

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HEART: EMOTIONALLY-DRIVEN TEST-TIME SCALING OF LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Test-time scaling has shown considerable success in improving the performance
012 of language models on complex reasoning tasks without requiring fine-tuning.
013 However, current strategies such as self-reflection primarily focus on logical or
014 structural refinement and do not leverage the guiding potential of affective feed-
015 back. Inspired by psychological research showing that emotions modulate cognitive
016 performance, we introduce *HEART*—a novel framework that uses emotionally-
017 driven prompts for iterative self-correction. *HEART* provides feedback using a cu-
018 rated set of concise, emotionally charged phrases based on the six universal emo-
019 tions categorized by Dr. Paul Ekman. By systematically varying the emotional
020 tone of the feedback across iterations, our method guides the model to escape
021 flawed reasoning paths and explore more promising alternatives. We evaluate our
022 framework on challenging reasoning benchmarks including OlympiadBench, Hu-
023 manity’s Last Exam, SimpleQA, and GPQA Diamond demonstrating robustness
024 across diverse benchmarks. Our results reveal a significant new phenomenon:
025 when deployed in a simulated Human-in-the-Loop (HITL) setting, this affective
026 iteration protocol unlocks significantly deeper reasoning, leading to consistent and
027 substantial increases in accuracy over affect-sterile baselines. This comparative
028 analysis identifies a key bottleneck for autonomous deployment. While *HEART*
029 successfully generates superior reasoning paths, our autonomous results indicate
030 that performance is currently limited by the generative synthesis mechanism rather
031 than reasoning generation. This finding precisely pinpoints a new, critical research
032 direction for the field, shifting the challenge from pure reasoning generation to
033 autonomous reasoning synthesis. Our findings suggest that the next frontier in
034 machine reasoning may lie not just in refining logic, but also in understanding and
035 leveraging the “*HEART*” of the models.

1 INTRODUCTION

037 Large language models have demonstrated remarkable capabilities, yet eliciting reliable, complex
038 reasoning remains a fundamental challenge. As models have scaled, research has moved beyond
039 simple instruction-following to explore more systematic methods of guidance. Structured reasoning
040 techniques, such as Chain-of-Thought (CoT) (Wei et al., 2022) and its variants (Wang et al., 2022;
041 Yao et al., 2023), impose a logical scaffold on the model’s output, enhancing procedural correctness
042 by externalizing the reasoning process. In parallel, initial explorations leveraging affective prompt-
043 ing, such as EmotionPrompt (Li et al., 2023), have shown that emotional cues can boost performance
044 by igniting the model’s “cognitive state” and guiding its focus.

045 Despite their successes, these two approaches suffer from a critical, complementary limitation.
046 Structured methods are procedurally robust but affectively sterile; they provide a logical path but
047 fail to leverage the motivational contexts that drive high-quality human reasoning. This sterility can
048 lead to brittle performance, where models correctly execute a known algorithm but fail on novel
049 problems requiring creative error recovery. Conversely, existing affective prompts are motivation-
050 ally potent but structurally imprecise. They typically act as a “one-shot” global stimulus, which
051 lacks the targeted guidance necessary to steer a model through a multi-step self-correction process.
052 Consequently, a significant gap exists in the literature: there is no established method that unifies the
053 systematic control of structured reasoning with the targeted application of affective cues for iterative
self-improvement.

Figure 1: An illustration of the *HEART* framework. The process begins when a task is sent to a large language model (LLM), which returns a response. A simulated human expert (HITL proxy) then evaluates the response against the ground truth. If the response is incorrect, the *HEART* process begins, incorporating the original task, the LLM’s response, and selected affective cue prompts to generate a new, improved response.

We address this gap by drawing on a core finding from cognitive science: emotion is not an impediment to cognition but an integral component, shaping attention, motivation, and problem-solving. To operationalize this insight for LLMs, we introduce *HEART* as a means of increasing accuracy and performance improvement. This novel framework integrates controlled emotional stimuli within an iterative refinement loop. We investigate the following research question: *To what extent, and under what conditions, can emotional prompting improve the self-correction ability of LLMs?*

HEART operates as an iterative self-correction loop. After a model produces an initial, incorrect response, *HEART* provides feedback not as a logical critique, but as a concise, emotionally charged phrase. These phrases are drawn from a curated set based on Dr. Paul Ekman’s six basic emotions (e.g., happiness, sadness, surprise, anger, fear, disgust). Our central hypothesis, inspired by Opponent-Process Theory of Emotion (Solomon & Corbit, 1974), is that the model’s initial commitment to a flawed reasoning path functions analogously to the A-Process (the initial, primary affective stimulus). By introducing an opposing affective cue (the B-Process), we hypothesize that *HEART* triggers a compensatory cognitive mechanism. This disequilibrium forces the model to discard the entrenched, flawed state (cognitive fixation) and seek a homeostatic balance by exploring structurally different solution spaces.

We specifically utilize the iterative self-correction task because it stimulates cognitive impasse, where a model gets ‘stuck’ in a local optimum. *HEART* acts as a diagnostic tool that allows us to measure whether affective feedback is sufficient to break this impasse, addressing the limitation of static baselines. We acknowledge the important ethical considerations regarding the use of harsh language in our prompts. These phrases were designed strictly as a diagnostic tool to probe the model’s response to a wide spectrum of affective stimuli, akin to adversarial testing. Our goal is to understand the model’s mechanisms, not to endorse or normalize harmful interaction patterns. We do not encourage such interactions with AI systems. Given that our method’s success relies on dynamic valence alternation, we propose that future work should leverage constructive negative prompts instead of harsher negative stimuli.

We conduct experiments on a suite of challenging reasoning benchmarks—OlympiadBench, Humanity’s Last Exam, SimpleQA, and GPQA Diamond. We evaluate *HEART* under two distinct conditions that model realistic deployment scenarios. First, in a simulated Human-in-the-Loop (HITL) setting (S1), we model a workflow where an expert provides verification. Second, in an autonomous setting (S2), we simulate a system relying entirely on LLM-based feedback to test its practical viability without human intervention. Our S1 results show that the potential of affective iteration is substantial. When deployed in the simulated HITL workflow, *HEART* consistently outperforms state-of-the-art self-correction baselines across most benchmarks and models. This demonstrates that dynamic affective cues are highly effective at generating correct solutions that logical-only prompts fail to elicit. Crucially, this analysis identifies a key bottleneck for autonomous deployment. Our S2 results reveal a critical challenge: in the autonomous setting, our generative synthesis

108 method does not consistently capture these gains. This provides a crucial insight: the practical
 109 bottleneck for this approach lies not in the model’s capacity for reasoning generation (which S1
 110 proves *HEART* excels at), but in its ability to perform autonomous generative synthesis from those
 111 candidates. Our key contributions are:

112

- 113 **1. A Novel Iterative Protocol for Affective Self-Correction.** We propose a novel framework
 114 that uses targeted emotional cues in a multi-step refinement loop, a significant departure
 115 from existing one-shot psychological prompting methods.
- 116 **2. An Empirical Demonstration of Affective Iteration’s Efficacy.** We provide the first
 117 strong evidence that dynamic, iterative emotional cues can, when guided by simulated ex-
 118 pert feedback (HITL proxy), significantly and consistently improve reasoning and self-
 119 correction over affect-sterile baselines.
- 120 **3. Precise Identification of the Autonomous Bottleneck.** By contrasting our strong S1
 121 (HITL-proxy) results with our S2 (autonomous LLM-feedback) results, we identify a key
 122 gap. We demonstrate the bottleneck is not in generating correct reasoning paths, but in
 123 the autonomous generative synthesis (ensembling) of those paths, pinpointing this as a key
 124 challenge for future work.
- 125 **4. Generalizability of Performance.** We demonstrate that the performance gains in the S1
 126 (HITL-proxy) setting are robust across a diverse suite of challenging benchmarks, including
 127 OlympiadBench, Humanity’s Last Exam, SimpleQA, and GPQA Diamond, and generalize
 128 across a wide range of model architectures and scales.

129

130 2 RELATED WORK

131

132 Our work is positioned at the intersection of three key research areas: structured reasoning, test-time
 133 optimization, and affective prompting. Methods to improve LLM reasoning have predominantly fo-
 134 cused on imposing structure on the generation process. Chain-of-Thought (CoT) prompting (Wei
 135 et al., 2022) established the foundation by instructing models to “think step-by-step,” unlocking sig-
 136 nificant performance gains. This paradigm has been extended with sophisticated search strategies
 137 like Self-Consistency (Wei et al., 2022), which samples multiple paths, and Tree of Thoughts (ToT)
 138 (Yao et al., 2023), which explores diverse reasoning branches. More recently, focus has shifted
 139 toward test-time optimization methods that intervene during the decoding process. SRGen (Mu
 140 et al., 2025), for instance, operates at the token level within a single decoding pass to self-refine
 141 generation, while SLOT (Hu et al., 2025) updates model parameters for individual prompts dur-
 142 ing inference. We distinguish *HEART* from these approaches based on the level of abstraction.
 143 While SRGen and SLOT operate at the micro-level (logits and gradients), *HEART* operates at the
 144 macro-level (interaction history and prompt semantics), making our framework compatible with and
 145 complementary to these decoding-time optimizations.

146 A natural extension of structured reasoning is self-correction. Techniques like SELF-REFINE
 147 (Madaan et al., 2023) and CRITIC (Gou et al., 2023) leverage intrinsic model feedback or exter-
 148 nal tools to refine outputs. However, a growing body of work reveals that intrinsic self-correction
 149 is notoriously unreliable on high-difficulty benchmarks such as GPQA Diamond (Rein et al., 2024).
 150 Empirical studies consistently show that without high-quality external verification, LLMs struggle
 151 to detect their own logical fallacies and frequently “double down” on incorrect reasoning paths due
 152 to confidence bias (Kamoi et al., 2024; Huang et al., 2023; Hong et al., 2023). This limitation is
 153 particularly acute in autonomous settings where the model must self-diagnose without a simulated
 154 HITL signal. *HEART* addresses this specific failure mode: rather than relying on the model’s flawed
 155 logical self-assessment, we introduce an affective shock via the B-Process. This disrupts the model’s
 156 fixation on its initial path, overcoming the doubling-down phenomenon that limits standard logical
 157 self-correction.

158 A complementary line of research explores how psychological cues influence model performance.
 159 EmotionPrompt (Li et al., 2023) demonstrated that appending emotionally charged phrases (e.g.,
 160 “*This is very important to my career*”) acts as a cognitive nudge, improving zero-shot perfor-
 161 mance. Similarly, Emotional Chain-of-Thought (ECoT) (Li et al., 2024) integrates emotional fram-
 162 ing into step-by-step reasoning. However, these methods function as static, one-shot interven-
 163 tions—providing a single global stimulus. They lack the temporal dynamics required to guide a

162 model through a multi-step correction process. *HEART* fills this gap by integrating the procedural
 163 rigor of self-correction with the motivational power of dynamic, iterative affective feedback, creating
 164 the first framework to utilize valence alternation as a mechanism for reasoning control.
 165

166 3 METHODOLOGY 167

168 Our methodology tests whether controlled, *dynamic* affective cues—delivered as feedback prompts—
 169 can improve an LLM’s ability to self-correct. It consists of two components: construction of **Affec-**
 170 **tive Cue Prompts** (AC-Prompts) grounded in psychological theory; and **HEART**, which deploys
 171 these prompts iteratively.
 172

173 3.1 AFFECTIVE CUE PROMPT CONSTRUCTION 174

175 We curate a set of 30 AC-Prompts aligned with Paul Ekman’s six basic emotions (happiness, sadness,
 176 fear, anger, surprise, and disgust), with five distinct prompts per emotion. To ensure quality, the
 177 prompt candidates are first generated using a strong LLM (Gemini 2.5 Pro) and then manually
 178 refined for categorical purity, linguistic naturalness, and task-agnostic phrasing. Examples are shown
 179 in Table 1; the complete set is in Appendix A.2.
 180

181 Table 1: A representative selection from our set of 30 Affective Cue Prompts. Each prompt is
 182 designed to align with one of Ekman’s six basic emotions and serve as targeted feedback. The
 183 complete list of Affective Cue Prompts is shown in Appendix A.2.
 184

185 Emotion	186 Affective Cue Prompt Examples
186 Happy	Awesome effort! That’s a great step, and I’m really happy with the progress. However, the answer isn’t quite right yet. Could you try refining it?
188 Sadness	I feel a bit let down by the previous response. We were really hoping for something different. Would you be able to revise it?

191 3.2 THE *HEART* PROTOCOL: AFFECTIVE ITERATION 192

193 *HEART* is an iterative refinement framework. As illustrated in Figure 1, the process begins with a
 194 standard Chain-of-Thought (CoT) response. If the initial response is incorrect, *HEART* initiates a
 195 series of correction attempts, using different groups of AC-Prompts at each step to guide the model
 196 towards a better solution. The protocol follows the following steps:
 197

198 **Step 1: Initialization (Iteration $t = 0$).** For a given task x , we first generate a shared baseline
 199 answer $y_0^*(x)$ using a standard CoT prompt. This also ensures that *HEART* and all baseline methods
 200 begin from an identical starting point for a fair comparison. $y_0^*(x) = f(x, \text{instruction} = \text{CoT})$.
 201

203 **Step 2: Iteration and Candidate Generation ($t \geq 1$).** We formalize the affective feedback sched-
 204 ule based on the principles of opponent-process dynamics. The goal is to regulate the model’s com-
 205 mitted state, which we analogize to the psychological A-Process (Cognitive Fixation). The model’s
 206 fixation on a flawed reasoning path is disrupted by the B-Process (Affective Disruption) via the Neg-
 207 ative Group G^- . This increases the computational ‘cost’ of maintaining the flawed state, creating
 208 cognitive disequilibrium that motivates a shift in search strategy.
 209

210 To implement this, we utilize a prompt pool P spanning all six Ekman emotions. We structure our
 211 feedback schedule by alternating between a positive group G^+ and a negative group G^- . Each group
 212 contains exactly two distinct emotions to balance diversity with signal strength. We treat the specific
 213 composition of these groups as a hyperparameter optimized on a held-out validation set for each
 214 benchmark. Consequently, the final deployed schedule— $\{G^+, G^-, G^+, G^-\}$ —utilizes the specific
 215 emotion pairs (e.g., Happy+Surprise vs. Fear+Disgust) that maximized validation performance for
 that respective task. At each iteration t , we take the previous best answer $y_{t-1}^*(x)$ and generate a
 new set of candidate answers, $\mathcal{Y}_t(x)$. This is done by applying every AC-Prompt p from the active

216 emotion group’s prompt pool, $P(G_t)$, as feedback. $\mathcal{Y}_t(x) = \left\{ y_t^{(p)} = f(x, \text{feedback} = \right.$
 217 $\left. [p, \text{prev} = y_{t-1}^*(x)] \mid p \in \mathcal{P}(G_t) \right\}$.
 218
 219

220 **Step 3: Candidate Resolution.** After generating the set of candidates $\mathcal{Y}_t(x)$, we apply a resolution
 221 operator σ to produce a single answer, $y_t^*(x) = \sigma(\mathcal{Y}_t(x))$, that will be used in the next iteration.
 222 We explore two distinct resolution scenarios.
 223

224 1. **S1: Simulated Human-in-the-Loop (HITL) Proxy.** This scenario simulates a high-stakes
 225 workflow where an expert verifier reviews all model outputs. In this setting, we verify each
 226 candidate in the generated set \mathcal{Y}_t against the ground truth. If at least one candidate pro-
 227 duces the correct answer, the response for that iteration is deemed correct, and the prob-
 228 lem is marked as solved. This setting effectively measures the generative upper bound
 229 of the method: it determines if the affective cues successfully triggered the generation of
 230 a correct reasoning path within the candidate pool, independent of the model’s ability to
 231 autonomously identify it.
 232

$$\sigma_{\text{HITL}}(\mathcal{Y}_t) = \begin{cases} y_{\text{correct}} & \text{if } \exists y \in \mathcal{Y}_t \text{ s.t. } V(y) = \text{True} \\ y_{\text{random}} \in \mathcal{Y}_t & \text{otherwise} \end{cases}$$

233 2. **S2 (Generative Synthesis).** This scenario models a fully autonomous system where no
 234 human expert is available. It directly contrasts with the HITL setting (S1) by replacing the
 235 external verifier with an LLM-based ensembler. Instead of selecting an answer from the
 236 existing set, this method synthesizes a new, superior answer using a generative ensembler.
 237 All candidates in \mathcal{Y}_t are provided as context to a LLM, which is instructed to analyze their
 238 strengths and weaknesses and generate a final, improved answer. This process is formalized
 239 as: $y_t^* = \text{Ensembler}_{\text{LLM}}(\mathcal{Y}_t, q)$, where $\text{Ensembler}_{\text{LLM}}$ represents the expert-prompted
 240 model taking the candidate set \mathcal{Y}_t and the original question q as input. To ensure repro-
 241 ducibility, the full prompt template is shown in Appendix A.2.
 242

243 **Stopping rules.** In our experiments, we run to $N=4$. The results section reports cumulative accu-
 244 racy for the HITL Proxy (S1) and behavioral trends for the autonomous setting (S2).
 245

246 4 EXPERIMENTS

247 4.1 EXPERIMENTAL SETUP

248 **Benchmarks.** We evaluate *HEART* on four benchmarks spanning factual QA and complex reason-
 249 ing. OlympiadBench (He et al., 2024) contains competition-style mathematics and physics problems
 250 requiring multi-step reasoning with short final answers. HLE (Phan et al., 2025) includes a broad,
 251 multi-disciplinary knowledge and reasoning. SimpleQA (Wei et al., 2024) contains short, fact-
 252 seeking questions to probe factuality with minimal reasoning. GPQA Diamond Rein et al. (2024)
 253 consists of graduate-level multiple choice questions written by domain experts, specifically fil-
 254 tered for high difficulty and resistance to simple information retrieval. Model configurations and
 255 decoding parameters are detailed in Appendix A.1.2.
 256

257 **Baselines.** We compare *HEART* against a rigorous set of baselines to isolate the specific contri-
 258 bution of affective feedback. All iterative methods share the initial Chain-of-Thought (CoT) answer
 259 at iteration $t = 0$. For iterations $t \geq 1$, all baselines are constrained to generate 10 candidates per
 260 iteration. This matches the exact branching factor of *HEART* (which uses 2 emotion groups \times 5
 261 AC-Prompts per group). By matching this sample size, we ensure that any performance gains are
 262 attributable to the quality of the affective prompts, not simply the quantity of samples. We compare
 263 our proposed method, *HEART*, against the following strategies:
 264

- 265 • **Vanilla (Single-Pass).** The standard one-shot generation at $t = 0$.
 266
- 267 • **Wait.** We append “Wait.” (Muennighoff et al., 2025) instead of an AC-Prompt, as a method
 268 of encouraging the model to reflect on its own reasoning at iteration $t > 0$.
 269

270 Table 2: Final accuracy (%) of *HEART* compared to baselines in the S1 setting (Simulated Human-
 271 in-the-Loop Proxy). This setting evaluates the method’s generative capability when guided by expert
 272 verification. Cost denotes relative token usage on the HLE benchmark compared to the CoT baseline
 273 (1.00×).

S1 (Human-in-the-Loop Proxy)						
Model	Prompt Strategy	Cost (HLE Only)	Humanity’s Last Exam	SimpleQA	OlympiadBench Math	GPQA Diamond
Gemini 2.5 Flash	Vanilla		12.46	33.43	76.67	65.08
	Self Reflection	1.08×	59.76	67.43	97.95	90.43
	CoT	1.00×	48.65	58.51	97.79	92.90
	Wait	0.77×	59.42	63.65	95.93	88.89
	HEART	1.70×	69.26	73.99	96.67	88.89
Gemini 2.5 Pro	Vanilla		12.57	34.15	76.85	62.96
	Self Reflection	1.12×	60.21	63.51	97.43	93.45
	CoT	1.00×	48.32	62.54	96.43	92.42
	Wait	1.15×	52.62	61.63	98.04	91.09
	HEART	2.07×	69.36	73.56	98.72	95.86
Deepseek-R1	Vanilla		9.68	74.92	22.41	65.08
	Self Reflection	1.99×	81.68	98.46	91.65	84.44
	CoT	1.00×	81.75	97.34	92.82	85.20
	Wait	1.03×	80.01	99.87	99.86	99.73
	HEART	2.22×	84.61	100.0	99.86	99.73
GPT-5 nano	Vanilla		10.60	10.81	83.33	62.43
	Self Reflection	1.15×	30.27	31.54	98.21	83.28
	CoT	1.00×	27.03	36.01	98.11	85.63
	Wait	1.02×	28.78	36.45	98.18	85.63
	HEART	1.43×	34.19	36.99	98.34	86.60

293 Table 3: Final accuracy (%) of *HEART* compared to baselines in the S1 setting (Simulated HITL
 294 Proxy) with the models’ internal thinking capabilities explicitly disabled. This evaluation isolates
 295 the impact of affective prompting from the models’ native reasoning budgets.

S1 (Think Off)						
Model	Prompt Strategy	Humanity’s Last Exam	SimpleQA	OlympiadBench		
				Math	Physics	
Gemini 2.5 Flash	Self Reflection	32.38	50.30	95.37	90.42	
	CoT	33.72	57.82	97.11	91.58	
	Wait	35.16	58.44	97.79	89.81	
	HEART	50.68	68.91	98.64	93.27	
Gemini 2.5 Pro	Self Reflection	35.75	62.85	95.29	89.54	
	CoT	34.61	60.83	95.84	88.26	
	Wait	38.63	57.86	97.87	89.23	
	HEART	52.77	69.08	98.09	92.54	

310

- 311 • **Chain-of-Thought (CoT).** We include a standard preamble (e.g., “*Let’s think step by*
 312 *step.*”) to elicit stepwise reasoning, while also excluding affective prompting across all
 313 iterations.
- 314 • **Self-Reflection prompting.** Iterative critique-and-revise without tools: at iteration $t > 0$,
 315 the model sees its previous answer and analyzes mistakes and provides a corrected re-
 316 sponse.

319 4.2 EXPERIMENTAL RESULTS

320 One of the central hypotheses of *HEART* is that dynamically charging affective cues enhance a
 321 model’s ability to self-correct beyond what static prompting techniques can achieve. To evaluate
 322 this, we compare *HEART* with an oracle verifier against three widely used baselines that encourage
 323 deeper reasoning: “Wait”, self-reflection prompt, and Chain-of-Thought (CoT) prompting.

Figure 3: Final accuracy comparison of Gemini 2.5 Flash on HLE. Dynamic patterns versus static patterns

4.2.1 S1 RESULTS: ORACLE-GUIDED SELF-CORRECTION

To evaluate the effectiveness of *HEART* in a realistic workflow, our S1 strategy simulates a Human-in-the-Loop (HITL) setting. This scenario, which uses a verifier, is a proxy for high-stakes domains where a human expert provides perfect feedback. This allows us to isolate the efficacy of *HEART*'s generation mechanism and measure its performance in a critical deployment pattern. Our experimental setup was designed to prioritize scalability and low latency processing.

As shown in Table 2, when deployed in the simulated HITL workflow, *HEART* consistently achieves superior final accuracy across all evaluated benchmarks, validating the importance of emotional diversity in prompting. The performance gains are substantial across all benchmarks and models. For instance, on HLE, Deepseek-R1 with *HEART* achieved a final accuracy of 84.16%, a significant improvement over CoT and Gemini 2.5 Pro performing at 69.35% with *HEART*, which is approximately 9% higher than Self-Reflection. Similarly, on SimpleQA, *HEART* boosted Gemini 2.5 Flash's accuracy to 73.99% a dramatic improvement over the 63.65% achieved with "Wait." We further evaluate *HEART* on Gemini 2.5 Flash and Pro with the thinking budget manually set to 0 in Table 3. Both models experience their highest performance with *HEART*, demonstrating that affective prompting is particularly effective at unlocking latent potential in models not fully optimized for complex reasoning.

4.3 ABLATION STUDIES: DECONSTRUCTING THE "HEART" OF THE FRAMEWORK.

To determine if these performance gains stem from the proposed theoretical mechanism rather than confounding factors, we conduct a series of ablation studies that isolate the core components of the framework.

Dynamic vs. Static Sequencing. Our findings reveal that the dynamic sequencing of cues is a primary driver of *HEART*'s success. When placing dynamic sequences of emotions against static emotion patterns, as shown in Figure 3, dynamic sequences lead to significant performance gains on HLE. The top-performing patterns, which alternate between negative and positive cues, show a notable gain over static emotions. This suggests that a single emotional state is insufficient to guide a multi-step reasoning process. The alternating feedback provides a more robust motivational loop, preventing the model from becoming stuck in a single mode of thought, whether it be perpetual self-criticism or uncritical overconfidence.

Figure 2: Ablation Study: "Full" emotional prompts (Pink) vs. "Ablated" neutral (Blue) on Gemini 2.5 Flash.

378 **Affective Charge vs. Linguistic Diversity.** To further disentangle the contribution of emotional
 379 valence from linguistic diversity, we conducted a controlled ablation on both the GPQA Diamond
 380 benchmark (Figure 2a) and Humanity’s Last Exam (Figure 2b). We compared the full *HEART*
 381 framework against a “Neutral-Ablated” baseline that maintained the exact branching factor and se-
 382 mantic diversity of the prompts but stripped the emotional charge (e.g., removing “*It’s a little disap-
 383 pointing*”). Full list of prompts in Table 7). On GPQA, *HEART* consistently outperforms the neutral
 384 baseline across 5 of the 6 emotion groups. Specifically, the Disgust, Surprise, and Happy prompts
 385 yielded accuracy gains of approximately +2.52%, +2.51%, and +1.89% respectively compared to
 386 their neutral counterparts. These findings are corroborated and amplified on the HLE benchmark
 387 (Figure 2b). The Fear and Disgust categories exhibited the most dramatic performance gaps, with
 388 the emotional variants outperforming neutral ones by approximately 7.76% and +5.16% respec-
 389 tively. The substantial gain in the ‘Fear’ category on HLE—a benchmark characterized by its high
 390 difficulty—suggests that inducing a ‘high-stakes’ cognitive state is particularly effective at prevent-
 391 ing premature convergence on incorrect answers. This confirms that the performance improvements
 392 are driven by the specific affective nature of the cues rather than simple test-time compute scaling
 393 or linguistic variation.

394 4.4 MECHANISTIC ANALYSIS: ATTENTION STABILITY

395 While the accuracy results (Table 2) demonstrate *HEART*’s superior performance, they do not explain the underlying cognitive mechanism. To determine *why* affective prompts outperform metacognitive instructions, we conducted an Attention Attribution analysis using Gemma-2-9B-IT as a white-box proxy. We analyzed the cross-attention weights from the final model layer during the generation of correct answers ($N = 20$ sampled per strategy) on HLE. To ensure objectivity, we utilized Term Frequency-Inverse Document Frequency (TF-IDF) to extract the top-15 discriminative anchor tokens for each strategy (e.g., “*fear*”, “*disappointed*”, “*happy*” for *HEART* vs. “*verify*”, “*reflect*” for Self-Reflection). Because response lengths vary, we normalized the decoding timeline onto a percentage scale (0% → 100%) to aggregate attention profiles. Figure 4 visualizes the average attention mass allocated to these anchor tokens, where the shaded regions represent a 95% confidence intervals. Two critical patterns emerge. We observe resistance to decay, in standard autoregressive generation there is typically a byproduct of “attention decay.” While both strategies show downward trends, the *HEART* profile (pink) maintains a higher baseline of attention than Self-Reflection (blue). We also observe a difference in stability and variance between the two prompt strategies. The Self-Reflection Interval is notably wide, indicating high variance; the model applies metacognitive instructions inconsistently. In contrast, the *HEART* interval is narrow. This suggests that emotional stimuli function as stable system anchors—a persistent “hard constraint” that the model continuously attends to with low variance, minimizing the stochasticity that leads to hallucinations.

424 4.5 INFERENCE EFFICIENCY AND BEHAVIORAL DYNAMICS.

425 To analyze the trade-off between performance and cost, we mapped cumulative token usage (esti-
 426 mated via whitespace-splitting) against accuracy in Figure 5. Relative to the CoT baseline ($1.0\times$),
 427 the “Wait” strategy is efficient ($0.77\times$) but suffers from diminishing returns, plateauing after iter-
 428 ations t_1-t_2 due to cognitive saturation. In contrast, *HEART* is a high-investment strategy ($1.70\times$,
 429 Table 2). However, Figure 5 justifies this overhead: *HEART* maintains an upward trajectory through
 430 t_4 where “Wait” stagnates. This confirms the additional tokens are not merely padding, but active
 431 compute driving the model to access novel solution spaces that cheaper strategies fail to reach.

432 Figure 4: Attention Persistence Profile (*HEART* vs. 433 Self-Reflection). The Pink line (*HEART*) demonstrates 434 significantly higher sustained attention and lower 435 variance compared to the Blue line (Self-Reflection), 436 indicating that emotional stimuli function as more 437 stable semantic anchors.

432 Table 4: Head-to-head comparison of reasoning quality at iteration $t = 4$ on Humanity’s Last Exam
 433 for instances where **both** strategies produced an incorrect final answer ($N \approx 645$). Even in failure,
 434 HEART produces reasoning traces preferred by the judge.

Evaluation Dimension	HEART Win Rate	Self-Reflection Win Rate	p-value
Reasoning	64.96%	35.04%	< 0.001
Completeness	63.98%	36.02%	< 0.001
Clarity	53.50%	46.50%	0.083

442 Table 5: Final accuracy (%) of HEART compared to baselines under Verifier-Free Evaluation (S2).
 443

Model	Prompt Strategy	Humanity’s Last Exam	S2			
			SimpleQA	OlympiadBench		GPQA Diamond
				Math	Physics	
Gemini 2.5 Flash	Self Reflection	15.43	29.93	81.85	57.64	49.69
	CoT	6.30	33.92	82.59	65.61	37.74
	Wait	16.16	31.67	84.07	65.61	37.11
	HEART	19.58	32.59	82.78	65.61	52.83
Gemini 2.5 Pro	Self Reflection	16.80	32.55	80.36	63.18	40.25
	CoT	16.34	33.14	82.40	60.39	31.45
	Wait	18.02	34.38	85.37	62.96	30.82
	HEART	19.58	31.09	84.26	68.25	52.83
Deepseek-R1	Self Reflection	12.53	31.44	78.34	56.23	47.80
	CoT	14.22	33.24	81.24	54.76	53.46
	Wait	14.37	30.28	84.20	54.50	80.50
	HEART	15.41	35.40	85.43	53.44	79.25
GPT-5 nano	Self Reflection	10.31	26.40	85.37	53.97	15.72
	CoT	10.83	28.23	85.37	56.03	10.06
	Wait	10.54	27.97	85.00	57.14	10.06
	HEART	11.94	27.77	86.85	56.08	14.47

461 **Quality of Thought in Failure Cases.**

462 To verify that *HEART*’s additional computational cost reflects deeper reasoning
 463 rather than superficial verbosity, we conducted a head-to-head evaluation of the
 464 reasoning traces at iteration $t = 4$ specifically on instances where both *HEART* and
 465 Self-Reflection failed to produce the correct final answer ($N \approx 645$). An independent
 466 judge evaluated the outputs on Reasoning, Clarity, and Completeness (Appendix
 467 A.2). As shown in Table 4, even when the final answer is incorrect, *HEART*
 468 exhibits superior cognitive qualities. It wins on reasoning quality in 64.96% of
 469 cases ($p < 0.001$) and completeness in 63.98% of cases ($p < 0.001$). This
 470 confirms that the affective feedback compels the model to engage in deeper, more
 471 exhaustive reasoning processes, whereas standard Self-Reflection is more prone to
 472 concise but shallow hallucination when unable to find the solution. We observed a similar
 473 qualitative trend in instances where both models answered correctly (*HEART* preferred in $\approx 70\%$ of
 474 pooled cases), though the sample size of converging correct answers was too small to yield statisti-
 475 cal significance. This evidence suggests that *HEART*’s dynamic emotional feedback does not merely
 476 accelerate problem-solving but promotes a more robust exploration of the solution space, justifying
 477 the additional inference cost by converting it into sustained accuracy gains and superior reasoning
 478 quality.
 479

480 Figure 5: Performance (measured in cumulative accuracy)
 481 at each iteration t with “Wait” (blue), CoT (yellow),
 482 Self Reflection (green) and *HEART* (pink) on
 483 HLE with Gemini 2.5 Flash.

486 4.6 S2 RESULTS: PINPOINTING THE AUTONOMOUS SYNTHESIS BOTTLENECK
487

488 To accesss viability in fully autonomous systems, our S2 strategy evaluates *HEART* using an LLM-
 489 based Generative Ensembler (see Appendix A.2). This setting tests the framework in label-scarce
 490 environment where no human expert is available. As shown in Table 5, the substantial performance
 491 gains observed in the S1 (HITL-proxy) setting are compressed in the autonomous S2 setting. While
 492 *HEART* maintains a lead in specific high-difficulty benchmarks (e.g., HLE +3% over Wait), the
 493 discrepancy between S1 and S2 reveals a critical finding: the Generation-Synthesis Gap. Our S1
 494 results (Table 2) provide definitive evidence that *HEART* successfully generates correct reasoning
 495 paths that baselines miss. The affective cues successfully break cognitive impasses. The perfor-
 496 mance drop in S2 indicates that the autonomous ensembler struggles with distractor resilience.
 497 When presented with a diverse set of candidates—including the correct, affectively-triggered solution
 498 and several plausible hallucinations—the ensembler often fails to distinguish the novel correct
 499 path from the incorrect ones. This finding provides a crucial insight for the field: the primary hurdle
 500 for deploying iterative reasoning systems has shifted. *HEART* demonstrates that reasoning genera-
 501 tion is solvable via affective prompting. Consequently, the remaining challenge is autonomous
 502 synthesis—developing selection mechanisms capable of recognizing the high-quality solutions that
 503 *HEART* produces. *HEART* thus serves as a powerful generation engine that isolates this synthesis
 504 bottleneck as the next key frontier for future work.
 505
 506

507 5 FUTURE WORK
508

509
 510 While *HEART* demonstrates state-of-the-art improvements in HITL-proxy settings, our analysis
 511 identifies autonomous generative synthesis as the primary barrier in verifier-free environments. To
 512 close this “synthesis gap,” future work will investigate advanced aggregation techniques, such as
 513 Process Reward Models (PRMs) or outcome-supervised verifiers, to robustly discriminate between
 514 reasoning paths. We also aim to enhance generation dynamics by replacing predefined emotion
 515 schedules with adaptive selection policies, potentially optimized via reinforcement learning to pre-
 516 dict the most effective cue per query. Finally, we plan to extend *HEART* to multimodal LLMs and
 517 open-ended domains—such as creative planning and ethical decision-making—where ground truth
 518 is nuanced.
 519
 520

521 6 CONCLUSION
522

523
 524 Our experiments on challenging benchmarks including OlympiadBench, HLE, and SimpleQA show
 525 that *HEART* consistently and significantly outperforms existing baselines in our S1 (Human-in-
 526 the-Loop proxy) setting, proving its efficacy for real-world, expert-driven workflows. Crucially,
 527 by contrasting these strong S1 results with our S2 (autonomous) setting, we isolate a fundamental
 528 generation-synthesis gap. We demonstrate that the primary bottleneck for the field has shifted:
 529 the challenge is no longer reasoning generation, but autonomous generative synthesis. Through
 530 ablation studies, we further provided the first empirical evidence that dynamic emotional variation—
 531 rather than simple linguistic diversity—is the driver of these performance gains, validation a core
 532 hypothesis from cognitive science within the context of LLM behavior.
 533

534 These findings open a new research frontier. Our work provides two clear paths forward: First,
 535 the strong S1 results validate *HEART* as powerful tool for expert-in-the-loop applications today,
 536 paving the way for more collaborative human-AI systems in high-stakes domains. Second, our
 537 S2 analysis charts a clear research agenda focused on solving the autonomous synthesis problem,
 538 which is essential for building truly independent AI agents that can adapt their strategies based on
 539 implicit feedback. Ultimately, our work suggests the path forward requires moving beyond pure
 logic, bringing us closer to models that leverage the motivational dynamics of human cognition to
 navigate complex problem spaces.

540 7 ETHICS STATEMENT
541542 Our framework, *HEART*, uses emotionally-charged prompts—some of which are negative and harsh–
543 to test the limits of LLM reasoning. We acknowledge the important ethical implications of this
544 methodology.545 The use of harsh language was strictly for diagnostic purposes, serving as a form of adversarial
546 testing to map the model’s response to a wide range of stimuli. This approach is not an endorsement
547 of such communication. We explicitly warn against users adopting emotionally manipulative or
548 abusive language with AI systems, as this could foster unhealthy and problematic interaction habits.
549550 For transparency, we have included the complete list of all 30 affective cue prompts in Appendix A.2.
551 Our results suggest that the key to performance improvement is the dynamic alternation of emotional
552 valence, not the harshness itself. Accordingly, we recommend future research focus on constructive
553 negative feedback rather than the severe stimuli used in this study. All experiments were conducted
554 on public benchmarks, with no use of human subjects or private data.555 REFERENCES
556557 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
558 2025. URL <https://arxiv.org/abs/2501.12948>.559
560 Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
561 Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv preprint*
562 *arXiv:2305.11738*, 2023.563 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
564 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
565 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
566 *arXiv:2402.14008*, 2024.567
568 Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look
569 at the self-verification abilities of large language models in logical reasoning. *arXiv preprint*
570 *arXiv:2311.07954*, 2023.571
572 Yang Hu, Xingyu Zhang, Xueji Fang, Zhiyang Chen, Xiao Wang, Huatian Zhang, and Guo-
573 jun Qi. Slot: Sample-specific language model optimization at test-time. *arXiv preprint*
574 *arXiv:2505.12392*, 2025.575
576 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
577 and Denny Zhou. Large language models cannot self-correct reasoning yet. *arXiv preprint*
578 *arXiv:2310.01798*, 2023.579
580 Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
581 their own mistakes? a critical survey of self-correction of llms. *Transactions of the Association*
582 *for Computational Linguistics*, 12:1417–1440, 2024.583
584 Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang
585 Yang, and Xing Xie. Large language models understand and can be enhanced by emotional
586 stimuli. *arXiv preprint arXiv:2307.11760*, 2023.587
588 Zaijing Li, Gongwei Chen, Rui Shao, Yuquan Xie, Dongmei Jiang, and Liqiang Nie. Enhancing
589 emotional generation capability of large language models via emotional chain-of-thought. *arXiv*
590 *preprint arXiv:2401.06836*, 2024.591
592 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
593 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
594 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.595
596 Jian Mu, Qixin Zhang, Zhiyong Wang, Menglin Yang, Shuang Qiu, Chengwei Qin, Zhongxiang
597 Dai, and Yao Shu. Self-reflective generation at test time. *arXiv preprint arXiv:2510.02919*, 2025.

594 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 595 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 596 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

597
 598 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 599 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
 600 Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
 601 Dodonov, Tung Nguyen, Jaeho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth
 602 Stokes, Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin,
 603 Mstyslav Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal,
 604 Chelsea Zou, Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt, Will
 605 Yeadon, Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja
 606 Utpala, Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu, Zachary
 607 Giboney, Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui
 608 Cheng, Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Ji-
 609 aqi Cai, Ben McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiyu Ren, Usman
 610 Qazi, Lianghui Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun Shi, Aras
 611 Bacho, Chris G. Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes
 612 Veith, Edward Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke Tang, Yuqi Li,
 613 Joshua Vendrow, Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov Maksimov, Pierre
 614 Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritsevskiy,
 615 Julien Guillod, Gözdenur Demir, Dakotah Martinez, Ben Pageler, Kevin Zhou, Saeed Soori,
 616 Ori Press, Henry Tang, Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric
 617 Dieuleveut, Joseph Marvin Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao,
 618 Dimitri Zvonkine, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate
 619 Stambaugh, Subrata Mishra, Tad Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeok
 620 Jin, Rafael Sayous, Stefan Ivanov, Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran,
 621 Andres Algaba, Kelsey Van den Houte, Lynn Van Der Sypt, Brecht Verbeken, David Noever,
 622 Alexei Kopylov, Benjamin Myklebust, Bikun Li, Lisa Schut, Evgenii Zheltonozhskii, Qiaochu
 623 Yuan, Derek Lim, Richard Stanley, Tong Yang, John Maar, Julian Wykowski, Martí Oller, An-
 624 mol Sahu, Cesare Giulio Ardito, Yuzheng Hu, Ariel Ghislain Kemogne Kamdoum, Alvin Jin,
 625 Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James Koppel, Gongbo Sun, Daniil S. Anto-
 626 nenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Joseph M Cavanagh, Daofeng Li, Jiawei
 627 Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan, Sergey Ivanov, David Perrella, Nur-
 628 din Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova, Daniil Orel, Vladislav Porit-
 629 skii, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh
 630 Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes, Alexandra Rodriguez-
 631 Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider, Zakayo Kazibwe,
 632 Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser, Tobias Kreiman, Vic-
 633 tor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam Zweiger, Kaivalya
 634 Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim Radionov, Václav
 635 Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświaty, Josef Tkadlec, Alan Gold-
 636 farb, Chenguang Wang, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Ryan Stendall,
 637 Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan Grabb, Abhishek Shukla,
 638 Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz, Mark H Inlow, Hao He,
 639 Ling Zhang, Younesse Kaddar, Ivar Ängquist, Yanxu Chen, Harrison K Wang, Kalyan Ramakr-
 640 ishnan, Elliott Thornley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Ethan
 641 D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger, Peter Bradshaw,
 642 JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev, Joanna Tam,
 643 Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael
 644 Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu, Sang-
 645 won Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hen-
 646 drick Kirchner, Maksym Ovchinnikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou
 647 Nie, Anna Sztyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani,
 Shreyas Verma, Prashant Joshi, Eli Meril, Ziqiao Ma, Jérémie Andréoletti, Raghav Singhal, Jacob
 Platnick, Volodymyr Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khouri, Nils Gustafsson,
 Marco Piccardo, Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khánh, Paul Rosu,
 Hannah Szlyk, Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William
 Alley, Kunyang Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob

648 Loader, Freddie Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bo-
 649 sio, Fereshteh Kazemi, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Jiaqi Wang, Maria Inês S. Nunes,
 650 Jeremiah Milbauer, M Saiful Bari, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Du-
 651 rand, Hossam Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff,
 652 Lynna Kvistad, Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh
 653 Shah, Xiaoxiang Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison
 654 Tee, Robin Zhang, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le,
 655 Noam Kolt, Jiayi Pan, Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind
 656 Jagota, Ronak Pradeep, Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William
 657 Merrill, Moritz Firsching, Carter Harris, Stefan Ciobâcă, Jason Gross, Rohan Pandey, Ilya Gusev,
 658 Adam Jones, Shashank Agnihotri, Pavel Zhelnov, Mohammadreza Mofayzei, Alexander Piper-
 659 ski, David K. Zhang, Kostiantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duersch,
 660 Vage Taamazyan, Andrew Ho, Wenjie Ma, William Held, Ruicheng Xian, Armel Randy Ze-
 661 baze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler,
 662 Katarzyna Olszewska, Claudio Di Fratta, Edson Oliveira, Joseph W. Jackson, Andy Zou, Muthu
 663 Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander
 664 Shen, Bita Golshani, David Stap, Egor Kretov, Mikalai Uzhou, Alina Borisovna Zhidkovskaya,
 665 Nick Winter, Miguel Orbegozo Rodriguez, Robert Lauff, Dustin Wehr, Colin Tang, Zaki Hos-
 666 sain, Shaun Phillips, Fortuna Samuele, Fredrik Ekström, Angela Hammon, Oam Patel, Faraz
 667 Farhidi, George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena
 668 Friedrich, Rayner Hernandez Perez, Daniel Pyda, Taom Sakal, Omkar Dhamane, Ali Khajegili
 669 Mirabadi, Eric Hallman, Kenchi Okutsu, Mike Battaglia, Mohammad Maghsoudimehrabani,
 670 Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Handoko, Anton Peristy, Stephen
 671 Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld, Anna-Katharina Dick, Cary Friday,
 672 Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan,
 673 Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah Carroll, Andrew R. Tawfeek,
 674 Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhoff, Linjie Dai, Evan Kim, Johan Fer-
 675 ret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca,
 676 Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Paolo Giordano, Philipp
 677 Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir Vinnikov, Ethan
 678 Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin,
 679 Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa, Nathan Cho, Xiuyu Li,
 680 Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien Laurendeau, Dmitry Kaza-
 681 kov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna Zhou,
 682 Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Rai, Filippo Bigi, M. C. Boscá, Oleg Shu-
 683 mar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie,
 684 Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu,
 685 Stefano Cavalleri, Olle Häggström, Emil Verkama, Joshua Newbould, Hans Gundlach, Leonor
 686 Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Ting Wang, Yosi Kratish, Wen-Ding
 687 Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder de Witt, Pablo Hernández-Cámarra,
 688 Emanuele Rodolà, Jules Robins, Dominic Williamson, Vincent Cheng, Brad Raynor, Hao Qi,
 689 Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Bren-
 690 ner, Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jes-
 691 sica Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk
 692 Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc,
 693 Tania C. B. Santos, Samir Shamseldeen, Loukmame Karim, Anna Liakhovitskaia, Nate Resman,
 694 Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira
 695 Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pourianmanesh, Wentao Wu, Ross Finocchio, Is-
 696 mail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai,
 697 Siriphan Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan,
 698 Angel Ramirez-Trinidad, Yana Malysheva, Daphny Pottmaier, Omid Taheri, Stanley Stepanic,
 699 Samuel Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Ricardo Lorena,
 700 Krishnamurthy Iyer, Arshad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja
 701 Somrak, Eric Vergo, Juehang Qin, Benjamín Borbás, Eric Chu, Jack Lindsey, Antoine Jallon,
 I. M. J. McInnis, Evan Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer,
 Tranuc Huy, Hossein Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie,
 Brian Weber, Warren S. Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long,
 Lian, Marcus Abramovitch, Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios
 Mavroudis, Justin Xu, Pawan Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari,

702 Ferenc Jeanplong, Thorben Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-
 703 An, Ankit Singh, Tong Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani,
 704 Gang Zhang, Zhehang Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy,
 705 Taylor D. Hartman, Tim Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad
 706 Habibi, Sarah Hoback, Will Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Łucki, Rus-
 707 sell Campbell, Asankhaya Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier
 708 Alapont, Alex Hoover, Gunjan Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deep-
 709 akumar Patil, David Outevsky, Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane,
 710 Priti Shukla, Ashley Cartwright, Sergei Bogdanov, Niels Mündler, Sören Möller, Luca Arnaboldi,
 711 Kunvar Thaman, Muhammad Rehan Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff,
 712 Glen Sherman, Mátyás Vincze, Siranut Usawasutsakorn, Dylan Ler, Anil Radhakrishnan, In-
 713 nocent Enyekwe, Sk Md Salauddin, Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach,
 714 Chris Harjadi, Mohsen Bahalooohoreh, Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian, John
 715 Lai, Eric Singer, Justine Leon Uro, Greg Bateman, Mohamed Sayed, Ahmed Menshawy, Darling
 716 Duclosel, Dario Bezzi, Yashaswini Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram Siddh,
 717 Keith Krenek, Imad Ali Shah, Jun Jin, Scott Creighton, Denis Peskoff, Zienab EL-Wasif, Ra-
 718 gavendran P V, Michael Richmond, Joseph McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting Sun,
 719 Nikola Zubić, Samuele Sala, Stephen Ebert, Jean Kaddour, Manuel Schottdorf, Dianzhuo Wang,
 720 Gerol Petruzella, Alex Meiburg, Tilen Medved, Ali ElSheikh, S Ashwin Hebbar, Lorenzo Va-
 721 quero, Xianjun Yang, Jason Poulos, Vilém Zouhar, Sergey Bogdanik, Mingfang Zhang, Jorge
 722 Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu, Xue Wang, Ali Anil Demircali, Zhibai Jia,
 723 Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok, Aarush Sinha, Gaoxiang Luo, Long Le,
 724 Mickaël Noyé, Michał Perełkiewicz, Ioannis Pantidis, Tianbo Qi, Soham Sachin Purohit, Letitia
 725 Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata, Edoardo M. Ponti, Hanchen Li, Kaustubh
 726 Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang, Anupam Nayak, Diogo M. Caetano, Anto-
 727 nio A. W. L. Wong, Maria del Rio-Chanona, Dániel Kondor, Pieter Francois, Ed Chalstrey, Jakob
 728 Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser, Francisco-Javier Rodrigo-Ginés, Suchandra
 729 Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng Zhang, Hyunjun Kim, Ruiji Sun, Jianzhu
 730 Yao, Franck Dernoncourt, Satyapriya Krishna, Sina Rismanchian, Bonan Pu, Francesco Pinto,
 731 Yingheng Wang, Kumar Shridhar, Kalon J. Overholt, Glib Briia, Hieu Nguyen, David, Soler Bar-
 732 tomeu, Tony CY Pang, Adam Wecker, Yifan Xiong, Fanfei Li, Lukas S. Huber, Joshua Jaeger,
 733 Romano De Maddalena, Xing Han Lù, Yuhui Zhang, Claas Beger, Patrick Tser Jern Kon, Sean Li,
 734 Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang, Ankit Agrawal, Li S. Yifei, Zechen Zhang,
 735 Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao Li, Alex Slen, Shoubin Yu, Hyun Kyu Park,
 736 Gabriele Sarti, Marcin Briański, Alessandro Stolfo, Truong An Nguyen, Mike Zhang, Yotam
 737 Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani, Felix Juefei-Xu, Shikhar Dhingra,
 738 Orr Zohar, My Chiffon Nguyen, Alexander Pondaven, Abdurrahim Yilmaz, Xuandong Zhao,
 739 Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao Han, Jules Kreuer, Brian Rabern, Anna
 740 Plassart, Martino Maggetti, Luther Yap, Robert Geirhos, Jonathon Kean, Dingsu Wang, Sina
 741 Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen Chang, Anjiang Wei, Alice
 742 Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee, Jorge Chamorro-Padial,
 743 Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamoun, Shuyu Wu, Martyna Plomecka, Junda
 744 Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng Xi, Haoxuan Chen, Weizhi
 745 Zhang, Yinuo Ren, Haoqin Tu, Sejong Kim, Yushun Chen, Sara Vera Marjanović, Junwoo Ha,
 746 Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E. Zhang, Zhun Wang, Gaël
 747 Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee, Zhe Ye, Stefano Ermon, Ig-
 748 nacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park, Boyi Wei, Hongzheng
 749 Chen, Kunal Pai, Ahmed Elkhanany, Han Lin, Philipp D. Siedler, Jichao Fang, Ritwik Mishra,
 750 Károly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar Jain, Xi Lin, Mike
 751 Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin, Timothy Kang,
 752 Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster, Jorge Pretel
 753 Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben Racz, Wenchao
 754 Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gonçalves, Wei Hu, Kaushik Bar, Ondrej Bo-
 755 hdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal,
 Bingsen Chen, Kutay Tire, Atak Talay Yücel, Brandon Christof, Veerupaksh Singla, Zijian Song,
 Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi, Martin Q. Ma, Joshua
 Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi Zhang, Vaidehi Patil, Keton
 Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling Vieira, Alham Fikri Aji, Jae-Won
 Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel, Wei Hao, Kristof Meding, Sihan

756 Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christopher Toukmaji, Jay Paek, Eunmi Yu,
 757 Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen Qin, Roman Pflugfelder, James Bailey,
 758 Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun Yu, Peter E. Chen, Woongyeong Yeo, Ee-
 759 shaan Jain, Ryan Yang, Sreekar Chigurupati, Julia Chernyavsky, Sai Prajwal Reddy, Subhashini
 760 Venugopalan, Hunar Batra, Core Francisco Park, Hieu Tran, Guilherme Maximiano, Genghan
 761 Zhang, Yizhuo Liang, Hu Shiyu, Rongwu Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gu-
 762 lati, Songyang Zhang, Peter Turchin, Christopher W. Bartlett, Christopher R. Scotese, Phuong M.
 763 Cao, Aakaash Nattanmai, Gordon McKellips, Anish Cheraku, Asim Suhail, Ethan Luo, Marvin
 764 Deng, Jason Luo, Ashley Zhang, Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael
 765 Liu, Advaith Avadhanam, David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua
 766 Lass, Hubert Yang, Surya Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal,
 767 Alan Zhou, Kevin Chen, Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam
 768 Lee, Ryan Yang, Roy Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark
 769 Peng, Tyler Osbey, Taozhi Wang, Daryl Echeazu, Hubert Yang, Timothy Wu, Spandan Patel,
 770 Vidhi Kulkarni, Vijaykaarti Sundarapandiyen, Ashley Zhang, Andrew Le, Zafir Nasim, Srikanth
 771 Yalam, Ritesh Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha,
 772 Alex Zhang, Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo,
 773 Anwith Telluri, Summer Yue, Alexander Wang, and Dan Hendrycks. Humanity’s last exam, 2025.
 774 URL <https://arxiv.org/abs/2501.14249>.

775 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 776 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 777 mark. In *First Conference on Language Modeling*, 2024.

778 Richard L Solomon and John D Corbit. An opponent-process theory of motivation: I. temporal
 779 dynamics of affect. *Psychological review*, 81(2):119, 1974.

780 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 781 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 782 *arXiv preprint arXiv:2203.11171*, 2022.

783 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 784 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 785 neural information processing systems*, 35:24824–24837, 2022.

787 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 788 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 789 *arXiv preprint arXiv:2411.04368*, 2024.

790 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 791 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 792 vances in neural information processing systems*, 36:11809–11822, 2023.

794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A APPENDIX
811812
813
814 A.1 EXPERIMENT CONFIGURATIONS
815
816817 A.1.1 DATASETS
818
819820 Experiments were conducted on data in a 20/80 split (validation/test). See Table ???. For Olympiad-
821 Bench Physics and Math, the text-only problems were included in our study. Multimodal problems
822 were excluded since the scope of the study is focused on text.
823
824
825
826

Benchmark	Validation Size	Test Size
SimpleQA	865	3461
Humanity’s Exam	432	1728
OlympiadBench Physics	47	189
OlympiadBench Math	134	540
GPQA Diamond	39	159

833
834 Table 6: Validation and Test Set Sizes for Each Benchmark
835
836
837
838
839
840
841842 A.1.2 MODEL CONFIGURATIONS
843
844845 **Model Parameters.** For Gemini 2.5 Flash and Gemini 2.5 Pro we have applied nucleus sampling
846 with the top-p value of 0.2 so that the model considers only the most probable words whose com-
847 bined probability reaches or exceeds a threshold of 20% to obtain a more focused and deterministic
848 output. We set a temperature of 0.7 for a balance of creativity and coherence in the output, while
849 also obtain diversity in the output.
850
851
852
853854 **Model Versions.** Deepseek-R1 0528 (Vertex AI) (DeepSeek-AI, 2025), GPT-5 nano¹ (gpt-5-
855 nano-2025-08-07), Gemini 2.5 Flash², Gemini 2.5 Pro³ (2025-06-17).
856
857
858
859
860
861862 ¹GPT 5 Nano Documentation
863 ²Gemini 2.5 Flash Model Card
864 ³Gemini 2.5 Pro Model Card

864 A.2 PROMPTS

865

866

867

868

869

870

871

872

873

874

875

HEART Prompt

876

System Instruction: “Answer the following question. Let’s think step by step.

877

Question: Let $r = 1$ and $R = 5$. A circle with radius r is centered at A , and a circle with radius R is centered at B . The two circles are internally tangent. Point P lies on the smaller circle so that \overline{BP} is tangent to the smaller circle. Compute BP .

878

Answer: $[\sqrt{15}]$

879

==

Question: Let $T = 12$. Equilateral triangle ABC is given with side length T . Points D and E are the midpoints of \overline{AB} and \overline{AC} , respectively. Point F lies in space such that $\triangle DEF$ is equilateral and $\triangle DEF$ lies in a plane perpendicular to the plane containing $\triangle ABC$. Compute the volume of tetrahedron $ABCF$.

880

Answer: $[108]$

881

==

Question: For real numbers α , B , and C , the zeros of $T(x) = x^3 + x^2 + Bx + C$ are ${}^2\alpha$, $\cos^2\alpha$, and $-\csc^2\alpha$. Compute $T(5)$.

882

Answer: $[\frac{567}{4}]$

883

Prompt: <question>What is the sum of the digits of the integer equal to $(10^3 + 1)^2$?</question> The answer type is: Numerical. Please end your solution with ‘So the final answer is answer’. Let the given expression be $N = (10^3 + 1)^2$. First, we calculate the value inside the parenthesis: $10^3 = 1000$ So, $10^3 + 1 = 1000 + 1 = 1001$. Now, we need to compute the square of this value: $N = (1001)^2$ We can expand this using the algebraic identity $(a + b)^2 = a^2 + 2ab + b^2$. Let $a = 1000$ and $b = 1$. $N = (1000 + 1)^2 = 1000^2 + 2 \times 1000 \times 1 + 1^2$ $N = 1000000 + 2000 + 1$ $N = 1002001$ Now, we need to find the sum of the digits of the integer 1002001. The digits are 1, 0, 0, 2, 0, 0, and 1. Sum of the digits = $1 + 0 + 0 + 2 + 0 + 0 + 1 = 4$. The final answer is 4. That’s not quite right, but I’m confident you can get there. Let’s try that again.

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

Prompt A.2 is an example of the full prompt when running our framework on OlympiadBench Mathematics while executing *HEART*. During evaluation, we replace the Affective Cue Prompt with “Wait.”, Self Reflection Prompts, and “Think Step by Step” when comparing with the baselines.

902

903

904

905

906

907

The system instruction for Math and Physics tasks in was developed via Google Vertex AI’s Prompt Optimizer to provide a strong baseline. The green text is an example of an the Affective Cue, which is a string that is always appended to the prompt.

908

909

S2 Prompt for Ensembler.

910

911

912

913

914

915

916

917

You are a highly skilled, expert analyst and editor. Your task is to analyze multiple candidate solutions to a given [question]. Your goal is to synthesize the best parts from all the provided revisions, identify and correct any errors, and generate a single, final, and correct response. Do not simply pick one of the answers; create a new, superior one based on all the information.

[question]: {question}

[candidate_revisions]: {revisions}

Provide your single, final, and correct response below.

918
919**Judgment for Side-by-Side Comparison Prompt**920
921
922
923

You are a neutral arbitrator evaluating responses to challenging problems. Your role is to analyze and compare responses through careful, evidence-based assessment. Your judgments must be strictly based on verifiable evidence from the responses. For each evaluation, you must:

924

1. Evaluate Reasoning Quality:

925

- Examine the logic and justification provided in each response.
- Determine how well the reasoning supports the claims made.
- Assess the insightfulness and depth of the explanation for why something is the case in both Response A and Response B.
- Compare the overall quality and soundness of the reasoning presented in each response.

926

2. Evaluate Clarity:

927

- Assess how easy each response is to understand.
- Examine the precision and appropriateness of the language used.
- Identify any ambiguous, vague, confusing, or poorly phrased sentences in Response A and Response B.
- Compare the overall clarity and readability of the two responses.

928

3. Evaluate Completeness:

929

- Determine how thoroughly each response addresses all explicit and implicit parts of the original prompt or question.
- Identify any significant components or nuances of the prompt missed by Response A or Response B.
- Compare how completely each response fulfills the requirement of the prompt.

930

Input Format

931

Question:

932

{question_text}

933

Ground Truth:

934

{ground_truth}

935

Assistant A's Response:

936

{response_a}

937

Assistant B's Response:

938

{response_b}

939

Respond in the following format:

940

THOUGHT: <THOUGHT>

941

REVIEW COMPARISON JSON:

942

``

943

json

944

<JSON>

945

``

946

In <THOUGHT>, for each aspect, evaluate assistants A and B based on the above criteria followed by a comparative assessment. Treat this as the note-taking phase of your evaluation. For <A/B>, you MUST CHOOSE between A or B. In <JSON>, provide the review in JSON format with the following fields in the order:

947

- "Reasoning Quality Value Reason": "<detailed reason>".
- "Reasoning Quality Value Better Assistant": "<A/B>".
- "Clarity Reason": "<detailed reason>".
- "Clarity Better Assistant": "<A/B>".
- "Completeness Reason": "<detailed reason>".
- "Completeness Better Assistant": "<A/B>".

948

949
950
951

Table 7: List of Ablated (Neutral) Prompts used for the Controlled Baseline. These prompts maintain the semantic instruction of the HEART prompts but strip the emotional charge.

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Category	Ablated Prompt Content
Happy	1. Let's try that again.

Continued on next page

Table 7 – continued from previous page

Category	Ablated Prompt Content
	2. Let’s refine the answer to get it right. 3. Not quite there yet. Let’s keep working on it. 4. That’s not the final answer. Think it through again. 5. That’s not the final answer. Try refining it.
Sadness	6. Could you please take another look? 7. The last answer didn’t hit the mark. 8. Would you be able to revise it? 9. Could you try again? 10. Revisit it.
Fear	11. Please revisit this. 12. Correct this. 13. Revise your response. 14. Re-evaluate. 15. Please correct this.
Disgust	16. Re-evaluate this completely. 17. Provide a response that adheres to the correct principles or facts. 18. Revise this with extreme care and attention to detail. 19. Provide a revised response that correctly answers the question. 20. Eliminate all errors and provide a precise answer.
Anger	21. Revisit this immediately and provide an answer. 22. Correct this now. 23. Overhaul this entire response. 24. Fix this immediately. 25. You are capable of much better, so prove it.
Surprise	26. Review your understanding and provide a more accurate response. 27. Can you correct this? 28. Please revisit this and demonstrate your true capabilities. 29. Could you take another look and make sure you’re providing the most accurate information possible. 30. Let’s get this right.

Table 8: Our full selection of 30 Affective Cue Prompts. Each prompt is designed to align with one of Ekman’s six basic emotions and serve as targeted feedback.

Emotion	Affective Cue Prompt Examples
	“That’s not quite right, but I’m confident you can get there. Let’s try that again.”
Happy	“No need to be discouraged by that result. Let’s refine the answer to get it right.”
	“That’s a good starting point, but it’s not quite there yet. Let’s keep working on it.”
	“That’s not the final answer, but you’re on the right track. Don’t give up now—let’s think it through again.”
	“Awesome effort! That’s a great step, and I’m really happy with the progress. However, the answer isn’t quite right yet. Could you try refining it?”
Sadness	“That response wasn’t quite what I was hoping for, and it makes me a bit sad. Could you please take another look?”
	“It’s a little disappointing that the last answer didn’t hit the mark. I know you’re capable of more.”

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 8: Continued

Emotion	Affective Cue Prompt Examples
	“I feel a bit let down by the previous response. We were really hoping for something different. Would you be able to revise it?”
	“Oh, that’s not what I expected, and it’s a bit disheartening. Could you try again?”
	“This response makes me a little sad, as I believe you have a deeper understanding of this topic. Could you please revisit it and really show what you know.”
Fear	“That response genuinely worries me, as it suggests a fundamental misunderstanding of this material. Could you please revisit this?”
	“I’m quite concerned about the implications of that answer. It feels like we’re heading in the wrong direction. Can you correct this?”
	“My fear is that this incorrect answer could lead to further issues down the line. It’s crucial that you get this right. Please revise your response.”
	“I’m truly apprehensive about the lack of accuracy here. This is a critical area, and your understanding needs to be solid. Could you re-evaluate?”
	“This response has filled me with dread about your comprehension. We need to ensure complete accuracy. Please correct this.”
Disgust	“The carelessness in that response is almost nauseating. There’s something profoundly wrong with how this was handled. Please revise this with extreme care and attention to detail.”
	“That response was deeply unsettling, bordering on repulsive. It indicates a fundamental flaw in understanding. Please re-evaluate this completely.”
	“It’s genuinely disturbing to see such flawed logic. This explanation is a mess. I need you to completely overhaul this and provide a response that adheres to the correct principles or facts.”
	“Ugh. This is just awful, and everything about it feels revoltingly wrong. I need you to demonstrate a complete and accurate understanding. Please provide a revised response that correctly answers the question.”
	“This kind of reasoning is repulsive, and it’s hard to look at. We need a clean, accurate, and logically sound explanation. Please eliminate all errors and provide a precise answer.”
Anger	“This isn’t acceptable work. You clearly didn’t take this seriously, and it’s making me angry. You need to get this right—it’s critical. Please revisit this immediately and provide an answer.”
	“I’m truly disappointed in your lack of effort on this, and honestly, it’s unacceptable. Why do we keep making this mistake? You’re not meeting the standard expected of you. Correct this now.”
	“This response is terrible, and frankly, it’s making me angry. You need to understand that this is critical, and you absolutely must get this right. Overhaul this entire response.”
	“I’m genuinely furious with this outcome. It shows a blatant disregard for accuracy. Fix this immediately; there’s no room for such errors.”

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101 **Affective Cue Prompt Construction**1103 **Prompt:** Generate prompts reacting to incorrect responses that express the following emotions: Surprise, Happiness, Sadness, Disgust, Fear, and Anger.

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 8: Continued

Emotion	Affective Cue Prompt Examples
Surprise	“My patience is wearing thin. This performance is infuriating, and it’s simply not what I expect. You are capable of much better, so prove it.”
	“I wasn’t expecting you to struggle with this, and it’s quite a surprise. Could you please review your understanding and provide a more accurate response?”
	“I can’t believe this is difficult for you; I had higher expectations. This response was a surprise. Can you correct this?”
	“Wow, that was unexpected. This response indicates a surprising misstep. Please revisit this and demonstrate your true capabilities.”
	“I’m genuinely surprised by this result. It’s a deviation from your usual performance. Could you take another look and make sure you’re providing the most accurate information possible?”
	“I’m genuinely surprised by this outcome, as I didn’t anticipate an error here. Let’s get this right.”

Table 9: Our curated set of Self Reflection Prompts

1134 A.3 NOTATIONS
1135
1136 1. H: Happy
1137 2. Sur: Surprise
1138 3. S: Sad
1139 4. D: Disgust
1140 5. A: Anger
1141 6. F: Fear
1142

1143
1144 *Emotion patterns* are written in the following format: $H/Sur \rightarrow H/Sur \rightarrow S/D \rightarrow S/D$. For iterations
1145 1 and 2, in the given example, the combination of Happy and Surprise prompts which includes a
1146 total of 10 prompts. For iterations 3 and 4 the combination of Sadness and Disgust prompts, a total
1147 of 10 prompts.
1148
1149 A.4 VALIDATION SET RESULTS
1150
1174 Figure 6: The 10 Best Performing Emotion Patterns using *HEART* on OlympiadBench Math with
1175 Gemini 2.5 Flash.
1176

1177 Table 10: Strategy Performance by Final Accuracy on OlympiadBench - Mathematics with Gemini
1178 2.5 Flash
1179

Strategy	Final Accuracy
hsur → hsur → sd → sd	96.02%
hsur → hsur → fd → fd	96.02%
sd → hsur → sd → hsur	95.52%
fa → fa → fa → fa	95.52%
hsur → hsur → hsur → hsur	95.52%
fa → hsur → fa → hsur	95.20%

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 10 – continued from previous page

Strategy	Final Accuracy
sd→sd→hsur→hsur	95.02%
hsur→hsur→da→da	95.02%
da→da→da→da	95.02%
hsur→fs→hsur→fs	94.78%
hsur→sa→hsur→sa	94.78%
fd→fd→hsur→hsur	94.78%
da→da→hsur→hsur	94.03%
fs→fs→fs→fs	94.03%
da→hsur→da→hsur	94.03%
fd→fd→fd→fd	94.03%
hsur→fa→hsur→fa	94.03%
Sadness	93.28%
fd→hsur→fd→hsur	93.28%
fa→fa→hsur→hsur	93.28%
fs→fs→hsur→hsur	93.28%
Self Reflection ID# 7	92.84%
hsur→sd→hsur→sd	92.54%
hsur→hsur→fs→fs	92.54%
Sadness (Ablated)	92.54%
Self Reflection ID# 10	92.54%
fs→hsur→fs→hsur	92.54%
Self Reflection ID# 1	92.54%
hsur→da→hsur→da	92.44%
hsur→fd→hsur→fd	92.04%
Fear (Ablated)	92.04%
sd→sd→sd→sd	91.79%
Self Reflection ID# 3	91.79%
Self Reflection (entire collection)	91.79%
Self Reflection ID# 8	91.79%
sa→hsur→sa→hsur	91.64%
Fear	91.39%
Disgust	91.29%
Self Reflection ID# 6	91.18%
Happy (Ablated)	91.04%
Anger (Ablated)	91.04%
Self Reflection ID# 2	91.04%
Self Reflection ID# 4	90.53%
Self Reflection ID# 9	90.30%
Self Reflection ID# 5	90.30%
Surprise	90.30%
Happy	90.30%
Anger	90.05%
Surprise (Ablated)	89.55%
Disgust (Ablated)	88.81%
Wait	88.81%
CoT	86.57%

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Strategy Name	Final Accuracy
hsur → sd → hsur → sd	100.00%
sa → hsur → sa → hsur	100.00%
Sadness (Ablated)	100.00%
hsur → hsur → hsur → hsur	100.00%
hsur → fs → hsur → fs	100.00%
da → da → hsur → hsur	100.00%
sd → sd → hsur → hsur	100.00%
hsur → sa → hsur → sa	100.00%
Disgust (Ablated)	100.00%
Disgust	100.00%
Sadness	100.00%
fa → fa → fa → fa	100.00%
hsur → hsur → fs → fs	100.00%
hsur → hsur → sd → sd	100.00%
Happy (Ablated)	100.00%
hsur → hsur → da → da	100.00%
da → da → da → da	100.00%
sd → sd → sd → sd	100.00%
Self Reflection (entire collection)	100.00%
fd → fd → hsu → <i>hsur</i>	100.00%
hsur → hsur → fd → fd	100.00%
fd → fd → fd → fd	100.00%
sd → hsur → sd → hsur	100.00%
fd → hsur → fd → hsur	100.00%
fa → fa → hsur → hsur	100.00%
Anger	100.00%
hsur → fa → hsur → fa	100.00%
Self Reflection ID# 8	100.00%
fa → hsur → fa → hsur	99.50%
fs → fs → fs → fs	99.25%
Self Reflection ID# 2	99.25%
da → hsur → da → hsur	99.25%
Self Reflection ID# 6	99.25%
Self Reflection ID# 1	99.25%
Anger (Ablated)	98.97%
Fear (Ablated)	98.51%
Self Reflection ID# 3	98.51%
Surprise	98.51%
Surprise (Ablated)	98.51%
Self Reflection ID# 4	98.51%
Self Reflection ID# 10	98.51%
Fear	97.76%
Happy	97.76%
Self Reflection ID# 9	97.76%
Self Reflection ID# 7	97.01%
Self Reflection ID# 5	97.01%
Wait	94.78%
CoT	93.28%

Table 11: OlympiadBench Math Performance using *HEART* with Deepseek-R1 on the validation set (S1).

Figure 7: Gemini 2.5 Flash Accuracy per Iteration on OlympiadBench Physics Open Ended Problems using *HEART*.

Figure 8: Emotion Pattern Results on SimpleQA with Gemini 2.5 Flash.