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Abstract

Solar flares are the most violent activities in the solar system, which are caused by1

the evolution of magnetic field in solar active regions. However, the mechanism2

which triggers solar flares is still an active research area and many algorithms3

based on different models are proposed to forecast solar flares. In this paper, we4

propose a novel data-driven method to forecast solar flares, which is built with5

convolutional neural network and long short term memory neural network. Our6

method could precept continuous magnetic field observation data with 6 hours long7

and predict the probability of flares of different classes in the next 24 hours with a8

Bayesian neural network. Comparing with traditional method, our method could9

not only forecast solar flares with high precision rate and low false alarm rate, but10

also highlight the region which would trigger solar flares with the class activation11

mapping (CAM). The inception obtained by the CAM could help scientists to dig12

deeper into physical mechanism which triggers solar flares. We use our method to13

process real observation data. Results show that our model mainly focuses on the14

region with strong magnetic field, the polarity reversal line and the magnetic field15

conversion area, which is consistent to theoretical predictions.16

1 Introduction17

The sun is the closest star to the earth, which is also the most important celestial objects to human18

kind. However, the sun is not a quiet star and solar activities would bring catastrophic effects to the19

space and the earth. Human built facilities, such as the space station, the communication satellite, the20

navigation satellite, the plane, the oil pipe or the power grid, would be seriously affected by solar21

activities. Solar flares are one of the most important solar activities, which would erupt a lot of22

energy within very short time and greatly affect electromagnetic environment of the Earth and the23

Space. Therefore, it is of great significance to study the triggering mechanism of solar flares and24

establish an accurate and reliable solar flare forecasting model, to avoid or reduce the impact of solar25

flares on human beings.26

27

The sun is mainly composed of hydrogen and helium. In the centre of the sun, the nuclear fusion28

happens and emits energy to heat gas inside the sun. As the nuclear fusion continuously emits energy29

to increase the temperature of the gas, the gas would gradually become the plasma. The plasma has30

very high moving speed and the gravity would attract the plasma to form a stable celestial object.31

As a celestial object mainly composed by the plasma, the sun is controlled by the magnetic field.32

The heating process is not uniform and there would be some occasions that the plasma has very fast33

moving speed. The churning of plasma would push out through the surface and generate sunspots. In34
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some circumstances, the distance between lower regions (lower corona) of a magnetic loop would be35

too small and magnetic reconnection would happen to unleash a lot of energy, which would gen-36

erate solar flares. The level of solar flare is defined by the maximum X-ray brightness of the solar flare.37

38

As mentioned above, although the general theory about the mechanism which triggers solar flares39

is clear, it still lacks enough theory to predict when the solar flare happens. For quite a long time,40

scientists have proposed several different theories to explain mechanism of solar flares and predict41

solar flares [13, 11, 16]. Traditional solar flare forecasting models mainly rely on manual experience42

and domain knowledge to extract characteristic parameters related to solar flares from observed data43

[6, 2, 17, 1, 7]. It is difficult to make full use of the information related to solar flares contained in44

massive observational data, leaving along the interpretable theory behind these algorithms.45

46

In recent years, machine learning algorithms have attracted a lot of attentions. Particularly with the47

help of deep neural networks, deep learning could automatically extract effective features from48

continuous data, providing a new way to predict solar flares. Since the magnetic field controls49

solar activities, solar magnetogram would contain important features to predict solar. Therefore,50

several studies have proposed to use the convolutioan neural network, which can automatically51

extract effective features from images [8, 14, 12, 9, 18], to extract features from single frame of52

magnetogram for solar flare forcasting. However, previous studies assume solar flare prediction as a53

classification problem and they have some limitations in real applications for the following reasons:54

1. The characteristics of physical parameters of continuous solar magnetic field activity region over55

time are not considered;56

2.The solar flare prediction problem is regarded as a deterministic problem without considering the57

random and sudden characteristics of flares.58

59

Since the solar flare is a continuous process which is closely related to the dynamical variations of60

the solar active area, we would use the long short-term memory network [3, 4, 15] to merge features61

from continuous magnetogram. Besides, we use the Bayesian neural network to predict solar flares.62

Therefore, we build the Bayesian spatio-temporal connection model for solar flare forecasting. To63

better show the triggering mechanism of solar flares, we use the class activation mapping technology64

to draw the attention area of the model and analyze the mechanism in triggering of solar flares. This65

article is organized as follows: a forecasting model based on the deep learning method is proposed66

in Section 2; The interpretability of the model is investigated in Section 3; The performance of67

the prediction model and the interpretability of the model in Section 4; Finally, discussions and68

conclusions are provided in Section 5.69

70

2 Solar Flare Forecasting Model71

In this paper, we assume continuous magnetogram frames could be used to predict the probability of72

solar flares with different classes in the active region. Therefore, solar flare prediction is regarded73

as a prediction problem with continuous frames of images and the level of solar flare is a random74

variable. We use the Bayesian spatio-temporal connection solar flare forecasting model to output the75

probability of solar flares of different classes, which mainly includes two parts: Feature extractor76

and Forecasting model. Feature extractor extracts the spatial features of each magnetogram frame77

and its correlation in the temporal dimension. Forecasting model is used to forecast the maximum78

X-ray brightness. If we set different threshold, we could output the probability of solar flares with79

different classes. The overall structure is shown in Figure 1.80

2.1 The Feature Extractor81

Extracting spatiotemporal features from continuous magnetogram frames is particularly important82

for the solar flare prediction task. The combination (LRCN) [5] of convolutional neural networks83
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Figure 1: Data-driven interpretable solar flare forecasting model. The input of the model are
continuous magnetogram frames (6 hours long) of previous time (24 hours before), and the output of
the model is the maximum brightness of prediction time period. Feature extractor extracts the spatial
features of each frame of magnetic map and its correlation in the temporal dimension. Forecasting
model uses the extracted features to predict the maximum brightness, and we would output prediction
results according to the maximum brightness later.

(CNNs) and long short-term memory neural networks (LSTM) is mainly used to fully consider the84

spatial features and its characteristics over time. The CNN is used to extract image features and the85

LSTM is used to analyze the correlation of feature sequences in the temporal dimension. The LRCN86

usually requires the size of input images to be the same. However the size of magnetogram frames87

would be different. Therefore, we have modified the LRCN by adding a GAP between the CNN and88

the LSTM. The structure of the feature extraction part includes the following part:89

1. Convolutional neural networks (CNNs) are suitable for extracting the basic features of images90

and reducing the complexity of the model. Therefore, CNNs are used as the spatial feature extraction91

network of magnetograms, namely Encoder, to capture the spatial interaction, maintain the spatial92

continuity of the image, and extract the spatial features of magnetograms. The structure of the93

Encoder is shown in the Figure 2, which consists of four convolution block composed of convolution94

layer, instance normalization layer and Relu activation function.95

2. Global average pooling (GAP)[10] can compress spatial features extracted by Encoder, pool96

images of different sizes to the same size, and reduce the number of parameters in the model to97

prevent overfitting. The specific operation is to perform global average pooling on the feature map of98

each channel to obtain a value, as shown in the Figure 2.99

3.Long Short Term Memory(LSTM) extracts temporal variations of spatial features of magne-100

tograms, so as to study the correlation of continuous magnetic field in the temporal dimension. This101

paper use a single-layer bidirectional LSTM structure to extract temporal features, which contains a102

hidden layer with 256 nodes and the input data are the spatial features of the continuous magnetic103

map extracted by Encoder.104

105

2.2 The Solar Flare Prediction Model106

The prediction model is used to forecast solar flare classes according to features extracted by107

the Feature Extractor. Since the solar flare occurrence and the level of solar flares are random108

variables, we propose to use the Bayesian neural network based on probability reasoning for solar109

flare prediction. The Bayesian neural network is regularized by introducing uncertainty into the110

weight of the neural network, which could achieve a balance between underfitting and overfitting111
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Figure 2: The structure of Encoder and GAP. After the input single frame image data (C, H,
W) passes through four convolution blocks, the image size becomes ( H

16 , W
16 ), and the number of

channels becomes 256. The parameter settings of the convolution kernel in each convolution block
are respectively: Block1 (32, 5×5, 2),Block2 (64, 3×3, 2), Block3 (128, 3×3, 2), Block4 (256, 3×3,
2).

by learning the probability distribution over the weights of the neural network. Here, the Bayesian112

neural network is used as to predict the distribution of the maximum X-ray brightness, which113

uses two layers of bayesian full connection as the output block of the model. If we set the predic-114

tion model with different thresholds, we would get the probability of solar flares with different classes.115

116

3 Interpretability analysis117

The solar flare prediction model can learn the statistical relationship between continuous mag-118

netograms and solar flares, and regions related to solar flares could be obtained according to the119

attention area of the feature extraction model. These regions could be further analyzed to obtain the120

mechanism that triggers solar flares. Grad-CAM [10] can help us analyze the attention area of the121

model according to input magnetograms.122
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Figure 3: The structure of Grad-CAM.

Regression task is taken as the basic task of the model, and the specific flow of Grad-cam is shown in124

Figure 3. The model first conducts forward propagation to obtain the feature layer E and the network125

predictive value Out. Then the back propagation of Out can get the gradient information of the126

feature layer. By calculating the importance of each channel in the feature layer, and then weighted127

summing through ReLU , the final result is Grad-CAM, as shown from Equation 1 to 2:128

LGrad−CAM = ReLU(
∑
k

wkE
k), (1)

Where E stands for the feature layer output by encoder, k represents the k channel in feature layer129

E, Ek stands for the data of channel k in feature layer E, and wk stands for the weight of network130
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output result for Ek.131

ak =
1

Z

∑
i

∑
j

∂y

∂Ek
ij

(2)

Where y stands for the predicted value of the network output, Kk
ij represents the data at ij of feature132

layer E in channel k, Z is equal to H × w. The above equation is used to calculate attention map of133

a single image and we would carry out weighted summation of features to obtain Grad-CAM of the134

model for different frames.135

136

4 Experiments and Results137

4.1 Introduction to the Data Set138

At present, solar active region data mainly is obtained from the SDO/HMI data and the SOHO/MDI139

data. Since 1996, these two types of data have provided consistent, high-quality solar active region140

data. Among them, the SOHO/MDI data starts and ends from January 1st. 1996 to April 12th. 2011.141

The SDO/HMI project is the successor of the SOHO/MDI project. It has accumulated more than 10142

years of data since it started daily observation on April 30th. 2010, and its sampling frequency is 12143

minutes. According to the peak value of soft X-ray flux observed by the Geostationary Operational144

Environmental Satellite System (GOES), solar flares can be classified into A, B, C, M, and X classes,145

with the energy released increasing successively. The values of each class represent the specific values146

of the peak X-ray flux. The data can be downloaded from (https://www.ngdc.noaa.gov/stp/space-147

weather/solardata/solar-features/solar-flflares/x-rays/goes/xrs/).148

In this paper, SDO/HMI data with high image data quality are used as magnetogram data. The data149

can be downloaded from the SHARPs data sequence in joint scientific operations center (JSOC). We150

have downloaded 2010 data. The data of 5-2021.5 (the time interval is 1h) is used as the magnetic151

field data of the active area. During the loading process, the SHARP parameter of the active area is152

used to check the quality of observation data. The data used in our model has to be 1) disambiguated153

with a version of the disambiguation module greater than 1.1, 2) taken while the orbital velocity154

of the spacecraft is less than 3500 m/s, 3) of a high quality and 4) within 70 degrees of central meridian.155

156

According to GOES, there are 839 active flares larger than A1.0 that meet these requirements between157

May 2010 and May 2021. Since solar flares of A and B classes are not significant, we study the158

flares with classes greater than C in the training data. In total, there are 5252 flares greater than C1.0159

selected in the dataset. The data amount of all kinds of data is shown in Table 1.160

Table 1: The classes of solar flares, sample sizes, and label of each type of solar flare

Flare Thresholds Actual number label Train\Test(6,24)

N 5252 0 2299 \2 55
10−6 ≤ C < 10−5 4752 100×n 1890 \ 210
10−5 ≤ M < 10−4 468 1000×n 979 \ 109

10−4 ≤ X 4752 100 × n 472 \ 52

Previous studies assume flare prediction as a classification task, and there is no relationship between161

solar flares of different classes. In fact, solar flares of different classes have particular relations and162

we assume it as a regression problem here. According to the peak value of flux in soft X-ray band to163

generate label, different classes of flares set different magnitudes, the specific values are shown in164

Table 1 , where n represents the value of the X-ray peak flow. Meanwhile, this label setting makes165

large flares with small amount of data have a bigger loss, which can prevent the overfitting problem166

caused by data imbalance.167

5
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According to the number of solar flares of different levels, multiple time points are randomly selected168

from each active area as the starting point of our prediction time,The label is generated according to169

whether a flare will occur in the predicted time period, and the data is loaded according to the prior170

time period. In the data set, we randomly selected 10% of the active area data as the test set, and the171

rest as the training set.172

173

4.2 Experiment Result174

Solar flares forecast model based on data driven, using a large amount of observation data with175

labels to have supervision and training of forecast model, study the magnetic figure and the statistical176

relationship between solar flares occur, thus to forecast the flare. We also further used the class177

activation mapping (CAM) to analyze the triggering mechanism of solar flares. In this paper, we178

investigate the performance of the network using 6 hours of continuous magnetic field observations179

to predict the probability of various flares occurring within the next 24 hours. The network is trained180

using the training set, and when the training process is completed, the performance of the prediction181

model can be estimated through the test set.182

4.2.1 Prediction Results of the maximum X-ray brightness183

We use the Bayesian neural network as the last layer of the network to predict the distribution of184

the highest brightness in the next 24 hours. Since the Bayesian network will learn the probability185

distribution as the weight of the neural network, we will get different highest brightness values for a186

single sample, forming a distribution, as shown in Figure 4. We show the results of four types of N,187

C, M and X prediction, and calculate the corresponding probability of flare occurrence based on the188

threshold value defined in Table 1. The title is the time range of the prior time period entered, the189

upper left corner is the probability of occurrence in the next 24 hours, the mean and standard deviation.190

It should be noted that since the output result of the model is the distribution of the maximum X-ray191

brightness, we can set different thresholds to study the prediction results.

20 40 60 80 100

The peak value of X-ray

0

20

40

60

80

D
en

is
ty

2019_8_8_3_0_TAI-2019_8_8_10_0_TAI

mean:14.76
std:9.4

label:N out:{'N': 0.99, 'C': 0.01, 'M': 0.0, 'X': 0.0}

150 200 250 300 350 400 450 500 550

The peak value of X-ray

0

2

4

6

8

10

12

14

16

D
en

is
ty

2013_10_28_21_0_TAI-2013_10_29_3_0_TAI

mean:197.53
std:47.9

label:C out:{'N': 0.0, 'C': 1.0, 'M': 0.0, 'X': 0.0}

1700 1800 1900 2000 2100 2200 2300

The peak value of X-ray

0

1

2

3

4

5

6

7

8

D
en

is
ty

2011_11_5_5_48_TAI-2011_11_5_11_48_TAI

mean:1977.97
std:106.64

label:M out:{'N': 0.0, 'C': 0.0, 'M': 1.0, 'X': 0.0}

30200 30400 30600 30800 31000 31200 31400 31600 31800

The peak value of X-ray

0

5

10

15

20

D
en

is
ty

2014_10_23_17_12_TAI-2014_10_23_23_12_TAI

mean:31043.16
std:149.48

label:X out:{'N': 0.0, 'C': 0.0, 'M': 0.0, 'X': 1.0}

Figure 4: The results of four types of N, C, M and X prediction

192

6



4.2.2 Classification results193

We randomly select 50 solar flares of different classes in the test set to investigate the overall194

performance of the prediction model. For each sample, the result of the model output is the195

distribution of the highest brightness in the next 24 hours. We choose the class of the solar flare with196

the highest flare probability as the classification result of our neural network.197

198

For the binary classification task of whether a solar flare occurs or not, we set different thresholds to199

study the prediction results of the model. As shown in the following table 2, TP rate is the percentage200

of positive instances correctly classified, TN rate is the percentage of negative instances correctly201

classified. Pre is the percentage of how many positive predictions are actually positive. Allacc is the202

percentage of all correctly classified samples in the total sample. The table shows the comparison203

between our algorithm and other traditional algorithms, from which it can be seen that our model can204

achieve more than 90 % accuracy for different threshold divisions, and maintain a low false positive205

rate.206

Table 2: The binary classification result of model

label TPrate TNrate Pre Allacc Train Test

Huang2018 ≥ C 0.73 0.76 0.35 2010-2015 1996-2010
≥ M 0.85 0.81 0.1
≥ X 0.87 0.85 0.015

Park2018 ≥ C 0.84 0.83 2009-2017 1996-2008
Tang2021 ≥ C 0.878 0.82 0.131 2010-2015(20%)

≥ M 0.817 0.84 0.464
This work(BBFC) ≥ C 0.917 0.959 0.986 0.949 2010-2015(10%)

≥ M 0.910 0.858 0.867 0.884
≥ X 0.920 0.993 0.979 0.979

This work(FC) ≥ C 0.916 0.877 0.945 0.914 2010-2015(10%)
≥ M 0.830 0.858 0.855 0.844
≥ X 0.910 0.926 0.863 0.919

We further investigate the performance of our algorithm in prediction solar flares of different levels.207

The confusion matrix shows the difference between the actual and predicted values, with the elements208

on its main diagonal corresponding to the correct classification, while other elements show how many209

samples in a category are incorrectly assigned to other categories as a proportion of the total number210

of categories. It shows us intuitively how many solar flares are correctly predicted. It can be seen211

from the table 3 that the model makes good predictions for no flares (N) and large flares (X), while212

for solar flares with class of C is more likely to be predicted as solar flares with classes of M, and213

solar flares with class of M is more likely to be predicted as solar flares with class of C.214

215

Table 3: Multiple classifications results of BBfc

label\ label N C M X

N 0.92 0.08 0.00 0.00
C 0.10 0.58 0.32 0.00
M 0.00 0.12 0.86 0.00
X 0.00 0.00 0.02 0.98

In order to verify the performance of Bayesian neural network (BNN), we also transform bayesian216

full connection into full connection neural network for comparison, as shown in the table 4. The217

results show that Bayesian neural network has better prediction performance, can better distinguish C218

and M class flares, improve the accuracy of prediction model.219
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Table 4: Multiple classifications results of FC

label\ label N C M X

N 0.90 0.10 0 0.00
C 0.16 0.56 0.24 0.00
M 0.00 0.34 0.60 0.06
X 0.00 0.00 0.06 0.94

4.3 Attention Area of the Solar Flare Forecasting Model220

The solar flare prediction model automatically extracts features related to solar flares. If the model221

can correctly classify solar flares, it can be considered that the model has extracted effective features.222

Here, we use Grad-CAM to study the features extracted by the model. Figure 5 shows a frame of223

magnetograms in AR12192, the attention area of the model on the map, and the multiplication result224

of these two images. It can be seen that the attention area of the model is mainly in the polarity225

reversal region and the strong magnetic field region. Figure 6 shows the variation of the magnetogram226

within 24 hours before the occurrence of a large solar flare (the time interval is 3h). This figure shows227

variations of the model’s attention area, which is consistent to theoretical predictions.228

Figure 5: Magnetogram, Heatmap, and Heatmap × Magnetogram for active regions 12192.

Figure 6: The change of the Magnetogram and Heatmap, within 24 hours before the occurrence of a
large flare (the time interval is 3h).

5 Future work229

We propose a data-driven solar flare prediction model, which can extract effective features from230

continuous Magnetograms to predict distribution of maximum soft X-ray brightness in active regions231

over the next 24 hours. Results show that our model could obtain statistical prediction of solar flares232

with more than 90 % accuracy, and compared with other algorithms, our algorithm could predict solar233

flares with lower false positive rates and higher ture positive rates. Besides, our model could extract234

effective features for solar flare predictions, which include polar reversal regions, strong magnetic235

field regions and the magnetic field conversion area. Our model could help scientists to discover236

important features that would trigger solar flares to promote the study of the mechanism that would237

trigger solar flares.238
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