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ABSTRACT

Current model-based reinforcement learning (MBRL) agents struggle with long-
term dependencies. This limits their ability to effectively solve tasks involving
extended time gaps between actions and outcomes, or tasks demanding the recalling
of distant observations to inform current actions. To improve temporal coherence,
we integrate a new family of state space models (SSMs) in world models of MBRL
agents to present a new method, Recall to Imagine (R2I). This integration aims to
enhance both long-term memory and long-horizon credit assignment. Through a
diverse set of illustrative tasks, we systematically demonstrate that R2I establishes a
new state-of-the-art performance in challenging memory and credit assignment RL
tasks, such as Memory Maze, BSuite, and POPGym. At the same time, it upholds
comparable performance in classic RL tasks, such as Atari and DMC, suggesting
the generality of our method. We also show that R2I is faster than the state-of-the-
art MBRL method, DreamerV3, resulting in faster wall-time convergence.

1 INTRODUCTION

In reinforcement learning (RL), world models (Kalweit & Boedecker, 2017; Ha & Schmidhuber, 2018;
Hafner et al., 2019b), which capture the dynamics of the environment, have emerged as a powerful
paradigm for integrating agents with the ability to perceive (Hafner et al., 2019a; 2020; 2023),
simulate (Schrittwieser et al., 2020; Ye et al., 2021; Micheli et al., 2023), and plan (Schrittwieser
et al., 2020) within the learned dynamics. In current model-based reinforcement learning (MBRL),
the agent learns the world model from past experiences, enabling it to “imagine” the consequences of
its actions (such as the future environment rewards and observations) and make informed decisions.

However, MBRL introduces a key challenge: learning a world model capable of accurately simulating
the environment’s evolution, including the prediction of future rewards, while incorporating the
agent’s action policy over extended time horizons. This challenge is related to and further magnified
by the credit assignment (CA) problem, which is the problem of measuring an action’s influence on
future rewards. The agent also may need to memorize and subsequently recall past experiences to
infer optimal actions. This intertwined challenge of long-term memory and CA frequently arises
as a result of inadequate learning of long-range dependencies (Ni et al., 2023). This deficiency is
primarily due to constraints in currently used world models’ backbone network architecture.

More specifically, Recurrent Neural Networks (RNNs; Hochreiter & Schmidhuber (1997); Cho et al.
(2014)) are employed in most MBRL methods (Ha & Schmidhuber, 2018; Hafner et al., 2019b;a;
2020; 2023) as the world models’ backbone architecture because of their ability to handle sequential
data. However, their efficacy is hindered by the vanishing gradients (Bengio et al., 1994; Pascanu
et al., 2013; Veit et al., 2016). Alternately, due to the remarkable achievements of Transformers
(Vaswani et al., 2017) in language modeling tasks (Brown et al., 2020; Thoppilan et al., 2022), they
have been recently adopted to build world models (Chen et al., 2022; Micheli et al., 2023; Robine
et al., 2023). Nonetheless, the computational complexity of Transformers is quadratic in its input
sequence length. Even the optimized Transformers (Dai et al., 2019; Wang et al., 2020; Zaheer et al.,
2021; Choromanski et al., 2022; Bulatov et al., 2022; Ding et al., 2023) become unstable during
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training on long sequences (Zhang et al., 2022). This prohibits Transformers-based world models
from scaling to long input sequence lengths that might be required in certain RL tasks.

Recent studies have revealed that state space models (SSMs) can capture dependencies in tremen-
dously long sequences for supervised learning (SL) and self-supervised learning (SSL) tasks (Gu
et al., 2021a; Nguyen et al., 2022; Mehta et al., 2022; Smith et al., 2023; Wang et al., 2023). More
specifically, the S4 model (Gu et al., 2021a) redefined the long-range sequence modeling research
landscape by mastering highly difficult benchmarks (Tay et al., 2020). The S4 model is derived from
a time-invariant linear dynamical system where state matrices are learned (Gu et al., 2021b). In SL
and SSL tasks, it exhibits a remarkable capability to capture dependencies extending up to 16K in
length, surpassing the limitations of all prior methods. Given these achievements and MBRL methods’
limitations in solving memory and CA tasks, the adoption of S4 or a modified version of it is a logical
decision. In this paper, we introduce a novel method termed Recall to Imagine (R2I), which is the
first MBRL approach utilizing a variant of S4 (which was previously employed in model-free RL
(David et al., 2023; Lu et al., 2023)). This method empowers agents with long-term memory. R2I
emerges as a general and computationally efficient approach, demonstrating state-of-the-art (SOTA)
performance in a range of memory domains. We conduct experiments using the best-performing
baselines and demonstrate that R2I can outperform them on tasks that require long-term memory
or credit assignment while maintaining commendable performance across other benchmarks. Our
contributions can be summarized as follows:

• We introduce R2I, a memory-enhanced MBRL agent built upon DreamerV3 (Hafner et al.,
2023) that uses a modification of S4 to handle temporal dependencies. R2I inherits the
generality of DreamerV3, operating with fixed world model hyperparameters on every
domain, while also offering an improvement in computational speed of up to 9 times.

• We demonstrate SOTA performance of the R2I agent in a diverse set of memory domains:
POPGym (Morad et al., 2023), Behavior Suite (BSuite; Osband et al. (2020)), both repre-
senting simplistic RL tasks requiring memory, and Memory Maze (Pasukonis et al., 2022), a
challenging 3D environment with extremely long-term memory needed to be solved.

• We investigate R2I’s performance in established RL benchmarks, namely Atari (Bellemare
et al., 2013) and DMC (Tassa et al., 2018). We show that R2I’s improved memory does not
compromise performance across different types of control tasks, highlighting its generality.

• We conduct ablation experiments to show the impact of the design decisions made for R2I.

2 BACKGROUND

2.1 STATE SPACE MODELS

A recent work (Gu et al., 2021a) has introduced a novel Structured State Space Sequence model
(S4). This model has shown superior performance in SL and SSL tasks, compared to common
deep sequence models, including RNNs, convolutional neural networks (CNNs; lec (1998)), and
Transformers. It outperforms them in terms of both computational efficiency (Gu et al., 2021b) and
the ability to model extremely long-range dependencies (Gu et al., 2020). S4 is a specific instance of
state space models (SSMs), which can be efficiently trained by using specialized parameterization.

SSMs are derived from a linear dynamical system with control variable u(t) ∈ R and observation
variable y(t) ∈ R, utilizing state variables x(t) ∈ CN for a state size N . The system is represented
by the state matrix A ∈ CN×N and other matrices B ∈ CN×1, C ∈ C1×N , and D ∈ R1×1:

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t). (1)

Note that these SSMs function on continuous sequences. They can be discretized by a step size ∆ to
allow discrete recurrent representation:

xn = Āxn−1 + B̄un, yn = C̄xn + D̄un, (2)

where Ā, B̄, C̄, and D̄ are discrete-time parameters obtained from the continuous-time parameters
and ∆ using methods like zero-order hold and bilinear technique (Smith et al., 2023). These
representations are incorporated as a neural network layer, and each SSM is used to process a single
dimension of the input sequence and map it to a single output dimension. This means that there are
separate linear transformations for each input dimension, which are followed by a nonlinearity. This
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allows working with discrete sequence tasks, such as language modeling (Merity et al., 2016), speech
classification (Warden, 2018), and pixel-level 1D image classification (Krizhevsky et al., 2009).

S4 model characterizes A as a matrix with a diagonal plus low-rank (DPLR) structure (Gu et al.,
2021a). One benefit of this “structured” representation is that it helps preserve the sequence history;
S4 employs HiPPO framework (Gu et al., 2020) to initialize the matrix A with special DPLR matrices.
This initialization grants the SSMs the ability to decompose u(t) into a set of infinitely long basis
functions, enabling the SSMs to capture long-range dependencies. Further, to make S4 more practical
on modern hardware, Gu et al. (2021a) have reparameterized the mapping u1:T , x0 → y1:T , xT as
a global convolution, referred to as the convolution mode, thereby avoiding sequential training (as
in RNNs). This modification has made S4 faster to train, and as elaborated in Gu et al. (2021b), S4
models can be thought of as a fusion of CNNs, RNNs, and classical SSMs. Smith et al. (2023) uses
parallel scan (Blelloch, 1990) to compute u1:T , x0 → y1:T , x1:T as efficient as convolution mode.

S4 has demonstrated impressive empirical results on various established SL and SSL benchmarks
involving long dependencies, and it outperforms Transformers (Vaswani et al., 2017; Dao et al.,
2022) in terms of inference speed and memory consumption due to its recurrent inference mode.
Moreover, some recent works have focused on understanding S4 models, as well as refining them and
augmenting their capabilities (Gupta et al., 2022a; Gu et al., 2022; Mehta et al., 2022; Gupta et al.,
2022b; Smith et al., 2023; Ma et al., 2023). We have provided additional details in Appendix C to
explain this family of S4 models. For the sake of simplicity in this study, we will be referring to all
the S4 model variations as “SSMs”. It is worth highlighting that a few recent methods optimize the
performance of SSMs by integrating them with Transformers (Fu et al., 2023; Zuo et al., 2022; Fathi
et al., 2023). This enhances the SSMs by adding a powerful local attention-based inductive bias.

2.2 FROM IMAGINATION TO ACTION

We frame a sequential decision-making problem as a partially observable Markov decision process
(POMDP) with observations ot, scalar rewards rt, agent’s actions at, episode continuation flag ct, and
discount factor γ ∈ (0, 1), all following dynamics ot, rt, ct ∼ p(ot, rt, ct | o<t, a<t). The goal of
RL is to train a policy π that maximizes the expected value of the discounted return Eπ

[∑
t≥0 γ

trt
]
.

In MBRL, the agent learns a model of the environment’s dynamics (i.e., the world model), through an
iterative process of collecting data using a policy, training the world model on the accumulated data,
and optimizing the policy through the world model (Sutton, 1990; Ha & Schmidhuber, 2018). The
Dreamer agent (Hafner et al., 2019a) and its subsequent versions (Hafner et al., 2020; 2023) have
been impactful MBRL systems that learn the environment dynamics in a compact latent space and
learn the policy entirely within that latent space. Dreamer agents consist of three primary components:
the world model, which predicts the future outcomes of potential actions, the critic, which estimates
the value of each state, and the actor, which learns to take optimal actions.

In Dreamer, an RNN-based architecture called Recurrent State-Space Model (RSSM), proposed by
Hafner et al. (2019b), serves as the core of the world model, and it can be described as follows. For
every time step t, it represents the latent state through the concatenation of deterministic state ht and
stochastic state zt. Here, ht is updated using a Gated Recurrent Unit (GRU; Cho et al. (2014)), and
then is utilized to compute zt, which incorporates information about the current observation ot and
is subsequently referred to as the posterior state. Additionally, the prior state ẑt which predicts zt
without access to ot is computed using ht. By leveraging the latent state (zt, ht), we can reconstruct
various quantities such as ot, rt, and ct. The RSSM comprises three components: a sequence model
(ht = fθ(ht−1, zt−1, at−1)), a representation model (zt ∼ qθ(zt | ht, ot)), and a dynamics model
(ẑt ∼ pθ(ẑt | ht)), where at−1 is the action at time step t− 1, and θ denotes the combined parameter
vector of all components. In addition to the RSSM, the world model has separate prediction heads for
ot, rt, ct. Dreamer employs an imagination-based approach to train its actor and critic components.
Within this imagination phase, it harnesses the RSSM to simulate trajectories. This is performed
through an iterative computation of states ẑt, ht and actions ât ∼ π(ât | ẑt, ht) without the need for
observations (except in the initial step). The sequences of ẑ1:T , h1:T , â1:T are used to train the actor
and the critic. See Appendix E for more details.
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Figure 1: Graphical representation of R2I. (Left) The world model encodes past experiences,
transforming observations and actions into compact latent states. Reconstructing the trajectories
serves as a learning signal for shaping these latent states. (Right) The policy learns from trajectories
based on latent states imagined by the world model. The representation corresponds to the full state
policy, and we have omitted the critic for the sake of simplifying the illustration.

3 METHODOLOGY

We introduce R2I (Recall to Imagine), which integrates SSMs in DreamerV3’s world model, giving
rise to what we term the Structured State-Space Model (S3M). The design of the S3M aims to achieve
two primary objectives: capturing long-range relations in trajectories and ensuring fast computational
performance in MBRL. S3M achieves the desired speed through parallel computation during training
and recurrent mode in inference time, which enables quick generation of imagined trajectories. In
Figure 1, a visual representation of R2I is provided, and we will now proceed to describe its design.

3.1 WORLD MODEL DETAILS

Non-recurrent representation model. Our objective when updating the world model is to calculate
S3M deterministic states h1:T in parallel by simultaneously feeding all actions at and stochastic
state zt, where T represents the length of the entire sequence. We aim to carry out this computation
as h1:T , x1:T = fθ((a1:T , z1:T ), x0) where xt is a hidden state and fθ is a sequence model with a
SSM network. To achieve this, prior access to all actions a1:T and stochastic states z1:T is required.
However, we encounter a challenge due to the sequential nature of the relationship between the
representation model qθ(zt | ht, ot) and sequence model fθ(ht−1, zt−1, at−1): at time step t, the
representation model’s most recent output, denoted as zt−1, is fed into the sequence model, and the
resulting output ht is then used within the representation model to generate zt. Hence, similar to
Chen et al. (2022); Micheli et al. (2023); Robine et al. (2023); Deng et al. (2023), by eliminating the
dependency on ht in the representation model, we transform it to a non-recurrent representation model
qθ(zt | ot). This modification allows us to compute the posterior samples independently for each
time step, enabling simultaneous computation for all time steps. By utilizing a parallelizable function
fθ, we can then obtain h1:T in parallel. Appendix N includes a systematic analysis to investigate how
this modification impacts the performance of the DreamerV3 across a diverse set of tasks. The results
indicate that transforming qθ(zt | ot, ht) to qθ(zt | ot) does not hurt the performance.

Architecture details. Inspired by Dreamer, R2I’s world model consists of a representation model,
a dynamics model, and a sequence model (together forming S3M). In addition to that, there are
three prediction heads: an observation predictor pθ(ôt | zt, ht), a reward predictor pθ(r̂t | zt, ht),
and an episode continuation predictor pθ(ĉt | zt, ht). At each time step, S3M processes a pair of
(at, zt) to output the deterministic state ht. Inside, it operates over the hidden state xt, so it can
be defined as ht, xt = fθ((at−1, zt−1), xt−1). Specifically, fθ is composed of multiple layers of
SSMs, each one calculating outputs according to Equation 2. The outputs are then passed to GeLU
(Hendrycks & Gimpel, 2023), which is followed by a fully-connected GLU transformation (Dauphin
et al., 2017), and finally by a LayerNorm (Ba et al., 2016). This follows the architecture outlined by
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Smith et al. (2023). The deterministic state ht is the output from the final SSM layer. The set of all
SSM layer hidden states is denoted xt. See Appendix C.1 for SSMs design details. In image-based
environments, we leverage a CNN encoder for qθ(zt | ot) and a CNN decoder for pθ(ôt | zt, ht).
In contrast, in tabular environments, both qθ(zt | ot) and pθ(ôt | zt, ht) are MLPs. We include the
details on network widths, depths, and other hyperparameters in Appendix F.

Training details. R2I optimizes the following objective:

L(θ) = E
z1:T∼qθ

T∑
t=1

Lpred(θ, ht, ot, rt, ct, zt) + Lrep(θ, ht, ot) + Ldyn(θ, ht, ot) (3)

Lpred(θ, ht, ot, rt, ct, zt) = −βpred(ln pθ(ot | zt, ht) + ln pθ(rt | zt, ht) + ln pθ(ct | zt, ht)) (4)

Ldyn(θ, ht, ot) = βdyn max(1,KL[sg(qθ(zt | ot)) ∥ p(zt | ht) ]) (5)
Lrep(θ, ht, ot) = βrep max(1,KL[ qθ(zt | ot) ∥sg(p(zt | ht)) ]) (6)

h1:T , x1:T = fθ((a1:T , z1:T ), x0) (7)

Here, sg represents the stop gradient operation. This loss, resembling the objective utilized in (Hafner
et al., 2023), is derived from Evidence Lower Bound (ELBO), but our objective differs from ELBO
in three ways. First, we clip KL-divergence when it falls below the threshold of 1(Hafner et al., 2020;
2023). Secondly, we use KL-balancing (Hafner et al., 2020; 2023) to prioritize the training of the
S3M. Third, we use scaling coefficients βpred, βrep, βdyn to adjust the influence of each term in the loss
function (Higgins et al., 2017; Hafner et al., 2023). Some works on SSMs recommend optimizing
state matrices using a smaller learning rate; however, our experiments indicate that the most effective
approach is to use the same learning rate used in the rest of the world model.

SSMs Computational Modeling. To enable the parallelizability of world model learning, as outlined
in Section 2.1, we have the option to select between two distinct approaches: convolution (Gu et al.,
2021a) and parallel scan (Smith et al., 2023). After thorough deliberation, we opted for parallel
scan due to several compelling reasons. Firstly, as we discuss later in Section 3.2, it is essential
to pass hidden states xt to the policy in memory environments, a critical finding we empirically
analyze in Appendix O. Another consequence of not yielding xt via convolution mode is that it would

Method Training Inference
step

Imagination
step Parallel State

Reset

Attn O(L2) O(L2) O((L+H)2) ✓ ✓
RNN O(L) O(1) O(1) ✗ ✓

SSM (Conv) O(L) O(1) O(L) ✓ ✗

SSM (Par.Scan) O(L) O(1) O(1) ✓ ✓

Table 1: The asymptotic runtimes of different architectures.
L is the sequence length and H is the imagination horizon.
The outer loop of the imagination process cannot be paral-
lelized. Attention and SSM+Conv accept the full context
of O(L +H) burn-in and imagined steps which results in
O((L +H)2) step complexity for Attention and O(L) for
SSM+Conv. SSMs combine compact recurrence with paral-
lel computation reaching the best asymptotical complexity.

necessitate several burn-in steps to
obtain correct hidden states, akin to
Kapturowski et al. (2019), resulting
in quadratic imagination complexity.
Furthermore, parallel scan enables
scaling of sequence length in batch
across distributed devices, a capabil-
ity not supported by the convolution
mode. Table 1 summarizes compu-
tational complexities associated with
different types of recurrences, includ-
ing RNNs, SSMs, and Attention used
in studies like Chen et al. (2022).

Finally, parallel scan can facilitate the
resetting of hidden states. When sam-
pling a sequence from the buffer, it may comprise of multiple episodes; thus, the hidden states coming
from terminal states to the initial states in new episodes must be reset. This boosts the early training
performance, when the episodes may be short. Inspired by Lu et al. (2023), we modify the SSM
inference operator to support resetting hidden states. Achieving this is not feasible with convolution
mode. Details of our SSMs operator used by the parallel scan is provided in Appendix D.

3.2 ACTOR-CRITIC DETAILS

In the design of Dreamer’s world model, it is assumed that ht contains information summarizing past
observations, actions, and rewards. Then, ht is leveraged in conjunction with the stochastic state zt
to reconstruct or predict observations, rewards, episode continuation, actions, and values. Unlike
DreamerV3, which utilizes a GRU cell wherein ht is passed both to the reconstruction heads and
the next recurrent step, R2I exclusively passes ht to prediction heads, while SSM’s hidden state xt
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is used in the next recurrent update of S3M. This implies that the information stored in ht and xt

could potentially vary. Empirically, we discovered that this difference can lead to the breakdown
of policy learning when using π(ât | zt, ht), but it remains intact when we use π(ât | zt, xt) in
memory-intensive environments. Surprisingly, we found that incorporating all features into the policy
π(ât | zt, ht, xt) is not a remedy. The reason lies in the non-stationarity of these features; their
empirical distribution changes over time as the world model trains, ultimately leading to instability in
the policy training process. A similar phenomenon was also observed in Robine et al. (2023). We
study the dependency of policy features on the performance in Appendix O, where we cover a diverse
set of environments: from non-memory vector-based ones to image-based memory environments. In
different environments, we condition the policy and value function on the information from S3M
in the following ways: we use the output state policy that takes (zt, ht) as input, the hidden state
policy that takes (zt, xt) as input, and the full state policy that takes (zt, ht, xt) as input. To train
actor-critic, we opt for the procedure proposed in DreamerV3 (Hafner et al., 2023). For a detailed
description of the actor-critic training process, refer to Appendix E.

4 EXPERIMENTS
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Figure 2: Computational time
taken by DreamerV3 and R2I
(lower is preferred)

We conduct a comprehensive empirical study to assess the generality
and memory capacity of R2I across a wide range of domains, includ-
ing credit assignment, memory-intensive tasks, and non-memory
tasks, all while maintaining fixed hyperparameters of the world
model. We cover five RL domains: BSuite (Osband et al., 2020),
POPGym (Morad et al., 2023), Atari 100K (Łukasz Kaiser et al.,
2020), DMC Tassa et al. (2018), and Memory Maze (Pasukonis et al.,
2022). The section is organized as follows. In Sections 4.1 and 4.2,
we evaluate R2I’s performance in two distinct memory-intensive set-
tings: simple tabular environments and complex 3D environments.
Notably, we show the SOTA performance is achieved by R2I in
these tasks. In Section 4.3, we demonstrate that we do not trade the
generality for improved memory capabilities. Figure 2 shows R2I’s
impressive computational efficiency, with a speed increase of up
to 9 times compared to its predecessor, DreamerV3. Note that the
image environments are representative of Memory Maze, and the
vector environments represent POPGym.

We reuse most of the world model hyperparameters from DreamerV3.
In all environments, we use a First-in First-out (FIFO) replay buffer size of 10M steps to train R2I.
We found this helps stabilize the world model and prevent overfitting on a small buffer. Also, we
vary features that the policy is conditioned on (i.e., output state policy π(ât | zt, ht), hidden state
policy π(ât | zt, xt), or full state policy π(ât | zt, ht, xt)). Our primary takeaway is to leverage the
output state policy in non-memory environments and the full state policy or hidden state policy within
memory environments, as explained in Section 3.2. We also found that even in memory environments,
the full state policy cannot be preferred over the hidden state policy because of the instability of
features – since the world model is trained alongside the policy, the former might change the feature
distribution which introduces non-stationarity for the policy.

4.1 QUANTIFYING MEMORY OF R2I

In this section, we study the performance of R2I in challenging memory environments of BSuite and
POPGym domains, which are tabular environments. Despite their simplicity, these environments
pose a challenge for MBRL algorithms since the world model needs to learn causal connections over
time. While SSMs have shown their ability to handle extremely long-range dependencies in SL and
SSL (Gu et al., 2021a), this capability does not necessarily translate to MBRL, even though the world
model optimizes the same supervised objective. This discrepancy arises from the lifelong nature of
world model training. That is, it needs to bootstrap its performance from a very small dataset with
hugely imbalanced reward “labels” (as opposed to big and well-balanced long-range datasets on
which SSMs shine (Tay et al., 2021)). Additionally, the continuously growing replay buffer imposes
the need to quickly learn the newly arrived data which requires an ability for quick adaptation of the
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world model throughout its optimization. The section’s goal is to give an insight into how extensive
are R2I’s memory capabilities.
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Figure 3: Success rates of DreamerV3 (which
holds the previous SOTA) and R2I in BSuite en-
vironments. A separate model is trained for ev-
ery point on the x-axis. A median value (over 10
seeds) is plotted filling between 25-th and 75-th
percentiles. Training curves are in Appendix G.

Behavior Suite experiments. To study the abil-
ity of the R2I model to handle longer episodes,
we conduct quantitative experiments within a
subset of the BSuite environments. These envi-
ronments are specifically designed to evaluate
an agent’s memory capacity and its ability to
effectively perform credit assignment. In partic-
ular, we carry out experiments within Memory
Length and Discounting Chain envi-
ronments. The former focuses on memory, and
the latter serves as a credit assignment task. In
Memory Length environment, the goal is to
output an action which is dictated by the initial
observation (the episode length i.e., the memory
steps number is an environment parameter). Es-
sentially, the agent must carry the information from the initial observation throughout the entire
episode. In the Discounting Chain, the first action (which is categorical) causes a reward that
is only provided after a certain number of steps, specified by the parameter reward delay.

As depicted in Figure 3, the previous SOTA DreamerV3 learns the dependencies between actions
and rewards in both Discounting Chain and Memory Length with reward delays of up to
30 environment steps. Note that every run either converged to a maximum reward or failed (based on
the random seed). We plot the success rate as the fraction of runs that achieved success. R2I excels in
both tasks, significantly outperforming in the preservation of its learning ability across a wider range
of varying environment complexities. In these experiments, we leverage the output state policy (i.e.,
operating on latent variable zt and S3M output ht). More details are provided in Appendix F.

RepeatPrev. Autoenc. Conc.
-E -M -H -E -M -H -E -M -H

Parallel events 4 32 64 52 104 156 104 208 104
|O| 4 4 3 3 14
Memory-less suboptimal1 ✗ ✗ ✓

Table 2: Memory complexities of environments in POPgym.
“Parallel events” refers to the maximum number of actions or
observations that the agent needs to remember. |O| is the size
of the observation space. The third row indicates whether the
task can be partially solved without memory. -E is -Easy;
-M is -Medium; -H is -Hard.

POPGym experiments. We perform
a study to assess R2I in a more chal-
lenging benchmark, namely, POP-
Gym (Morad et al., 2023). This
suite offers a range of RL envi-
ronments designed to assess vari-
ous challenges related to POMDPs,
such as navigation, noise robust-
ness, and memory. Based on
Ni et al. (2023), we select the
three most memory-intensive en-
vironments: RepeatPrevious,
Autoencode, and Concentration. These environments require an optimal policy to mem-
orize the highest number of events (i.e., actions or observations) at each time step. Each environment
in POPGym has three difficulty levels: Easy, Medium, and Hard. In the memory environments of
this study, the complexity is increased by the number of actions or observations that the agent should
keep track of simultaneously. All environments in this study have categorical observation and action
spaces. A detailed explanation of the environments is provided in Appendix H.

As POPGym was not included in the DreamerV3 benchmark, we performed hyperparameter tuning of
both DreamerV3 and R2I, solely on adjusting the network sizes of both. This is because DreamerV3
is a generalist agent that works with a fixed set of hyperparameters and in this environment, with
sizes primarily influencing its data efficiency. We observed a similar characteristic in R2I. The results
of hyperparameter tuning are available in Appendix M. For R2I, we use the hidden state policy:
π(ât | zt, ht) as we found it much more performant, especially in memory-intensive tasks (see
Appendix O for policy inputs ablations). We train R2I in POPGym environments using a unified and
fixed set of hyperparameters. In addition to R2I and DreamerV3, we include model-free baselines
from Morad et al. (2023). These include PPO (Schulman et al., 2017) model-free policy with different
observation backbones, such as GRU, LSTM, MLP, and MLP with timestep number added as a

1A policy without any memory exists that outperforms a random policy but underperforms the optimal one.
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Figure 4: R2I results in memory-intensive environments of POPGym. Our method es-
tablishes the new SOTA in the hardest memory environments; Autoencode: -Easy,
-Medium; RepeatPrevious: -Medium, -Hard; Concentration: -Medium. Note that
Concentration is a task that can be partially solved without memory. For PPO+S4D, refer to T

feature (PosMLP). PPO with GRU is the best-performing model-free baseline of POPGym while
PPO+LSTM is the second best. PPO+MLP and PPO+PosMLP are included for a sanity check - the
better their performance is, the less is the memory needed in the environment

As illustrated in Figure 4, R2I demonstrates the new SOTA performance, outperforming every
baseline in Autoencode, Easy and Medium tasks. Note that R2I outperforms all 13 model-free
baselines of the POPGym benchmark by a huge margin (we did not include them due to space
constraints). R2I also shows consistently strong performance in RepeatPrevious tasks, setting a
new SOTA in both Medium and Hard (compared to all 13 model-free baselines and DreamerV3).
In Concentration, the model-free memory baselines fail to outperform a simple MLP policy,
suggesting that they all converge to a non-memory-based suboptimal policy. R2I advances this
towards a better memory policy. Its performance is roughly equal to DreamerV3 in an Easy
and slightly better in the Medium task. As the Table 2 suggests, all RepeatPrevious tasks
require up to 64 memorization steps, while Autoencode Easy and Medium require up to 104.
In Concentration Easy and Medium this length is up to 208 steps, however, since PPO+MLP
shows somewhat good performance, likely less than 208 memorization steps are required. This
observation is consistent with the results of the BSuite experiments, which demonstrate that our
model is capable of memorizing up to approximately 100 steps in time. To summarize, these results
indicate that R2I significantly pushes the memory limits.

4.2 EVALUATING LONG-TERM MEMORY IN COMPLEX 3D TASKS

Memory Maze (Pasukonis et al., 2022) presents randomized 3D mazes where the egocentric agent
is repeatedly tasked to navigate to one of multiple objects. For optimal speed and efficiency, the
agent must retain information about the locations of objects, the maze’s wall layout, and its own
position. Each episode can extend for up to 4K environment steps. An ideal agent equipped with
long-term memory only needs to explore each maze once, a task achievable in a shorter time than the
episode’s duration; subsequently, it can efficiently find the shortest path to reach each requested target.
This task poses a fundamental challenge for existing memory-augmented RL algorithms, which fall
significantly behind human performance in these tasks.

In this benchmark, we found that DreamerV3 works equally well as DreamerV2 reported in Pasukonis
et al. (2022). Therefore, we use the size configuration of Dreamer outlined in Pasukonis et al. (2022).
Note that this baseline also leverages truncated backpropagation through time (TBTT), a technique
demonstrated to enhance the preservation of information over time (Pasukonis et al., 2022). We
use the “medium memory” size configuration of R2I in this work (see Table 3 in Appendix). We
use the full state policy (π(ât | zt, ht, xt) i.e., conditioning on stochastic state, and S3M output,
and hidden states at step t) in this environment. We trained and tested R2I and other methods on 4
existing maze sizes: 9x9, 11x11, 13x13, and 15x15. The difference between them is in the number
of object rooms and the episode lengths. More difficult maze sizes have more environment steps in
the episode making it more challenging to execute a successful series of object searches. R2I and
other baselines are evaluated after 100M environment steps of training. We also compare R2I with
IMPALA (Espeholt et al., 2018), which is the leading model-free approach (Pasukonis et al., 2022).

As shown in Figure 5, R2I consistently outperforms baseline methods in all of these environments,
achieving comparable or higher levels of performance. In 9x9 mazes, it demonstrates performance
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similar to the Dreamer, while significantly outperforming IMPALA. In 11x11 and 13x13 mazes,
it has a remarkably better performance than both baselines. In 15x15 mazes, R2I outperforms
Dreamer, while matching the performance of IMPALA. These results establish R2I as a SOTA in
this complex 3D domain.

4.3 ASSESSING THE GENERALITY OF R2I IN NON-MEMORY DOMAINS
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Figure 6: Average performance in Atari and DMC.
For full training curves, see Appendix L (Atari),
Appendix J (DMC-P), and Appendix K (DMC-V)

We conduct a sanity check by assessing R2I’s
performance on two widely used RL bench-
marks: Atari (Bellemare et al., 2013) and DMC
(Tassa et al., 2018), as parts of the DreamerV3
benchmark (Hafner et al., 2023). Even though
these tasks are nearly fully observable and do
not necessitate extensive memory to solve (it
is often enough to model the dynamics of only
the last few steps), evaluating R2I on them is
essential as we aim to ensure our agent’s perfor-
mance across a wide range of tasks that require
different types of control: continuous control (in
DMC) and discrete (in Atari).

In all the experiments conducted within Atari
100K (Łukasz Kaiser et al., 2020) and DMC,
we fix hyperparameters of the world model. In
Atari and the proprio benchmark in DMC, we
utilize output state policies, as we found them
more performant (for ablations with different policy types, see Appendix O). In the visual benchmark
in DMC, we use hidden state policy. Note that for continuous control, the policy is trained via
differentiating through the learned dynamics. R2I maintains a performance similar to DreamerV3 in
these domains, as demonstrated in Figure 6, implying that in the majority of standard RL tasks (see
Appendix R), R2I does not sacrifice generality for improved memory capabilities.

5 CONCLUSION

In this paper, we introduced R2I, a general and fast model-based approach to reinforcement learning
that demonstrates superior memory capabilities. R2I integrates two strong algorithms: DreamerV3,
a general-purpose MBRL algorithm, and SSMs, a family of novel parallelizable sequence models
adept at handling extremely long-range dependencies. This integration helps rapid long-term memory
and long-horizon credit assignment, allowing R2I to excel across a diverse set of domains, all while
maintaining fixed hyperparameters across all domains. Through a systematic examination, we have
demonstrated that R2I sets a new state-of-the-art in domains demanding long-term temporal reasoning:
it outperforms all known baselines by a large margin on the most challenging memory and credit
assignment tasks across different types of memory (long-term and short-term) and observational
complexities (tabular and complex 3D). Furthermore, we have demonstrated that R2I achieves
computation speeds up to 9 times faster than DreamerV3.
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Figure 5: Scores in Memory Maze after 100M environment steps. R2I outperforms baselines across
difficulty levels, becoming the domain’s new SOTA.
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Our study presents the first model-based RL approach that uses SSMs. Concurrently with this work,
S4WM (Deng et al., 2023) has also explored the utilization of SSMs for enhancing world models
within the context of SSL, a subtask in MBRL. As we discuss in Appendix Q, while improved world
modeling is a valuable component, it alone does not guarantee enhanced performance in RL (Nikishin
et al., 2021). While R2I offers benefits for improving memory in RL, it also has limitations, which we
leave for future research. For instance, it can be explored how R2I can be augmented with attention
mechanisms, given that Transformers and SSMs exhibit complementary strengths (Mehta et al., 2022).
As mentioned in Section 2.1, hybrid architectures have been introduced in language modeling tasks.
Moreover, the sequence length within the training batches for world model learning is not currently
extremely long, as is the horizon (i.e., the number of steps) of imagination in actor-critic learning.
Future work could focus on these aspects to further enhance memory capabilities.
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McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rygf-kSYwH.

13

https://proceedings.mlr.press/v78/kalweit17a.html
https://proceedings.mlr.press/v78/kalweit17a.html
https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH


2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks, 2013.

Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes.
arXiv preprint arXiv:2210.13383, 2022.

David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado
van Hasselt, and Francis Song. Synthetic returns for long-term credit assignment. arXiv preprint
arXiv:2102.12425, 2021.
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A FAQ

1. Q: Why do you report the low performance of DreamerV3 on the BSuite Memory
Length environment, whereas DreamerV3 reports a state-of-the-art score there?
DreamerV3 reports the score of 0.478 in the memory length environment of BSuite (see
Table L.1 in Hafner et al. (2023)). This score is normalized to be in the range [0, 1] and
the score is formed by averaging many runs with different complexities (the episode length
plays the role of complexity since the agent is tasked to remember the first observation
throughout the whole episode). This can mean that it masters approximately half of the
complexity values (because as Skinner (2019) reports, performance typically decreases
monotonically as the complexity increases). At the same time, the complexities of this
environment (i.e. episode lengths) fill the range [1..100] logarithmically (see Appendix
A.6.1 in Skinner (2019)). The episode length of 30 steps is approximately in the middle of
the complexity range. In our experiments, we observed that the performance of DreamerV3
also decreases monotonically and it drops at approximately 30 steps, which is half of the
tasks in memory length environment. Therefore, our result aligns with DreamerV3.

2. Q: Why do you not perform architecturally fair experiments to compare DreamerV3
and R2I? For instance, you could make a potentially more powerful sequence block
for a fair comparison by incorporating elements such as GLU, LayerNorm, skip
connections, and dropout to the GRU cell in the Dreamer’s world model.
The goal of our study was not to perform an apples-to-apples comparison across recurrent
models in MBRL. Instead, we focused on building a black-box model that performs effec-
tively across various environments and can efficiently scale with sequence length in batches
(both in terms of being able to technically train on that batch and perform better with a
varied length). This scaling would not be possible with standard RNNs due to the inability
to execute parallel computations. While it may be feasible with Transformers, our argument
suggests that they might not excel in specific memory-intensive tasks, such as when the
information needed to predict a reward differs from that required to execute the optimal
action.

3. Q: Which type of SSMs do you use in R2I: S4, S5, S4D, S4ND, or another variant?
In Appendix C, we delve into various types of variations among SSMs. Some of these
combinations of hyperparameters have established names in the literature. The one we found
to be optimal in our case is slightly different from those previously introduced. However,
these differences are minor details, and the model closest to the SSMs we implement is S5
(Smith et al., 2023).

4. Q: What is the difference between SSM, RSSM, and S3M?
There exists a notational clash between what is traditionally meant by SSM and by RSSM.
This clash arises because SSMs represent a distinct branch of research that is completely
independent of MBRL with Dreamer and RSSM. As a result, they have different meanings.
SSM can be considered a counterpart to any standard RNN, while RSSM is a special RNN-
based model explicitly designed for use in latent world models. On the other hand, S3M is a
modification of the RSSM that employs SSMs to serve as its internal sequence models.

5. Q: Do you claim to have fixed hyperparameters across all domains, even though some
of them might vary, such as policy input features or network sizes?
We only claim that the hyperparameters of the world model are fixed. Nonetheless, the policy
inputs (e.g. whether it is (zt, ht) or (zt, xt)) need to be tuned. This is because different
environments assume different levels of partial observability, which affects the information
in zt, ht, and xt. Maintaining (zt, ht, xt) in the policy all the time is not a remedy, as it
impacts the training dynamics considerably, as observed in (Robine et al., 2023)) due to the
instability of features and the fact that the policy size changes significantly.
Please note that while working within a specific domain, we fix all hyperparameters for the
training agent (i.e., world model, policy, and their optimizers).
However, we change the world model “scales” to match the complexity of environments
within each domain. This adaptation is necessary because we cover very diverse envi-
ronments (e.g., symbolic environments with observation and action space sizes equal to
4, or 3D egocentric environments in textured mazes). Hence, making the world model’s
hyperparameters completely unified would be impractical.
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B RELATED WORK

Addressing sequential decision-making problems requires the incorporation of temporal reasoning.
This necessitates a crucial element of intelligence - memory (Parisotto et al., 2020; Esslinger et al.,
2022; Morad et al., 2023). Essentially, memory enables humans and machines to retain valuable
information from past events, empowering us to make informed decisions at present. But it does not
stop there; another vital aspect is the ability to gauge the effects and consequences of our past actions
and choices on the feedback/outcome we receive now - be it success or failure. This process is termed
credit assignment (Hung et al., 2019; Arjona-Medina et al., 2019; Widrich et al., 2021; Raposo et al.,
2021). In their recent work, Ni et al. (2023) explore the relationship between these two concepts,
examining their interplay. The process of learning which parts of history to remember is deeply
connected to the prediction of future rewards. Simultaneously, mastering the skill of distributing
current rewards to past actions inherently involves a memory component.

To improve temporal reasoning, we leverage model-based RL (Moerland et al., 2022). The essence of
MBRL lies in its utilization of a world model (Kalweit & Boedecker, 2017; Ha & Schmidhuber, 2018;
Hafner et al., 2019b). The world model is employed to plan a sequence of actions that maximize the
task reward (Hafner et al., 2019a; 2020; 2023; Schrittwieser et al., 2020; Ye et al., 2021; Micheli et al.,
2023). Our focus on MBRL stems from its potential in sample efficiency, reusability, transferability,
and safer planning, along with the advantage of more controllable aspects due to its explicit supervised
learning component (i.e., world modeling). Within the realm of MBRL methodologies, we decided to
build upon the SOTA DreamerV3 framework (Hafner et al., 2023), which has proven capacities for
generalization, sample efficiency, and scalability.

MBRL researchers commonly utilize RNNs (Ha & Schmidhuber, 2018; Hafner et al., 2019a; 2020;
2023) or Transformers (Chen et al., 2022; Micheli et al., 2023; Robine et al., 2023) as the backbone of
their world models to integrate temporal reasoning into the agent. However, both of these approaches
face limitations when it comes to modeling long-range dependencies, as stated earlier in Section
1. Recent research indicates that SSMs (Gu et al., 2021a;b; Gupta et al., 2022a; Gu et al., 2022;
Mehta et al., 2022; Gupta et al., 2022b; Smith et al., 2023; Ma et al., 2023) can replace Transformers,
capturing dependencies in very long sequences more efficiently (sub-quadratic complexity) and in
parallel. Thus, they can be a good candidate for a backbone architecture of world models. In a
concurrent work, Deng et al. (2023) propose S4WM world model which employs the S4 model as the
recurrence in RSSM. Though S4WM is a valuable improvement in the task of world modeling, it
does not propose any method for RL or MBRL, as outlined in Appendix Q.

C VARIATIONS OF SSMS AND OUR DESIGN CHOICES

Structured State Space Sequence model (S4; Gu et al. (2021a)) is built upon classical state space
models, which are commonly used in control theory (Brogan, 1991). As mentioned in the Section
2.1, S4 is built upon three pivotal and independent pillars:

• Parametrization of the structure. A pivotal aspect is how we parameterize the matrices.
S4 conjugates matrices into a diagonal plus low-rank (DPLR).

• Dimensionality of the SSM. S4 utilizes separate linear transformations for each input
dimension, known as single-input single-output (SISO) SSMs.

• Computational modeling. The third axis revolves around how we model the computation
process to parallelize. Gu et al. (2021a) model the computation as a global convolution.

Recent works have introduced certain modifications to S4, specifically targeting these pillars. Some
research (Gupta et al., 2022a; Smith et al., 2023) demonstrate that employing a diagonal approximation
for the HiPPO (Gu et al., 2020) yields comparable performance and thus represents the state matrices
as diagonal, instead of DPLR.

Regarding the second axis, Smith et al. (2023) tensorize the 1-D operations into a multi-input multi-
output (MIMO) SSM, facilitating a more direct and simplified implementation of SSMs. Furthermore,
Smith et al. (2023) replace the global convolution operation with a parallel scan operation, thereby
eliminating the complex computation involved in the convolution kernel.
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The synergy between these axes of variations may significantly influence the agent’s behavior and
performance. In the following section, we will demonstrate our process for choosing each option
and examine how each axis influences the performance. We further will provide more in-depth
information regarding our choices for SSM hyperparameters.

C.1 DESIGN DECISIONS FOR SSM

C.1.1 SSM PARAMETRIZATION

While parameterizing the state matrix as a DPLR matrix could potentially offer a more expressive
representation compared to a diagonal SSM, our decision was to diagonalize it. This decision was
made to simplify control while maintaining high performance. Notably, the works of Gupta et al.
(2022a) and Gu et al. (2022) demonstrate the feasibility of achieving S4’s level of performance by
employing a significantly simpler, fully diagonal parameterization for state spaces.

C.1.2 SSM DIMENSIONALITY

We decided to employ MIMO SSMs, a choice influenced by a convergence of factors. Firstly, by
utilizing MIMO, the latent size can be substantially reduced, optimizing computational resources and
accelerating processing. As a result, the implementation of efficient parallelization is facilitated.

Further, MIMO SSMs eliminate the need for mixing layers and offer the flexibility to accommodate
diverse dynamics and couplings of input features within each layer. This stands in contrast to
independent SISO SSMs, which process each channel of input features separately and then combine
them using a mixing layer. Accordingly, the MIMO approach enables distinct processing tailored to
individual input channels, leading to enhanced model adaptability and improved feature representation
(Smith et al., 2023).

To validate the benefits of this decision, an ablation study was conducted. This comparative analysis
showcases the differences between MIMO and SISO SSMs, empirically demonstrating the advantages
of the MIMO.

D MANAGING SEVERAL EPISODES IN A SAMPLED SEQUENCE

As mentioned in Section 3, handling episode boundaries in the sampled sequences necessitates the
world model’s capability to reset the hidden state. Given our utilization of parallel scan (Blelloch,
1990) for SSM computational modeling, it follows that adaptations to the binary operator in Smith
et al. (2023) are essential. As a reminder, SSMs unroll a linear time-invariant dynamical system in
the following form:

xn = Āxn−1 + B̄un, yn = C̄xn + D̄un

Smith et al. (2023) employ parallel scans for the efficient computation of SSM states, denoted as
xn. Parallel scans leverage the property that “associative” operations can be computed in arbitrary
order. When employing an associative binary operator denoted as • on a sequence of L elements
[e1, e2, . . . , eL], parallel scan yields [e1, (e1 •e2(, . . . , (e1 •e2 •· · ·•eL)]. It is worth mentioning that,
parallel scan can be computed with a complexity of O(logL). In Smith et al. (2023), the elements ei
and the operator • are defined as follows:

en = (en,0, en,1) = (Ā, B̄un), ei • ej =
(
ej,0 × ei,0, ej,0 · ei,1 + ej,1)

)
Here, × is the matrix-matrix product, and · is the matrix-vector product. To make resettable states,
we need to incorporate the “done” flag while ensuring the preservation of the associative property. To
do so, every element en is defined as follows:

en = (en,0, en,1, en,2) = (Ā, B̄un, dn)

where dn represents the done flag for the nth element. Now, we present the modified binary operator
•, defined as:

ei • ej :=
(
(1− di) · ej,0 × ei,0 + ei,2 · ej,0, (1− di)ej,0 · ei,1 + ej,1, ei,2ej,2)

)
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It is important to highlight this reparameterization of the operator defined in Lu et al. (2023),
eliminates the need for if/else conditions. Thus, as discussed in Lu et al. (2023), the modified operator
remains associative and retains the desirable properties we aimed to achieve.

Unlike Lu et al. (2023), we no longer assume a hidden state initialized to x0 = 0; hence, a different
initialization becomes necessary, specifically e0 = (I, x0, 0).

E TRAINING ACTOR-CRITIC

The policy and value functions are trained using latent imagination, regardless of their input features.
This process aligns with the methodology outlined in Section 2.2. It begins with the generation of
initial stochastic states z1:T ∼ qθ(z1:T | o1:T ) and the computation of the sequence of deterministic
hidden states h1:T , x1:T = fϕ((a1:T , z1:T ), x0) through a parallel scan operation. We reuse the
previously computed values of z1:T , h1:T , and x1:T during training, which the parallel scan facilitates,
thus eliminating the requirement for several burn-in steps before imagination.

Denoting xj|t as the state of x after j steps of imagination, given t context steps, we initialize with
x0|t = xt, h0|t = ht, and z0|t = zt. We then compute the action â0|t ∼ π(â | z0|t, h0|t, x0|t)
and after h1|t, x1|t = fϕ((â0|t, z0|t), x0|t); ẑ1|t ∼ pθ(ẑ | h1|t). This process continues for H
steps, during which we compute â1:H|t, ẑ1:H|t, h1:H|t, rewards and continue flags are computed via
r̂1:H|t ∼ p(r̂ | ẑ1:H|t, h1:H|t), ĉ1:H|t ∼ p(ĉ | ẑ1:H|t, h1:H|t), respectively. The ultimate goal is to
train the policy to maximize the estimated return that follows:

Rλ
j|t = r̂j|t + cj|t

(
(1− λ)v(ẑj|t, hj|t, xj|t) + λRλ

j+1|t

)
, Rλ

H|t = v(ẑj|t, hj|t, xT |t) (8)

To train the actor and critic, we employ Reinforce (Williams, 1992) for scenarios with discrete
action spaces, coupled with the method of backpropagation through latent dynamics as introduced
by Hafner et al. (2020). Our approach adheres to the DreamerV3 protocol of training the actor and
critic networks (Hafner et al., 2023), which includes utilization of the fixed entropy bonus, the use of
twohot regression in critic, and the employment of percentile-based normalization for the returns.
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F ALGORITHM HYPERPARAMETERS

Small
Memory Small Medium

Memory
Used in BSuite and POPgym Atari and DMC Memory Maze
ht size 512 512 2048

xt size, per layer 512 192 512
SSM layers 3 5 5
SSM units 1024 512 1024

Table 3: S3M size configurations used in This work

Name Value
FIFO replay buffer size 107

Batch length, L Length of Episode
Number of environment steps in batch2 4096
Nonlinearity LayerNorm + SiLU
SSM discretization method bilinear
SSM nonlinearity GeLU + GLU + LayerNorm
SSM matrices parameterization Diagonal
SSM dimensionality parameterization MIMO
SSM matrix blocks number (HiPPOs number) 8
SSM discretization range (10−3, 10−1)
Latent variable Multi-categorical
Categorical latent variable numer 32
Categorical classes number 32
Unimix probability 0.01
Learning rate 10−4

Reconstruction loss weight, βpred 1
Dynamics loss weight, βpred 0.5
Representation loss weight, βrep 0.1
World Model gradient clipping 1000
Adam epsilon 10−8

Actor Critic Hyperparameters
Imagination horizon 15
Discount γ 0.997
Return λ 0.95
Entropy weight 3 · 10−4

Critic EMA decay 0.98
Critic EMA regularizer 1
Return normalization scale Per(R, 95)− Per(R, 5)
Return normalization decay 0.99
Adam epsilon 10−5

Actor-Critic gradient clipping 100

Table 4: R2I hyperparameters. For a detailed description, follow Section 3 and Hafner et al. (2023).

2batch size is calculated accordingly
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G BSUITE TRAINING CURVES
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Figure 7: BSuite memory length training curves. 10 seeds per run. Median reward plotted.
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Figure 8: BSuite discounting chain training curves. 10 seeds per run. Median reward plotted.
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H POPGYM ENVIRONMENTS DETAILS

In this research, we examine three environments from POPGym (Morad et al., 2023), each of
which offers three difficulty levels: Easy, Medium, and Hard. Specifically for memory-intensive
environments, the primary distinction across these difficulty tiers lies in the number of observations
or actions agents need to memorize and recall, with more demanding memory assigned to the higher
difficulty levels.

• Autoencode. The environment has two phases. During the first phase (which is called
the “watch” phase), the environment generates an observation at each time step, with the
observation space being discretely categorical, consisting of 4 values. Agent actions are
not taken into account during the first phase. The “watch” phase lasts for T/2 steps, where
T denotes the total length of the episode, which is set at 104 for Easy, 208 for Medium,
and 312 for Hard. Once the “watch” phase ends the agent then enters the second phase.
Here, the agent is expected to output each action (action space is equal to the observation
space) equal to a corresponding observation from the first phase. In essence, the first action
in phase two should match the first observation from phase one, the second action in phase
two should correspond to the second observation from phase one, and so on. A phase flag,
included in the agent’s observation along with the categorical ID to be repeated, indicates
the current phase. At each time step, the agent must remember T/2 categorical values. This
task cannot be solved without explicit memory; therefore, any policy performing better than
random chance is utilizing some form of memory.

• RepeatPrevious. This environment features simple categorical observation and action
spaces (of the same size – 4). And the task is simply to output at step t + k the action
at+k = ot, that is, repeat an observation that was exactly k steps ago. The agent at each
time step needs to simultaneously remember k categorical values. For every difficulty, the
size of the observation space is 4 and k is 4 for Easy, 32 for Medium, and 64 for Hard.

• Concentration. Each time step the agent receives a multi-categorical observation with
52 categories (for Easy and Hard) or 104 categories (for Medium). Each categorical has
N values (3 for Easy and Medium and 14 for Hard). The environment represents a card
game where all cards on a deck are spread face down (i.e. hidden). In each step, the agent
flips a pair of cards and observes their values (the action space is the size of the deck). If the
values are the same, the pair remains unflipped until the end of the game. Otherwise, they
are flipped face down again. At each step, the agent receives the full deck as the observation.
The episode length is equal to a theoretically minimal average number of steps that are
required to solve a task (Morad et al., 2023). The optimal memory policy should memorize
the card values if they don’t match and then use that information to find matches faster. Even
a memory-less policy can improve performance over the baseline by e.g. not trying to flip
already “opened” cards (which has no effect in this game), thus not winning anything (i.e.
not gaining new information and not getting a positive reward but wasting one time step).
This is a minimal but most obvious improvement that a memory-less policy can gain over
a random policy, though more advanced memory-less policies exist (Morad et al., 2023).
Note that it has been proven this task cannot be solved without memory (due to the episode
length constraint) (Morad et al., 2023).
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I POPGYM TRAINING CURVES
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Figure 9: POPGym training curves. 3 seeds per run.
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J DMC-PROPRIO TRAINING CURVES
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Figure 10: DMC-propreoceptive training curves. 3 seeds per run.
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Figure 11: DMC scores for image inputs after 2M environment steps. 3 seeds per environment.

26



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

L ATARI 100K TRAINING CURVES

Atari 100K benchmark (Łukasz Kaiser et al., 2020) is a standard RL benchmark comprising 26 Atari
games featuring diverse gameplay mechanics. It is designed to assess a broad spectrum of agent
skills, and agents are limited to executing 400 thousand discrete actions within each environment,
which is approximately equivalent to 2 hours of human gameplay. To put this in perspective, when
there are no constraints on sample efficiency, the typical practice is to train agents for almost 200M
steps.
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Figure 12: Atari scores after 400K environment steps. 3 seeds per environment.

27



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

M HYPERPARAMETER TUNING IN POPGYM

256 512 1024
0.30

0.25

0.20

0.15

0.10

0.05

Fin
al

 R
et

ur
n

RSSM number of units

256 512 1024

RSSM hidden size of GRU

1M 10M

Replay Capacity

1 5

Encoder/Decoder
depth (layers)

Figure 13: Results of hyperparameter tuning for DreamerV3 in POPGym memory environments.

To find a good baseline configuration to compare with, we performed hyperparameter tuning of the
baseline DreamerV3 model. The results are shown in Figure 13. Each hyperparameter configuration
of DreamerV3 was trained on 9 memory tasks from POPGym3 considered in this study. To tune the
model, we considered the following hyperparameters: 1) number of units in RSSM, that is, the sizes
of auxiliary layers of RSSM, ranging in {256, 512, 1024}; 2) hidden size of GRU in RSSM ranging
in {256, 512, 1024}; 3) replay buffer size – two values {106, 107}; 4) sizes of encoder and decoder.
Each hyperparameter configuration was trained with two random seeds for 10 million environment
steps. These choices are motivated in the following way. DreamerV3 was proposed as a general agent
with all hyperparameters fixed except network sizes and training intensity, which control sample
efficiency. To find a configuration that works the best, we chose to tune the model sizes ranging them
around the configuration that was proposed for Behavior Suite (since POPGym and Behavior Suite
share similar properties). We also checked an increased replay buffer size of 10M steps (besides
standard 1M of DreamerV3) since it improved the performance for R2I.

Figure 13 shows a box plot for each hyperparameter with the marginal performance of each hyper-
parameter (i.e. for hyperparameter X, we fix X but vary all other hyperparameters, which form an
empirical distribution with some median, max, min, etc.; we plot a box plot of empirical distribution
for each X). This visualization shows how much each hyperparameter can contribute to the overall
performance (as it shows the median with all other hyperparameters varied but a chosen one fixed)
and also what is the best hyperparameter value for the task (since the box plot shows the maximal
value). Our results confirm the favorable scaling of the DreamerV3 (Hafner et al., 2023) in this new
environment – bigger networks learn bigger rewards. Therefore, we opt for 1024 RSSM units, RSSM
hidden size of 1024, and 5 layers of encoder/decoder. Unlike for R2I, for DreamerV3, a bigger replay
performs less “stable” – since it has bigger variation, e.g. increasing the network size might have an
unexpected influence on the final agent performance. Yet, since with 10 million steps the model has
the best score, we opt to this option for a fair comparison. The final DreamerV3 model reported in
Figure 4 was trained on the best found configuration.

3RepeatPrevious,Autoencode, Concentration, for each – three difficulties: Easy, Medium,
Hard
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Figure 15: Recurrent and non-recurrent representation model ablation in Memory maze.
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Figure 16: Recurrent and non-recurrent representation model ablation in Memory Maze with probing
head.

N IMPACT OF NON-RECURRENT REPRESENTATION MODEL

In this section we study the impact of disconnecting the representation model from the sequence
model. As discussed in Section 3, this disconnection is needed for the efficient computation of
SSM sequence features in parallel (because otherwise, if the representation model’s input needs
the sequence model’s previous output, the whole computation is inherently recurrent). Therefore,
we study how important it is to keep this recurrent connection from the sequence model to the
representation model.

First, we test how removing this recurrent connection afftect the performance in Memory Maze.
We do so in two versions of this benchmark. The first one, is standard Memory Maze reported
in this work. The second one is an extended version of the Memory Maze benchmark. This
task adds additional information which is the target objects’ coordinates. The agent is still given
only an image as input, but now it is tasked to reconstruct both the input image and target po-
sitions (Pasukonis et al., 2022). As it is shown in Figures 15, 16, the non-recurrent represen-
tation model either keeps the performance the same or improves it. Note that when a probing
network is used, the agent receives additional memory supervision (because it is tasked to pre-
dict target positions). Therefore, without memory supervision, the non-recurrent posterior im-
proves performance, while with memory supervision it does not decrease it and keeps it the same.
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Figure 14: Recurrent and non-recurrent representation models in stan-
dard RL environments.

In other words, the non-
recurrent representation
model is an inductive bias
that favors memory.

Lastly, as shown in Figure
14, in standards RL envi-
ronments this recurrent con-
nection has zero influence
on performance, confirming
that this inductive bias fa-
vors memory without any
negative side effects.
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O POLICY INPUT ABLATIONS
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Figure 17: Actor-critic input abla-
tions in discounting chain.

In this section, we aim to answer the question “Which pol-
icy input variation works better?” As a reminder, S3M, a se-
quence models of R2I, has three main components exposed:
deterministic output state ht (is used to in prediction heads to
summarize information from previous steps), stochastic state zt
(represents single observation), and hidden state xt (is passed
between time steps). The policy variants are output state pol-
icy π(ât | zt, ht), hidden state policy π(ât | zt, xt), full state
policy π(ât | zt, ht, xt).

Our main insight is that in different environments ht, zt, and xt

behave differently and they may represent different information.
At the same time, these features change their distribution along world model training, which makes
the actor-critic training process less stable. Therefore, we found each domain has its own working
configuration. The only shared trait is that memory environments typically require π(ât | zt, xt)
or π(ât | zt, ht, xt) to show strong performance (See Figure 17 and Figure 18). In Memory Maze,
we found the effect of input features change is smaller. As Figure 19 shows, the output state policy
performs worse than the other two.
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Figure 18: Actor-critic input ablations in POPGym.

However, there exists an extended ver-
sion of the Memory Maze benchmark.
This task adds additional information
which is the target objects’ coordi-
nates. The agent is still given only
an image as input, but now it is tasked
to reconstruct both the input image
and target positions (Pasukonis et al.,
2022). As Figure 20 shares, all three
policies converge to exactly the same
reward values indicating there is no
difference between (zt, xt) and (zt, ht).

Finally, as it is shown in Figure 21, policy input variations have little, yet non-zero influence on the
final performance. This indicates that the information stored in (zt, ht) and (zt, xt) is mostly the
same.
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Figure 19: Memory maze policy ablations without probing heads. The performances of all three
variants are qualitatively different indicating that the information in the S3M output ht and S3M
hidden xt is different. In addition, the output state policy π(ât | zt, ht) starts losing performance at
some point.

3Non-memory-intensive environments include: CountRecall, Battleship, MineSweeper,
RepeatFirst, LabyrinthEscape, LabyrinthExplore. All three difficulties (Easy, Medium,
Hard) for each.
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Figure 20: With probing head in Memory Maze, the agent is tasked to predict object locations from
ht (S3M output), effectively making ht a markovian state (i.e. equivalent to hidden state xt). Thus,
we can see the performance of all three policy variants is effectively the same.
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Figure 21: Actor-critic input ablations in Atari 100K and DMC domains.
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P IMPORTANCE OF HAVING COMPLETE EPISODES IN TRAINING BATCH
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Figure 22: Actor-critic input abla-
tions in discounting chain.

In this section, we argue that it was a critical part of our model’s
success in memory tasks was to keep the sequence length in
the batch big enough so that at least the entire RL episode
fits into the batch as one sequence. Thanks to parallel scan
(Blelloch, 1990) (see sections 2.1 and 3 for elaboration), the
batch sequence length scales as efficiently as scaling the batch
size, therefore, in all environments, we opt to train the model
on complete episodes in the training batch.

As shown in Figure 22, we train the model with the sequence
length in batch equal to 64 and 256 steps. Over the x-axis, the
episode length is varied and the agent is tasked to remember an
observation and in the end, it is tasked to output a certain action
associated with that first observation. When the episode length
becomes greater than 64 steps, the performance becomes zero,
while the model trained with 256 steps long batches keeps good performance as the episode length
increases (since it is able to put the entire RL episode in training batch).

As shown in Figure 23 the performance scales positively with the sequence length. We test four
different sequence lengths in batch with the R2I model: 64 steps, 128 steps, and 1024 steps. Along
the scaling length, every step improves the performance indicating that the extended sequence length
is required in memory tasks.
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Figure 23: Length ablations.
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Q MODEL LIKELIHOOD RELATION WITH AGENT PERFORMANCE

In MBRL, the agent typically goes through a process of learning a world model and employs it for
planning or optimizing the policy. Therefore, one might naturally assume a higher likelihood of the
world model leads to improved policy performance. Nevertheless, this assumption does not hold
true in all cases. When the world model has constrained representational capacity or its class is
misspecified, its higher likelihood may not necessarily translate into better agent performance (Joseph
et al., 2013; Lambert et al., 2020; Nikishin et al., 2021). In other words, the inaccuracies in the world
model will only minimally affect the policy if it happens to be perfect. Conversely, in the case of an
imperfect model, these inaccuracies can lead to subtle yet significant impacts on the agent’s overall
performance (Abbad, 1991). For example, Nikishin et al. (2021) propose a method wherein the model
likelihood is less than a random baseline while the agent achieves higher returns. This implies that
the learned world model may not always have to lead to predictions that closely align with the actual
states, which are essential for optimizing policies.

Q.1 COMPARING R2I WITH S4WM
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Figure 24: Online RL plots of the DreamerV3 model with recurrent and non-recurrent representation
models (for details see Appendix N).

In parallel with our study, Deng et al. (2023) introduce a S4-based (Gu et al., 2021a) world model,
called S4WM. The incorporation of S4 in the Dreamer world model has proven beneficial, as
evidenced by the achievement of higher accuracy with lower Mean Squared Error (MSE). These
results were obtained using offline datasets across various tabular environments and the Memory
Maze (Pasukonis et al., 2022). However, their work primarily focuses on world modeling; for instance,
there is no performance report in terms of obtained rewards. As previously discussed, a higher model
likelihood does not necessarily guarantee better performance (i.e., higher rewards).

Figure 24 illustrates the results of DreamerV3 (which also serves as the predecessor to S4WM) with
two distinct configurations for the world model on Memory Maze. One agent (depicted in green)
incorporates a non-recurrent representation model, while the other (depicted in black) uses a recurrent
one. Deng et al. (2023) utilize image loss as one of the key indicators for model likelihood. As
shown, despite the agent with a non-recurrent representation model having a higher image loss, it
manages to achieve higher rewards. This result is related to the experimental results of S4WM in
the following manner. In S4WM, the authors conduct experiments with the datasets collected by
scripted policies within environments like Memory Maze such as Four-rooms, Eight-rooms, and
Ten-rooms. Also, they evaluate image generation metrics on a heldout dataset (compared to what
the world model was trained on) to assess the in-context learning proficiency of the world model
across unseen levels. Similarly, the outcomes depicted in Figure 24 provide online RL metrics within
memory maze environments. It is noteworthy that here, the agent is trained with a replay buffer
that is progressively updated. Therefore, successive batches may contain data from episodes within
newly generated mazes that the model has not encountered before, reinforcing our assertion that these
results are indeed comparable.
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Table 5: Architectural comparison between R2I and S4WM

Feature R2I S4WM
Computational modeling Parallel scan Conv mode

Layer normalization Postnorm Prenorm

SSM in posterior and prior Shared Not shared3

Post-SSM transformation GLU transformation Linear transformation

SSM dimensionality MIMO SISO

SSM parameterization Diagonal DPLR

SSM discretization Bilinear ? (Unspecified)

Handling resets technique Reset to zero or learnable vectors Not implemented

Exposure of hidden states Provided by parallel scan Not implemented

Policy training mode DreamerV3’s objective None

World model objective Same as DreamerV3 Same as DreamerV3
but without free info in KL

SSM block structure
SSM layer→
→ GLU→
→ LayerNorm

(LayerNorm→
→ SSM layer→
→ FC)×2→

→ FC→ LayerNorm

This highlights the idea that, in order to enhance long-term temporal reasoning in the context of
MBRL and tackle memory-intensive tasks, simply maximizing world model likelihood is insufficient.
That is why S4WM incorporates a completely different set of hyperparameters and design decisions,
as detailed in Table 5. Here is a comprehensive explanation of each design decision that sets S4WM
apart from R2I:

1. Computational modeling. R2I uses parallel scan (Blelloch, 1990; Smith et al., 2023) while
S4WM uses global convolution (Gu et al., 2021a) for training. One difference between
these two techniques is that parallel scan uses SSM to compute u1:T , x0 → y1:T , x1:T while
convolution mode uses SSM to compute u1:T , x0 → y1:T , xT . Yet, as discussed in Section
3.2 and empirically shown in Appendix O, providing the policy with the SSMs’ hidden
states x1:T is crucial for the agent’s performance. This is not feasible with the convolution
mode, as it does not yield these states.

2. Layer normalization. R2I applies post-normalization (i.e., after the SSM layers and right
after the merge of the residual connections), whereas S4WM employs pre-normalization (i.e.,
before the SSM layer but subsequent to the residual branching). Pre-normalization tends to
be more conducive for training models with significant depth, whereas post-normalization
can offer a modest enhancement in generalization when a fewer number of layers are used
(Wang et al., 2019). Given that our model must continuously generalize on data newly added
to the replay buffer (as it performs online RL), post-normalization emerges as the more
intuitive selection for Online RL. This choice is confirmed by our preliminary results.

3. Shared SSM network. R2I employs a shared SSM network for all prior prediction and
posterior stochastic and deterministic models’ inference, whereas S4WM investigates both
shared and non-shared options, ultimately reporting the non-shared option as superior for
image prediction. In this study, we have not explored the non-shared option; however, we
anticipate that the non-shared version might prove less efficient for policy learning due to
potential feature divergence between the posterior and prior SSM networks. This is because
the policy is trained using features from the prior model but deployed in the environment
with features from the posterior model.

3Here we refer to the S4WM-FullPosterior model. Even though it is not the main model, the S4WM-
FullPosterior one showed superior image prediction performance.
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4. Post-SSM transformation. R2I uses a GLU transformation (Dauphin et al., 2017), while
S4WM uses a linear fully connected transformation. In our preliminary experiments, we
explored both options and found that the GLU transformation yields better empirical results,
particularly in terms of the expected return.

5. SSM dimensionality. R2I employs MIMO (Smith et al., 2023), while S4WM utilizes SISO
(Gu et al., 2021a). Although the superiority of one over the other is not distinctly evident,
MIMO provides more fine-grained control over the number of parameters in the SSM.

6. SSM parameterization. R2I adopts a diagonal parameterization (Gupta et al., 2022a) of
the SSM, while S4WM employs a Diagonal-Plus-Low-Rank (DPLR) parameterization (Gu
et al., 2021a). In our experiments, we found that both approaches perform comparably well
in terms of agent performance. However, DPLR results in a significantly slower computation
of imagination steps—approximately 2 to 3 times slower—therefore, we opted for the
diagonal parameterization (See Appendix C.1.1).

7. SSM discretization. R2I utilizes bilinear discretization for its simplicity. S4WM does not
specify the discretization method used; however, the standard choice for discretization within
the S4 model typically relies on Woodbury’s Identity (Gu et al., 2021a), which necessitates
matrix inversion at every training step—a relatively costly operation. This is the reason we
decided early on in this work not to proceed with S4.

8. World model training objective. R2I uses the same objective introduced in DreamerV3.
In contrast, S4WM utilizes the ELBO objective in the formulation of DreamerV3, with the
sole difference being that free information (Hafner et al., 2023) is not incorporated in the
KL term. Notably, free information was introduced in DreamerV3 as a remedy to the policy
overfitting (it is evidenced by the ablations in Hafner et al. (2023)).

9. Episode reset handling technique. R2I leverages the parallel scan operator introduced
by Lu et al. (2023) and modifies it to allow a learnable or zero vector when an RL episode
is reset, a technique that was introduced in DreamerV3. While S4WM is also based on
the DreamerV3 framework, it overlooks this modification and lacks the mechanism to
integrate episode boundaries into the training batch. This adaptation is critical under the
non-stationarity of the policy being trained; it is primarily aimed at enhancing the efficiency
of policy training; as the policy distribution changes, resulting in adjusted episode lengths,
S4WM will be required to modify its sequence length accordingly—either increasing or
decreasing it as necessary.
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R A DEEPER COMPARISON BETWEEN DREAMERV3 AND R2I IN STANDARD
RL BENCHMARKS

To facilitate a more comprehensive comparison between R2I and DreamerV3, we build performance
profiles using the RLiable package (Agarwal et al., 2021). In particular, we use these profiles to
illustrate the relationship between the distribution of final performances in R2I and DreamerV3,
as depicted in Figure 25. In Atari 100K (Łukasz Kaiser et al., 2020) the performance profiles of
DreamerV3 and R2I show remarkable similarity, indicating that their performance levels are almost
identical. Looking at the proprioceptive and visual benchmarks in DMC (Tassa et al., 2018), we
observe that R2I exhibits a drop in the fraction of runs with returns between 500 and 900. Outside
of this interval, the difference between R2I and DreamerV3 diminishes significantly. Considering
these observations, we conclude that R2I and DreamerV3 display comparable levels of performance
across the majority of tested environments, aligning with our assertion that R2I does not compromise
performance despite its enhanced memory capabilities. Note that this is a non-trivial property since
these are significantly diverse environments, that feature continuous control (DMC), discrete control
(Atari), stochastic dynamics (e.g., because of sticky actions of Atari), deterministic dynamics (in
DMC), sparse rewards (e.g., there are several environments in DMC built specifically with an explicit
reward sparsification), and dense rewards. Our findings confirm that the performance in the majority
of these cases is preserved.
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(a) Performance profiles in DMC-vision domain (20
Environments; 3 seeds per environment)
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(b) Performance profiles in DMC-proprio (18 Environ-
ments; 3 seeds per environment)
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(c) Performance profiles in Atari100k (26 Environments;
3 seeds per environment)

Figure 25: Performance profiles of DreamerV3 and R2I evaluated in three RL domains:
Atari100k,DMC-vision, DMC-proprio.
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S ALGORITHM PSEUDOCODE

Algorithm 1: Recall to Imagine (R2I), full state policy training
Initialize empty FIFO Replay Buffer D ;
// P is set to the total env. steps in batch to form at least

one batch to start training
Prefill D with P environment steps following the random policy;
while not converged do

for train step c = 1..C do
// World model training (parallel mode)

Draw n training trajectories {(ajt , o
j
t , r

j
t )}k+L

t=k = τj ∼ D, j = 1, n;
// All variables are expected to include a batch dimension
// which is omitted for simplicity
// See Section 3.1
Encode observations batch z1:T ∼ qθ(z1:T | o1:T );
Compute S3M hidden states and outputs with parallel scan
h1:T , x1:T ← fθ((a1:T , z1:T ), x0);
// Note that x1:T include hidden states from all SSM layers
Reconstruct rewards, observations, continue flags
r̂1:T , ô1:T , ĉ1:T ∼

∏T
t=1 p(ot | zt, ht)p(rt | zt, ht)p(ct | zt, ht);

Compute objective using Eq. (3), (4), (5), (6) and optimize WM parameters θ;
// Actor-critic training (recurrent mode)
// See Section 2.2 and Appendix E for details
Initialize imagination x0|1:T , h0|1:T , z0|1:T ← x1:T , h1:T , z1:T ;
for imagination step i = 0..H − 1 do

âi|1:T ∼ π(â | zi|1:T , hi|1:T , xi|1:T );
// Note that this is a one-step inference of SSM in
// recurrent mode
hi+1|1:T , xi+1|1:T ← fϕ((âi|1:T , zi|1:T ), xi|1:T );
ẑi+1|1:T ∼ pθ(ẑ | hi+1|1:T );
r̂i+1|1:T ∼ p(r | ẑi+1|1:T , hi+1|1:T );
ĉi+1|1:T ∼ p(c | ẑi+1|1:T , hi+1|1:T )

end
Estimate returns Rλ

1:H|1:T using Eq. 8 and ĉ1:H|1:T , r̂1:H|1:T ;
Update actor-critic using estimated returns according to the rule from Hafner et al.
(2023);

end
Collect N steps in the environment using the World Model and the policy and store it to D;
// the ratio C/N is training intensity which should be
// chosen according to the desired data-efficiency

end

Algorithm 1 presents the pseudo-code for training the R2I in an online RL fashion. Note that the imag-
ination phase is initialized from every possible step in the training batch. For example, ĥ1 : H | 1 : T
is a tensor of shape [batch size, T, H, dim], which represents the imagination output after
1 to H imagination steps starting from every possible time point (in total, there are T of them).
This concept was initially proposed by Dreamer (Hafner et al., 2019a) and subsequently adopted by
DreamerV2 (Hafner et al., 2020) and DreamerV3 (Hafner et al., 2023). We employ the same idea
since the hidden states of the SSM are outputted by the parallel scan algorithm, allowing the use of
all hidden states to compute imagination steps.
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T MODEL-FREE SSM IN POPGYM

Figure 4 presents the performance of both model-free and model-based approaches in the most
memory-intensive environments in POPGym (Morad et al., 2023). In terms of model-based method-
ologies, Dreamer is included, while model-free baselines comprise Proximal Policy Optimization
(PPO; Schulman et al. (2017)) executed with a variety of network architectures, such as MLP, GRU,
LSTM, and S4D (Gu et al., 2022). S4D stands as an SSM approach characterized by a SISO frame-
work (Gu et al., 2021a), a diagonal parameterization for its SSM, and an efficient convolution mode
for parallelization. The primary distinction between S4 (Gu et al., 2021a) and S4D lies in their
parameterization methods; S4D’s diagonal approach, as opposed to S4’s DPLR parameterization,
which makes S4D faster and potentially more stable.

According to the findings reported in the POPGym paper (Morad et al., 2023), the PPO+S4D
configuration emerged as the least performant among the thirteen model-free baselines. It frequently
encountered numerical difficulties such as not-a-numbers (NaNs), which can be attributed to gradient
explosions. Please note that due to S4D’s reliance on convolution mode, it is incapable of managing
multiple episodes within a sequence.
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