BAYESIAN NONPARAMETRIC SURVIVAL ANALYSIS VIA
DEEP DIRICHLET PROCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

The analysis of time-to-event data has received increasing attention in many ap-
plication fields. The key challenge is that the data are mostly incomplete, with
the right censoring mechanism being the most popular form. While Cox’s pro-
portional hazards assumption has shown adaptivity to traditional time-to-event
datasets, challenges are observed when generalizing this assumption to modern
survival analysis — the proportional hazards assumption is often violated when
covariates are high-dimensional. Moreover, traditional parametric assumptions
on the survival distribution mostly belong to the exponential family and thus the
assumption is strong and their exponential decay rate leads to poor long-tail ap-
proximations. To overcome these challenges, we propose a novel deep learning
framework for survival analysis, named DDPSurv, which adopts a deeply parame-
terized Dirichlet process (DP) mixture model on survival distribution. Different
from previous deep parametric approaches which rely on strong statistical assump-
tions, our framework can model the survival distribution with greater flexibility by
adopting a DP mixture model. With the DP mixture model, we can improve the
flexibility in modelling the survival distributions and achieve better tail behaviour
by including the heavy-tail distributions in the mixture. We theoretically show
that the proposed model can approximate the true survival distribution at a tight
concentration rate. Empirical evaluations on standard survival benchmarks validate
the satisfactory performance of the proposed method. The extensive experiments
on large-scale clinical datasets — MIMIC-III and MIMIC-IV — highlight the scal-
ability and clinical significance of our method. Codes are anonymously available
athttps://anonymous.4open.science/r/DeepSurv-net-2215

1 INTRODUCTION

One of the key challenges that differentiate time-to-event data from other types of data is the
incomplete data issue and the censoring mechanism, including right-censoring (Nagpal et al.| 2021b;
Cox,|1972)), and interval censoring (Zhang and Yin,[2022). Survival analysis, a branch of time-to-
event modeling, deals with right-censored data in most cases and has found applications in various
domains, such as clinical trials (Cox} [1972;|Zhang and Yin, 2022) and actuarial science (Logubayom
and Yeboah| 2023). Despite the success of traditional survival analysis statistical models (Gu et al.,
2023} |Li et al.| [2018)), they are incapable of capturing the significant features when scaling to modern
high-dimensional datasets. Therefore, it is emerging to introduce deep learning approaches to time-to-
event modeling to deal with high-dimensional data (Katzman et al.l 2018} [Faraggi and Simon, |1995;
Xiang et al.| 2000), as deep neural networks allow for a more flexible nonlinear relation between
covariates and hazard ratio.

Although deep neural networks have significantly improved survival models’ prediction accuracy
and flexibility, they now face the new challenge of being over-parameterized, leading to potential
over-fitting issues. Recently, probabilistic models have been incorporated into the learning objective
to regularize the learning process, where the deep Cox model (Nagpal et al.,[2021b) is a well-known
method that integrates the Cox proportional hazards (CPH) model and deep learning. However, these
existing models rely on strong parametric assumptions (e.g., exponential family) and lack flexibility
in modeling the survival distribution. Especially when the observations in tails are limited and the
exponential tail decay would mostly lead to bias at long tail. Moreover, these works are heavily
based on the CPH assumption with a negative partial likelihood to address the challenge of missing
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data, making it difficult to handle the cross-hazard scenario that is very common in real data analysis
(Mantel and Stablein, [1988)).

In this paper, we propose DDPSurv, a deep Dirichlet process model with heavy tail mixtures, to
estimate the survival distribution more accurately and efficiently. Relying on the richer-gets-richer
property of the Dirichlet process, our framework can automatically find the number of mixtures and
be able to select the most prominent distribution from the infinite number of mixtures, providing the
best approximation of the survival distribution.

Our contributions can be summarized as follows: (1) We propose a new neural survival analysis
framework (DDPSurv) based on a deep Dirichlet process, which can tackle survival prediction at
high dimensions. (2) By mixing heavy tail distributions, we validate that the DP model can better
approximate the survival distribution at tails and mitigate the long-tail bias. DDPSurv can also
tackle the competing risk scenarios since each distribution in the infinite mixture can model the
hazard rate of a particular risk. (3) DDPSurv adopts stochastic variational inference to avoid the
high computational cost in parameter estimation via existing sampling-based methods (Zhang and
Yin, 2023} [Miiller et al.| [2015) (e.g., Gibbs sampling), and enables scalability to large-scale datasets.
(4) Theoretical analysis under the Sieve space framework provides asymptotic bounds to the posterior
concentration rate of the parameters. (5) Extensive experiments on generic survival predictions and
two large-scale clinical datasets validate the satisfactory performance of our proposed method.

2 RELATED WORKS

Survival Analysis. Time-to-event modeling, particularly in the presence of censoring data, has been
an important topic in statistical prediction across various domains such as economics (Bosco Sabuhoro
et al.| [2006; |Jones et al., [2002), actuarial science (Czado and Rudolphl 2002)), and medical treatment
(Zhu et alL|2016; Kim et al.,[2019). Survival analysis, a major subfield of time-to-event modeling, has
been extensively studied. Two major traditional parametric or semi-parametric survival models that
have played a prominent role in survival analysis are the Cox proportional hazard model (CPH) (Coxl
1972)) and the accelerated failure time model (AFT) (Wei,|1992). A substantial body of literature
(Kraisangka and Druzdzell 2016;|2018; |Rosen and Tanner, |1999) has focused on improving these
models to achieve higher prediction performance.

In recent years, deep neural networks and stochastic variational inference methods have been applied
to enhance traditional parametric or semi-parametric survival analysis (Nagpal et al.|[2021b; |Katzman
et al., 2018} |Alaa and van der Schaar} |2017; [Zhong et all |2021)) to further improve estimation
performance. While the deep neural networks framework increases the flexibility of the model and
improves its capacity to handle high-dimensional data problems, stochastic variational inference
allows the model to backpropagate gradients and thus save computational costs. DeepHit (Lee et al.,
2018)) and deep survival machines (DSM) (Nagpal et al., [2021a) have successfully learned fully
parametric models while employing stochastic variational inference. However, these models still
have limitations due to their fixed parameter settings or model assumptions including the number
of mixture components in DSM and discrete-time cases and single-death causes in DeepHit. DSM,
in particular, is known for its ability to handle competing risks by learning shared representations.
Noting the limitations of previous parametric deep learning models for survival analysis, neural frailty
machine (NFM) (Wu et al., [2023) manages to build a fully parameterized deep learning model based
on frailty-based statistic models and provides robust statistical theoretical analysis for its convergence
of prediction bias. NFM does not use a mixture model structure and still lacks flexibility when
approximating survival functions.

Non-Parametric Analysis. Non-parametric models have played a crucial role in statistical analysis,
offering flexibility and wide applicability (Satagopan et al.| 2004} [Peterson, 2009; [Steinwart and
Christmannl 2008). In the field of survival analysis, traditional non-parametric methods are mainly
frequentist methods, including the Kaplan—Meier (KM) estimator (Kaplan and Meier, |1958)) and the
Nelson—Aalen estimator (Nelson, |1969). The KM estimator approximates the survival function by
adjusting for the observed event times in its immediate neighborhood. However, frequentist methods
ignore the prior knowledge and have a limited function search space compared with Bayesian methods.
While Bayesian methods alleviate the limitations of parametric modelling and allow for a larger
search space of functions. Among these Bayesian non-parametric methods, the Dirichlet process



combined with the Gibbs sampling method has recently been used to solve the survival problems for
its outstanding performance in clustering (Zhang and Yin}, 2023) due to the richer-gets-richer property.
However, this method still relies on a traditional statistical approach using a Dirichlet process of
small-size parameters, without incorporating deep neural networks, which may limit its ability to
handle complex features and high-dimensional data. Additionally, the Gibbs sampler may perform
worse than the variational inference method in terms of computing efficiency. Therefore, stochastic
variational inference needs to be adopted to incorporate non-parametric model into modern deep
learning settings.

Long-Tail Bias Correction. The problem of long-tail bias has been challenging for many real
datasets in insurance, healthcare, and survival analysis. (Fackrell, [2009; [Hakim et al.| 2021} Since
the observations at tails are rather limited in most of the scenarios, it is difficult to approximate
the distributions at tails. Previous works have employed a large number of parametric distributions
belonging to an exponential family (Gardiner et al., 2014} Hakim et al.,|2021) to handle the survival
distribution when the data are heavy-tailed. However, common primitive distributions used in survival
analysis (e.g., Weibull, log-normal) have poor tail behaviours due to their exponential tail decay
(Landsman and Tsanakasl, [2012).

Recently, two trends tackling the drawbacks of exponential family distributions have been proposed.
One is to re-balance the dataset before the model learns representations by oversampling the tail
data, augmenting tail data, or under-sampling the head data (Buda et al., | 2018; Beery et al., [2020).
Another one is to solve the long-tail bias by re-
weighting the loss, setting the loss to be non-uniform,
to facilitate learning the tail data (Cui et al., [2019;
Samuel and Chechik} 2021). These approaches
mainly focus on adjusting the dataset and the loss.
They only provide a universal correction on the dis-
tribution and are still dominated by the exponential
tail decay (e.g., [Nagpal et al.| (2021a)). Therefore,
a more flexible correction that can adaptively deter-
mine the density adjustment is needed for a more
accurate approximation at tails.

3 METHODOLOGY

3.1 PRELIMINARIES

Figure 1: Our proposed survival model in
Problem: Time-to-event Modelling. We assume plate notations.
a right-censoring model for simplicity. Let D =
{(=;,t;,6;)}_, denote the dataset as a set of tuples, where x; € R? is the features associated with
individual 4, ¢; is the time at which an event of interest occurs, or the time of censorship, and §; is
the indicator that specifies whether ¢; is the event time or censoring time. We denote the uncensored
subset of D as Dy and the censored subset as D¢

Definition 3.1 (Dirichlet Process). Denoted as DP(«, ), the Dirichlet process is a random probability
measure on the sample space X', such that for any measurable finite partition of S, denoted as { B; } X |,

(X(B1), X(B), ... X(Bk)) ~ Dir(aG(B1),aG(By) ..., aG(Bx))

Definition 3.2 (Dirichlet Process Mixture (DPM)). Let DP(«aGg) denote a Dirichlet process with
parameter oGy where « is a precision parameter and Gy is a base probability distribution. The DPM
model is defined as

GNDP(OéGo),
01,...,0r ~QG,
1|0k ~ fo,,

where T’ is the truncated number of mixtures.
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Figure 2: The workflow of our proposed survival analysis framework. We first encoder the scale and
shape parameters of the primitive distributions. We then adopt the stick-breaking formulation of the
Dirichlet process to determine the mixture weights of each mixture component.

Definition 3.3 (Heavy-tail Distribution). We consider a distribution F'(z) as heavy-tail if its tail
convergence rate is slower than an exponential decay, as given by

/emdF(J;) = oo, forall t > 0.

3.2 DEEP DIRICHLET PROCESS MIXTURE MODELS

We represent the survival function with a mixture of primitive distributions (e.g., Log-Normal,
Weibull), where detailed description of common primitive distributions is provided in the appendix.
We specify the Dirichlet process mixture model with the well-known stick-breaking formulation,
Ki—1
ay ~ Beta(1,m1), TE = H (1—ag), (D
k=1
where 7y, is the probability assigned to each cluster. We further assume for each individual we either
observe the actual failure time or censoring time but not both. Then we have z|m ~ Cat(|7) the
cluster assignment sampled from the multinomial distribution based on the cluster probability 7,

and 7, is the concentration hyperparameter. We truncate the number of primitive distributions at
K =K;.

Primitive Distributions. Let & = {¢ k}f:ll represent the set of all shape and scale parameters of
the primitive distribution. We adopt the log-normal distribution as an illustrative example for the
primitive distribution where &, = (¥4, i ). Then density f(¢|€) and the survival function S(t|€) are
given by

1 _ (log tfﬂk)Q 1 _
F(tlex) = 8! 0’“) .

1
—€ *E S(t|€x) =1 — —erfc (—
tep V2T 2 V26
Further discussions on the primitive distributions are presented in the Appendix.

Mitigating Long-tail Bias. As the existing distributions based on the exponential family suffer
from exponential tail decay and poorly model the tail behaviour of the true survival distribution, we



Algorithm 1 Our proposed DDPSurv framework.
Input:
Data D = {(ZL’Z, t;, (51)}?:1
K, the maximum number of primitive distributions;
K>, the maximum number of heavy-tail distributions;
Parameter sets of primitive distributions £ and heavy-tail distributions (.
Hyperparameters {1, 72},
Parameter sets of networks ¥ = {¢,}5* ‘and Y = {v;};2, to encode the shape and scale
parameters of the primitive distributions and heavy-tail distributions, respectively.
Output: Trained ¥ and Y
Sample 7, with Eq. (I)

1:
2: for each training epoch do
3 forge {1,...,K;1} do > Primitive Distributions
4: Sample mixture weights by Eq. (T) with concentration rate 7,
5: Encode parameters £ with ¥
6 Compute log-likelihood
7 end for
8: forgc {1,..., K>} do
9: Sample mixture weights by Eq. () with concentration rate 7,
10: Encode parameters ¢ with Y
11: Compute log-likelihood with Eq. (2)
12: end for

13: Compute ELBO with Eq. (§)

14: Backpropagate ELBO to ¥ and Y
15: end for

16: return Trained ¥ and Y.

further include K5 heavy-tail distributions into the mixture to improve the tail behaviour (Dey and
Yan, 2016; Ibragimov et al.,2015). Without loss of generality, we adopt the log-Cauchy distribution
with density function

1

logx — 2
1+<g ”)]
o

which has a logarithmically decaying tail. In addition to the mixture of primitive distributions, we
mix infinite numbers of heavy tail distributions as specified by Eq. (Z). We then apply another
stick-breaking process to compute the mixture weights {)\k}kKip

flaip,0) = ; @

IO

Ko—1

Br ~ Beta(1,12), MNe=8 [T (=8 3)

k=1

Let ¢ = {¢ k}szzl represent the sets of all shape and scale parameters of the heavy-tail distributions,
where (j, is the set of parameters of the k-th mixture. We further denote ¢ = {&,(}.

3.3 STOCHASTIC VARIATIONAL INFERENCE

Without loss of generality, we focus on the right-censoring scheme, and we specify the censoring and
uncensoring loss functions as follows.

Uncensoring Loss. Given the DP mixture model, we have the following loss for uncensored data,

[Du|
logP(Dy|©) =log | [ P(T =t|a:,0) 4)
=1
[Dy| Ki+K>
= Z log < Z P(T = ti|zi, &) P(Z = k|ﬂ%ﬁ)> Q)
=1 k=1



Censoring Loss. For right-censored data, the ELBO is defined by the likelihood to the survival
function

[De|
log P(Dc|©) =log | [] P(T > tilz;, ©) 6)
i=1
[Dc| Ki+K>
= Z log ( Z P(T > t;|x;, Ck)P(Z = k|wi,/6’)> . @)
k=1

By adopting a mean-field approximation, the variational family of the parameters is given by

Ki—1 Ko—1

q(, 8,€,C,t) = ank HQBkHQ&cHQCkH (tilee, B,€,€).

The surrogate loss of backpropagation can be obtained by negating the evidence lower bound, which
is computed by the log of posterior mixture weights

£(®) =KL(q(€)|p(¢ >>+KL< (Q)lIp(¢)) + KL(g(e)[[p(cx))
+KL(q(8)[1p(3 ZKL a(tile, B.€,O)llp(tilex. B,€.0))), ®)

where KL(q(t;|ax, B, &, O)|lp(ti|ex, B, €, €)) is the censored likelihood which is specified by Equa-
tions (6) and (), then the problem is reduced to learning the likelihood of inputs to the assumed DP
model. The detailed parameter update procedure of the variational posterior and the closed-form KL
divergences of the primitive distributions can be found in the supplementary materials.

4 THEORETICAL ANALYSIS

Technical Setups. For technical simplicity, we assume that the hazard rate after mixture is predicted
by the neural network, i.e.,
h(t|lxz) = v(t, x).

Here v is an unspecified non-negative function. The survival function can then be represented by
StX)=eJo ¢”t*®)ds Then the censored log-likelihood can be re-written as

T T
l@@%W:M%/eW@m+w@m+/emmw
0 0

We demonstrate the theoretical boundedness of the proposed DDPSurv model using the Sieve space
(Wellner et al.| 2013} [Wu et al., 2023, which provides the rates of convergence in the sense of
parametric regression. As in previous works (Wellner et al.l 2013 |Wu et al.,[2023), we choose the
Holder ball to represent the function space,

W) = {7 max esssup [D*(f(a)) < M.

ala|<B zex
where the domain X is assumed to be a subset of d-dimensional euclidean space, & = (a1, ..., aq) is
a d-dimensional tuple of nonnegative integers satisfying |o| = ay + - - - + ag and D f = Lf@%
is the weak derivative of f. We assume M is a reasonably large constant.
We make the following assumption for the true parameters:

Condition 1. (True Parameter (Wu et al.} 2023)) The Euclidean parameter 6y € © C R, and the two
function parameters mq € W]@ (X)([~1,1]%), ho € WJ’[C’I(X)([O7 7)), and T > 0 is the ending time
in the theoretical studies in survival analysis.



Condition 2. (Sieve space) The Sieve space V,, is constructed as a set of MLPs satisfying v €
Wﬁ,ﬁ([o, 7)), with depth of order O(logn) and total number of parameters O (n P log n)

Here, M, is a sufficiently large constant such that every function in Wﬁ,u ([0, 7]) can be accurately
approximated by functions inside V,.

Let v be the true parameter and  be the corresponding estimate. We define P, . to be the estimated
conditional distribution given « and P, ., to be the true conditional distribution. We further define a
metric to measure the convergence of the parameter estimate,

A (0, 10) = \/Eanpy [H2 (Ps, 2Py )] ©)

where H? (Py, 2||Pyy.2) = [ (VAP — 1/dQ)? is the squared Hellinger distance between the proba-
bility distributions P and Q. We use O to hide the poly-logarithmic factors in the big-O notation.
Based on the above regularity conditions of the Sieve space, we can state the following theorem on
the rate of convergence.

Theorem 1. (Rate of convergence) Under conditions |l| and we have that d (p,vy) =

A 8
o ( 2B+2d+2 ) :
5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

We validate our method on two common datasets for survival prediction — SUPPORT and SYN-
THETIC. We additionally include two large-scale benchmarks on clinical data — the MIMIC-III
dataset which contains ICU visits of 46,520 patients in 11 years, and MIMIC-IV which contains
331,794 discharge summaries from 145,915 patients admitted to the hospital and emergency depart-
ment at the Beth Israel Deaconess Medical Center in Boston, MA, USA. Table E]presents the details
of the datasets used for empirical evaluations.

We use two standard metrics in survival analysis for evaluating model performance. One is the
concordance index (C-index),

Zi,jI[Tj <TiI[’I“]‘ >r; 5]

C-index =

il <0y

where r; is the risk score of the ¢-th unit. Larger C-index value indicates good performance. The
other metric is Brier score (BS), BS = %; Zii L (ft — 0¢)* where f; is the predicted probability of the
event, o, is the actual outcome of the event at instance ¢ and N is the number of forecasting instances.
Smaller BS value indicates good performance. Detailed descriptions of the metrics are provided in
the supplementary materials.

Table 1: Summary of Datasets

Dataset Type No. Obs. Feature Dim. No. Events No. Censoring
SUPPORT Single Risk 9,105 38 6,201(68.11%) 2,904(31.89%)
SYNTHETIC Multiple Risk 5,000 9 4,003(80.06%)  997(19.94%)

MICMICIII Single Risk 17,814 34 2,235(12.55%) 14598(87.45%)
MICMICIV Single Risk 22,913 30 2,703(11.80%) 20210(88.20%)

5.2 COMPARED METHODS

We compare our proposed framework to seven competitors — (1) Cox Proportional Hazards (CPH)
(Cox![1972)): This is the standard semi-parametric model, making the assumption of constant baseline
hazard. The features interact with the learnt set of weights in a log-linear fashion in order to determine
the hazard for a held-out individual. (2) DeepCox: Proposed by (Katzman et al.,[2018)), DeepSurv



involves learning a non-linear function that describes the relative hazard of a test instance. It makes
the familiar assumption of constant baseline hazard, as does CPH. (3) DeepHit (DH) (Lee et al.,
2018): This approach involves learning the joint distribution of all event times by jointly modelling
all competing risks and discretizing the output space of event times. (4) Deep Cox Mixture (DCM)
(Nagpal et al., 2021b): This model replaces the parameters in CPH with deep neural networks
and adopts a mixture model structure (5) Deep Survival Machines (DSM) (Nagpal et al.l 2021a):
This model is mixture of parametric models from lognormal or weilbull distributions. It does not
rely on the strong assumption of cox proportional hazard ratio. (6) Sumo-Net (Rindt et al., 2022):
This model proposes a simple novel survival regression method using a monotonic restriction on the
time-dependent weights to optimize right-censored log-likelihood (7) NFM (Wu et al.,|2023): This
model propose a fully parameterized deep learning model based on the frailty model.

5.3 QUANTITATIVE RESULTS

We mainly evaluate our model and other baselines at two different time horizons, 25% quantile and
50% quantile. The results are presented in Table[2] We find that our method can overall outperform
the baseline methods by a satisfactory margin in most of the settings when C-index and brier score are
selected as evaluation metric. Specifically,our DeepSurv ranks first under most of the cases (13/16)
and rank second or third for the few other cases. In particular, our model has larger improvements
on MIMIC-IIT and MIMIC-IV datasets compared with SUPPORT and SYNTHETIC, implying that
our model can effectively tackle high censoring rate clinical datasets, which remains a challenging
task for most of the prior arts. Moreover, as shown in Figure 5] compared with DSM, which is also
based on mixture model structure, our DeepSurv has a better prediction performance. It implies that
dirichlet process guided mixture model can have better approach the survival curve.

25% Time Horizon SUPPORT SYNTHETIC MIMIC-IIT MIMIC-1V
Models Cndex(%) T BS(%) ] Candex(%) T BS(%) ] C-ndex(%) T BS(%) | C-mdex(%) T BS(%) |
CPH (Cox][1972) 6852000 48541000 62.661000 36.761000  7641i000 4871000  T1.971000 467000
DeepCox (Katzman et aLlR018]  69.59.04 11704005 66985030 1561005 79135001  4.00:003  TA7digrs 4211004
DeepHit (Lee ef al.i2018) 62901040 18501109 61842076  18.78s777  Tld9%061  28.631156 70484061  46.3711.0
DCM (Nagpal et L. 2021b} 640,099 1138103  67.35:0s0 15895021 80501115  405i005 7570405  A19:i00s
DSM (Nagpal et al.|| 2021a] 7590041 117,00  67.692005 15995005 8L84yos 393100 75184126 416,00,
Sumo-Net (Rindt et al./[2022) 64.64 1208 28.8710.47 65.4341.75 30.9040.04 64.0940.30 22.21410.53 64.5940.13 54.8510.80
NFM (W ef al.|[2023] 6991001 30724000  OT.74y04 15340010 69094000 5914005 68.651000  62.57x050
DDPSurv 76.82..34 11.13. .03 68.38_0 35 15.8540.18 82.03..54 3.91.0.03 78.5510.4s 4.1150.01
50% Time Horizon SUPPORT SYNTHETIC MIMIC-IIT MIMIC-1IV
Models C-index(%) T BS(%)] C-index(%)T BS(%)] C-index(%)T BS(%)] C-index(%) T BS(%) |
CPH (Cox{|1972) 66.5040.00  34.341000  60.7310.00 23471000  69.631000  10.231000  71.34400.00 11.41i00.00
DeepCox (Katzman et al.{2018) 67.4840.37 19.3040.07 67.08+0.40 23.1340.08 71.2241 05 9.7540.07 70.08+0.54 10.4740.17
DeepHit (Lee et al.{[2018) 63.5140.76 24.4310.47 68.09+0.38 33.0449.05 71074054 29.4310.74 70.2840.54 38.1640.74
DCM (Nagpal et al..2021b} 076,06  19.04p051 67230011 23624042 71362000  9.95:012  08.57s047 105807
DSM (Nagpal et al./2021a) 70.1940.34 18.33 407 66.6940.28 24.1040.08 72.98 1470 9.66.. 06 72.86. 1 o4 10.5940.05
Sumo-Net (Rindt et al./[2022) 64.6442.08 29.9410.47 64.64+£5.09 32.1940.82 66.2140.35 14.2610.07 64.56.+0.22 36.9044.13
NFM (Wu cf al.][2023} 63.18:015 40495015 69304001 20321010  68.67i007  5l.ldsgoz  67.30s011  5L.1l003
DDPSurv 70892001 18072005 08.08.015  2257.05  T361i010  965:005 72900 1031007

Table 2: Compared results at 25% quantile and 50% quantile time horizen. Best results across the
comparable methods in each dataset are highlighted in bold, while the second-best results are
underlined.

5.4 TAIL PERFORMANCE

For evaluation of the tail performance after the heavy-tail mixture, we evaluate the performance
on tail time horizon quantiles. Table 3] presents the performance of DDPSurv at the 75% and 90%
quantile. It is observed that our model ranks first or second for most of the datasets and evaluation
metrics, validating that our model can handle tail scenarios and mitigate the long tail bias very
well. We further validate the effect of heavy-tail mixture by comparing the performance with and
without mixing heavy-tail distributions, respectively. Figure [3|and Figure f] present the results on
the benchmark datasets for 0.75 time horizon and 0.9 time horizon respectively. It is observed that
the model has better prediction performance with heavy-tail distribution mixed when considering
C-index as evaluation metric. The observation is valid for all the datasets with Support dataset having
most significant improvement.



75% Time Horizon SUPPORT SYNTHETIC MIMIC-IIT MIMIC-IV

Models C-index(%) T BS(%) ] C-ndex(%) T BS(%) ] Candex(%) T BS(%) ] C-mdex(%) ] BS(%) |
632,000 23152000  597dz000 49341000 65021000 22771000 61724000 272700
66801016 220101, 67271085 1951005 672508  17.99:020 67641081  19.72:0.1
64261073 23981028  57.T5ises  28.60403.34  61.7lioas 21594007 64.974044 25.124300
65.6711.80 22481051  67.414008 19.901017  66.94.40.86 18144029  66.901070  19.8540.19
65475007 22021040  66.07:0s2  17.081049  66.51103s  1737T.00s 67654152  19.69.0 10
64.644208  27.0910.90  63.4912.09 26.3743.12 55974902 39.00x1094  60.691s86 25254311
63.6710.07  34.0610.14  68.5410.11 15.50-0.06 66.2810.25  31.9010.03  66.4810.26  32.3610.02

DDPSurv 66142001 21861008 67.78,0.5  1584,009 67821035  17.25:005 6842503 19484010
90% Time Horizon SUPPORT SYNTHETIC MIMIC-III MIMIC-IV
Models C-index(%) T BS(%) ] C-index(%) T BS(%) | _ C-index(%) T __BS(%) ] C-index(%) T BS(%) |

65.921000 1941000  59.5210.00 74.4140.00 63.9410.00 35.61+0.00 65.521000  46.72+0.00
66712012 17451017 6953041 10892005 65861007 22541042 65214115  23.934020
6419505 24561058 57351775 14434055 645Tiiss  13.6digsr 64281000 1444, 6
65161145 17.8ligge 6702015 1095402 65451056 22171020 64511100  23.6210.40
65101020 17.36.005 05080027 10194015  65.89,04 21455014 64971150  23.031055
64.641208  28.0740s6  63.0413.66 57214308 55.8248.76 42.36+9.96 60.554+486 14181265
; 64341005  20.072005 66851011  913i000 64791041 1629009 65561040  16.83001
DDPSurv 0505.00; 17281005 6730s072  0dl.pys  66.77:0m  2103:055 65951020  22.62:0.3

Table 3: Compared results at the tail, i.e., 75% quantile and 90% quantile. Best results across each
dataset are in bold, while the second-best results are underlined.

Heavy-tail distribution effects for Horizon 0.75
Heavy-tail distribution effects for Horizon 0.90

10 With Heavy Tails W Without Heavy Tails
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Figure 3: The performance in C-index of
DDPSurv under 0.75 time horizon with and
without mixing the heavy-tail distributions,
respectively.

Figure 4: The performance in C-index of
DDPSurv under 0.9 time horizon with and without
mixing the heavy-tail distributions, respectively.

5.5 ABLATION ANALYSIS

Number of mixture components. We evaluate the effect of different numbers of mixture com-
ponents K; and K5 on the survival prediction performance. As shown in Figure [6), we use the
C-index at 25% quantile as the evaluation metric and run our experiments on MIMIC-IV dataset
with different combinations of k; and k». The results indicate that the performance generally rises
as a trend when K; and K increase within a range, which further suggests that a large number
of mixture components may improve the expressiveness of our model. The results stabilize after a
certain number of mixtures (e.g., Ko > 8, indicating that the DP can automatically select the optimal
number of mixture components, and hence reduce the reliance on tuning the number of mixtures.

Effects of the concentration rate 7. We investigate the effect of the concentration rate on the model
performance. As shown in Figure[7] we use the C-index as the evaluation metric, run our experiments
on the MIMIC-III dataset and record the results for six different values of n (we let n = 1 = 12)
under four different test horizons. The results indicate that the concentration rate generally makes
no significant impact on the performance of DDPSurv. Among these four concentration rates, the
default value 10 has a slight advantage over others.

Effects of the censoring rate. We further investigate the effect of the censoring rate on the model
performance. In previous ablation experiments, we generally use the MIMIC-III dataset to illustrate
the scalability for our method. However, since the default censor rate of MIMIC-III is larger, we
perform experiments on the SUPPORT dataset instead. As shown in Figure[8] we use the mean of
C-index as the evaluation metric, run our experiments on the SUPPORT dataset and record the results
for both our model and DeepCox, one of the outstanding baseline models. The result indicates that



Effects of Using Dirichlet Process
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Figure 6: Performance of our DDPSurv on the
Figure 5: Comparison of the performance between ~ MIMIC-III dataset with respect to different /1
DSM and our DDPSurv. We show the mean and Ko.
C-index of four time horizons.

our model is more robust when we adjust the censoring rate of the SUPPORT dataset, which means
that our model has a stable advantage over DeepCox for most of the censoring rates.

C-index under different eta
0.90 1.0

C-index under different censor rates
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Figure 8: The mean of four time horizons’

Figure 7: Performance in C-index of DDPSurv on Cuindex under different censor rates.

the MIMIC-III dataset with respect to different 7.

6 CONCLUSIONS

In this work, we propose DDPSurv, a novel deep Bayesian non-parametric framework on survival
prediction. By mixing heavy-tail distributions into our model, we achieve adaptive tail correction and
improve the behaviour at tails. We adopt stochastic variational inference to train the model in high
dimensions. Empirical results show that our method can overall outperform the baseline methods.
Ablation analysis demonstrates the contribution of each proposed component and robustness to
variations in hyperparameters. Our work can be potentially extended to multimodal learning, where
Bayesian nonparametric methods can effectively fuse the distributions from different modalities.

Limitations and Future Works. One limitation of our method is that we did not explicitly model the
potential heterogeneity in individuals (although implicitly by adopting a mixture model). However,
DDPSurv can be easily extended to incorporate this factor with modifications in the likelihood, such
as the frailty family, which will be explored in future works. Our method can also be extended to
other application domains, such as survival analysis for whole slide images.
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A TECHNICAL DETAILS

Proof of Theorem 1. We follow the FN scheme from (Wu et al., 2023) to prove the convergence
properties of the proposed DDPSM model.

A.1 TECHNICAL LEMMAS.

We list the technical lemma of the FN scheme here, where the proof of each technical lemma is
extended from (Wu et al.|, 2023)). We first develop technical lemmas for facilitating the proof of the
main theorem

Lemma 1. Under conditions 1-3, for (7,9, z) € [0,7] x {0,1} x [—1, 1]¢ the following terms are
bounded:
1. I(T, §, x; vp) with true parameter vyg.

2. I(T, 6, x;¥) with any parameter estimates © in any Sieve space listed in condition 2.

Lemma 2. Under condition 1-3, let ©, i1, and 5 be arbitrary three parameter tuples inside the sieve
space defined in condition 2, then the following inequalities hold

11T 6, 25 00) = UT, 0,2 0) |0 S [[v0 = Pl
UT, 6, ;01) — UT, 6,25 12|00 S |01 — Do|oc-

Lemma 3. (Approximation error) For any n, there exists an element in the corresponding sieve space
o __8
Wy, satisfying d(w, vy, w,vp) = O(n~ FFarT),

Lemma 4. Suppose that F is a class of functions satisfying that N (e, F, || - ||) < oo for Ve > 0. We

define N (e, F,|| - ||) to be the minimal number of e-balls B(f,¢) = {g : |lg — f|| < €} needed to
cover J and further constrain that f € F. Then we have

~ €
Lemma 5. Suppose that F is a class of functions satisfying N (e, F., || - [|s) < oo for Ve > 0.
We define N, (6, F, | - loc) to be the minimal number of brackets [/, u] needed to cover F with
|l = ulloo < €and further constrain that f € F,[ = f — §,and u = f + 5. Then we have

~ €
N[](E’]:7 ” . ”OO) S]\/v[](ev}—v H : ”00) SN[](§>'7:’H : ||00)

Lemma 6. (Model Capacity) Let G, = {I(T,6, Z;,6) : © € V,}. Under condition with

there exists a constant ¢,, > 0 such that

Sy = 2B
v = 2p+d+1’

1 S
Ny(&,Gn), [l lloo) S EN(Cuel/ Y Vns [l - l2)-
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We adopt the theory of empirical processes (Wellner et al., 2013} Wu et al.,2023)) heavily in the proof
of main theorems. The proof is based on the proof of the FN scheme introduced by (Wu et al.; 2023)).
For a function class F, we define N (e, 7, || - ||) and Ny (e, F, || - ||) to be the covering number and
the bracketing number of F with respect to norm || - || under radius e, respectively. We use VC(F) to
denote the VC-dimension of F. Moreover, we use the notation a < b to denote a < Cb for some
positive constant C.

We define

T T
UT, 6, x; D) = 5log/ e’ @) ds 4+ du(t, x) +/ e’ (@) s,

0 0

Under the definition of the sieve space stated in condition 2, we restate the parameter estimate as

1
Up(t, ¢) = argmax — Z L(t;, 05,243 0) .
vey, N icm

Under the model assumption, p(7T’, §|& = x) can be expressed by

p(T, 6|w7 V) = eXp(l(T, 6; T U))fC|m)(T)1_6SC|w(T)l_(s'

The defined distance can be explicitly expressed by

(0, ) = \/Em U ‘\/p(T,(5|:l:;f/) _ \/p(T,é\a:;Vo)‘zu(dT x dd)}

The proof can be then divided into four steps (Wu et al., 2023)
Step 1:
For arbitrary 0 < € < 1, we have that

inf  E[UT,0,x;v0) — (T, 6, 2; )]

d(D,vo)>e

:d(Ainf)> Eg [E1)s,2 log p(T, 8|x; vo) — log p(T, 6|a; Dp)]]
v,Vp)=€

= inf [Eg[KL (P; »|P,
o Eo KL (B [Py o)

Using the fact that KL (P »||Py, 2) > 2H? (Pj o ||Pyy .« ), We can further obtain that
inf  E[UT,6,x;v9) — UT,0,x;0)]

d(D,vp)>e€
> inf  Eg [2H? (Poo|Pu.e)]

d(i,v0)>e

=2 inf d*@,u
d(D,vp)>e€ ( 0)
2262.

Step 2: We consider the following derivations

sup Var[[(T, 9, x;v9) — (T, 0, x; D))

d(v,v9)<e

< sup E[(UT,6,2300) — (T, 8,2:9)’]
d(D,v0)<e

= sup Em |:ET|§,:E |:(10gp(T7 (57$;U0) _logp(T7 57waﬁ0))2:|i|
d(D,v9)<e

2
p(T7 57 Z; VO)

=4 sup E, / T,6, x; v — dT x dé
d(f/,uj))ge p( O) ( p(T7 6758; VO)) NJ( )
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By Taylor’s expansion on log , there exists 7(7', 6, z) between /p(T, §, x; vo) and \/p(T, 6, x; )
pointwisely such that

2
p<T7 6a Z; VO)
T ; 1 _
p( 7571:’”0) <Og p(T,(S,:B;I}())

2
:p(T7 67$, VO) (log V p(T7 5,2]3;]/0) - log V p<Ta 6am7f/0))

p(T,0,x;vp) . _ )
L) (Ve S i) - Vol diin))

Since p(T, 8, z; 1) /p(T, 8, x; 0) = exp(I(T, 6, x;v) — U(T, &, x; 1)), from lemma 1, I(T, 6, ; 1)
and [(T, 9, z; D) are bounded on [0, 7] x {0,1} x [~1,1]¢ uniformly for all . Thus there exists
constants C and Cy such that 0 < C; < p(T, 0, x;vp)/p(T, 6, x;v) < Cs. This leads to the fact
that p(T', 6, x; vp) m is bounded. We further have that

2 2
p(Ta 6,%;1/0) (log V p(Ta 57‘737 VO) 710g \/p(T757maﬁ)) S l\/p(Ta 67m;l/0) - \/p(T7 67;1571})‘ .

Thus we have that
sup Var [[(T, 0, x;vy) — (T, 0, x; D))
d(D,v0)<e

< s B | [ Vil - VAT s o] wdr < )

d(?,vo)

= sup d*(7,vp)
d(lj,l/())

§62.

Step 3 We define G,, = {UT, 6, x; ﬁ~) —U(T,d,x;v,10) : U € Vy, }. Here w, 1 has been defined in 3.
Obviously, we have that log Ny (€, G, || - [|0) = log Nj(€,Gn, || - [loc), Where G is defined in lemma
6. By lemma 6, we further obtain that

1 S
Ny(e,Gn)s I loc) EN(cuel/‘%Vm [+ ll2)-
According to (Yarotsky} 2017), Theorem 7, under condition 2, we have that the VC-dimension of V),
d+1
satisfies that VC(V,,) < n TR log® n log 1. Thus we obtain that

VC(V, 1 1
log N(c, e Vo, |- 1) < &logf S T log® nlog ~.
€ €

Sy
Furthermore, we also have that log N[ (e, Gl-h< T log® nlog L.

Step 4 By the Cauchy—Schwartz inequality, we have that

VET, 8,2:9) — U0, @ro)] < [EQU(T, 8,2 9) — UT, 6, m10))2]

Then by Lemma 3 we further obtain that

VEUT, 8, x;0) — (T, 8, x; w,v0)] < d(wnro, vo) S T

Now let

B B8 _2loglogn
28+2d+2 logn
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Then by steps 1, 2, 3 and |Yarotsky|(2017)), Theorem 1,

d(ﬁa VO) = max (ni‘rv d(anOa VO)? \/E [Z(Tv 53 Z; I}) - l(T7 57 T anO)})

By lemma 3, we have d(wnvp,vn) = O(n_ﬁ+§+1), and by Step 4, we have
VEIT,0,2:0) — (1,0, wpr0)] = O(n 7%@).  Thus we have d(i,1) =

(Q(n_2/3+"'#+2 log®n) = @(n_m)

The proof of the technical lemmas is based on Wu et al.[(2023)).

Proof of Lemma 1. Since vy(T,2) € W5, ([0,7] x [~1.1]%), we have that vo(T,2) < M and
T u(s,x) M
Jo e ds < teM,

Il(T7 5a ZB), V0)|

T
log / (@) g
0

< 2M—|—10g7'+TeM.

<

T
/ eV (5:%) g g
0

We then have that [(T, §, z; v) is bounded among (T, 6, z) € [0, 7] x {0,1} x [—1,1]%. The proof
of the boundedness of (T, d, x; V) is similar.

+ (T, )| +

Proof of Lemma 2. By definition we have that

[U(T,6,2);v0) — U(T, 6, 2; )]

T T
log/ evo(5:®) gg — log/ e’ (5®) g
0 0

T T
/ e”"(s’w)ds—/ e” @) s .
0 0

By Taylor’s expansion on log(-), we can further show that

< + |vo(T,x) — 0(T, )|

+

U(T, 6, );v0) = U(T, 6, ;D)

T T .
/ euo(s,m) ds — / eu(s,m)ds
0 0

§|VO(Ta$) - ﬁ(T7$)| +2

Again, by Taylor’s expansion, we have

T T
/ e’ (5:®) s / e?(5%) g
0 0

Finally, we obtain that

< Temax(]\/[,NV)HVO o 19”00

(T, 6,2); 1) — U(T, 0, 2;0)| < |wo(T, ) — (T, )| + 2re™>*MN) 1y — b o

Taking the supremum on both sides, we conclude that,

[T, 6,2); v0) = U(T, 6, ;7)o S [lv0 = Plloo

The proof of the second inequality is similar.
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Proof of Lemma 3. According to (Yarotsky, |2017), Theorem 1, there exists an approximation
function 2* such that ||vy — P||ec = O (ni FaTT ) Let w, vy = v*. We have that

d(’(ﬂny(].l/o)

:\/Ew U ’\/p(Tﬁlw;D) - \/p(T75lw;Vo)‘2u(dT X d5)}

2
\/Em {/ [G%Z(T,é,wﬂﬂnlfo) _ G%Z(T,é,w;m))} fC\m(T)lf‘SSC\m(T)‘s,u(dT % dé‘)}

_ ’ _ \/Em { / fc|m(T>155c9:(T)5}

By lemmas 1 and 2, we have that
6%I(T,J,ar;;wnug) _ B%Z(T,zs,m;uo)

Since fc‘w(T)lf‘s < fel(T) and Sc‘w(T)‘s < 1, we also have that

e%l(T,zi,m;wnuo) N e%l(Tﬁ,m;uo)

< ||wnl/0 - VOHoo

=0 (nfﬁ) .

\/Ew [ FetalT -5 (Tuar x an)| < \JB [0+ fera(Dn(ar  a5)
<V2+2r,
Thus we obtain that d(cw,,vp.v9) = O (n*ﬁ) .
Proof of Lemma 4 and Lemma 5. Omitted as the proof is similar to (Wu et al., [2023).

Proof of Lemma 6. By lemma 5, first we have that Njj(¢, G, || - [loo) < N[](e, Gny || lloo)- By
lemma 2, there exists a constant ¢; > 0 such that for arbitrary 1, 75 € V,,, we have that

||Z(T7 (S,EE), 791) - l(T7 67wa ﬁZ)Hoo < clHﬁl - ﬁ2||007

which indicates that as long as || 01 —2|ec < 55, wehave that [|[(T, 6, z); 01) —I(T, §, @; 02) | oo < €.
Thus, we have
€

N6 G- lloe) < Ny (5

B VARIATIONAL UPDATES OF MIXTURE WEIGHTS.

We present more details on updating the variational mixture weights. We have the following closed-
form solution of v that minimizes the KL divergence term

B B T
e =14 Gy Vr=m+>, > G (10)

b=1 b=1r=Fk+1
forb € {1,..., B}, where B is the sample size and T is the maximum number of clusters. We then

compute the log of posterior responsibility (i.e., the weighted log ¢) as follows,

C ADDITIONAL DETAILS ON DATASETS.
D DETAILS OF DISTRIBUTIONS

We specify the distributions used in this work and their useful properties.
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D.1 PRIMITIVE DISTRIBUTIONS
We provide the density and survival functions of the primitive distributions.

Weibull Distribution.
The density of the Weibull distribution is given by:

k x\k-L k
: _kyz ~(z/X)
flaak =5 (5) e,

The survival function of Weibull distribution is given by:
F(z;\ k) =1— e @A
where k£ > 0 is the shape parameter and A > 0 is the scale parameter.

Log-normal Distribution.

The density of the Log-normal distribution is given by:
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The survival function of Log-normal distribution is given by:
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where (4 is the shape parameter and o > 0 is the scale parameter.

The error function erf(x) is defined as:
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D.2 HEAVY-TAIL DISTRIBUTIONS

Log-Cauchy Distribution. We adopt the log-Cauchy distribution as the heavy tail distribution.

The multivariate Gaussian Distribution is defined as
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D.3 KL DIVERGENCES OF TWO MULTIVARIATE NORMAL DISTRIBUTION

The KL divergences of two multivariate normal distributions N (g1, 1) and N (2, o)
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E MORE ON BASELINE METHODS AND IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS
We present additional implementation details and hyperparameter settings. We first provide the key

settings and adaptations applied to the baseline methods for reproducibility. We follow the default
settings for other fine-grained parameters (e.g., learning rates).
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The proposed method is implemented in Python with Pytorch library on a server equipped with four
NVIDIA GeForce RTX 3090 GPUs.

All models are pre-trained with 10000 iterations and then trained with 100 epochs with possible early
stopping. We use the Adam optimizer to optimize the model with a learning rate of 1 x 1074,

E.2 DETAILED DESCRIPTIONS ON EVALUATION METRICS

* The concordance index or the C-index is a generalization of the area under the ROC curve
(AUQC) that can take into account censored data. It represents the global assessment of
the model discrimination power: this is the model’s ability to correctly provide a reliable
ranking of the survival times based on the individual risk scores.

* The Brier Score is a strictly proper score function or strictly proper scoring rule that
measures the accuracy of probabilistic predictions. For uni-dimensional predictions, it is
strictly equivalent to the mean squared error as applied to predicted probabilities.
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