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ABSTRACT

Training with hard-to-obtain and therefore valuable data, improving generaliza-
tion performance, and accelerating training speed are all challenging problems
in machine learning community. Active learning , whose performance depends
on its query strategy, is a powerful tool for these challenges. Unlike the famous
Query by Committee strategy aimed at classification problem and dependent on
a committee of student, our proposed query by self is suitable to both classifi-
cation and regression problem and requires only a student, which benefits from
estimated output variance, the intermediate product of Kalman filtering optimiza-
tion. This means larger scope of application and less requirement for computation
and the number of data. Besides, this strategy reduces training time and improves
accuracy via filtration of similar data and better generalization. We theoretically
explain query by self strategy from the perspective of entropy. To verify effective-
ness of query by self empirically, we conduct several experiments on two classical
models in machine learning.

1 INTRODUCTION

Massive amount of computation, money, and time are necessary to acquire enough data for training a
neural network model with certain accuracy in some research areas, for example, molecular dynam-
ics modeling (Zhang et al., 2020) with ab initio accuracy based on density functional theory (Kohn
& Sham, 1965)). Therefore, it is imperative to find such a method that selects out possibly informa-
tive and representative data leading the model to a given accuracy with a thus relative small training
dataset. Active learning (Settles, 2009; Olsson, 2009) is an eligible technique, which is applied
to help computational chemistry (Podryabinkin & Shapeev, 2017), chemical physics (Smith et al.,
2018), materials design and discovery (Jablonka et al., 2021), mental health treatment (Ahmed et al.,
2021), drug discovery (Graff et al., 2021) recently. Besides, active learning can solve imbalanced
data problem (Dong, 2021).

The dataset of an active learning task is divided into labeled dataset and unlabeled dataset. The
training occurs on the labeled one, thereafter generating unlabeled dataset usually via three meth-
ods (Membership query synthesis (Angluin, 1988), Stream-Based Selective Sampling (Atlas et al.,
1989), Pool-Based Sampling (Lewis, 1995)) and implementing query strategies on the unlabeled
dataset to select part of data for teacher to label. These labeled input data of choice are merged into
labeled dataset for training the model further and a whole round of active learning ends.

Efficient query strategies design is at the center of active learning. The performance of whole algo-
rithm heavily depends on those query strategies as they decide whether or not unlabeled samples are
sent to teacher. Hence, various query strategies are proposed for different tasks (Query by Commit-
tee (Seung et al., 1992), Uncertainty Sampling (Lewis, 1995), Query by Bagging and Boosting (Abe
& Mamitsuka, 1998), Expected Model Change (Settles et al., 2007), Expected Error Reduction (Roy
& McCallum, 2001), Variance Reduction (MacKay, 1992; Cohn, 1993; Cohn et al., 1996), Density-
Weighted Methods (Settles & Craven, 2008)) in past research. Some of them are discussed in the
next section. However, these strategies have their own drawbacks. Query by Committee has to
training several models together with same dataset. Uncertainty Sampling, Expected Model Change
and Expected Error Reduction can not solve regression problem. Query by Bagging and Boosting,
Variance Reduction and Density-Weighted Methods need large computation.

Main Contributions. To tackle the aforementioned difficulties, we propose a novel query strategy,
named query by self strategy, inspired by Kalman filter (Kalman et al., 1960; Welch et al., 1995)
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giving a direct estimate of output variance, and thus no longer necessary to train extra models for
variance like query by committee.

• Our proposed query by self strategy, requires only one model or student, is suitable for both
classification and regression tasks, has a new criterion to describe output variance which
reduces the computational complexity of variance reduction O(N3) to O(N2) and is handy
to combine with other common query strategies.

• Theoretical explanation and analysis of the efficacy of query by self based on information
theory. Here, we delineate the connection among Kalman filtering, Fisher information
matrix, recursive least square algorithm and variance reduction.

• Accelerate the training, improving generalization performance and protecting algorithm
from over-fitting.

2 RELATED WORK

Queries strategies of direct relation to our query by self are query by committee (Seung et al., 1992)
and variance reduction (MacKay, 1992; Cohn, 1993; Cohn et al., 1996). Query by self estimates
variance with a different methods from them. Since the label of an unlabeled sample is unknown,
the algorithm approximates the variance of output via linearization and Kalman filter (Haykin &
Haykin, 2001; Kalman et al., 1960; Welch et al., 1995).

Query by Committee. Both query by self and query by committee (Seung et al., 1992) estimate
variance of output but in different way. The former approximates the variance through quadratic
form (covariance matrix P in the next section) at current derivatives of outputs w.r.t. trainable
parameters theoretically, while the latter estimates it empirically

∑
i(ŷi − 〈ŷ〉)2/(n − 1), where ŷi

is the output of the i-th student or model and 〈ŷ〉 is the mean value of these n models. This unbiased
estimator of variance consumes n times computation.

Variance Reduction. Same as query be self, variance reduction (MacKay, 1992; Cohn, 1993; Cohn
et al., 1996) does not need re-training and committee, but its flaw is also obvious, O(N3) compu-
tational complexity in solving inverse of Fisher information matrix (Schervish, 2012). We employ
extended Kalman filter (Smith et al., 1962) to overcome this difficulty and reduce the time complex-
ity to O(N2), where N is the number of trainable parameters of neural networks. This is achieved
by

∂2

2∂θi∂θj
(ŷθ(x)− y)2 ≈ ∂

∂θi
ŷθ(x)

∂

∂θj
ŷθ(x)

omitting the second derivative term and the iterative algorithm in kalman filter to solve the inverse
of Pt.Therefore, query by self is an approximate and fast version of variance reduction (MacKay,
1992; Cohn, 1993; Cohn et al., 1996).

Fisher Information Matrix. This matrix (Schervish, 2012)

I(θ)i,j := −E(x,y)

[
∂2

∂θi∂θj
(logPθ(y|x))

∣∣∣∣ θ
]

measures how much information we can get from a given query x at current trainable parameters
θ. The determinate det(I−1) (Chaloner & Verdinelli, 1995) and reference trace (MacKay, 1992)
Tr(vvTI−1) = vTI−1v of I−1 are usually adopted as query criteria, where v := v(∇θŷ) is a
reference vector dependent on ∇θŷ. The former can be regarded as a measure of volume in version
space (Seung et al., 1992) and we combine the latter with Kalman filter as query by self for reduction
in computational complexity.

Kalman Filtering for Neural Network. Extending Kalman filter to nonlinear case is named ex-
tended Kalman filter (Smith et al., 1962). For neural network, it is an optimizer on which there
exists much mature research (Haykin & Haykin, 2001). At the very beginning, the optimizer based
on Kalman filter without any covariance omitted is global extended Kalman filter (Chui et al., 2017).
Luckily, we find using the global extended Kalman filter as an optimizer during active learning, it is
unnecessary to solve the inverse of Fisher information matrix on purpose which takes to much time
during training, since the weights error covariance matrix P, an intermediate during training based
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Kalman filter, is nothing but an approximation of the inverse of Fisher information matrix. To reduce
the computational complexity further, variants of extended Kalman filter should be considered such
as NDEKF (Murtuza & Chorian, 1994), ONDEKF, LDEKF, and FDEKF. The performance of these
variants (Heimes, 1998) are compared.

3 ALGORITHM

As stated above, query by self can be applied to both classification 1 and regression 2 problem.
Although there is still much space to optimize the efficiency of query by self strategy, we show
its pseudo-code as following for clarity and simplicity. The active learning part unfolds in two
subsection, one for classification another for regression. In addition to the active learning part, the
rest of the algorithm is updating weights via Kalman filter. To reduce complexity, we compressed the
output dimension into one. This keep us from solving the inverse of output covariance matrix. See
Appendix A.1 for more related information and background for Kalman filter. Finally, we indicate
several extensions of query by self algorithm. In these cases, it collaborates with common optimizer
(SGD, Adam) and committee-based query strategies (query by committee, query by bagging and
query by boosting) to become a even better query strategies or just accelerate training process, avoid
over-fitting problem, and improve generalization performance.

3.1 QUERY BY SELF FOR CLASSIFICATION

h is the neural-network-based classification model before softmax with trainable weights wt−1 vec-
tor at a given timestep t ∈ {1, 2, . . . , T}, xt is input data, and lt is corresponding label. Therefore,
{(xt, lt)}0≤t≤t0 is the dataset of t0 labeled samples and {xt}t0+1≤t≤T are unlabeled input samples
randomly chosen from sample space dominated by certain distribution. Our target is to find the
trainable weights wT vector at the last timestep T for neural network model in order to achieve a
given accuracy by labeling samples as few as possible.

Algorithm 1 Query by self for classification, a novel and Kalman-filter-based query strategy for
choosing representative data (see subsection 3.1). 〈v〉 means calculating the mean of v’s compo-
nents. ei is a unit vector, whose i-th component is 1. sign(x) := 1[0,+∞)(x). Hyper-parameters for
out experiments are ν = 0.9937, λ1= 0.988, P1 = I.
Input: {w0} (default initial weight vector), {(xt, lt)}0≤t≤t0 (dataset of labeled samples),

{xt}t0+1≤t≤T (randomly chosen unlabeled input samples).
1: for t = 1, 2, . . . , T do
2: ŷt ← h(wt−1, xt) (Objective function with weights wt−1)
3: ŝt ← softmax(ŷt) (Get probability vector)
4: if t > t0 then
5: l̂t ← argmax(ŝt) (Get predicted label)
6: St ← ∇wŝt,l̂t |w=wt−1 (Get gradient of probability of predicted label w.r.t.wt−1)
7: ct ← λt + ST

t PtSt (Variance criterion, which can be replaced with another criterion)
8: if c−(t) < ct < c+(t) then
9: Let the teacher label xt with lt. (Get new labeled sample)

10: else
11: Continue
12: end if
13: end if
14: Ht ← ∇w〈sign(elt − ŝt)ŝt〉 |w=wt−1 (Compress output dimension and get its gradient)
15: Kt ← PtHt (Calculate Kalman Gain)
16: at ← 1/(λt +HT

t Kt) (Calculate the inverse of output variance)
17: Pt+1 ← (Pt − atKtKT

t )/λt (Update the weights covariance matrix)
18: wt ← wt−1 + atKt〈|elt − ŝt|〉 (Update weights)
19: λt+1 ← λtν + 1− ν (Update memory factor λt via moving average with parameter ν)
20: end for
Output: {wT } (Wanted weights or trainable parameters)
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Before timestep t0, these weights wt are updated according to Kalman fiter optimizer and we obtain
a half-trained model. After that, we refer to previous criteria in literature on active learning and
propose some criteria ct, only dependent on the output or predict ŷt of a student, judging whether
a sample is representative and critical enough to be an ideal sample in terms of training efficiency.
Those samples with a positive answer will be utilized to update weights for another half of training.

Variance and Standard Deviation. They are approximated by

V(ŝt,l̂t) := λt + ST
t PtSt and

√
V

up to a factor respectively, where ŝt is the probability vector with Σiŝt,i = 1, l̂t is the predicted label,
λt is the memory factor, Pt is the error weights covariance matrix and St = ∇wŝt,l̂t |w=wt−1 . This
criterion describes how uncertain our model is to estimate the probability of the predicted label.
The larger it is, the more necessary the current sample is needed to be labeled (more different from
labeled samples). However, if it is extremely large, we should consider whether or not it is a sample
out of input domain of our interest.

Entropy.
S(ŝt) := −Σiŝt,i ln(ŝt,i).

It represents the information gained if the current sample is labeled. Thus, we should label samples
with entropy as higher as we can unless it is very noisy. Sample with high entropy usually near a
point where many categories assemble around.

Margin.
M(ŝt) := M1(ŝt)−M2(ŝt) ∈ [0, 1],

where Mn is the n-th largest number in a vector. Since the change of the output label is only related
to M1(ŝt) and M2(ŝt), the margin describes the stability and uncertain of predict. Input samples
with low margin delineate the boundary between two categories. The lower this quantity is, the more
critical the current sample is.

Clarity.

C(ŝt) :=
#(ŝt)ŝt,l̂t − 1

#(ŝt)− 1
∈ [0, 1]

where ŝt,l̂t is defined as above and # is the length of a vector. It means how clear current classifier
is on the prediction. In most cases, we should label those inputs with lower clarity.

With these simple criteria defined, we can construct composite criteria such as (M1(ŝt) −
M2(ŝt))

√
λt + ST

t PtSt, (M1(ŝt) −M2(ŝt))/
√
λt + ST

t PtSt (similar to signal-to-noise ratio),
and (M1(ŝt)−M2(ŝt))2+(S(ŝt))−2. c−(t) and c+(t) are two bound limiting samples to not only
enough difference from labeled sample and criticality (meaning samples near sharp boundary be-
tween categories) but reasonable and tolerable noise as well. Generally, choosing proper constants
for c−(t) and c+(t) works well enough.

3.2 QUERY BY SELF FOR REGRESSION

Using similar notation as in case of classification, we show the algorithm of query by self for re-
gression as bellow. There are two difference. The first is only the variance and standard deviation
criterion is meaningful. The second is the output is a general vector, no longer be a probability
vector.

Variance and Standard Deviation. The variance of output ŷ is given by

σ2
ŷ ≈ (∇wŷ)

TI−1∇wŷ

proposed by MacKay (1992). According to theorem 3, we have Pt ∼ I−1 when t → ∞. Hence,
adding a regularization term λt, we define

V(ŷt) := λt + ST
t PtSt and

√
V

as an approximation to variance and standard deviation respectively, where ŷt is the output vector
and St = v(∇wŷt |w=wt−1) is reference vector, usually a linear combination of column vectors in
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∇wŷt |w=wt−1 . It is feasible to fetch several reference vectors and sum their variances or standard
deviations up as a new one (as in algorithm 2). This criterion describes how uncertain our model is
about the prediction. The larger it is, the more necessary the current sample is needed to be labeled
(more different from labeled samples). However, if it is extremely large, we should consider whether
or not it is a sample out of input domain of our interest.

Algorithm 2 Query by self for regression, a novel and Kalman-filter-based query strategy for choos-
ing representative data (see subsection 3.2). 〈v〉 means calculating the mean of v’s components. ei
is a unit vector, whose i-th component is 1. sign(x) := 1[0,+∞)(x). Hyper-parameters for out
experiments are ν = 0.98, λ1= 0.9987, P1 = I.
Input: {w0} (default initial weight vector), {(xt, lt)}0≤t≤t0 (dataset of labeled samples),

{xt}t0+1≤t≤T (randomly chosen unlabeled input samples).
1: for t = 1, 2, . . . , T do
2: ŷt ← h(wt−1, xt) (Objective function with weights wt−1)
3: if t > t0 then
4: for i = 1, 2, . . . , n do
5: St,i ← vi(∇wŷt |w=wt−1) (Get reference vector of gradient w.r.t.wt−1)
6: ct,i ← λt + ST

t,iPtSt,i(Variance criterion, which can be replaced with another)
7: end for
8: if c−(t) < Σict,i < c+(t) then
9: Let the teacher label xt with yt. (Get new labeled sample)

10: else
11: Continue
12: end if
13: end if
14: Ht = ∇w〈sign(yt − ŷt)ŷt〉 |w=wt−1 (Compress output dimension and get its gradient)
15: Kt ← PtHt (Calculate Kalman Gain)
16: at ← 1/(λt +HT

t Kt) (Calculate the inverse of output variance)
17: Pt+1 ← (Pt − atKtKT

t )/λt (Update the weights covariance matrix)
18: wt ← wt−1 + atKt〈|yt − ŷt|〉 (Update weights)
19: λt+1 ← λtν + 1− ν (Update memory factor λt via moving average with parameter ν)
20: end for
Output: {wT } (Wanted weights or trainable parameters)

Algorithm 3 Extended query by self for classification.
Input: {w0} (default initial weight vector), {(xt, lt)}0≤t≤t0 (dataset of labeled samples),

{xt}t0+1≤t≤T (randomly chosen unlabeled input samples).
1: for t = 1, 2, . . . , T do
2: ŷt ← h(wt−1, xt) (Objective function with weights wt−1)
3: ŝt ← softmax(ŷt) (Get probability vector)
4: if t ≤ t0 or c−(t) < c(ŝt) < c+(t) then
5: Get data (xt, lt) via dataset (t ≤ t0) or teacher’s labeling (t ≥ t0).
6: else
7: Continue
8: end if
9: Based on (xt, lt), update wt−1 by common optimizers. (e.g. SGD, Adam)

10: end for
Output: {wT }

3.3 EXTENSIONS

Although query by self benefits from Kalman filtering, it can be extended to other neural networks
with common optimizer (SGD, Adam). We extend query by self strategy to common optimizers.
Using the same notation as in algorithm 1, the pseudo-code is like algorithm 3.
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Except for choosing and labeling extra representative sample, query by self strategy can be utilized to
accelerate training process, avoid overfitting, improve generalization performance (see algotirhm 4).

Algorithm 4 Extended query by self for acceleration , avoiding overfitting, and improving general-
ization performance.
Input: {w0} (default initial weight vector), {(xt, lt)}0≤t≤T (dataset ).

1: for t = 1, 2, . . . , T do
2: ŷt ← h(wt−1, xt) (Objective function with weights wt−1)
3: ŝt ← softmax(ŷt) (Get probability vector)
4: if t ≤ t0 or c−(t) < c(ŝt) < c+(t) then
5: Based on (xt, lt), update wt−1 by common optimizers. (e.g. SGD, Adam) .
6: else
7: Continue
8: end if
9: end for

Output: {wT }

This strategy can be easily mixed with other strategies (Query by Committee (Seung et al., 1992),
Query by Bagging and Boosting (Abe & Mamitsuka, 1998)) to achieve better performance. Here,
we take Query by Committee as an example (see algorithm 5).

Algorithm 5 Combination of query by self and other committee-based algorithm.
Input: {w0} (default initial weight vector), {(xt, lt)}0≤t≤t0 (dataset of labeled samples),

{xt}t0+1≤t≤T (randomly chosen unlabeled input samples).
1: for t = 1, 2, . . . , T do
2: ŷt ← h(wt−1, xt) (Objective function with weights wt−1)
3: ŝt ← softmax(ŷt) (Get probability vector)
4: qt ← Uncertainty of Committee(xt)
5: if t ≤ t0 or c−(t) < c(ŝt) + qt < c+(t) then
6: Get data (xt, lt) via dataset (t ≤ t0) or teacher’s labeling (t ≥ t0).
7: else
8: Continue
9: end if

10: Based on (xt, lt), update wt−1 by common optimizers. (e.g. SGD, Adam)
11: end for
Output: {wT }

4 THEORETICAL ANALYSIS

In this section, we first give an asymptotic analysis on Pt and then establish the connection between
recursive least square problem and Kalman filter. Using probability model, we are lucky enough to
find a direct relation between I(θ) and Pt.

Theorem 1 Assuming components of Ht are independent and subject to identical distribution with
mean 0 and variance σ2, we have

lim
t→∞

Pt
a.s.
=== lim

t→∞

I

σ2S(t)
, S(t) ∼ O(t)

where S(t) :=
∑t

k=1 α
2
kα

−2
t , αt := Πt

i=1λ
−1/2
i , and α0 := 1.

Based on basic KF theory, we obtain
Pt = λ−1

t Pt−1 − λ−2
t Pt−1H

T
t a

−1
t HtPt−1,

at = λ−1
t HT

tPt−1Ht + 1 = E[ε2t ]α2
t ,

λt = 1− (1− λ1)ν
t−1,

Pt = E[w̃tw̃
T
t ]α

2
t ,
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and
P−1

t = λtP
−1
t−1 +HtH

T
t

by using Woodbury matrix identity, where w̃t = w − wt, weights error covariance matrix
E[w̃tw̃T

t ] = (P−1
0 +

∑t
i=1 α

2
iHiHT

i )
−1. In the following experiments, we assume components

of Hi are independent and subject to identical distribution with mean 0 and variance σ2. So, the
covariance matrix of Hi is σ2I and P0 = I . Hence

E[P−1
t ] = Iα−2

t +
t∑

k=1

α2
kα

−2
t σ2I.

Using q-Pochhammer symbol, we find

lim
t→∞

α2
t = Π∞

i=0(1− (1− λ1)ν
i) = ((1− λ1); ν)∞ = α

exists. Therefore, S(t) :=
∑t

k=1 α
2
kα

−2
t of order O(t). According to the law of large numbers, we

get

lim
t→∞

P−1
t

S(t)
a.s.−−→ σ2I,

i.e.
lim
t→∞

Pt
a.s.
=== lim

t→∞

I

σ2S(t)
.

Theorem 2 Consider the recursive least square problem

θ̂t = argmin
θ

L(θ) = argmin
θ

1

2
(θTP−1

1 θα−2
t + Σt

k=1‖yk − ŷθ(xk)‖22α2
kα

−2
t ).

If we do Taylor expansion as below

ŷθt(xk) ≈ ŷθk−1(xk) +HT
k (θt − θk−1), ∀k ∈ {1, 2, . . . , t}

where Hk := ∇θŷθk−1(xk), we obtain an estimator

θ̂t = (P−1
1 α−2

t + Σt
k=1HkH

T
kα

2
kα

−2
t )−1(Σt

k=1α
2
kα

−2
t Hk(yk − ŷθk−1(xk) +HT

kθk−1)),

and we have
Pt = (P−1

1 α−2
t + Σt

k=1HkH
T
kα

2
kα

−2
t )−1.

Theorem 3 Set S := {(x1, y1), (x2, y2), . . . , xt, yt} and assume ∀k ∈ {1, 2, . . . , t}, yk =
h(xk, θ) + εk, εk are independent and subject to N (0, Iα2

kα
−2
t ) and prior distribution of θ is

N (0,P−1
1 α−2

t ). Then
Pθ(S) = Ze−L(θ).

If
∂2

2∂θi∂θj
(ŷθ(x)− y)2 ≈ ∂

∂θi
ŷθ(x)

∂

∂θj
ŷθ(x),

i.e. the second derivative term can be omitted, we have the following estimate

IS(θ) = ZES[P
−1
t

∣∣ θ].

This theorem can be proved directly as following

IS(θ)i,j = −E
[

∂2

∂θi∂θj
(logPθ(S))

∣∣∣∣ θ
]

= ZE
[

∂2

∂θi∂θj
L(θ)

∣∣∣∣ θ
]

= ZE
[
(P−1

1 )i,jα
−2
t + Σt

k=1Hk,iHk,jα
2
kα

−2
t

∣∣∣∣ θ
]
.
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Figure 1: The left figure is the accuracy of query by self after certain number of iterations. Compared
with no-strategy Kalman filtering, it achieves a advantage of 5 ∼ 10 percentage points during most
of time. This result is stable. The right figure is the labeling efficiency of query by self. It is the
ratio of the number of unlabeled samples which are chosen by query by self but the current model
can predict right to the number of unlabeled sample chosen by the strategy.

Figure 2: These figures are graphs of y(x) = x2 + 100, x ∈ [10, 20] (green) and its approximation
(red). The first row, the second and the third are the results after 300, 400, and 500 iterations
respectively. The left column is the fitting result of no-strategy Kalman filter and the right column
is the result of query by self.

5 EXPERIMENTS

Generally, Kalman filtering as an optimizer is usually use on small neural network for its O(N2)
computational complexity, where N is the number of trainable parameters. Therefore, we evaluate
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our strategy on various small neural networks like logistic regression and single output regression.
Using computer-generated and MNIST datasets, we demonstrate query by self efficiently selects
out suitable unlabeled data for teacher to label and thus enhance the accuracy, reduce the training
time, and improve the generalization performance. To verify the practical utility of query by self,
the hyper-parameters in our algorithm are not fine-tuned.

5.1 LOGISTIC REGRESSION.

We realize handwritten digit recognition by multi-class logistic regression on a one-layer neural
network using the MNIST dataset. The input of this network is 28 × 28 = 784 dimension image
vectors and the output is 10 dimension which will be activated by softmax function. Then output the
index of the largest softmax output as the predict. We compare the accuracy of the model containing
query by self and another directly trained with Kalman filter as its optimizer. As shown in Figure 4,
we discover query by self is able to enhance accuracy compared to only using Kalman filter as an
optimizer. After the same number of iterations, accuracy of query by self is 5∼10 percentage points
higher than that of no-strategy kalman filtering. This indeed means higher training efficiency.

As we can see in right sub-figure of figure 4, the labeling efficiency converges around 58%, which
is very high compare to the model’s error rate 10% or so. This means query by self is 58/10 = 5.8
times efficiency than no-strategy Kalman filter during training process.

5.2 FITTING 1 DIMENSIONAL CONTINUOUS FUNCTION.

This experiment is suitable to testify to the ability of query by self to improve generalization per-
formance, since we can see the fitting result in form of a visible graph. To this end, we should not
choose big network due to its strong ability to approximate such a simple function that we can not
differentiate which approximation enjoys a better generalization performance from its graph. Con-
sidering this, we use a model with just a hidden layer which has only 64 neurons. Our target function
is y(x) = x2 + 100, x ∈ [10, 20].

The result on the right sides is better than its counterpart on the left. These figures show our strat-
egy query by self can protect neural network from over-fitting and enjoy a excellent generalization
performance.

6 CONCLUSION

We propose a novel active learning query strategy, query by self. It does not relay on committee
to give an estimate of variance of output. Besides, we theoretically explain query by self strategy
from the perspective of entropy and information theory. Experimentally, it can accelerate training
process, improving generalization performance and helping us to save money and time. We hope
this strategy can become a powerful tool to deal with practical problem. In fact, popular neural
network in these days are deep neural networks, to which more attempts should be devoted and do
related research on it further.
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