM	$60.94 {\pm} 0.00$	$42.35 {\pm} 0.00$	$30.32 {\pm} 0.00$	60.67 ± 0.00	$40.19 {\pm} 0.00$	29.02 ± 0.00	
MolCA	$67.34 {\pm} 0.05$	53.51 ± 0.12	44.10 ± 0.03	$65.18 {\pm} 0.34$	51.01 ± 0.26	41.30 ± 0.51	
MoMu-S	64.72 ± 0.04	48.72 ± 0.03	$37.64 {\pm} 0.02$	$64.98 {\pm} 0.13$	$49.58 {\pm} 0.05$	39.04 ± 0.10	
MoMu-K	61.79 ± 0.14	$45.69 {\pm} 0.22$	34.55 ± 0.09	63.32 ± 0.15	47.55 ± 0.06	37.68 ± 0.18	
MoleculeSTM	$69.33 {\pm} 0.03$	$54.83 {\pm} 0.04$	$44.13 {\pm} 0.05$	$71.81 {\pm} 0.05$	$58.34 {\pm} 0.07$	47.58 ± 0.03	
FineMolTex	$75.43{\pm}0.15$	$60.66 {\pm} 0.08$	$49.45{\pm}0.24$	$75.22{\pm}0.12$	$60.29{\pm}0.04$	$48.42 {\pm} 0.1$	

RQ3. Can FineMolTex perform better on single-modality tasks?

RQ4. Has FineMolTex learned fine-grained knowledge?

RQ5. Are the token masking and cross-attention layers beneficial?

293 295

296

301

270

279

281

284

287

289

291

292

GENERALIZATION TO UNSEEN MOLECULES (RQ1) 4.1

To answer RQ1, we conduct a **zero-shot graph-text retrieval task** to examine the generalizability 297 of FineMolTex on unseen molecules and texts. Given a molecular graph and T candidate textual 298 descriptions, the goal is to identify the textual description that best aligns with the molecular graph. 299 Conversely, given a textual description and T candidate molecular graphs, identify the molecular 300 graph that best matches the text. This task can be addressed by calculating the similarity of the molecular graphs and texts in the joint embedding space, thus allowing zero-shot inference.

302 Datasets and Baselines. We utilize DrugBank-Pharmacodynamics, molecule-ATC, and DrugBank-303 Description (Liu et al., 2023a) extracted from the DrugBank database (Wishart et al., 2018) for 304 evaluation. These datasets include molecular graphs and their chemical descriptions. Details of the 305 datasets can be found in Appendix C.1.2. We compare with five multimodal molecular models: 306 KV-PLM (Zeng et al., 2022), MolCA (Liu et al., 2023b), MoMu-S (Su et al., 2022), MoMu-K (Su 307 et al., 2022), and MoleculeSTM (Liu et al., 2023a). Specifically, KV-PLM uses SMILES to represent 308 the structure of the molecule, while others use graph structures. 309

Results. We report the results on the first two datasets in Tables 1 and 2, and defer those on 310 DrugBank-Description to Appendix D.1 due to space limit. We make the following observations. 1) 311 Across different values of T, FineMolTex consistently outperforms the baselines that neglect motif-312 level knowledge. The superior performance demonstrates that fine-grained motif-level knowledge 313 facilitates generalization to unseen molecules, which likely contain seen motifs. 2) FineMolTex 314 maintains strong performance in both directions (given graph, and given text). The symmetry further 315 indicates that the embedding spaces of both modalities are well-aligned and similarly well-learned. 316 3) We observe that KV-PLM, which utilizes SMILES to capture molecular structures, is less effective 317 than other models employing graphs, consistent with previous findings (Liu et al., 2023a) that 2D graph structure is more expressive than 1D SMILES. 318

319

320 4.2 APPLICATION TO MOTIF-CENTERED TASKS (RQ2)

321

To answer RQ2, we employ a zero-shot **text-based molecule editing task**, which is highly relevant 322 to practical applications including catalyst design and targeted drug discovery. Specifically, we utilize 323 FineMolTex to collaborate with a molecule generation module, following the design in (Liu et al., 334

335 336

350

351

352 353 354

355

356

357

359

360

Figure 3: Hit ratios of 12 text-based molecule editing tasks.

Figure 4: Visual analysis of the output molecules of MoleculeSTM and Motif-MolTex on 4 text-based molecule editing tasks. Differences between the input and output molecule of FineMolTex are highlighted in red and green circles. Lower LogP indicates higher water solubility.

2023a), to modify a specified molecule according to a text prompt. Hence, motif-level knowledge is essential for this task, as the model needs to replace certain motifs with others that are related to specific properties and names as indicated in the text prompt. We defer the technical details to Appendix B. We randomly sample 200 molecules from ZINC (Irwin et al., 2012), and select 12 text 358 prompts, including 8 prompts pertaining to physical properties (Liu et al., 2023a), and 4 based on the names of the motifs. We utilize MoleculeSTM, MoMu, and MolCA as baselines.

Evaluation. We employ different methods to assess whether the generated molecules satisfy the two 361 types of prompts. For the 8 prompts on physical properties, we employ three measures: LogP, QED, 362 and tPSA, which measures solubility (Leo et al., 1971), drug-likeness (Bickerton et al., 2012), and 363 permeability (Ertl et al., 2000), respectively. We consider the editing to be successful if the difference 364 in measurements between the input and output molecules exceeds a specified threshold Δ , which we have set to 0 following one of the settings in literature (Liu et al., 2023a). For the 4 prompts based on 366 motif names, we use RDKit (Landrum, 2024) to verify the presence of the indicated motifs. For all 367 12 prompts, we report the *hit ratio*: the proportion of generated molecules that meet our expectations.

368 **Results.** As shown in Figure 3, FineMolTex shows superior performance on these prompts, especially 369 on the 4 prompts with motif names. Notably, we achieve a relative gain of up to 230% over the best-370 performing baseline, demonstrating that FineMolTex has an advanced understanding of motif-level 371 knowledge. We also visualize the output molecules of MoleculeSTM and FineMolTex in Figure 4. 372 It can be observed that while MoleculeSTM produces incorrect molecules, FineMolTex accurately 373 generates the intended molecules. Specifically, when prompted to generate molecules that are soluble 374 in water, FineMolTex successfully creates molecules with lower LogP than the input molecule, 375 as lower LogP indicates higher water solubility. Similarly, when prompted to generate molecules with hydroxyl groups or chlorine atoms, FineMolTex correctly does so. These results confirm that 376 FineMolTex possesses a deeper understanding of motif-level knowledge, thereby enhancing the 377 generative capabilities. More visual results can be seen in Appendix D.2.

Model	BBBP	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	Bace
AttrMask	67.8±2.6	75.0 ± 0.2	63.6±0.8	58.1 ± 1.2	75.4±8.8	73.8±1.2	75.4 ± 0.5	80.3±0.0
ContextPred	63.1 ± 3.5	74.3 ± 0.2	$61.6 {\pm} 0.5$	60.3 ± 0.8	80.3 ± 3.8	71.4 ± 1.4	70.7 ± 3.6	$78.8 {\pm} 0.4$
InfoGraph	$64.8 {\pm} 0.6$	76.2 ± 0.4	62.7 ± 0.7	59.1 ± 0.6	76.5 ± 7.8	73.0 ± 3.6	70.2 ± 2.4	77.6 ± 2.0
MolCLR	$67.8 {\pm} 0.5$	$67.8 {\pm} 0.5$	$64.6 {\pm} 0.1$	$58.7 {\pm} 0.1$	84.2 ± 1.5	$72.8 {\pm} 0.7$	$75.9 {\pm} 0.2$	71.1±1.2
GraphMVP	68.1 ± 1.4	77.1 ± 0.4	65.1 ± 0.3	60.6 ± 0.1	84.7 ± 3.1	74.4 ± 2.0	77.7 ± 2.5	80.5 ± 2.7
GraphCL	$69.7 {\pm} 0.7$	$73.9 {\pm} 0.7$	$62.4 {\pm} 0.6$	$60.5 {\pm} 0.9$	$76.0{\pm}2.7$	$69.8 {\pm} 2.7$	78.5 ± 1.2	75.4 ± 1.4
KV-PLM	$70.5 {\pm} 0.5$	72.1 ± 1.0	55.0 ± 1.7	$59.8 {\pm} 0.6$	89.2 ± 2.7	54.6 ± 4.8	65.4 ± 1.7	78.5±2.7
MoMu-S	70.5 ± 2.0	$75.6 {\pm} 0.3$	$75.6 {\pm} 0.3$	60.5 ± 0.9	79.9 ± 4.1	70.5 ± 1.4	$75.9 {\pm} 0.8$	76.7 ± 2.1
MoMu-K	70.1 ± 1.4	$75.6 {\pm} 0.5$	$63.0 {\pm} 0.4$	60.4 ± 0.8	77.4 ± 4.1	71.1 ± 2.7	76.2 ± 0.9	77.1 ± 1.4
MolCA	$70.0 {\pm} 0.5$	77.2 ± 0.5	$64.5 {\pm} 0.8$	$63.0 {\pm} 1.7$	$89.5 {\pm} 0.7$	72.1 ± 1.3	77.2 ± 0.6	79.8 ± 0.5
MoleculeSTM	$70.0 {\pm} 0.5$	$76.9 {\pm} 0.5$	65.1 ± 0.4	$61.0 {\pm} 1.05$	92.5 ± 1.1	$73.4{\pm}2.9$	77.0 ± 1.8	80.8 ± 1.3
FineMolTex	71.0 ± 0.4	77.1 ± 0.5	66.0 ± 1.2	65.0±2.3	92.7±0.8	76.2 ± 1.2	78.9±0.6	84.6±1.4

Table 3: Downstream results ($\% \pm \sigma$) on eight binary classification datasets from MoleculeNet.

4.3 APPLICATION TO SINGLE-MODALITY TASK (RQ3)

While FineMolTex can simultaneously utilize pre-trained knowledge from both graphs and texts, we
also verify its effectiveness on single-modality tasks, namely, molecular property prediction tasks.
We use MoleculeNet (Wu et al., 2018) as the dataset, which only provides molecular graphs as input
without texts. More specifically, there are eight binary classification tasks, and we report ROC-AUC
for evaluation. More detailed dataset descriptions are provided in Appendix C.1.3.

Baselines. We compare FineMolTex against nine baselines, including 1) five pre-trained GNN models: AttrMasking (Hu et al., 2019), ContextPred (Hu et al., 2019), InfoGraph (Sun et al., 2019), MolCLR (Wang et al., 2021b), and GraphMVP (Liu et al., 2019b); 2) three graph-text multimodal models: MoMu-S (Su et al., 2022), MoMu-K (Su et al., 2022), and MoleculeSTM (Liu et al., 2023a), and 3) one SMILES-text multimodal model: KV-PLM (Zeng et al., 2022).

Results. As shown in Table 3, FineMolTex consistently outperforms all baselines, achieving relative gains of 3.2%, 2.4%, and 4.7% on SIDER, MUV, and BACE, respectively, compared to the best baseline. The promising performance of FineMolTex indicates that it implicitly utilizes pre-trained knowledge from the text modality even when the input consists solely of graphs. Additionally, KV-PLM exhibits a notable performance gap from other models, due to its use of 1D SMILES strings for molecular structure and a smaller pre-training dataset.

410 411

412

378

391 392

393

4.4 ANALYSIS OF LEARNED FINE-GRAINED KNOWLEDGE (RQ4)

We evaluate whether FineMolTex captures fine-grained alignment information in the joint embedding space, and assess if it can predict the labels of masked motifs based on fine-grained knowledge.

415 Visualization of Motif and Word Embeddings. To evaluate whether FineMolTex captures fine-416 grained alignment knowledge, we select motif and word tokens from 1,500 graph-text pairs in the 417 PubChemSTM dataset, excluding meaningless words such as "this" and "a". In total, we visualize 418 3,469 motif tokens and 6,914 text tokens with t-SNE (Maaten & Hinton, 2008) in Figure 5a, where 419 triangles denote text tokens, and circles denote motif tokens, with different colors indicating various 420 labels. To examine the details of the tokens, we zoom into several regions in the figure, retaining 421 only the colors and legends of the tokens we are interested in. For brevity, we utilize SMILES to 422 represent the motif structures. We observe that text and motif tokens corresponding to each other are also close in the embedding space. For instance, in the pink frame, the word "ammonium" is close to 423 the motif tokens "[NH2+]=O", "C=[NH2+]", and "[NH3+]O", which are related to "ammonium." 424 In the blue frame, the word "poison" is adjacent to the motifs "[AsH3]" and "O[AsH2]", which are 425 poisonous. In the orange frame, the word "sulf" is close to the motif tokens "OS", "CCSSCC", and 426 "CC1=CSC(C)=N1", all of which represent sulfides. These results demonstrate that FineMolTex 427 learns the connections between motifs and their chemical names and properties, thereby significantly 428 enhancing its expressiveness. 429

430 Predictions Based on Fine-grained knowledge. To further verify that FineMolTex can utilize the
 431 learned fine-grained alignment knowledge for predictions, we utilize Local Interpretable Model Agnostic Explanation (LIME) (Ribeiro et al., 2016), a well-established tool that can explain the

(a) Visualization of motif tokens and word tokens using *t*-SNE. Triangles denote word tokens; circles denote motif tokens.

(b) Explaination of the prediction of certain masked motifs based on text tokens utilizing LIME.

Figure 5: Case studies validating motif-level knowledge learned by our model.

Table 4: Ablation study ($\% \pm \sigma$) on molecule-ATC and DrugBank-Pharmacodynamics.

	molecule-AT	C	DrugBank-Pharmacodynamics		
	Given Molecular Graph Given Text		Given Molecular Graph	Given Text	
w/o mmm	$70.33 {\pm} 0.28$	$70.86 {\pm} 0.16$	$92.56 {\pm} 0.10$	$92.12 {\pm} 0.25$	
motif mask only	72.85 ± 0.46	71.15 ± 0.24	93.45 ± 0.44	$92.98 {\pm} 0.18$	
word mask only	74.27 ± 0.07	72.11 ± 0.13	$94.86 {\pm} 0.32$	$93.88 {\pm} 0.15$	
w/o cross-attention	71.44 ± 0.32	$70.92 {\pm} 0.18$	$92.66 {\pm} 0.08$	92.85 ± 0.24	
FineMolTex	$75.43{\pm}0.15$	$75.22{\pm}0.12$	$95.86{\pm}0.34$	$95.80{\pm}0.06$	

predictions of certain masked motifs based on text tokens. By perturbing the input text, LIME observes how the model's predictions change with variations in the input text. Then, LIME fits these perturbed texts and the prediction results to an interpretable model such as a linear model. This approach allows us to quantify the significance of each text token in predicting the motifs, thereby revealing the fine-grained knowledge learned by FineMolTex. The results are shown in Figure 5b (with more cases in Appendix D.4), where text tokens with higher interpretive weights are more crucial for predictions, and thus more relevant to the masked motifs. Specifically, the word with the highest interpretive weights in (1) is "triazoles", which directly is to the name of the masked motif. In (2), the word "aniline" refers to another motif that is very similar to the masked motif, and "aromatic" is the property related to the masked motif. In (3), the masked motif is a kind of "organonitrogen". These findings demonstrate that FineMolTex has effectively acquired motif-level knowledge.

4.5 ABLATION STUDY FOR MASKING AND CROSS-ATTENTION LAYERS (RQ5)

To thoroughly explore the impact of the key components in FineMolTex, we compare to several variants, including w/o mmm, which drops the masked multimodal modeling task altogether; motif mask only, which only mask motif tokens; word mask only, which only mask word tokens; w/o cross-attention, which excludes cross-attention layers. We evaluate these variants on the graph-text retrieval task used in RQ1, on two datasets with T = 4. As reported in Table 4, FineMolTex consistently surpasses the other variants. Specifically, without the masked multimodal modeling task, "w/o mmm" fails to capture fine-grained knowledge at all, resulting in the poorest performance. "motif mask only" and "word mask only" outperform "w/o mmm," because they still enable some level of fine-grained knowledge learning by either predicting motifs based on word tokens or predicting word tokens based on motif tokens. However, they are less effective than FineMolTex, which masks

both words and motifs for mutual alignment. Lastly, without the cross-attention layers, "w/o cross-attention" cannot integrate token embeddings from different modalities, thereby hampering its ability to effectively learn fine-grained knowledge. These observations demonstrate the effectiveness of each component.

Additional experimental results, including further ablation studies and a comparison of pre-training and inference times, are provided in Appendix D.

5 CONCLUSIONS

493

494

502

507

511

512

In this paper, we reveal that fine-grained motif-level knowledge is crucial for molecular representation
learning. We propose FineMolTex to jointly learn both coarse- and fine-grained knowledge through
a contrastive alignment task and a masked multimodal learning task, respectively. By masking the
fine-grained tokens and predicting their labels using tokens from the other modality, we can effectively
learn fine-grained alignment between motifs and words. Experimental results on three downstream
tasks and two case studies demonstrate the effectiveness of FineMolTex.

- References
- Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. Geometric deep learning on molecular representations. *Nat. Mach. Intell.*, 3(12):1023–1032, 2021. doi: 10.1038/S42256-021-00418-8.
 URL https://doi.org/10.1038/s42256-021-00418-8.
- Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conformations for property prediction and molecular generation. *Scientific Data*, Apr 2022. doi: 10.1038/s41597-022-01288-4. URL http://dx.doi.org/10.1038/s41597-022-01288-4.
 - Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text. *arXiv preprint arXiv:1903.10676*, 2019.
- G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L. Hopkins. Quantifying the chemical beauty of drugs. *Nature Chemistry*, pp. 90–98, Feb 2012. doi: 10.1038/ nchem.1243. URL http://dx.doi.org/10.1038/nchem.1243.
- 517 Tox21 Data Challenge. Tox21 data challenge 2014. https://tripod.nih.gov/tox21/
 518 challenge/, 2014. Accessed: 2024-05-20.
- Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling and using "drug-like" chemical fragment spaces. *ChemMedChem*, pp. 1503–1507, Oct 2008. doi: 10.1002/cmdc.200800178. URL http://dx.doi.org/10.1002/cmdc.200800178.
- David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 2224–2232, 2015. URL https://proceedings.neurips.cc/ paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html.
- Peter Ertl, Bernhard Rohde, and Paul Selzer. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. *Journal of Medicinal Chemistry*, 43(20):3714–3717, Oct 2000. doi: 10.1021/jm000942e. URL http://dx.doi.org/10.1021/jm000942e.
- Junfeng Fang, Shuai Zhang, Chang Wu, Zhengyi Yang, Zhiyuan Liu, Sihang Li, Kun Wang, Wenjie Du, and Xiang Wang. Moltc: Towards molecular relational modeling in language models. *CoRR*, abs/2402.03781, 2024. doi: 10.48550/ARXIV.2402.03781. URL https://doi.org/10.48550/arXiv.2402.03781.
- 539 Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting successes and failures of clinical trials. *Cell chemical biology*, 23(10):1294–1301, 2016.

540 541 542	Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In <i>International conference on machine learning</i> , pp. 1263–1272. PMLR. 2017.
543	
544 545	Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. <i>arXiv preprint arXiv:1905.12265</i> , 2019.
546	
547	Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
548	Leskovec. Strategies for pre-training graph neural networks. In oin International Conference on Learning Paperssontations, ICLP 2020, Addis Ababa, Ethiopia, April 26, 30, 2020, OpenPaview net
549	2020 IIRI https://openreview.net/forum2id=H.IIWW.ISEDH
550	2020. OKE heeps.//openieview.hee/iorum.id=horwwoorbh.
551	John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
552 553	free tool to discover chemistry for biology. <i>Journal of chemical information and modeling</i> , 52(7): 1757–1768, 2012.
554 555	Dahun Kim, Anelia Angelova, and Weicheng Kuo. Region-aware pretraining for open-vocabulary object detection with vision transformers.
557 558 559	Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem in 2021: new data content and improved web interfaces. <i>Nucleic acids research</i> , 49(D1):D1388–D1395, 2021.
560 561 562	Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alán Aspuru-Guzik. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Mach Learn Sci Technol 1(4):45024 2020 doi: 10.1088/2632-2153/ABA947 URL https://
563 564	//doi.org/10.1088/2632-2153/aba947.
565 566	Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side effects. <i>Nucleic acids research</i> , 44(D1):D1075–D1079, 2016.
567 568 569	Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia Angelova. F-vlm: Open-vocabulary object detection upon frozen vision and language models. Sep 2022.
570	G Landrum. Rdkit: Open-source cheminformatics, 2024. URL http://www.rdkit.org.
571 572	Leo Leo, Albert Albert, Hansch Hansch, Corwin Corwin, Elkins Elkins, and David David. Partition
573	coefficients and their uses. Jan 1971.
574 575 576	Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua, and Qi Tian. Towards 3d molecule-text interpretation in language models. <i>CoRR</i> , abs/2401.13923, 2024. doi: 10.48550/ABXIV.2401.13923. URL. https://doi.org/10.48550/arXiv.
577	2401.13923.
578	Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Ou, Gholamreza Haffari, Zehuan Yuan, and
579 580	Jianfei Cai. Learning object-language alignments for open-vocabulary object detection. Nov 2022.
581	Shengchao Liu Mehmet Furkan Demirel and Vingvu Liang Naram graph. Simple unsuper-
582	vised representation for graphs with applications to molecules. In Hanna M Wallach Hugo
583	Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.).
584	Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
585	Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
586	8464-8476, 2019a. URL https://proceedings.neurips.cc/paper/2019/hash/
587	2f3926f0a9613f3c3cc21d52a3cdb4d9-Abstract.html.
588	Shangehao Liu Mahmat Furkan Damiral and Vingun Liong. Norom graph, Simple unsurger
589	vised representation for graphs with applications to molecules. In Hanna M Wallach Hugo
590	Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox and Roman Garnett (eds.)
591	Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
592	Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
593	8464-8476, 2019b. URL https://proceedings.neurips.cc/paper/2019/hash/ 2f3926f0a9613f3c3cc21d52a3cdb4d9-Abstract.html.

- 594 Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei 595 Xiao, and Animashree Anandkumar. Multi-modal molecule structure-text model for text-based 596 retrieval and editing. Nature Machine Intelligence, 5(12):1447-1457, 2023a. 597 Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang, and 598 Tat-Seng Chua. Molca: Molecular graph-language modeling with cross-modal projector and uni-modal adapter. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 600 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, 601 December 6-10, 2023, pp. 15623–15638. Association for Computational Linguistics, 2023b. doi: 602 10.18653/V1/2023.EMNLP-MAIN.966. URL https://doi.org/10.18653/v1/2023. 603 emnlp-main.966. 604 Chuofan Ma, Yi Jiang, Xin Wen, Zehuan Yuan, and Xiaojuan Qi. Codet: Co-occurrence guided 605 region-word alignment for open-vocabulary object detection. Advances in Neural Information 606 Processing Systems, 36, 2024. 607 608 Laurensvander Maaten and GeoffreyE. Hinton. Visualizing data using t-sne. Journal of Machine 609 Learning Research, Journal of Machine Learning Research, Jan 2008. 610 Ines Filipa Martins, Ana L. Teixeira, Luis Pinheiro, and André O. Falcão. A bayesian approach to in 611 Silico blood-brain barrier penetration modeling. J. Chem. Inf. Model., 52(6):1686–1697, 2012. doi: 612 10.1021/CI300124C. URL https://doi.org/10.1021/ci300124c. 613 614 Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining 615 the predictions of any classifier. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, 616 Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.), Proceedings of the 22nd ACM SIGKDD 617 International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 618 August 13-17, 2016, pp. 1135–1144. ACM, 2016. doi: 10.1145/2939672.2939778. URL https: //doi.org/10.1145/2939672.2939778. 619 620 Sebastian G Rohrer and Knut Baumann. Maximum unbiased validation (muv) data sets for virtual 621 screening based on pubchem bioactivity data. Journal of chemical information and modeling, 49 622 (2):169–184, 2009. 623 624 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. 625 Self-supervised graph transformer on large-scale molecular data. Advances in neural information processing systems, 33:12559-12571, 2020. 626 627 Yaorui Shi, An Zhang, Enzhi Zhang, Zhiyuan Liu, and Xiang Wang. Relm: Leveraging language 628 models for enhanced chemical reaction prediction. In Houda Bouamor, Juan Pino, and Kalika 629 Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 630 December 6-10, 2023, pp. 5506–5520. Association for Computational Linguistics, 2023. doi: 10. 631 18653/V1/2023.FINDINGS-EMNLP.366. URL https://doi.org/10.18653/v1/2023. 632 findings-emnlp.366. 633 Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu, 634 and Ji-Rong Wen. A molecular multimodal foundation model associating molecule graphs with 635 natural language. CoRR, abs/2209.05481, 2022. doi: 10.48550/ARXIV.2209.05481. URL 636 https://doi.org/10.48550/arXiv.2209.05481. 637 638 Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-639 supervised graph-level representation learning via mutual information maximization. arXiv preprint arXiv:1908.01000, 2019. 640 641 Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Contrastive learning 642 on molecular graphs with multi-level domain knowledge. CoRR, abs/2106.04509, 2021. URL 643 https://arxiv.org/abs/2106.04509. 644 645 Artur P. Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, and Nikolaus A. Adams. E(3) equivariant graph neural networks for particle-based fluid mechanics. CoRR, abs/2304.00150, 646 2023. doi: 10.48550/ARXIV.2304.00150. URL https://doi.org/10.48550/arXiv. 647

2304.00150.

651

673

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Hongwei Wang, Weijiang Li, Xiaomeng Jin, Kyunghyun Cho, Heng Ji, Jiawei Han, and Martin D.
 Burke. Chemical-reaction-aware molecule representation learning. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.* OpenReview.net, 2022. URL https://openreview.net/forum?id=6sh3pIzKS-.
- Ruijia Wang, YiWu Sun, Yujie Luo, Shaochuan Li, Cheng Yang, Xingyi Cheng, Hui Li, Chuan Shi, and Le Song. Injecting multimodal information into rigid protein docking via bi-level optimization. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/ 77fa0e7d45c6687f1958de0b31e9fc05-Abstract-Conference.html.
- Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware
 relation networks for few-shot molecular property prediction. In Marc'Aurelio Ranzato,
 Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.),
 Advances in Neural Information Processing Systems 34: Annual Conference on Neu-*ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
 pp. 17441–17454, 2021a. URL https://proceedings.neurips.cc/paper/2021/
 hash/91bc333f6967019ac47b49ca0f2fa757-Abstract.html.
- Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molclr: Molecular contrastive learning of representations via graph neural networks. *CoRR*, abs/2102.10056, 2021b. URL https://arxiv.org/abs/2102.10056.
- David S. Wishart, Yannick D. Feunang, An Chi Guo, Elvis J. Lo, Ana Marcu, Jason R. Grant, Tanvir
 Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour, Ithayavani Iynkkaran, Yifeng
 Liu, Adam Maciejewski, Nicola Gale, Alex Wilson, Lucy Chin, Ryan Cummings, Diana Le, Allison
 Pon, Craig Knox, and Michael Wilson. Drugbank 5.0: a major update to the drugbank database for
 2018. *Nucleic Acids Res.*, 46(Database-Issue):D1074–D1082, 2018. doi: 10.1093/NAR/GKX1037.
 URL https://doi.org/10.1093/nar/gkx1037.
- Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, ChenChange Loy, Hong Kong, Sensetime Research,
 and Tetras Ai. Aligning bag of regions for open-vocabulary object detection.
- Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
 Chemical science, 9(2):513–530, 2018.
- Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, Jinyu Yang, Yang Yu, and Junzhou
 Huang. Retroxpert: Decompose retrosynthesis prediction like a chemist. *Advances in Neural Information Processing Systems*, 33:11248–11258, 2020.
- Shuwen Yang, Ziyao Li, Guojie Song, and Lingsheng Cai. Deep molecular representation learning via fusing physical and chemical information. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 16346–16357, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/ 884d247c6f65a96a7da4d1105d584ddd-Abstract.html.
- Lewei Yao, Jianhua Han, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, and Hang Xu. Detclipv2:
 Scalable open-vocabulary object detection pre-training via word-region alignment.
- Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive learning with augmentations. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,

December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/ 2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html.

- 705 Daniel Zaharevitz. Aids antiviral screen data, 2015.
- Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary detr with conditional matching. In *European Conference on Computer Vision*, pp. 106–122. Springer, 2022.
- Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals. *Nature communications*, 13(1):862, 2022.
- Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z. Li. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020. doi: 10.1109/cvpr42600.2020.00978. URL http://dx.doi.org/10.1109/cvpr42600. 2020.00978.
- Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-supervised learning for molecular property prediction. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 15870–15882, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/85267d349a5e647ff0a9edcb5ffd1e02-Abstract.html.

Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhihong Deng, Lingpeng Kong, and Qi Liu. GIMLET: A unified graph-text model for instruction-based molecule zero-shot learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/ 129033c7c08be683059559e8d6bfd460-Abstract-Conference.html.