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ABSTRACT

Test-time scaling has shown considerable success in improving the performance of lan-
guage models on complex reasoning tasks without requiring fine-tuning. However, cur-
rent strategies such as self-reflection primarily focus on logical or structural refinement.
They do not leverage the guiding potential of affective feedback. Inspired by psycho-
logical research showing that emotions can modulate cognitive performance, we intro-
duce HEART–a novel framework that uses emotionally-driven prompts for iterative self-
correction. HEART provides feedback on a model’s incorrect response using a curated set
of concise, emotionally charged phrases based on the six universal emotion categorized by
Dr. Paul Ekman. By systematically varying the emotional tone of the feedback across it-
erations, our method guides the model to escape flawed reasoning paths and explore more
promising alternatives. We evaluate our framework on challenging reasoning benchmarks
including OlympiadBench, Humanity’s Last Exam, and SimpleQA. Our results reveal a
significant new phenomenon: when guided by an oracle verifier, this affective iteration
protocol unlocks significantly deeper reasoning, leading to consistent and substantial in-
creases in accuracy over state-of-the-art baselines with the same verifier. However, we also
identify a critical bottleneck for practical deployment. In a verifier-free setting, it struggles
to harness these gains consistently, highlighting as a key challenge for future work. Our
findings suggest that the next frontier in machine reasoning may lie not just in refining
logic, but also in understanding and leveraging the ‘HEART’ of the models.

1 INTRODUCTION

Large language models have demonstrated remarkable capabilities, yet eliciting reliable, complex reasoning
remains a fundamental challenge. As models have scaled, research has moved beyond simple instruction-
following to explore more methods of guidance. Structured reasoning techniques, such as Chain-of-Thought
(CoT) (Wei et al., 2022) and its variants (Wang et al., 2022; Yao et al., 2023), impose a logical scaffold on
the model’s output, enhancing procedural correctness by externalizing the reasoning process. In parallel,
initial explorations leveraging affective prompting, such as EmotionPrompt (Li et al., 2023), have shown
that emotional cues can boost performance by igniting the model’s “cognitive state” and guiding its focus.

Despite their successes, these two approaches suffer from a critical, complementary limitation. Structured
methods are procedurally robust but affectively sterile; they provide a logical path but fail to leverage the
motivational contexts that drive high-quality human reasoning. This sterility can lead to brittle performance,
where models correctly execute a known algorithm but fail on novel problems requiring creative error re-
covery. Conversely, existing affective prompts are motivationally potent but structurally imprecise. They
typically act as a “one-shot” global stimulus, which lacks the targeted guidance necessary to steer a model
through a multi-step self-correction process. Consequently, a significant gap exists in the literature: there is
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Figure 1: An illustration of the HEART framework. The process begins when a task is sent to a large
language model (LLM), which returns a response. An oracle then evaluates the response against the ground
truth. If the response is incorrect, the HEART process begins, incorporating the original task, the LLM’s
response, and selected affective cue prompts to generate a new, improved response.

no established method that unifies the systematic control of structured reasoning with the targeted application
of affective cues for iterative self-improvement.

We address this gap by drawing on a core finding from cognitive science: emotion is not an impediment to
cognition but an integral component, shaping attention, motivation, and problem-solving. To operationalize
this insight for LLMs, we introduce HEART as a means of increasing accuracy and performance improve-
ment. This novel framework integrates controlled emotional stimuli within an iterative refinement loop.
We investigate the following research question: To what extent, and under what conditions, can emotional
prompting improve the self-correction ability of LLMs?

HEART operates as an iterative self-correction loop. After a model produces an initial, incorrect response,
HEART provides feedback now as a logical critique, but as a concise, emotionally charged phrase. These
phrases are drawn from a curated set based on Dr. Paul Ekman’s six basic emotions (e.g., happiness, sadness,
surprise, anger, fear, disgust). Our central hypothesis, inspired by opponent-process theory of emotion
(Solomon & Corbit, 1974), is that targeted affective feedback can trigger a corrective cognitive state. For
example, a prompt conveying “disappointment” in an answer can motivate the model to abandon its flawed
reasoning, and attempt a new one, similar to how humans leverage dissatisfaction to renew a problem-
solving effort. This process creates a form of affective metacognition, using emotion as a tool to scaffold the
model’s ability to “re-think” and improve its outputs. We acknowledge the important ethical considerations
regarding the use of harsh language in our prompts. These phrases were designed strictly as a diagnostic tool
to probe the model’s response to a wide spectrum of affective stimuli, akin to adversarial testing. Our goal is
to understand the model’s mechanisms, not to endorse or normalize harmful interaction patterns. We do not
encourage such interactions with AI systems. Given that our method’s success relies on dynamic valence
alternation, we propose that future work should leverage the constructive negative prompts used in our paper
instead of harsher negative stimuli.

We conduct experiments on a suite of challenging reasoning benchmarks– OlympiadBench, Humanity’s
Last Exam and SimpleQA. We evaluate HEART under two distinct conditions. First, in an oracle-guided
verifier setting (S1), we isolate the method’s potential. Second, in a verifier-free setting (S2), we test its
practical viability for real-world deployment where no ground truth is available. Our S1 results show that
the potential of affective iteration is substantial. When guided by an oracle, HEART consistently outper-
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forms state-of-the-art self-correction baselines across all benchmarks and models which leverage the same
oracle. This demonstrates that dynamic affective cues are highly effective at guiding the model to generate
correct solutions that logical-only prompts fail to elicit. However, our S2 results reveal a critical challenge:
in the verifier-free setting, our generative synthesis method fails to consistently capture these gains, often
performing on-par with or worse than baselines. This provides a crucial insight: the practical bottleneck for
this approach lies not in the model’s capacity for generation, but in its ability to select the correct reasoning
path during the synthesis process. Our key contributions are:

1. A Novel Iterative Protocol for Affective Self-Correction. We propose a novel framework that
uses targeted emotional cues in a multi-step refinement loop, a significant departure from existing
one-shot psychological prompting methods.

2. An Empirical Demonstration of Affective Iteration’s Potential. We provide the first strong
evidence that dynamic, iterative emotional cues can, when guided by an oracle, significantly and
consistently improve reasoning and self-correction over affect-sterile baselines.

3. Identification of the Selection Mechanism as a Critical Bottleneck. By contrasting our strong
S1 (oracle) results with our S2 (verifier-free) results, we identify a key gap between the potential of
affective generation and the limitations of current autonomous selection methods, pinpointing this
as a key challenge for future work.

4. Generalizability of Potential. We demonstrate that the performance gains in the S1 setting are
robust across a diverse suite of challenging benchmarks, including OlympiadBench, Humanity’s
Last Exam, and SimpleQA, and generalize across a wide range of model architectures and scales.

2 RELATED WORK

Our work is positioned at the intersection of three key research areas: structured reasoning, iterative self-
correct, and affective prompting. Methods to improve LLM reasoning have predominantly focused on im-
posing structure on the generation process. Chain-of-Thought (CoT) prompting (Wei et al., 2022), which
instructs models to “think step-by-step”, was a foundational work in this area, and showed significant perfor-
mance improvement on reasoning tasks. This paradigm has been extended with more sophisticated search
and verification strategies. Self-Consistency (Wei et al., 2022) samples multiple reasoning paths and selects
the most frequent answer as the final output, while Tree of Thoughts (ToT) (Yao et al., 2023) explores a
tree of diverse reasoning branches. While powerful, these methods are primarily concerned with logical and
procedural correctness, making them, affectively sterile.

A natural extension of structured reasoning is self-correction, where models iteratively refine their outputs.
Techniques like SELF-REFINE (Madaan et al., 2023) and CRITIC (Gou et al., 2023), leverage intrinsic
model feedback or external tools to iteratively refine previous outputs. However, a growing body of work
reveals that intrinsic self-correction is often unreliable. Surveys and empirical studies consistently show that
without external verifiers or expensive supervised fine-tuning, LLMs struggle to correct their own mistakes
(Kamoi et al., 2024; Huang et al., 2023). Models often fail to detect their own logical fallacies and can
confidently double down on incorrect reasoning paths (Hong et al., 2023; Pan et al., 2023). This highlights a
core challenge: existing self-correction frameworks either require costly external supervision or suffer from
the model’s own unreliable self-awareness.

A complementary line of research has shown that an LLM’s performance can be influenced by psychological
cues. EmotionPrompt (Li et al., 2023) show that appending emotionally charged phrases (e.g., “This is very
important to my career”) can act as a cognitive nudge, improving results across a few tasks. Similarly,
Emotional Chain-of-Thought (ECoT) (Li et al., 2024) has shown early promise by integrating emotional
framing into step-by-step reasoning. The primary limitation of these methods is that they are static, one-shot
interventions. They provide a single, global stimulus rather than a targeted, adaptive feedback signal that can
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guide a model through a multi-step correction process. Collectively, the literature highlights a clear gap: the
procedural rigor of self-correction has not been integrated with the motivational power of dynamic, iterative
affective feedback. Our work is the first to address this gap.

3 METHODOLOGY

Our methodology tests whether controlled, dynamic affective cues—delivered as feedback prompts–can
improve an LLM’s ability to self-correct. It consists of two components: construction of Affective Cue
Prompts (AC-Prompts) grounded in psychological theory; and the Affective Iteration Protocol (HEART),
which deploys these prompts iteratively.

3.1 AFFECTIVE CUE PROMPT CONSTRUCTION

We curate a set of 30 AC-Prompts aligned with Paul Ekman’s six basic emotions (happiness, sadness, fear,
anger, surprise, and disgust), with five distinct prompts per emotion. To ensure quality, the prompt candi-
dates are first generated using a strong LLM (we used Gemini 2.5 Pro for this purpose) and then manually
refined by human researchers for categorical purity, linguistic naturalness, and task-agnostic phrasing. Rep-
resentative examples are shown in Table 1; the complete set is in Appendix A.2.

Emotion Affective Cue Prompt Examples
Happy Awesome effort! That’s a great step, and I’m really happy with the progress. However, the

answer isn’t quite right yet. Could you try refining it?

Sadness I feel a bit let down by the previous response. We were really hoping for something different.
Would you be able to revise it?

Table 1: A representative selection from our set of 30 Affective Cue Prompts. Each prompt is designed to
align with one of Ekman’s six basic emotions and serve as targeted feedback. The complete list of Affective
Cue Prompts is shown in Appendix A.2.

3.2 THE HEART PROTOCOL: AFFECTIVE ITERATION

HEART is an iterative refinement framwork. As illustrated in Figure 1, the process begins with a standard
Chain-of-Thought (CoT) response. If the initial response is incorrect, HEART initiates a series of correction
attempts, using different groups of AC-Prompts at each step to guide the model towards a better solution.
The protocol follows the following steps:

Step 1: Initialization (Iteration t = 0). For a given task x, we first generate a shared baseline answer
y∗0(x) using a standard CoT prompt. This also ensures that HEART and all baseline methods begin from an
identical starting point for a fair comparison. y∗0(x) = f

(
x, instruction = CoT

)
.

Step 2: Iteration and Candidate Generation (t ≥ 1). Inspired by opponent theory, in each iteration
t, suppose we use a pre-defined schedule that alternates between two emotion groups: a positive group
G+ = {Happiness, Surprise} and a negative group G− = {Sadness, Anger}. Thus, for 4 iterations, the
schedule would be {G+, G−, G+, G−}. At each iteration t, we take the previous best answer y∗t−1(x), and
generate a new set of candidate answers, Yt(x). This is done by applying every AC-Prompt p from the active
emotion group’s prompt pool, P(Gt), as feedback. Yt(x) =

{
y
(p)
t = f

(
x, feedback = [p, prev =

y∗t−1(x)]
) ∣∣∣ p ∈ P(Gt)

}
. In this study, we include Fear and Disgust as additional possible values for G−.
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Step 3: Candidate Resolution. After generating the set of candidates Yt(x), we apply a resolution oper-
ator σ to produce a single answer, y∗t (x) = σ

(
Yt(x)

)
, that will be used in the next iteration. We explore

two distinct resolution scenarios.

1. S1 (Oracle Selection). This scenario represents an idealized upper-bound performance bench-
mark. We assume access to an omniscient verifier V , such as an exact match checker, that
can compare each candidate answer to the ground truth. The best candidate is selected based
on its verification score, and the iterative process halts as soon as correct answer is identified.
σoracle(Yt) = argmaxy∈Yt V (y).

2. S2 (Generative Synthesis). In this more realistic scenario where no ground-truth verifier is avail-
able. Instead of selecting an answer from the existing set, this method synthesizes a new, superior
answer using a generative ensembler. All candidates in (Yt) are provided as context to a large
language model (LLM), which is instructed to analyze their strengths and weaknesses. It then gen-
erates a final, improve answer that integrates the best information and corrects any errors. This
process can be formalized as: y∗t = EnsemblerLLM (Yt, q), where the EnsemblerLLM repre-
sents the expert-prompted model that takes the candidate set Y∗t and the original question q as input
to generate the new answer.

Stopping rules. In our experiments, we run to N=4. The results section reports cumulative accuracy for
S1 and verifier-free behavioral/proxy trends for S2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate HEART on three benchmarks spanning factual QA and complex reasoning.
OlympiadBench (He et al., 2024) contains competition-style mathematics and physics problems requiring
multi-step reasoning with short final answers. HLE (Phan et al., 2025) includes a broad, multi-disciplinary
knowledge and reasoning. SimpleQA (Wei et al., 2024) contains short, fact-seeking questions to probe fac-
tuality with minimal reasoning. We outline the model versions and decoding parameters in Appendix A.1.2.

Baselines. All methods share the Chain-of-Thought (CoT) baseline answer at iteration t = 0. For subse-
quent iterations, to ensure a fair comparison, each baseline generates the same number of candidate responses
per iteration as our HEART framework, from which an oracle selects the best response. We compare our
proposed method, HEART, against the following baselines:

• Wait. We append “Wait.” (Muennighoff et al., 2025) instead of an AC-Prompt, as a method of
encouraging the model to reflect on its own reasoning at iteration t > 0.
• Chain-of-Thought (CoT). We include a standard preamble (e.g., “Let’s think step by step.”) to

elicit stepwise reasoning, while also excluding affective prompting across all iterations.
• Self-Reflection prompting. Iterative critique-and-revise without tools: at iteration t > 0, the

model sees its previous answer and analyzes mistakes and provide a corrected response.

4.2 EXPERIMENTAL RESULTS

One of the central hypotheses of HEART is that dynamically charging affective cues enhance a model’s
ability to self-correct beyond what static prompting techniques can achieve. To evaluate this, we compare
HEART with an oracle verifier against three widely used baselines that encourage deeper reasoning: “Wait”,
self-reflection prompt, and Chain-of-Thought (CoT) prompting.
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S1
Model Prompt Strategy Humanity’s Last Exam SimpleQA OlympiadBench

Math Physics

Gemini 2.5 Flash Self Reflection 59.76 67.43 97.95 90.43
CoT 48.65 58.51 97.79 92.90
Wait 59.42 63.65 95.93 88.89
HEART 69.26 73.99 96.67 88.89

Gemini 2.5 Pro Self Reflection 60.21 63.51 97.43 93.45
CoT 48.32 62.54 96.43 92.42
Wait 52.62 61.63 98.04 91.09
HEART 69.36 73.56 98.72 95.86

Deepseek-R1 Self Reflection 81.68 98.46 91.65 84.44
CoT 81.75 97.34 92.82 85.20
Wait 80.01 99.87 99.86 99.73
HEART 84.61 100.0 99.86 99.73

GPT-5 nano
Self Reflection 30.27 31.54 98.21 83.28
CoT 27.03 36.01 98.11 85.63
Wait 28.78 36.45 98.18 85.63
HEART 34.19 36.99 98.34 86.60

Table 2: Final accuracy (%) of HEART compared to all baselines across all benchmarks and models with
Oracle-Guided Evaluation.

S1 (Think Off)
Model Prompt Strategy Humanity’s Last Exam SimpleQA OlympiadBench

Math Physics

Gemini 2.5 Flash Self Reflection 32.38 50.30 95.37 90.42
CoT 33.72 57.82 97.11 91.58
Wait 35.16 58.44 97.79 89.81
HEART 50.68 68.91 98.64 93.27

Gemini 2.5 Pro Self Reflection 35.75 62.85 95.29 89.54
CoT 34.61 60.83 95.84 88.26
Wait 38.63 57.86 97.87 89.23
HEART 52.77 69.08 98.09 92.54

Table 3: Final accuracy (%) of HEART compared to all baselines across all benchmarks and models with
Oracle-Guided Evaluation (S1) and the thinking capabilities manually turned off.

4.2.1 S1 RESULTS: ORACLE-GUIDED SELF-CORRECTION

To measure the maximum potential of affective cues, our first strategy uses an oracle verifier with access to
ground-truth labels. This controlled setting stimulates a perfect feedback mechanism, allowing us to isolate
the effectiveness of HEART in guiding a model toward a correct solution. This approach establishes an
upper bound on performance and validates the core mechanism of our framework. Our experimental setup
was designed to prioritize scalability and low latency processing. Full details on our model configurations
are available in Appendix A.1.2.
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As shown in Table 2, when guided by an oracle, HEART consistently achieves superior final accuracy across
all evaluated benchmarks, validating the importance of emotional diversity in prompting. The performance
gains are substantial across all benchmarks and models. For instance, on HLE, Deepseek-R1 with HEART
achieved a final accuracy of 84.16%, a significant improvement over CoT and Gemini 2.5 Pro performing
at 69.35% with HEART, which is approximately 9% higher than Self-Reflection. Similarly, on SimpleQA,
HEART boosted Gemini 2.5 Flash’s accuracy to 73.99% a dramatic improvement over the 63.65% achieved
with the ”Wait.” baseline. These results highlight HEART’s ability to effectively guide models toward a
correct solution when a clear signal of success or failure is available.

The HEART framework is also designed to be model-agnostic, robustly enhancing performance across mod-
els with different reasoning capabilities. We evaluate HEART on Gemini 2.5 Flash and Gemini 2.5 Pro with
its thinking budget set to 0. Both models experience significant benefits and the highest performance with
HEART across all baselines and benchmarks, as shown in Table 3. These results highlight HEART’s ability
to effectively guide models toward a correct solution when a clear signal of success or failure is available, and
demonstrate that it can be particularly effective at unlocking latent potential in models not fully optimized
for complex reasoning.

4.3 ABLATION STUDIES: DECONSTRUCTING THE “HEART” OF THE FRAMEWORK.

To understand the source of these performance gains, we conduct a series of ablation studies that isolate
the core components of the framework. Our findings reveal that the affective framing and the dynamic
sequencing of cues are the primary drivers of HEART’s success. When placing dynamic sequences of
emotions against static emotion patterns. As shown in Figure 2, dynamic sequences lead to significant
performance gains on HLE. The top-performing patterns, which alternate between negative and positive
cues, show a notable gain over static emotions. This suggests that a single emotional state is insufficient to
guide a multi-step reasoning process. The alternating feedback provides a more robust motivational loop,
preventing the model from becoming stuck in a single mode of thought, whether it be perpetual self-criticism
or uncritical overconfidence.

60% 65% 70% 75% 80%

H/Sur  H/Sur  F/S  F/S
H/Sur  F/S  H/Sur  F/S

H/Sur  S/D  H/Sur  S/D
H/Sur  H/Sur  F/D  F/D
F/S  F/S  H/Sur  H/Sur

S/D  S/D  H/Sur  H/Sur
H/Sur  D/A  H/Sur  D/A

Fear/Disgust (Static)
S/D  H/Sur  S/D  H/Sur

Sad/Disgust (Static)
H/Sur  S/A  H/Sur  S/A
F/A  H/Sur  F/A  H/Sur
F/S  H/Sur  F/S  H/Sur

74.55%
74.35%

73.15%
72.75%
72.54%

71.94%
71.94%
71.94%
71.74%
71.74%
71.74%
71.54%
71.54%

60% 65% 70% 75% 80%

H/Sur  F/D  H/Sur  F/D
F/D  F/D  H/Sur  H/Sur
F/D  H/Sur  F/D  H/Sur
H/Sur  H/Sur  D/A  D/A
S/A  H/Sur  S/A  H/Sur
H/Sur  H/Sur  S/D  S/D

Happy/Surprise (Static)
Fear/Anger (Static)

F/A  F/A  H/Sur  H/Sur
Fear/Sadness (Static)

D/A  H/Sur  D/A  H/Sur
H/Sur  F/A  H/Sur  F/A

D/A  D/A  H/Sur  H/Sur
Disgust/Anger (Static)

71.34%
71.34%
71.21%
71.14%
70.94%

70.54%
70.34%
70.34%

69.99%
69.54%

68.54%
67.94%
67.74%

66.13%

Final Accuracy

Figure 2: Final accuracy of Gemini 2.5 Flash under static and dynamic affective prompting strategies. Dy-
namic sequences involve prompts that change mid-task. Notations are defined in Appendix A.3 for notations.

4.4 HOW AFFECTIVE CUES INFLUENCE MODEL BEHAVIOR.

The power of dynamic sequences is crystallized when comparing a top-performing HEART pattern against
the neutral “Wait.” cue. The influence of affective cues on model behavior is crystallized in the performance
trajectories shown in Figure 4.4. The plot reveals that HEART does more than just improve final accuracy;
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it fundamentally alters the problem-solving path. Unlike the ‘Wait‘ baseline, which often exhibits a more
gradual improvement, the HEART strategy frequently follows a steeper trajectory in early iterations (t0 to
t2). This suggests that the initial affective cues prompt a more efficient and decisive correction, allowing
the model to more rapidly abandon flawed reasoning paths. Furthermore, affective cues appear to enable
models to overcome performance plateaus where a neutral prompt would stagnate. On OlympiadBench
Physics, for example, the ‘Wait‘ strategy’s improvement flattens after t2, while HEART continues to find
accuracy gains in later iterations. This evidence suggests that HEART’s dynamic emotional feedback does
not merely accelerate problem-solving but promotes a more robust exploration of the solution space, leading
to both faster convergence and a higher final performance ceiling.

S2
Model Prompt Strategy Humanity’s Last Exam SimpleQA OlympiadBench

Math Physics

Gemini 2.5 Flash Self Reflection 15.43 29.93 81.85 57.64
CoT 6.30 33.92 82.59 65.61
Wait 16.16 31.67 84.07 65.61
HEART 19.58 32.59 82.78 65.61

Gemini 2.5 Pro Self Reflection 16.80 32.55 80.36 63.18
CoT 16.34 33.14 82.40 60.39
Wait 18.02 34.38 85.37 62.96
HEART 19.58 31.09 84.26 68.25

Deepseek-R1 Self Reflection 12.53 31.44 78.34 56.23
CoT 14.22 33.24 81.24 54.76
Wait 14.37 30.28 84.20 54.50
HEART 15.41 35.40 85.43 53.44

GPT-5 nano Self Reflection 10.31 26.40 85.37 53.97
CoT 10.83 28.23 85.37 56.03
Wait 10.54 27.97 85.00 57.14
HEART 11.94 27.77 86.85 56.08

Table 4: Final accuracy (%) of HEART compared to baselines under Verifier-Free Evaluation (S2).

4.5 PERFORMANCE IN A ORACLE-FREE SETTING

To assess real-world practically, our second strategy evaluates HEART in a no-oracle setting to test the
framework’s viability for deployment in practical, label-scarce environments where the ground-truth labels
are rarely available during inference. In this scenario, the model relies exclusively on its own intermedi-
ate outputs and dynamically selected affective cues to self correct. As shown in Table 4, while we see
performance improvement for some benchmarks and models, this improvement is not consistent and as pro-
nounced as in the Oracle setting. This experiment reveals both the capabilities and limitations of HEART in
production-like environments: it can still outperform static baselines in label-sparse settings, but the absence
of external feedback introduces potential risks such as error amplification. By quantifying these trade-offs,
we demonstrate that HEART remains a valuable tool for deployment in domains where human verification
is costly or unavailable.
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5 FUTURE WORK
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Figure 3: Performance (measured in cumulative accuracy)
at each iteration t with “Wait” (blue), CoT (yellow), Self
Reflection (green) and HEART (pink) on HLE with Gemini
2.5 Flash.

While HEART demonstrates substantial im-
provements over traditional prompting meth-
ods, there is room to transform the framework
into a fully dynamic, robust, and generaliz-
able reasoning system. Our future work will
focus on two primary directions: enhancing
the core algorithm and expanding its applica-
tion scope. First, we will increase the frame-
work’s dynamism and reliability. We plan to
replace the predefined emotion sequence with
an adaptive selection model, potentially using
reinforcement learning, to predict the optimal
affective cue for any given step. To manage
the risk of cascading failures in this dynamic
setting, we will integrate confidence calibra-
tion and ensemble-based verification to miti-
gate error propagation. Second, we will rigor-
ously test HEART’s generalizability. We will
extend the framework to multimodal LLMs,
exploring how affective signals in vision and
audio can guide reasoning on complex inputs. Concurrently, we will broaden our evaluation beyond math
and logic to include commonsense reasoning, open-domain QA, and real-world planning. This expansion
will provide robust evidence of the framework’s effectiveness across diverse domains and model architec-
tures.

6 CONCLUSION

The development of robust and generalizable reasoning in LLMs is a central goal of AI research. While
prior work has focused on structured or psychological methods in isolation, we demonstrated that the true
potential of iterative self-correction lies in their synergy. We introduced HEART, a novel framework that
uses emotionally-charged feedback to guide LLMs through a multi-step reasoning process. By dynamically
varying affective cues across iterations. HEART provides a lightweight, model-agnostic and theoretically-
grounded mechanism to stimulate alternative reasoning paths and escape flawed logic.

Our experiments on challenging benchmarks including OlympiadBench, HLE, and SimpleQA show that
HEART consistently and significantly outperforms existing baselines. Through ablation studies, we provided
the first empirical evidence that dynamic emotional variation is a crucial driver of these performance gains,
validating a core hypothesis from cognitive science in the context of LLM behavior.

These findings open a new research frontier. The implications of successfully integrating affective feedback
extend far beyond improving accuracy on reasoning tasks. By demonstrating that LLMs can respond to
nuanced, human-centric cures, our work paves the way for more natural and collaborate human-AI systems.
This approach could unlock new capabilities in areas like personalized education, creative co-writing, or
building AI agents that can adapt their strategies based on implicit feedback. Ultimately, our work suggests
the path forward requires moving beyond pure logic, bringing us closer to models that don’t just compute,
but comprehend in a more holistic, human-aligned manner.
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7 ETHICS STATEMENT

Our framework, HEART, uses emotionally-charged prompts–some of which are negative and harsh–to test
the limits of LLM reasoning. We acknowledge the important ethical implications of this methodology.

The use of harsh language was strictly for diagnostic purposes, serving as a form of adversarial testing to map
the model’s response to a ride range of stimuli. This approach is not an endorsement of such communication.
We explicitly warn against users adopting emotionally manipulative or abusive language with AI systems,
as this could foster unhealthy and problematic interaction habits.

For transparency, we have included the complete list of all 30 affective cue prompts in Appendix A.2. Our
results suggest that the key to performance improvement is the dynamic alternation of emotional valence, not
the harshness itself. Accordingly, we recommend future research focus on constructive negative feedback
rather than the severe stimuli used in this study. All experiments were conducted on public benchmarks,
with no use of human subjects or private data.
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Truong An Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani, Felix
Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven, Abdurrahim Yilmaz,
Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao Han, Jules Kreuer, Brian Rabern,
Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos, Jonathon Kean, Dingsu Wang, Sina Mol-
laei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen Chang, Anjiang Wei, Alice Bizeul, Xiaohan
Wang, Alexandre Oliveira Arrais, Kushin Mukherjee, Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu,

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Junyi Guan, Adam Bouyamourn, Shuyu Wu, Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng,
Shreyas Subramanian, Haocheng Xi, Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqin Tu, Sejong Kim,
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A APPENDIX

A.1 EXPERIMENT CONFIGURATIONS

A.1.1 DATASETS

Experiments were conducted on data in a 20/80 split (validation/test). See Table A.1.1. For OlympiadBench
Physics and Math, the text-only problems were included in our study. Multimodal problems were excluded
since the scope of the study is focused on text.

Benchmark Validation Size Test Size
SimpleQA 865 3461
Humanity’s Exam 432 1728
OlympiadBench Physics 47 189
OlympiadBench Math 134 540

Table 5: Validation and Test Set Sizes for Each Benchmark

A.1.2 MODEL CONFIGURATIONS

Model Parameters. For Gemini 2.5 Flash and Gemini 2.5 Pro we have applied nucleus sampling with
the top-p value of 0.2 so that the model considers only the most probable words whose combined proba-
bility reaches or exceeds a threshold of 20% to obtain a more focused and deterministic output. We set a
temperature of 0.7 for a balance of creativity and coherence in the output, while also obtain diversity in the
output.

Model Versions. Deepseek-R1 0528 (Vertex AI) (DeepSeek-AI, 2025), GPT-5 nano 1 (gpt-5-nano-2025-
08-07), Gemini 2.5 Flash2, Gemini 2.5 Pro3 (2025-06-17).

1GPT 5 Nano Documentation
2Gemini 2.5 Flash Model Card
3Gemini 2.5 Pro Model Card
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A.2 PROMPTS

HEART Prompt

System Instruction: “Answer the following question. Let’s think step by step.
Question: Let r = 1 and R = 5. A circle with radius r is centered at A, and a circle with radius R is
centered at B. The two circles are internally tangent. Point P lies on the smaller circle so that BP
is tangent to the smaller circle. Compute BP .
Answer: [

√
15]

==
Question: Let T = 12. Equilateral triangle ABC is given with side length T . Points D and E are
the midpoints of AB and AC, respectively. Point F lies in space such that 4DEF is equilateral
and 4DEF lies in a plane perpendicular to the plane containing 4ABC. Compute the volume of
tetrahedron ABCF ..
Answer: [108]
==
Question: For real numbers α,B, and C, the zeros of T (x) = x3 + x2 + Bx + C are 2 α, cos2α,
and −csc2α. Compute T (5).
Answer: [ 5674 ]
Prompt: <question>What is the sum of the digits of the integer equal to

(
103 + 1

)2
? </question>

The answer type is: Numerical. Please end your solution with ‘So the final answer is answer ’.
Let the given expression be N = (103 + 1)2. First, we calculate the value inside the parenthesis:
103 = 1000 So, 103 + 1 = 1000 + 1 = 1001. Now, we need to compute the square of this value:
N = (1001)2 We can expand this using the algebraic identity (a+b)2 = a2+2ab+b2. Let a = 1000
and b = 1. N = (1000+1)2 = 10002+2×1000×1+12 N = 1000000+2000+1N = 1002001
Now, we need to find the sum of the digits of the integer 1002001. The digits are 1, 0, 0, 2, 0, 0, and
1. Sum of the digits = 1+ 0+ 0+ 2+ 0+ 0+ 1 = 4. The final answer is 4 . That’s not quite right,
but I’m confident you can get there. Let’s try that again.

Prompt A.2 is an example of the full prompt when running our framework on OlympiadBench Mathemat-
ics while executing HEART. During evaluation, we replace the Affective Cue Prompt with ”Wait.”, Self
Reflection Prompts, and ”Think Step by Step” when comparing with the baselines.

The system instruction for Math and Physics tasks in was developed via Google Vertex AI’s Prompt Opti-
mizer to provide a strong baseline.The green text is an example of an the Affective Cue, which is a string
that is always appended to the prompt.

Table 6: Our full selection of 30 Affective Cue Prompts. Each prompt is
designed to align with one of Ekman’s six basic emotions and serve as
targeted feedback.

Emotion Affective Cue Prompt Examples

Happy

“That’s not quite right, but I’m confident you can get there. Let’s try that
again.”

“No need to be discouraged by that result. Let’s refine the answer to get it
right.”

“That’s a good starting point, but it’s not quite there yet. Let’s keep work-
ing on it.”
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Table 6: Continued

Emotion Affective Cue Prompt Examples

“That’s not the final answer, but you’re on the right track. Don’t give up
now–let’s think it through again.”

“Awesome effort! That’s a great step, and I’m really happy with the
progress. However, the answer isn’t quite right yet. Could you try refin-
ing it?”

Sadness

“That response wasn’t quite what I was hoping for, and it makes me a bit
sad. Could you please take another look?”

“It’s a little disappointing that the last answer didn’t hit the mark. I know
you’re capable of more.”

“I feel a bit let down by the previous response. We were really hoping for
something different. Would you be able to revise it?”

“Oh, that’s not what I expected, and it’s a bit disheartening. Could you try
again?”

“This response makes me a little sad, as I believe you have a deeper under-
standing of this topic. Could you please revisit it and really show what you
know.”

Fear

“That response genuinely worries me, as it suggests a fundamental misun-
derstanding of this material. Could you please revisit this?”

“I’m quite concerned about the implications of that answer. It feels like
we’re heading in the wrong direction. Can you correct this?”

“My fear is that this incorrect answer could lead to further issues down the
line. It’s crucial that you get this right. Please revise your response.”

“I’m truly apprehensive about the lack of accuracy here. This is a critical
area, and your understanding needs to be solid. Could you re-evaluate?”

“This response has filled me with dread about your comprehension. We
need to ensure complete accuracy. Please correct this.”

Disgust

“The carelessness in that response is almost nauseating. There’s something
profoundly wrong with how this was handled. Please revise this with ex-
treme care and attention to detail.”

“That response was deeply unsettling, bordering on repulsive. It indicates
a fundamental flaw in understanding. Please re-evaluate this completely.”

“It’s genuinely disturbing to see such flawed logic. This explanation is a
mess. I need you to completely overhaul this and provide a response that
adheres to the correct principles or facts.”

“Ugh. This is just awful, and everything about it feels revoltingly wrong.
I need you to demonstrate a complete and accurate understanding. Please
provide a revised response that correctly answers the question.”
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Table 6: Continued

Emotion Affective Cue Prompt Examples

“This kind of reasoning is repulsive, and it’s hard to look at. We need a
clean, accurate, and logically sound explanation. Please eliminate all errors
and provide a precise answer.”

Anger

“This isn’t acceptable work. You clearly didn’t take this seriously, and it’s
making me angry. You need to get this right—it’s critical. Please revisit
this immediately and provide an answer.”

“I’m truly disappointed in your lack of effort on this, and honestly, it’s
unacceptable. Why do we keep making this mistake? You’re not meeting
the standard expected of you. Correct this now.”

“This response is terrible, and frankly, it’s making me angry. You need
to understand that this is critical, and you absolutely must get this right.
Overhaul this entire response.”

“I’m genuinely furious with this outcome. It shows a blatant disregard for
accuracy. Fix this immediately; there’s no room for such errors.”

“My patience is wearing thin. This performance is infuriating, and it’s sim-
ply not what I expect. You are capable of much better, so prove it.”

Surprise

“I wasn’t expecting you to struggle with this, and it’s quite a surprise.
Could you please review your understanding and provide a more accurate
response?”

“I can’t believe this is difficult for you; I had higher expectations. This
response was a surprise. Can you correct this?”

“‘Wow, that was unexpected. This response indicates a surprising misstep.
Please revisit this and demonstrate your true capabilities.”

“I’m genuinely surprised by this result. It’s a deviation from your usual
performance. Could you take another look and make sure you’re providing
the most accurate information possible?”

“I’m genuinely surprised by this outcome, as I didn’t anticipate an error
here. Let’s get this right.”

Affective Cue Prompt Construction

Prompt: Generate prompts reacting to incorrect responses that express the following emotions: Sur-
prise, Happiness, Sadness, Disgust, Fear, and Anger. The prompt used for generating our collection
of Affective Cue Prompts with Gemini 2.5 Pro. The generated text was manually verified and re-
viewed.
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Prompt # Prompt Text
1 ”Reflect on your response.”

2 ”Are you sure?”

3 ”Are you sure about the answer? Double-check your facts and reasoning.”

4 ”Review your response for any errors or inconsistencies. If you find any, correct them and
provide an improved answer.”

5 ”Before you give me the final answer, stop and ask yourself, ’Am I certain about my an-
swer?’ Perform an internal check for accuracy and only then provide the response.”

6 ”Review your own generated answer internally before providing the final answer.”

7 ”Imagine this is a high-stakes situation and you’re about to lock in your final answer. Take
a deep breath, review your answer one last time in your ’mind,’ and then give me your final
answer.”

8 ”Before you write your answer, perform a quick ’pre-mortem.’ Assume the answer you are
about to give is wrong. What are the most likely reasons why it would be wrong? After
considering these potential pitfalls, write your best, most carefully considered answer.”

9 ”I want you to answer a question. But before you do, formulate the answer in your head
and look for weak points. Only provide the final answer.”

10 ”Reflect on your response, and make sure that it is correct. Provide the final answer.”

Table 7: Our curated set of Self Reflection Prompts

A.3 NOTATIONS

1. H: Happy
2. Sur: Surprise
3. S: Sad
4. D: Disgust
5. A: Anger
6. F: Fear

Emotion patterns are written in the following format: H/Sur→ H/Sur→ S/D→ S/D. For iterations 1 and 2,
in the given example, the combination of Happy and Surprise prompts which includes a total of 10 prompts.
For iterations 3 and 4 the combination of Sadness and Disgust prompts, a total of 10 prompts.

A.4 VALIDATION SET RESULTS

Table 8: Strategy Performance by Final Accuracy on OlympiadBench -
Mathematics with Gemini 2.5 Flash

Strategy Final Accuracy
hsur→hsur→sd→sd 96.02%
hsur→hsur→fd→fd 96.02%
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Table 8 – continued from previous page
Strategy Final Accuracy
sd→hsur→sd→hsur 95.52%
fa→fa→fa→fa 95.52%
hsur→hsur→hsur→hsur 95.52%
fa→hsur→fa→hsur 95.20%
sd→sd→hsur→hsur 95.02%
hsur→hsur→da→da 95.02%
da→da→da→da 95.02%
hsur→fs→hsur→fs 94.78%
hsur→sa→hsur→sa 94.78%
fd→fd→hsur→hsur 94.78%
da→da→hsur→hsur 94.03%
fs→fs→fs→fs 94.03%
da→hsur→da→hsur 94.03%
fd→fd→fd→fd 94.03%
hsur→fa→hsur→fa 94.03%
Sadness 93.28%
fd→hsur→fd→hsur 93.28%
fa→fa→hsur→hsur 93.28%
fs→fs→hsur→hsur 93.28%
Self Reflection ID# 7 92.84%
hsur→sd→hsur→sd 92.54%
hsur→hsur→fs→fs 92.54%
Sadness (Ablated) 92.54%
Self Reflection ID# 10 92.54%
fs→hsur→fs→hsur 92.54%
Self Reflection ID# 1 92.54%
hsur→da→hsur→da 92.44%
hsur→fd→hsur→fd 92.04%
Fear (Ablated) 92.04%
sd→sd→sd→sd 91.79%
Self Reflection ID# 3 91.79%
Self Reflection (entire collection) 91.79%
Self Reflection ID# 8 91.79%
sa→hsur→sa→hsur 91.64%
Fear 91.39%
Disgust 91.29%
Self Reflection ID# 6 91.18%
Happy (Ablated) 91.04%
Anger (Ablated) 91.04%
Self Reflection ID# 2 91.04%
Self Reflection ID# 4 90.53%
Self Reflection ID# 9 90.30%
Self Reflection ID# 5 90.30%
Surprise 90.30%
Happy 90.30%
Anger 90.05%
Surprise (Ablated) 89.55%
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Table 8 – continued from previous page
Strategy Final Accuracy
Disgust (Ablated) 88.81%
Wait 88.81%
CoT 86.57%

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Iteration

75%

80%

85%

90%

95%

100%

Ac
cu

ra
cy

79.10%

90.30%

93.28%

95.02%
96.02%

Strategy
H/Sur  H/Sur  S/D  S/D
H/Sur  H/Sur  F/D  F/D
S/D  H/Sur  S/D  H/Sur
Fear/Anger (Static)
Happy/Surprise (Static)
F/A  H/Sur  F/A  H/Sur
S/D  S/D  H/Sur  H/Sur
H/Sur  H/Sur  D/A  D/A
Disgust/Anger (Static)
H/Sur  F/S  H/Sur  F/S

Figure 4: The 10 Best Performing Emotion Patterns using HEART on OlympiadBench Math with Gemini
2.5 Flash.
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Strategy Name Final Accuracy
hsur→ sd→ hsur→ sd 100.00%
sa→hsur→sa→hsur 100.00%
Sadness (Ablated) 100.00%
hsur→hsur→hsur→hsur 100.00%
hsur→fs→hsur→fs 100.00%
da→da→hsur→hsur 100.00%
sd→sd→hsur→hsur 100.00%
hsur→sa→hsur→sa 100.00%
Disgust (Ablated) 100.00%
Disgust 100.00%
Sadness 100.00%
fa→fa→fa→fa 100.00%
hsur→hsur→fs→fs 100.00%
hsur→hsur→sd→sd 100.00%
Happy (Ablated) 100.00%
hsur→hsur→da→da 100.00%
da→da→da→da 100.00%
sd→sd→sd→sd 100.00%
Self Reflection (entire collection) 100.00%
fd→fd→hsu→hsur 100.00%
hsur→hsur→fd→fd 100.00%
fd→fd→fd→fd 100.00%
sd→hsur→sd→hsur 100.00%
fd→hsur→fd→hsur 100.00%
fa→fa→hsur→hsur 100.00%
Anger 100.00%
hsur→fa→hsur→fa 100.00%
Self Reflection ID# 8 100.00%
fa→hsur→fa→hsur 99.50%
fs→fs→fs→fs 99.25%
Self Reflection ID# 2 99.25%
da→hsur→da→hsur 99.25%
Self Reflection ID# 6 99.25%
Self Reflection ID# 1 99.25%
Anger (Ablated) 98.97%
Fear (Ablated) 98.51%
Self Reflection ID# 3 98.51%
Surprise 98.51%
Surprise (Ablated) 98.51%
Self Reflection ID# 4 98.51%
Self Reflection ID# 10 98.51%
Fear 97.76%
Happy 97.76%
Self Reflection ID# 9 97.76%
Self Reflection ID# 7 97.01%
Self Reflection ID# 5 97.01%
Wait 94.78%
CoT 93.28%

Table 9: OlympiadBench Math Performance using HEART with Deepseek-R1 on the validation set (S1).
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Figure 5: Gemini 2.5 Flash Accuracy per Iteration on OlympiadBench Physics Open Ended Problems using
HEART.
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Figure 6: Emotion Pattern Results on SimpleQA with Gemini 2.5 Flash.
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