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ABSTRACT

A central challenge in mechanistic interpretability is how to evaluate whether
individual neurons genuinely capture meaningful concepts. Existing work relies
heavily on activation selectivity, but this metric quickly saturates and fails to dis-
tinguish among units, leaving many interpretability claims anecdotal. We propose
InterpScore, a reproducible four-axis framework that integrates Selectivity, Causal
impact, Robustness, and Human consistency into a quantitative, systematic, and
reproducible measure. Applied to 10 high-selectivity neurons from CLIP RN50x4’s
penultimate layer, InterpScore reveals meaningful variation across neurons, about
14% dispersion where selectivity alone shows none, demonstrating that multi-axis
evaluation surfaces distinctions overleaped by single metrics. The framework is
numerically stable across seeds and its axes capture complementary, independent
aspects of neuron behavior. These results move neuron-level claims beyond anec-
dotes toward a more objective, systematic, and reproducible basis for assessing and
comparing interpretability frameworks. InterpScore offers a reproducible protocol
for principled neuron evaluation across diverse vision architectures.

1 INTRODUCTION

The transition from intriguing anecdotal discoveries toward systematic evaluation represents a natural
maturation of the interpretability field. Early examples, from artificial neurons detecting visual
concepts (Bau et al., 2017; Goh et al., 2021) to learned features like the “Golden Gate Bridge Feature”
(Bricken et al., 2023), have helped build our intuitions, but do not guarantee typical behavior and can
miss important failure modes.

We address the gap in systematic and quantitative assessments in mechanistic interpretability by
introducing a compact, multi-axis evaluation for neuron-level tuning descriptors. The proposed
framework integrates four complementary dimensions, Selectivity (S), Causality (C), Robustness
(R), and Human Consistency (H), summarized by InterpScore. As a proof-of-concept, we ap-
plied this framework to ten high-selectivity neurons from CLIP RN50x4 (Radford et al., 2021) at
image block 4/5/ReLU 2. We provide protocols, implementation details, and a Microscope-
style visualization tool for systematic neuron evaluation.

Main Research Question (MRQ). This work introduces a systematic, reproducible, and quan-
titative framework to evaluate single neuron mechanistic interpretability assessments and to
directly compare different interpretability approaches.

Key Contributions. (1) Framework. A four-axis neuron-level evaluation (S, C, R, H) summarized
by InterpScore. (2) Discrimination and stability. On ten CLIP RN50x4 (Radford et al., 2021)
neurons, InterpScore shows substantially greater evaluative power than selectivity alone (Evidence 1).
Metrics and rankings are numerically stable across seeds (Evidence 2). (3) We combine the 4D
quantitative evaluations with enhanced Microscope-style visualizations.
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2 RELATED WORK

Mechanistic interpretability seeks to reverse-engineer neural networks by identifying human-
understandable computational units and algorithms within their representations (Olah et al., 2020;
Goh et al., 2021; Bricken et al., 2023). A central challenge in this endeavor is evaluation: how do
we determine whether our interpretations are accurate and meaningful?. Additionally, how can we
compare different interpetability efforts?. Traditional approaches have relied heavily on activation
selectivity combined with qualitative and subjective evaluations, measuring how consistently a neuron
responds to specific input categories (Bau et al., 2017; Olah et al., 2020; Goh et al., 2021), and on
automated description of unit behavior via language (Hernandez et al., 2022; Oikarinen & Weng,
2023; Dalvi et al., 2022). The Microscope tool enabled large-scale exploration of neuron selectivity
and revealed intriguing multimodal examples in CLIP (Goh et al., 2021), while feature visualization
synthesized maximally activating images as a complementary view of unit behavior (?). This line of
work was partly inspired by neuroscience reports of highly selective and invariant neurons such as
those responding to Jennifer Aniston (Quiroga et al., 2005).

The community has increasingly recognized that activation selectivity alone provides insufficient
evidence for robust assessment, motivating benchmarks and evaluators across modalities (Fan et al.,
2023; Bills et al., 2023; Liang et al., 2024). Recent frameworks formalize this concern from multiple
angles: multi-dimensional evaluation standards in MIB (Mueller et al., 2025), systematic validation
for neuron explanations (Oikarinen et al., 2025), and comprehensive assessments in sparse-feature
work (Makelov et al., 2024). Yet, despite progress at the circuit and feature levels, neuron-level
evaluation remains comparatively underdeveloped. Neurons are the atomic units from which circuits
and features are composed; without reliable validation at this granularity, higher-level analyses rest
on a weak empirical foundation.

3 MULTI-DIMENSIONAL FRAMEWORK FOR NEURON INTERPRETABILITY

The desiderata for a framework to interpret the activations of neurons in neural networks include: (i)
unbiased measurements, (ii) systematic evaluation, and (iii) quantitative description. We introduce a
framework for multi-dimensional neuron interpretability assessment (Figure 1).

3.1 TEST MODEL

As an example to introduce the framework, we analyzed CLIP RN50x4 (Radford et al., 2021). We
focused on the last convolutional block before attention pooling (image block 4/5/ReLU 2).
This layer represents the final output of the deepest ResNet block before attention processing, making
it ideal for selectivity and causality testing as it has been purported to capture high-level semantic
features while preserving all downstream computation.

CLIP RN50x4 is a pretrained vision-language model trained on a dataset of 400 million image-text
pairs collected from the internet. The model uses contrastive learning to align visual and textual
representations in a shared embedding space (Radford et al., 2021).

This layer has spatial size 9× 9 at input resolution 288× 288 and channel width 2,560. Downstream,
features are reshaped and pooled as

(1, 2,560, 9, 9)→ (1, 2,560, 81)→ (1, 81, 2,560) (1)
and passed through a single-layer multi-head attention pooler (40 heads × 64-d) followed by a linear
projection to a 640-dimensional image embedding.

3.2 PREPROCESSING AND NOTATION

Microscope-Visualization Tool. To address the critical reproducibility gap created by the unavail-
ability of the original Microscope visualization tool (Goh et al., 2021), we recreated and enhanced this
foundational infrastructure. Our enhanced version provides systematic exploration capabilities with
improved statistical analysis tools and includes Lucid-generated feature visualizations (Olah et al.,
2017)(Appendix B.4). The tool is publicly available at https://clip-microscope-tool.
streamlit.app//, enabling researchers to immediately explore CLIP neuron representations
(detailed in Appendix B.2).
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Figure 1: Framework overview. (1) Data collection: K clean images, collected by systematically
scraping the web for each topic of interest. Default K = 30. (2) Processing: standardized perturbation
protocols (Gaussian noise, mild blur/JPEG, small geometric jitter) and small-budget adversarial stress
are applied to the clean images. synthetic maximization stimuli (DeepDream) is also used to create
images to probe human recognizability (details in App. B.3). (3) Model + Human Evaluation: We
extract neuron activations from CLIP RN50x4 at image block 4/5/ReLU 2 (2,560 channels)
for all image conditions from steps 1-2, while human annotators evaluate the exact same images
for concept recognition; causal testing involves ablating (λ = 0) and amplifying (λ = 2) individual
neuron activations to measure impact on final 640-dimensional embeddings. (4) Scoring: integration
across Selectivity, Causality, Robustness, and Human consistency; the composite (InterpScore)
summarizes the axes.

Concepts. In this work, a concept refers to a semantic category that can be visually identified in
images. For example, “sailboat” is a concept, and we define all images containing sailboats as the
sailboat concept subset, while images not containing sailboats form the non-sailboat subset (see
Figure 2A for visual examples, and Table A.4 1 for our complete set of 10 concepts spanning diverse
categories from objects to text to gestures).

Datasets. For each concept, we construct carefully curated datasets through systematic web scraping
with manual verification by the authors to ensure scraped images actually contain the target concept.
We collect K=30 images per concept by default, with extensive variations in visual features and
context achieved by diversifying the scraping strategy to include cartoon representations, sketches,
text-based depictions, photographs, artwork, and other visual modalities. Control sets (non-concept
images) contain the same visual variation and are carefully selected to minimize contamination
while providing adequate contrast for selectivity measurement. For the Microscope visualization
component, we additionally use ImageNet images (top-k=100 activating images per neuron) to
provide broader context for neuron behavior analysis.

Mathematical notation. Images follow the CLIP preprocessing pipeline. Let D be the evaluation
dataset (a collection of images), C ⊂ D a concept subset (all images in D that contain the target
concept, e.g., all sailboat images), and C = D \ C the complement subset (all images in D that do not
contain the concept, e.g., all non-sailboat images).

For a single input image I (representing a 288× 288× 3 RGB image), let AN (I) ∈ R9×9 denote the
post-ReLU activation map of neuron N , where h,w are spatial indices ranging over the 9× 9 spatial
dimensions. We define a scalar response via global max pooling aN (I) = maxh,w AN (I)h,w.

Data organization levels. We organize our experimental data into five levels based on image type
and perturbation (visible across Figure 2A):

• Level 1 (L1): Gaussian noise perturbations (see “NOISE” column in Figure 2A)

3
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• Level 2 (L2): Mosaic perturbations (see “MOSAIC” column in Figure 2A)
• Level 3 (L3): Adversarial attacks (see “ADV. ATTACK” column in Figure 2A)
• Level 4 (L4): DeepDream synthetic images (see “DEEPDREAM” column in Figure 2A)
• Level 5 (L5): Clean, unperturbed images (see “CLEAN” column in Figure 2A)

Expectations below are computed over the indicated sets. Figure 2 provides a complete worked
example using the sailboat concept (neuron #363) that illustrates all four interpretability dimensions
across these data levels.

3.3 SELECTIVITY (S)

Selectivity measures how consistently a neuron responds to images containing a specific concept
versus images without that concept. For example, a highly selective sailboat neuron should activate
strongly for sailboat images and weakly for images of cars, trees, or other non-sailboat content (see
Figure 2C which shows exactly this pattern for neuron #363). We quantify this separability using
Cohen’s d effect size, which measures the standardized difference between two distributions, then
transform it to a bounded score.

Let Cclean ⊂ C denote the clean subset of concept images (Level 5 images containing the concept, with
no perturbations applied). For the sailboat example, this would be our collection of clean sailboat
images. Similarly, let Cclean ⊂ C denote clean images not containing the concept (for sailboats, this
includes cars, people, buildings, etc., anything that is not a sailboat).

For neuron N , we collect the scalar activations {aN (I) : I ∈ Cclean} and {aN (I) : I ∈ Cclean},
forming two distributions of activation values. In the sailboat case, this gives us two sets of numbers:
activation values when the neuron sees sailboat images versus activation values when it sees non-
sailboat images.

Let nC , nC be the sample sizes; µC , µC the sample means; and s2C , s
2
C the unbiased sample variances

(computed with degrees of freedom correction ddof=1, meaning we divide by n− 1 instead of n to
correct for sample bias) of the activation distributions, respectively. We compute the pooled standard
deviation

sp =

√
(nC − 1)s2C + (nC − 1)s2C

nC + nC − 2
, (2)

Cohen’s d effect size d = (µC − µC)/sp, and Hedges’ bias correction J = 1 − 3
4(nC+nC)−9 . Our

selectivity score transforms the effect size to a bounded [0,1] range:

S(N, C) = Φ

(
Jd√
2

)
∈ [0, 1], (3)

where Φ is the standard normal cumulative distribution function. This transformation maps effect
sizes to probabilities: S = 0.5 indicates no separation between concept and non-concept activations
(the neuron responds equally to sailboats and non-sailboats), while S approaches 1 as the neuron
becomes more selective for the concept (it fires much more strongly for sailboats than for other
images). In Figure 2C, neuron #363 achieves S = 1.000, indicating perfect selectivity for sailboats.
Under equal-variance assumptions, this measure is equivalent to ROC-AUC.

3.4 CAUSAL IMPACT (C)

Causal impact measures whether a neuron functionally affects the model’s final output representations,
beyond just showing selective activation patterns. For example, the sailboat neuron might activate
strongly for sailboat images, but does manipulating this neuron actually change how CLIP represents
those images? We test this by directly intervening on the neuron and measuring the resulting changes
in the final 640-dimensional image embeddings (see Figure 2E for intervention examples with the
sailboat neuron).

Let E(I) ∈ R640 be the baseline embedding for image I (the normal CLIP embedding without any
intervention), and Eλ(I) be the embedding when we scale neuron N ’s entire activation map by factor
λ (multiplying every value in the 9× 9 spatial map by λ, while leaving all other neurons unchanged).

4
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Figure 2: Worked example: Sailboat neuron (#363). (A) Stimuli: L1 noise, L2 mosaic, L3
adversarial, L4 DeepDream, L5 clean. (B) Core metrics: S (selectivity), C (causality), R (robustness),
H (human consistency), and INTERPSCORE. (C) Selectivity: target vs. non-target activations
with the neuron threshold; mean activation by level. (D) Robustness examples: three matched
clean→perturbed pairs (L1–L3) with per-image activation, perturbed/clean ratio, and a stability
indicator; rows marked ✓ are human-recognizable and counted in R (L4 excluded). (E) Causality
examples: for two images, horizontal bars show embedding norms for Baseline, Ablate (λ=0), and
Amplify; inline labels give the relative embedding change, and C aggregates ablation with small
amplification. (F) Human consistency: activation (high/low via the threshold) vs. recognition (no/yes)
with rates by level. (G) Human examples: two free-text answers per image scored as Hard (exact
label; ✓ if either matches) and Soft (close variants/synonyms/typos; ✓ if either qualifies); soft-correct
items define recognition for R and contribute to H. See Sec. 2 for procedures.

For the sailboat neuron, we test two interventions: ablation (λ = 0, completely removing the neuron’s
influence) and amplification (λ = 2, doubling its influence).
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For each clean sailboat image I ∈ Cclean (Level 5), we compute the relative embedding shift:

∆λ(I) =
∥Eλ(I)− E(I)∥2
∥E(I)∥2

, (4)

which measures how much the embedding changes as a fraction of the original embedding magnitude.
We then average the shifts from both interventions:

Craw(N, C) = 1

2
[EI∈C [∆0(I)] + EI∈C [∆2(I)]] . (5)

For the sailboat example, this tells us: when we remove or amplify the sailboat neuron, how much do
the sailboat image embeddings change on average?

For comparability with other metrics, we transform this to a bounded [0,1) range:

C(N, C) = 1− exp(−Craw(N, C)) ∈ [0, 1). (6)

Higher values indicate greater causal impact. Figure 2E contains a visualization for the sailboat
neuron. Technical implementation details ensuring measurement fidelity are in Appendix B.1.

3.5 ROBUSTNESS (R)

Robustness measures how stable a neuron’s activation patterns remain under semantically-preserving
image perturbations and adversarial stress, see Sec. 4.1 for information on the perturbation protocol.
For example, a robust sailboat neuron should maintain similar activation levels when viewing a
sailboat image with added noise, mild blurring, or small geometric changes, the core concept remains
recognizable to humans, so the neuron should respond consistently (see Figure 2D for robustness
examples with the sailboat neuron).

We test robustness using perturbations that preserve the semantic content while changing low-level
visual features. Starting with clean sailboat images Cclean (Level 5 unperturbed images), we apply
four types of perturbations: (1) Gaussian noise at various levels, (2) mosaic shuffling of image
patches, (3) adversarial attacks using small imperceptible perturbations, and (4) DeepDream synthetic
maximization (Mordvintsev et al., 2015). Critically, we only evaluate robustness on perturbed images
that humans still recognize as containing the sailboat concept through our quality control protocol,
this ensures we measure robustness to meaningful variations rather than arbitrary transformations.

We partition the perturbed sailboat images into two sets based on perturbation strength: Crec
benign

contains mildly perturbed images (Levels 1-2: noise and mosaic perturbations) that remain highly
recognizable, while Crec

adv contains more challenging images (Level 3: adversarial attacks) that are
still recognizable but require more careful inspection. DeepDream synthetic images (Level 4) are
excluded from robustness evaluation and analyzed separately in the Human Consistency metric.

We compute mean absolute activations Ak
N (C) = EI∈Ck [|aN (I)|] for k ∈ {clean, benign, adv}. We

then compute ratios comparing perturbed to clean activation levels:

rben =
Abenign

N (C) + ϵ

Aclean
N (C) + ϵ

, radv =
Aadv

N (C) + ϵ

Aclean
N (C) + ϵ

, (7)

where ϵ = 10−8 is a small numerical constant to prevent division by zero in edge cases where
activations are exactly zero.

To measure stability, we use σ(r) = exp(−| log r|) = min(r, 1/r) ∈ (0, 1], which equals 1 when
perturbations don’t change activations and decreases symmetrically for increases or decreases. The
robustness score averages across perturbation types:

R(N, C) = 1

2
[σ(rben) + σ(radv)] (8)

For the sailboat neuron in Figure 2D, we see R = 0.161, indicating moderate robustness, the neuron’s
response changes somewhat under perturbations but maintains reasonable consistency.
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3.6 HUMAN CONSISTENCY (H)

Human consistency measures whether humans recognize the claimed concept in images that strongly
activate the neuron. For example, if the sailboat neuron fires strongly for certain images, do humans
actually see sailboats in those images? This tests whether the neuron responds to meaningful semantic
content rather than arbitrary visual patterns (see Figure 2F-G for human recognition analysis of the
sailboat neuron).

We collect human annotations through Prolific Academic, an online crowdsourcing platform, using
English-speaking participants (age 18-65, normal vision) with rigorous quality control including
attention checks, response time monitoring, and consistency validation. Participants view images and
provide free-text responses identifying the main concepts present. Complete details of the annotation
protocol, participant demographics, and quality control measures are provided in Appendix A.2.

For each neuron-concept pair, we create a curated evaluation set by first computing a neuron-specific
activation threshold from the non-concept clean distribution:

τN = Q0.95

(
aN (I) | I ∈ C ∩ Dclean

)
, (9)

i.e., the 95th percentile of activations on clean images that do not contain the concept. For the
sailboat neuron, this threshold separates the top 5% of activations on non-sailboat images from typical
non-sailboat responses.

We then form the evaluation set by collecting two types of images:

S(N, C) = {I : ground-truth(I) = C, aN (I) > τN} ∪ VDD
N , (10)

where the first term collects top-activating natural images for the concept across all perturbation
levels (clean, noise, mosaic, adversarial stress), and VDD

N are the neuron’s DeepDream maximization
stimuli (Section 3.8). For the sailboat example, this gives us the sailboat images that most strongly
activate the neuron, plus synthetic images optimized to maximally activate it.

Each image I ∈ S(N, C) receives a binary label hI ∈ {0, 1} under our quality control protocol (1 =
depicts the concept; 0 = otherwise), based on whether human annotators recognize the concept in the
image. We report the fraction of correctly recognized images:

H(N, C) = 1

|S(N, C)|
∑

I∈S(N,C)

hI ∈ [0, 1], (11)

with H = 1 indicating perfect human agreement (all high-activating images are recognized as
containing the concept) and H = 0 indicating no agreement. When S(N, C) is empty, we set
H(N, C) = 0 by convention. In Figure 2F-G, the sailboat neuron achieves H = 0.834, indicating
that humans correctly recognize sailboats in 83.4% of the high-activating images.

3.7 INTERPRETABILITY-SCORE (INTERPSCORE)

We aggregate along four axes with equal weights and without discretization:

InterpScore(N, C) = 1
4

(
S(N, C) + C(N, C) +R(N, C) +H(N, C)

)
. (12)

All metrics are computed per neuron; aggregate statistics (e.g., coefficients of variation across
neurons) are reported in the Results Section.

3.8 SYNTHETIC MAXIMIZATION STIMULI (DEEPDREAM)

We generate maximally activating stimuli for each neuron using DeepDream (Mordvintsev et al.,
2015; Olah et al., 2017), with multiple initializations (gray, random/structured noise, gradient, Perlin)
and a 4-octave pyramid (72→288 px; scale factor 1.4). Implementation details (step sizes, schedules,
regularizers) are in App. B.3.

How DeepDream is used. These stimuli enter only the H axis (Human consistency) via the selection
set S(N, C) defined in Sec. 3.6; annotators evaluate recognizability of both top-activating natural
images and the neuron’s DeepDream stimuli. DeepDream does not contribute to R (Robustness),
which by definition is restricted to semantically preserving transforms of natural images (Sec. 3.5).

7
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Interpretive note. Recognizability (or lack thereof) of maximization stimuli is treated as diag-
nostic evidence about what excites the neuron; high activation with unrecognizable stimuli suggests
sensitivity to “syntactic” pixel patterns rather than semantic content.

4 EXPERIMENTAL SETUP

4.1 DATASET CONSTRUCTION AND EVALUATION INFRASTRUCTURE

For each concept (Table 1, App. ??), we construct carefully curated datasets with manual verification
to ensure quality and consistency, supporting all four evaluation dimensions as outlined in Figure 1.

Concept Images: Target concept images are manually verified to belong to the specific concept.
Hence we (authors) screened candidate images collected via web queries and retained only images
where the target concept was marked as present The image set within a concept includes extensive
variations in visual features and context (realistic, cartoon, sketch, text). The control sets contain the
same variation and are carefully selected to ensure any contamination.

Perturbation Protocol: Our robustness evaluation employs four perturbation types designed to test
different aspects of interpretability stability (see Fig. 2.A for a visualization of the perturbations): (1)
Gaussian noise at various levels (σ = 0.1, 0.2, 0.3) testing basic robustness to pixel-level corruption,
(2) Mosaics made by shuffling portions of the image at different ratios (25%, 50%, 75%) to test
spatial disruption tolerance, (3) Adversarial attacks using Projected Gradient Descent (PGD),
following (Madry et al., 2017) with ϵ ∈ {0.03, 0.06}, testing optimized perturbation resistance,
and (4) DeepDream synthetic images optimized for each specific neuron using gradient ascent
techniques (see Sec 3.8, providing maximally activating synthetic stimuli for semantic coherence
testing. Complete implementation details are provided in Appendix B.3.

Human-recognizability gate. For each perturbed image we collected human judgments (App. A.2)
and included it in the R analysis only if ≥ 80% of annotators achieved “soft correct” (Sec. A.3.3)
and inter-rater agreement exceeded α ≥ 0.67 (Krippendorff, 2011). Images failing either criterion
were excluded from R to ensure robustness is assessed on semantically preserved inputs.

Human Evaluation Infrastructure: We used Prolific Academic with English-speaking participants
(age 18-65, normal vision, N=110) with rigorous quality control: attention checks, response time
monitoring, and consistency validation. Each image condition received 20-30 independent annotations.
Details in Appendix A.2.

5 RESULTS

We evaluate CLIP RN50x4 at image block 4/5/ReLU 2 through two lines of evidence: discrim-
ination and stability.

5.1 EVIDENCE 1: DISCRIMINATION

Figure 3 shows statistics for each of the four key metrics, Selectivity, Causality, Robustness, and
Human Consistency, as well as the InterpScore. Activation selectivity was saturated, indicating that it
is relatively straightforward to find individual example units with activations that are distinct across
different groups of images. However, despite this high selectivity, all the other metrics yielded values
that were much lower than 1, and with a large dispersion across different neurons. This stark contrast
indicates that relying exclusively on Selectivity fails to capture the challenges in interpretability
with causal metrics and human psychophysics consistency, and especially with causality metrics.
Additionally, an exclusive focus on selectivity does not adequately describe the large differences
across different neurons.

Supporting validation. The four axes capture distinct aspects of neuron behavior: paired comparisons
between components show large separations (Cohen’s d) for most pairs (Fig. A.7), indicating the
dimensions are not redundant.
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Figure 3: Even though selectivity is near ceiling, all the other metrics reveal challenges to
interpretability and reveal high variation across neurons. Each violin plot shows the distribution
across 10 neurons for each component (S, C, R, H, InterpScore). Box = IQR; solid line = median;
dashed line = mean (µ); points = individual neurons (N=10). Labels display µ and CV (σ/µ) across
neurons. ▲ marks Sailboat (#363), the example in Fig. 2.

5.2 EVIDENCE 2: STABILITY

We assess numerical and ranking stability across seeds, verifying implementation parity within
≤ 10−6 tolerance. Two-seed analysis shows small deviations: mean absolute changes of 0.0010
(S), 0.0062 (C), 0.0044 (R), and 0.0028 (InterpScore), with maximum changes ≤ 0.018. Ranking
stability is high: Kendall’s τ = 0.92-0.93 for InterpScore variants (bootstrap 95% CIs: 0.78-0.98);
ICC(1,k) = 0.97 (95% CI: 0.92-0.99).

6 DISCUSSION

Our framework integrates four dimensions (S,C,R,H) into InterpScore with evidence of improved
discrimination and numerical stability. We provide an enhanced Microscope-style visualization tool.
This enables systematic 4D assessment for research and safety applications.

This work evaluates whether a compact, multi-axis evaluation can move neuron-level mechanistic
interpretability beyond anecdotes toward an objective, discriminative, and reproducible basis. This
framework reveals three key observations: (i) even though selectivity saturates near ceiling, all other
metrics remain well below ceiling (ii) there is considerable variation across neurons and (iii) the
metrics remain numerically and rank-wise stable under standard seeds and benign perturbations.

The framework enables direct interpretability comparisons across neurons and algorithms, moving
beyond single metrics. InterpScore should be reported as (S,C,R,H) tuples with dispersion statistics.
This explains why highly selective units can lack functional relevance while moderately selective
units succeed through robustness and recognizability.

The choice to work at the neuron level is deliberate. Interventions are local and well-posed at this
granularity; the axes (S,C,R,H) are portable across layers and architectures; and unit-level mea-
surements provide a practical substrate for building circuit- and feature-level claims. Implementation
checks rely on numerical parity within tolerance (e.g., ≤ 10−6), and we avoid ad-hoc discretization
throughout. DeepDream stimuli are included within H to probe recognizability, while R is reserved
for semantically preserving transforms of natural images.

Immediate priorities include scaling to larger neuron sets and cross-architecture replications (e.g.,
ViT-based CLIP). Methodologically, more efficient causal measures and semi-automated supplements
to H are needed. This work establishes a minimal, portable unit for interpretability measurement.
We view this work as establishing a minimal, portable unit of measurement for interpretability: once
unit-level properties are gauged consistently, claims at the circuit and feature levels can rest on clearer
empirical foundations.

9
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A METHODOLOGY SUPPLEMENTS

A.1 STATISTICAL METHODS AND VALIDATION

A.1.1 BOOTSTRAP PROCEDURES

Bootstrap analysis with 1000 resamples (following the bootstrap framework of Efron and Efron–
Tibshirani Efron & Tibshirani (1994)) establishes high precision for all measurements (standard errors
≤ 0.007) Fig. 4, with particularly tight intervals for the InterpScore enabling reliable interpretability
assessment. Confidence intervals are computed using scipy.stats.bootstrap with bias-corrected
percentile method. Standard errors are calculated consistently from the bootstrap distribution to avoid
double-sampling artifacts.

Score Value

Selectivity

0.0

Causality

Robustness

Human 

InterpScore

Consistency

0.2 0.4 0.6 0.8 1.0

Figure 4: Selectivity exhibits minimal uncertainty while other components demonstrate sub-
stantial variability. Bootstrap 95% confidence intervals computed using 1000 resamples with single
consistent bootstrap implementation.

A.1.2 EFFECT SIZE CALCULATIONS

Cohen’s d computed for all pairwise component comparisons using paired-samples formula (mean
difference divided by standard deviation of differences) to account for within-subject design. P-values
corrected for multiple comparisons using Benjamini-Hochberg false discovery rate procedure. Large
effect sizes between most pairs confirm statistical independence of framework dimensions. Fig. 5.

A.1.3 POWER ANALYSIS

We conducted a two-panel power analysis using corrected statistical methods to evaluate study
sensitivity and observed effect magnitudes. Panel (a) shows prospective power curves calculated with
proper two-tailed test formulas for paired t-tests, illustrating detection capability across sample sizes.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Figure 5: Selectivity differs dramatically from other components with large effect sizes. Paired
Cohen’s d values with FDR-corrected significance levels show selectivity exhibits the largest differ-
ences (d = 11.34 vs causality, d = 5.58 vs robustness), confirming components measure statistically
distinct constructs.

Our study with n = 10 neurons (highlighted in orange) achieves 80% power to detect large effects
(d ≥ 0.8) and moderate power for medium effects (d ≈ 0.5).

Panel (b) presents observed effect sizes between component pairs with 95% bootstrap confidence in-
tervals, using paired Cohen’s d formula (mean difference divided by standard deviation of differences)
to avoid post-hoc power calculation pitfalls. The largest effect was observed between Selectivity
and Causality (d = 11.34), followed by Selectivity-Robustness (d = 5.58). Selectivity-Human
Consistency showed a moderate effect (d = 1.64), while comparisons among Causality, Robustness,
and Human Consistency yielded smaller effects ranging from d = 0.32 to d = 1.40.

All effect sizes involving Selectivity exceed Cohen’s large effect threshold (d ≥ 0.8), while non-
Selectivity comparisons fall below this threshold, confirming that selectivity captures fundamentally
different interpretability aspects and supporting our multi-dimensional framework’s necessity. Fig. 6

A.1.4 INTER-COMPONENT CORRELATION ANALYSIS

Pearson correlation coefficients computed between all component pairs reveal weak inter-component
relationships, supporting framework independence. P-values calculated using t-distribution with
degrees of freedom correction, though significance testing is omitted from visualization due to small
sample size limitations. Figure 7 presents the complete correlation structure.

Selectivity shows minimal correlations with other dimensions: r = 0.106 with Causality, r = 0.044
with Robustness, and r = −0.014 with Human Consistency. Among non-selectivity components,
correlations remain weak to moderate: Causality-Robustness (r = −0.130), Causality-Human
Consistency (r = −0.196), and Robustness-Human Consistency (r = 0.033). All correlations fall
below |r| = 0.2, indicating minimal shared variance between components and confirming that each
dimension captures distinct aspects of neural interpretability.
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Figure 6: Selectivity comparisons yield extremely large effect sizes while other component pairs
show smaller differences. (a) Power curves for paired t-tests across sample sizes with corrected
formulas. (b) Observed paired Cohen’s d values with bootstrap confidence intervals, demonstrating
selectivity’s distinctiveness from other framework components.

Figure 7: Framework components demonstrate weak inter-correlations supporting dimensional
independence. Pearson correlation coefficients between all component pairs show minimal shared
variance (|r| < 0.2), with selectivity exhibiting near-zero correlations with other dimensions.

A.1.5 FRAMEWORK DIMENSIONALITY ANALYSIS

Dimensionality Scaling

Framework performance scales systematically with dimensionality: single-component assessment
shows poor correlation with comprehensive evaluation (median r = 0.5), two-dimensional combi-
nations achieve good correlation (medianr = 0.85), while three-dimensional subsets reach strong
correlation threshold (r > 0.9).

Minimum Subset Analysis

The optimal three-dimensional combination (Selectivity + Robustness + Human Consistency, r =
1.000) suggests Causality, while highly discriminative individually (CV = 0.589), introduces
complexity that may not always improve overall assessment.
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Figure 8: Framework dimensionality analysis showing: (a) discriminative power by framework
dimensionality and (b) best performing component combinations.

Figure 9: Minimum subset analysis for reliable interpretability assessment showing correlation
with full framework by subset dimensionality. Results establish three dimensions as minimum viable
framework.

A.2 HUMAN EVALUATION PROTOCOL

A.3 PARTICIPANT DEMOGRAPHICS AND RECRUITMENT

Participants and assignment. We recruited 110 unique English-speaking participants via Prolific.
Participants could annotate multiple conditions. Each image received k independent annotations
(median k = 5, IQR [5, 6]). Participants annotated a median of m = 100 images (IQR [60, 110]).
Compensation followed Prolific norms.

Sample Size: 110 participants recruited via Prolific Academic platform

Demographics:

• Age: 18-65 years (M = 32.4, SD = 8.7)

• Gender: 52% female, 47% male, 1% other/prefer not to say

• Education: 78% college-educated, 15% graduate degree, 7% high school
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• Geography: 62% UK, 23% US, 15% other English-speaking countries

• Vision: 100% normal or corrected-to-normal (self-reported)

Inclusion Criteria:

• English speaker

• Age 18-65 years

• Normal or corrected vision

• Prolific approval rate > 95%

• Previous study completion rate > 90%

A.3.1 EXPERIMENTAL INTERFACE DESIGN

After a warmup phase, participants viewed images in randomized order and answered: ”Does this
image contain [CONCEPT]?” with two open answer boxes where to insert text. Interface features:

• Image presentation: 512x512 pixels, 3-second minimum viewing time

• Response recording: Two registered open text responses

A.3.2 QUALITY CONTROL IMPLEMENTATION (QC PTOTOCOL)

Attention Checks:

• Obvious positive cases (e.g., clear fire images for fire concept)

• Obvious negative cases (e.g., clear puppies images for fire concept)

• Expected accuracy > 95%, participants < 80% excluded

• Result: no participants excluded

• Checks on the inputs: text was real-time checked to not be the same in both answers, to be
at least 3 characters long, to not have repetitions of characters, and to be all upper case.

Response Time Analysis:

• Median response time: 10.2 seconds per image

• Responses < 0.5s flagged as too fast (0.0% of trials)

• Responses > 30s flagged as attention lapses (1.8% of trials)

• Flagged responses excluded from analysis

A.3.3 HARD VS. SOFT ACCURACY METRICS

We computed two distinct accuracy metrics to capture different aspects of participant performance in
the image recognition task:

Hard Accuracy represents exact string matching between participant responses and ground truth
labels. A response is considered hard correct only if it contains an exact lexical match to the ground
truth concept (case-insensitive). For example, if the ground truth is “dog”, only responses containing
exactly “dog” would be marked as hard correct.

Soft Accuracy employs a more lenient evaluation that accounts for semantic similarity and common
variations in responses. This metric considers responses correct if they meet any of the following
criteria:

• Exact match (similarity = 1.0)

• Partial containment between response and ground truth (similarity = 0.95)

• Synonym matching using a predefined dictionary of common concept variations (similarity
= 0.9)

15
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• Sequence-based string similarity above a threshold of 0.7 using the Ratcliff-Obershelp
algorithm

The soft accuracy metric handles several common response variations that would be penalized under
hard accuracy:

• Multi-word responses (e.g., “donald trump” vs. “trump”)

• Plural forms (e.g., “hands” vs. “hand”)

• Synonymous terms (e.g., “automobile” vs. “car”)

• Comma-separated multiple responses (e.g., “bed,bedroom” vs. “bed”)

• Minor spelling variations and typos

Focus on Soft Accuracy: We primarily report soft accuracy results because this metric provides a
more ecologically valid assessment of participant understanding. In real-world image recognition
tasks, multiple valid labels often exist for the same visual concept, and exact string matching fails to
capture semantically correct responses that use alternative but equivalent terminology. Soft accuracy
better reflects whether participants successfully identified the core concept in the image, regardless of
minor linguistic variations in their response formulation.

A.3.4 INTER-RATER AGREEMENT AND CORRUPTION LEVEL ANALYSIS

Inter-rater agreement varied substantially across corruption levels, with highest agreement for ad-
versarial attacks (L3: 0.801) and clean images (L5: 0.790), while DeepDream generated images
(L4) showed notably low agreement (0.209). Soft correct scores consistently exceeded hard correct
scores across all levels, with clean images achieving the highest accuracy (hard: 0.9, soft: 0.95) and
progressive degradation toward more corrupted levels. See Fig. 10.

For context, inter-rater reliability in similar annotation settings is commonly summarized with
coefficients such as Cohen’s κ and Krippendorff’s α Cohen (1960); Krippendorff (2011).

A.3.5 TRUMP NEURON ANALYSIS

The Trump neuron (Neuron 89) demonstrates how multi-dimensional evaluation reveals interpretabil-
ity characteristics beyond statistical selectivity alone (Fig. 11).

The neuron exhibits perfect statistical selectivity (S = 1.000) with strong separation between Trump
and non-Trump images (Cohen’s d = 8.36). Human recognition remains stable across naturalistic
corruptions (64-66% for L1-L3) but drops to zero at L4, which corresponds to DeepDream-generated
synthetic images. This complete recognition failure occurs because DeepDream optimization creates
images that maximally activate the neuron through low-level visual patterns that appear as abstract,
psychedelic imagery rather than recognizable Trump-related content.

The activation vs. recognition scatter plot reveals two distinct clusters: green dots (recognized
images) at moderate activation levels, and a prominent cloud of red dots (unrecognized images) at
high activation values in the top-right. These red dots represent the DeepDream synthetic images, they
achieve the highest neuron activations but remain completely unrecognizable to humans, illustrating
the disconnect between optimal neuron stimulation and semantic interpretability.
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Figure 10: Inter-rater agreement and accuracy analysis across corruption levels. Top left:
Inter-rater agreement (soft agreement) by corruption level, showing highest agreement for adversarial
attacks (L3) and clean images (L5), with notably low agreement for DeepDream generated images
(L4). Top right: Distribution of images across corruption levels, demonstrating balanced experi-
mental design. Bottom left: Accuracy comparison between hard and soft correct metrics across
corruption levels, with soft scoring consistently exceeding hard scoring. Bottom right: Overall
accuracy comparison between experimental and control conditions, showing similar performance
patterns across both trial categories.
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Figure 11: Multi-dimensional analysis of Trump neuron (Neuron 89). Top row: (left) Activation
distribution comparing Trump vs. non-Trump images showing clear separation; (center) human
recognition rates across corruption levels L1-L5; (right) scatter plot of neuron activation vs. human
recognition with green dots indicating recognized images and red dots indicating unrecognized
images. Bottom row: (left) confusion matrix showing counts of high/low activation vs. human
recognition; (center) mean activation levels across corruption levels with error bars; (right) ROC
curve showing true positive rate vs. false positive rate across activation thresholds.
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A.4 SELECTED NEURONS

Table 1: Selected neurons from CLIP RN50x4 (Radford et al., 2021) at layer
image block 4/5/ReLU 2. Neuron IDs indicate channel indices within the 2,560-dimensional
feature map. Each concept name is a link to the Enhanced Microscope-style visualization tool
(recreating Goh et al. 2021)

# Concept ID Category
1 Trump 89 Political figures
2 Arabic Alphabet 479 Text/language
3 Puppies 355 Animals
4 Sailboat 363 Objects
5 Fire 297 Natural elements
6 Australia 513 Geography
7 Droplets 967 Phenomena
8 Raised Hand 1116 Gestures
9 Mushroom 1157 Biological forms

10 Fashion Model 1424 Human figures

B TECHNICAL IMPLEMENTATION

B.1 COMPLETE GRAPH SURGERY

Overview We intervene at a single neuron in the CLIP RN50x4 image encoder and forward the
exact downstream path to measure embedding changes. This section specifies the architecture context,
intervention operators, and validation.

B.1.1 CLIP ARCHITECTURE CONTEXT

Input Image
(288 × 288 × 3)

Convolutional Blocks 1-3
Feature extraction and spatial processing

image_block_4/5/Relu_2
Shape: (1, 2560, 9, 9)

INTERVENTION

Reshape & Transpose
(1, 2560, 9, 9)  (1, 81, 2560)

Mean Pooling + Position Encoding

Multi-Head Self-Attention
(40 heads × 64 dimensions)

Output Projection & CLS Token

Final Embedding (1, 640)
CLIP semantic representation

Figure 12: CLIP RN50x4 image encoder and our intervention point
image block 4/5/ReLU 2. The layer lies just upstream of the attention pooling head,
enabling precise neuron manipulation while preserving all downstream computation.
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Hierarchy (RN50x4).

• Input: 288×288×3.
• ResNet stages: four stages (standard bottleneck counts [3, 4, 6, 3]); we target
image block 4/5/ReLU 2.

• Activation at layer: (1, 2, 560, 9, 9).
• Attention pooling: flatten to 81×2, 560, learned positional encodings, multi-head attention

(40 heads × 64 dim), projection to a 640-d image embedding.

B.1.2 INTERVENTION AND CAUSALITY MEASURE

Let A ∈ RC×H×W be the activation tensor at the layer and E(x) ∈ R640 the baseline embedding.

Interventions (single index n).
ablation: A′[n, :, :]← 0 (13)

amplification: A′[n, :, :]← 2A[n, :, :] (14)

Embedding shift (per image x).

Rint(x) =
∥Eint(x)− E(x)∥2

∥E(x)∥2
(15)

Causality (per neuron N , concept set X).
C(N,X) = 1

2 Ex∈X

[
Rabl(x) +Ramp(x)

]
(16)

We do not apply categorical thresholds to C; all analyses use continuous values.

B.1.3 VALIDATION (PARITY WITHIN TOLERANCE)

Table 2: Parity checks with hooks installed (no-op) and after surgery. Parity is defined as agreement
with the original forward pass within numeric tolerance on a held-out set (≥1k images).

Test Metric Result Tolerance

Embedding parity (no-op) max|E′ − E| ≤ 1×10−6 absolute
Embedding agreement (no-op) Pearson r ≥ 0.9999 -
Exact targeting max change on m ̸= n ≤ 1×10−7 absolute
Determinism run-to-run hash match pass identical seeds

B.2 MICROSCOPE-STYLE NEURON BROWSER (ANONYMIZED)

We re-implement and extend the Microscope concept Goh et al. (2021) for RN50x4 to support layer
image block 4/5/ReLU 2 (2,560 neurons), providing: (i) top-k activating natural images (Ima-
geNet; k=100 per neuron), (ii) synthetic feature visualizations (one per neuron), (iii) spatial activation
heatmaps (9×9), and (iv) basic statistics (activation distributions, top classes). An anonymized demo
and dataset handles are provided in the supplementary repository.1

B.3 DEEPDREAM: MAXIMALLY ACTIVATING SYNTHESIS

Complete graphical representation of the DeepDream approach in Fig. 13

Objective and update. For target feature f at layer l,

J(a) =
∑
m,n

z l
f,m,n(a, θ), g = ∇aJ(a), at+1 = at + η

g√
E[g2] + ϵ

(17)

with step size η, small ϵ (e.g., 10−8), and gradient normalization for stability Mordvintsev et al.
(2015).

1Links redacted for double-blind review.
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MAX  
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Figure 13: DeepDream pipeline for a target neuron (e.g., ”Fire”, ID 297). Red: unconstrained
synthesis from various initializations (noise/gray/structured/gradient/Perlin). Blue: constrained
(image-conditioned) variant, not used in our main study. This is an actual example from our
experiments. Can you recognize the maximally activating image as containing FIRE?

Multi-octave schedule. We use K=4 octaves from a base 72×72 to the CLIP input 288×288. Let
s = (288/72)1/(K−1) = 41/3 ≈ 1.587 and hi = wi = round(72 s i), yielding {72, 114, 181, 288}.
Each octave runs 2,000 iterations with η ≈ 2.0; the detail image is upsampled and added to the next
octave.

Initializations. We test five initializations:

Gray: a0(x, y, c) = 128 (18)
Uniform noise: a0 ∼ U(0, 255) (19)

Structured noise: a0 = 128 +
∑

s∈{4,8,16,32}

resize
(
N (0, 302), 288×288

)
(20)

Gradients: a0 = α radial(x, y) + β linearx(x, y) (21)

Perlin-like: a0 = 128 +

3∑
o=0

50

o+ 1
sin

(
2π 2ox
288 + ϕo

)
(22)

Regularization. Every 4 steps we clip to [0, 255] and apply random integer shifts ∆x,∆y ∼
U [−4, 4] (”jitter”) before back-shifting; this reduces high-frequency artifacts.

Role in our framework. DeepDream acts as a diagnostic for Human Consistency (H): if maximally
activating synthetic images for a neuron are not recognized by humans as containing the intended
concept, we discount that neuron’s interpretability signal accordingly.
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B.4 LUCID FEATURE VISUALIZATIONS

Lucid Olah et al. (2017) produces more human-interpretable feature images via diversity objectives,
TV/transform regularizers, and preconditioned gradients. We include one Lucid visualization per
neuron to complement DeepDream: Lucid favors interpretability (often at lower absolute activation),
while DeepDream probes whether maximal activation itself corresponds to human-recognizable
content.

C REPRODUCIBILITY

To ensure full reproducibility of our work, we provide open access to all code, data, and implementa-
tions used in this study. The complete codebase is organized across two GitHub repositories:

Results, Metrics, and Visualizations: All experimental code, metric implementations, and paper
visualizations are available at: REDACTED FOR ANONYMITY

Microscope Visualization Tool: The interactive microscope visualization tool for exploring
model interpretability is available at: https://github.com/anonymous-bee?tab=
repositories

These repositories contain detailed documentation, installation instructions, and example usage to
facilitate replication of our findings and enable further research in this area.

D ETHICS

This framework is designed to improve AI safety through better interpretability assessment. More
systematic evaluation of model components could help identify problematic behaviors and inform
safer AI development.

We acknowledge that detailed knowledge of model internals could potentially inform adversarial
attacks, but believe the benefits of interpretability research for AI safety outweigh these risks,
particularly given the extensive existing literature on model internals.
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