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Abstract

Dense video captioning aims to identify the001
events of interest in an input video, and gen-002
erate descriptive captions for each event. Pre-003
vious approaches usually follow a two-stage004
generative process, which first proposes a seg-005
ment for each event, then renders a caption for006
each identified segment. Recent advances in007
large-scale sequence generation pretraining has008
seen great success in unifying task formulation009
for a great variety of tasks, but so far, more com-010
plex tasks such as dense video captioning are011
not able to fully utilize this powerful paradigm.012
In this work, we show how to model the two013
subtasks of dense video captioning jointly as014
one sequence generation task, and simultane-015
ously predict the events and the corresponding016
descriptions. Experiments on YouCook2 and017
ViTT show encouraging results and indicate018
the feasibility of training complex tasks such as019
end-to-end dense video captioning integrated020
into large-scale pretrained models.021

1 Introduction022

Online videos have become an important source023

from which people acquire knowledge and024

skills (O’Neil-Hart, 2017). In order to help users025

locate the information of interest, search engines026

and video platforms often show anchors at “key027

moments”, usually accompanied by descriptions028

of the segment’s content (Baheti, 2019). This is029

a direct application of the dense video captioning030

task (Krishna et al., 2017), and therefore solutions031

for improving this task are highly relevant for any032

video platform.033

Intuitively, dense video captioning can be de-034

composed into two subtasks: event localization and035

segment-level video captioning. Prior work (Kr-036

ishna et al., 2017; Zhou et al., 2018a; Li et al., 2018;037

Wang et al., 2018; Zhou et al., 2018c; Mun et al.,038

2019; Iashin and Rahtu, 2020) followed this task039

decomposition, and solved the dense video caption-040

ing task using a two-stage, “localize-then-describe”041

pipeline. Such methods usually involve two sepa- 042

rate modules with different underlying model archi- 043

tectures for event localization and event captioning, 044

with captions for dense events rendered based on 045

the predicted event spans. 046

Recently, with the advance of large-scale 047

datasets and model architectures, there has been an 048

explosion of pretrained multimodal (for text, im- 049

age, video) Transformer models (Tan and Bansal, 050

2019; Sun et al., 2019; Li et al., 2019; Luo et al., 051

2020; Li et al., 2020a,b; Gan et al., 2020; Kim 052

et al., 2021). Such models have proven to be 053

highly effective when fine-tuned for a wide range 054

of downstream tasks, such as visual question an- 055

swering (Agrawal et al., 2015), image caption- 056

ing (Chen et al., 2015), visual common sense rea- 057

soning (Zellers et al., 2019), visual entailment (Xie 058

et al., 2019), etc. These end-tasks can be expressed 059

as sequence generation tasks in a straightforward 060

manner. In contrast, this is non-trivial for dense 061

video captioning, as the segmentation subtask does 062

not lend itself naturally to such a formulation. Does 063

this mean more complex tasks cannot benefit from 064

the pretraining paradigm in an end-to-end fashion? 065

In this work, we study dense video captioning as 066

an example of a complex task that can be cast as 067

sequence generation and, as a result, can benefit 068

from large-scale pretraining. 069

More specifically, we propose to solve the dense 070

video captioning task as a single sequence-to- 071

sequence modeling task using a multimodal Trans- 072

former. To this end, we design several task formu- 073

lations to encode both segmentation and captioning 074

prediction in one target string. Instead of invoking 075

the two-stage scheme, our task formulation allows 076

the model to simultaneously predict event locations 077

and corresponding captions in one pass, using one 078

decoder. This opens the door for enjoying the ben- 079

efit of training from large-scale pre-trained models, 080

as well as the possibility of participating in large- 081

scale multi-task training more easily by re-using 082
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existing infrastructure.083

We evaluate our model on two dense video084

captioning benchmarks, YouCook2 (Zhou et al.,085

2018a) and ViTT (Huang et al., 2020a). We found086

our sequence generation formulation a feasible path087

forward – we obtain encouraging results compared088

to prior work that used a two-stage scheme with089

specialized architectures for each step. On the pre-090

training front: (a) we are able to benefit from mod-091

els pre-trained on very different data and tasks,092

such as T5 (Raffel et al., 2020), (b) pretraining093

on more domain-specific data (WikiHow) and pre-094

training task (predicting headings for how-to steps)095

lead to similar amount of gain, but (c) having the096

domain-specific pre-training start from a T5 check-097

point (T5 + WikiHow) provides significantly big-098

ger gain. The noteworthy result here is that, even099

in the presence of large-scale domain- and task-100

specific pretraining (WikiHow), one can still ob-101

serve measurable benefits due to a task-agnostic102

general-purpose pretrained model (T5).103

While the main motivation for modeling the two104

tasks jointly is to be able to utilize the pretraining105

paradigm, the segmentation subtask (finding event106

boundaries) and the captioning subtask (describ-107

ing what happens in an event) are related tasks,108

and intuitively stand to benefit from being modeled109

jointly. Our experimental results are aligned with110

this intuition: a model that does both segmenta-111

tion and captioning at the same time outperforms112

(in terms of segmentation accuracy) a variant that113

focuses only on the segmentation task.114

Overall, our results point to an viable alternative115

direction for modeling complex tasks such as end-116

to-end dense video captioning, in which we can117

leverage the large-scale pretraining paradigm to118

achieve modeling improvements.119

2 Related Work120

2.1 Multimodal Transformer121

Recently, vision-and-language pre-training has at-122

tracted a lot of attention for jointly learning from vi-123

sual and textual inputs in order to better solve mul-124

timodal tasks. Following the success of BERT (De-125

vlin et al., 2019), multimodal pre-training usually126

adopts the Transformer (Vaswani et al., 2017) en-127

coder structure to encode both the visual features128

and textual features. The late-fusion approaches129

first process visual and textual information sepa-130

rately and subsequently fuse them using another131

Transformer layer (Tan and Bansal, 2019; Lu et al.,132

2019). The early-fusion approaches jointly encode 133

visual and texual representations (Chen et al., 2020; 134

Sun et al., 2019; Li et al., 2019; Luo et al., 2020; Li 135

et al., 2020a; Qi et al., 2020; Huang et al., 2020b; 136

Li et al., 2020b; Lin et al., 2020; Gan et al., 2020; 137

Kim et al., 2021). During pre-training, tasks such 138

as masked language modeling, masked region mod- 139

eling, and image-text matching are used to learn a 140

cross-modal encoding which benefits downstream 141

multimodal tasks. 142

2.2 Dense Video Captioning 143

Krishna et al. (2017) introduced the dense video 144

captioning (DVC) task and proposed a solution 145

based on two separate modules: one for propos- 146

ing events, and another for captioning them. Re- 147

cent work (Zhou et al., 2018a; Li et al., 2018; 148

Wang et al., 2018; Zhou et al., 2018c; Mun et al., 149

2019; Iashin and Rahtu, 2020) follows the two- 150

stage “detect-then-describe” framework, in which 151

the event proposal module first predicts a set of 152

event segments, then the captioning module con- 153

structs captions for each candidate event segment. 154

Another line of work (Deng et al., 2021; Wang 155

et al., 2021) removes the explicit event proposing 156

process. Deng et al. (2021) tackles the DVC task 157

from a top-down prospective, in which they first 158

generate a video-level story, then ground each sen- 159

tence in the story to a video segment. Wang et al. 160

(2021) considers the DVC task as a set prediction 161

problem, and applies two parallel prediction heads 162

for event localization and captioning. To the best 163

of our knowledge, our work is the first to simulta- 164

neously conduct event localization and captioning 165

in a single run within the same prediction head. 166

3 Task Definition 167

The DVC task consists of annotating each input 168

video into multiple segments, where each segment 169

corresponds to an event of interest accompanied by 170

a short description (caption). Figure 1 shows an 171

example from the YouCook2 dataset. 172

Modified dense video captioning In YouCook2, 173

each segment is marked by a start and an end time, 174

often with gaps between segments. The burden 175

of identifying not just the right start-time but also 176

the right end-time increases the difficulty of the 177

segmentation task, thus affecting the segment-level 178

captioning performance, leading to poor end-to-end 179

results. 180
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Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

Segment Prediction 
+ Dense Caption Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Multimodal 
Input

Target 
Output

Figure 1: An example of input video and output segmentations and captions from the YouCook2 dataset.

Welcome to videoculinary. Today we're making shrimp tempura. To make the shrimp straight, make a 
few shallow horizontal cuts on the stomach side of the shrimp. Gently press and massage it. This will 
prevent the shrimp from curling up during ...

Video Stream

ASR

ASR Timestamp [0, 1, 2, 3, ...]

Dense Caption
Cut the shrimp to straighten it. Dip the shrimp in the batter.

Drop the shrimp into the oil.Add sesame oil to the batter.

Modified Input:

Multimodal 
Input

Figure 2: Modified dense video captioning: a simplified
setting where the segments are concatenated to form the
modified input with gaps removed.

We start our exploration with a simpler task181

where we introduce a variant of the YouCook2182

dataset as shown in Fig. 2: all the annotated seg-183

ments in a given video are concatenated to form a184

modified input, leaving out the gaps between seg-185

ments. We refer to this setting as the modified186

dense video captioning: given a modified input187

from Fig. 2, the model only needs to predict n start188

times to fully define n segments. In this setting, the189

segmentation subtask becomes a partition task for190

identifying the set of start times of segments.191

4 Method192

As noted earlier, prior work often decomposes193

dense video captioning into two subtasks, (a) a194

segmentation subtask, and (b) a segment-level cap-195

tioning subtask. These two subtasks are often ad-196

dressed with different model architectures. In con-197

trast, our approach solves both subtasks simultane-198

ously with one single model.199

We first describe how we jointly model segmen-200

tation and captioning subtasks as one single se-201

quence generation task. To this end, we need to202

formulate target strings in ways that encode both203

segmentation and captioning predictions. The typ-204

ical input to a DVC task includes both visual in-205

formation and speech in textual form – Automatic206

Speech Recognition (ASR) tokens1.207

We start by introducing our target string formu-208

1Our motivation for treating this as a sequence generation
task is to take advantage of existing pretrained sequence gen-
eration models, currently dominated by text models; thus, we
take a text-centric view in this work.

lations assuming only textual input, with segmen- 209

tation information expressed in terms of the posi- 210

tions of the corresponding ASR tokens. We then 211

describe multi-modal models where the visual in- 212

formation is added to the input while retaining the 213

aforementioned scheme to represent segmentation 214

information. 215

4.1 Target string formulations 216

We describe two approaches to formulate the tar- 217

get strings. We refer to a model that encodes only 218

segmentation information in the target strings as 219

a Seg-only model, and one that encodes both seg- 220

mentation and captioning as a Seg+Cap model. 221

Tagging-based target formulation We encode 222

the segmentation subtask in a manner similar to the 223

encoding of the chunking task as tagging tokens 224

in the IOB format (Ramshaw and Marcus, 1995). 225

Fig. 3 illustrates how we model the segmentation 226

task with two tags (in the modified setting): the 227

ASR token at the start of a segment receives a spe- 228

cial token ⟨sep⟩ as the start-of-segment tag, and the 229

rest of tokens in the segment receive a continua- 230

tion tag (we reuse the ⟨pad⟩ token). This can be 231

extended to cover the original setting (with gaps be- 232

tween segments) with an additional end-of-segment 233

tag. In this formulation, the groundtruth target out- 234

put string has the exact same length as the input 235

ASR string. To model the captioning annotation, 236

the ⟨sep⟩ token is followed by the corresponding 237

ground-truth caption, which is then padded till the 238

next ⟨sep⟩ token. 239

While treating the segmentation task as a tagging 240

task seems natural, the tagging-based formulation 241

enforces equal lengths between predicted output 242

and the input ASR tokens, which leads to potential 243

inefficiencies: the input ASR string is usually much 244

longer than all the descriptive captions combined, 245

which results in many padding tokens in the tar- 246

get output, and leading to unnecessary slow-down 247

in training and prediction time. Additionally, the 248
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welcome  to          our         channel     we     will          start    by      preparing  the      lamb   chops     ...

<sep>      <pad>   <pad>     <pad>        <sep>  <pad>     <pad> <pad> <pad>        <pad> <pad> <pad>    …
<sep>     opening sentence <pad>        <sep>  prepare   the       lamb    chops       <pad> <pad> <pad>    …

<sep>     4                                             <sep>   8                                                                                          …
<sep>     4  opening sentence               <sep>   8  prepare  the     lamb   chops                                           …

event 0 event 1( #token=4 ) ( #token=8 )

Partition-only:
Partition+Captioning:

Partition-only:
Partition+Captioning:

ASR Input:

Target Output with the Length-based Formulation

Target Output with the Tagging-based Formulation

Figure 3: The tagging-based and length-based target formulations for modified dense video captioning.

longer-form target strings are markedly different249

from the usual generative pattern of the pretrained250

text decoder, which can reduce the effectiveness251

of the pretrained checkpoints. Furthermore, this252

formulation also assumes that captions are shorter253

than the ASR string for each segment; while this is254

mostly true, for segments where little is being ex-255

plained (short ASR string), this formulation leaves256

insufficient capacity in the target string between257

the two consecutive ⟨sep⟩ tags to encode the corre-258

sponding caption, resulting in caption truncation.259

Length-based target formulation To cope with260

the limitations of the tagging-based formulation,261

we predict the length of each segment explicitly.262

Let li be the number of ASR tokens in the i-th263

segment. In the modified setting, the segmentation264

information for an input string with n segments265

is fully specified by the sequence {l1, l2, ..., ln}.266

Fig. 3 provides an example of this length-based267

formulation. The groundtruth target string in a268

Seg-only model is simply a sequence of numbers269

corresponding to segment lengths (measured by270

the number of tokens); in a Seg+Cap model, each271

number is followed by the caption for that segment.272

In the original setting with gaps between seg-273

ments, let gi be the offset from the last ASR token274

in previous segment to the start of segment i. The275

target string will now aim to predict both (gi, li)276

instead of just li for each segment. The sequence of277

all (gi, li) will fully specify all segment boundaries278

and can be used to compute the index of the start279

and end ASR tokens for each segment.280

This formulation has the advantage of a more ef-281

ficient representation of the segmentation informa-282

tion, and thus much shorter target length. The seg-283

mentation information is now explicitly expressed284

as numbers in the target strings, so the model needs285

to figure out both segmentation boundaries and also286

be able to count appropriately. We explicitly want287

to empirically measure the ability of our models to 288

do the latter. 289

4.2 Input formulation for multimodal signals 290

Simple Concatenation (SimpleConcat) Visual 291

information for a given video is represented as a 292

fixed-length sequence of pre-computed frame-level 293

features. These features are projected to the token 294

embedding space via a fully connected layer. We 295

simply concatenate the sequence of ASR token em- 296

beddings and the sequence of projected visual fea- 297

tures to form the multimodal input to the encoder. 298

There’s one potential caveat: while the visual fea- 299

tures are extracted at a fixed frame rate, the ASR 300

tokens are often not spoken at a fixed speed; thus 301

positions in this multimodal input sequence do not 302

provide straightforward information on which vi- 303

sual frames are temporally aligned with a certain 304

ASR span. Since segmentation prediction is ex- 305

pressed relative to the ASR-token position index, it 306

is not clear whether the model is able to take full 307

advantage of visual information, absent how these 308

two modalities align temporally . 309

Prior work on multimodal pretraining has found 310

visual-textual information alignment to be a reason- 311

ably solvable task. Huang et al. (2020a) reported 312

87% accuracy for aligning video segments and 313

ASR spans in HowTo100M (Miech et al., 2019), 314

so it is possible that the decoder can learn to attend 315

to appropriate visual information while “counting” 316

the ASR tokens. 317

Temporal embedding (EmbTIME) We can also 318

express the temporal alignment more explicitly in 319

the input by adding temporal embeddings to both 320

ASR tokens and visual frames. In this formulation, 321

we learn a temporal embedder shared between the 322

text modality and the visual modality, which maps 323

timestamps to temporal embeddings. Embeddings 324

computed from token timestamps are then added to 325
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Dataset Train Validation Test

YouCook2 925 206 105
ViTT 4736 932 932

Table 1: The number of videos in the train, validation
and test sets for YouCook2 and ViTT.

ASR token embeddings, and embeddings computed326

from frame timestamps are added to projected vi-327

sual frame features. This way, ASR tokens and328

frames that are temporally close to each other re-329

ceive similar temporal embeddings, making their330

representations closer to each other.331

For more explorations on explicitly expressing332

temporal alignment in the input, see Appendix A.1333

for an additional method to insert explicit times-334

tamp markers into the input text sequence.335

5 Experiments336

5.1 Datasets337

Dense Video Captioning Datasets We use two338

publicly available datasets to verify the effective-339

ness of our model formulations: YouCook2 (Zhou340

et al., 2018a) and ViTT (Huang et al., 2020a).2341

The YouCook2 dataset is restricted to videos re-342

trieved from YouTube from the cooking domain,343

targeting 89 recipes; each event segment is manu-344

ally marked with a start and end time, along with a345

human-generated caption for each tightly-bounded346

segment. The ViTT dataset contains instructional347

videos from YouTube-8M (Abu-El-Haija et al.,348

2016) and covers a wider range of topics. Its seg-349

ment annotation focuses on event start time, along350

with rater-provided captions for the corresponding351

segment (spanning two consecutive start-time anno-352

tations). Both datasets are annotated with captions353

written in English.354

Note that while the YouCook2 data release con-355

tains training, dev, and test sets, its test set does not356

come with human annotations. Thus, we split the357

original validation set into validation and test splits358

for our experiments. For ViTT, we use the original359

train/val/test splits provided with the data. Table 1360

summarizes the size of each dataset, indicating the361

number of videos available for use at the time of362

our work3.363

2YouCook2 released under an MIT license; ViTT released
under an “AS IS” license.

3As of 2021; note that YouTube videos are subject to user
deletion.

Ground Truth:

Prediction:

ASR Token Index:   2                                                                        10 
       Timestamps:    1s                                                                       8s

ASR Token Index:   1                                                                    8 
       Timestamps:    0s                                                                  6s

Intersection

Union

Token Index-based IoU 
• GT: [2, 10], Prediction: [1, 8] 

• Intersection: [2, 8] → 7 tokens 
• Union: [1, 10] → 10 tokens 

• IoU = 7 / 10

Timestamp-based IoU 
• GT: [1s, 8s], Prediction: [0s, 6s] 

• Intersection: [1s, 6s] → 5s 
• Union (8s): [0s, 8s] → 8s 

• IoU = 5 / 8

Figure 4: Comparisons between the token index-based
and timestamp-based IoU used in our study.

Domain-specific pre-training with WikiHow 364

In addition to general-purpose pretrained models 365

like T5, we also experiment with domain-specific 366

pretraining. To this end, we use the WikiHow 367

dataset (Koupaee and Wang, 2018). WikiHow con- 368

sists of instructional (how-to) articles, which makes 369

it in-domain data for the two dense video caption- 370

ing datasets considered here, while being much 371

larger in size4. In addition, WikiHow articles con- 372

tain detailed step-by-step instructions. Each step 373

comes with a summary, which usually serves as 374

the section title. Both the step boundaries and sum- 375

maries are easily extracted according to the page 376

meta-data. This provides the groundtruth annota- 377

tion for a “dense document caption” task: given the 378

full article as a sequence of text tokens, predict the 379

step boundaries and summaries. This enables us 380

to also include a domain-specific pretraining task 381

that closely resembles our task. For each formu- 382

lation described in Sec. 4, we experiment with a 383

checkpoint pretrained on the WikiHow data using 384

the corresponding target string formulation. 385

5.2 Evaluation Metrics 386

Segmentation Performance Following previous 387

works (Zhou et al., 2018b; Shi et al., 2019), we use 388

the mean Intersection-over-Union (mIoU) metric 389

to evaluate the segmentation performance. Recall 390

that the groundtruth segments are marked by start 391

(and end) times, whereas the predicted segments 392

are expressed according to the position of the corre- 393

sponding ASR token. For the modified dense video 394

captioning task, we compute the token index-based 395

IoU: each groundtruth segment is defined by the 396

start and end ASR token index, and will be com- 397

pared against the predicted index. For the original 398

task, we compute the timestamp-based IoU: pre- 399

dicted index are mapped into the corresponding 400

4WikiHow training is 157,116 articles, validation is 5,593
articles.
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* Target
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0 Random Partition 37.3 26.45 27.89 24.69 - - - - - -

1
Tagging-based

- 33.59 23.04 29.37 24.46 19.72 17.09 0.07 0.91 0.03 2.07
2 T5 12.06 1.78 7.46 2.81 6.73 0.24 0.00 0.01 0.00 0.03

3
Length-based

- 36.30 26.23 28.79 25.81 33.62 24.69 0.24 1.62 0.04 4.03
4 T5 42.71 31.85 33.04 31.21 42.82 32.16 1.83 4.17 0.21 8.74

Table 2: Preliminary experiments comparing the tagging-based and the length-based formulation on YouCook2
modified dense video captioning. We report the evaluation results on the validation set (one run per setting) with
models initialized from random variables and from T5 checkpoints.

ASR token timestamps and compared against the401

segment’s groundtruth start and end timestamps.402

Fig. 4 provides an example of the two types of IoU403

used.404

An IoU score can be computed for each405

(groundtruth, predicted) segment pair. The mIoU406

measure provides a summary score for segmenta-407

tion performance over the entire video: for each408

ground-truth segment, we take its maximal IoU to409

predicted segments as the IoU score for this ground-410

truth segment, and mIoU is the average of this value411

across all ground-truth segments. The individual412

mIoU for each video is then averaged across the413

test data and reported as the overall mIoU.414

For diagnostic purposes, we also compute: 1) the415

percentage of predicted segments which have an416

IoU score with at least one ground-truth segment,417

above a certain threshold t (precision@t); 2) the418

percentage of groundtruth segments which have419

an IoU score with at least one predicted segment,420

above a certain threshold t (recall@t), as well as421

their geometric mean as F1. Following prior work,422

we compute these scores for a set of IoU thresholds423

t={0.3, 0.5, 0.7, 0.9}, and report the average over424

these thresholds.425

Captioning Performance We compute BLEU-426

4 (Papineni et al., 2002), METEOR (Banerjee and427

Lavie, 2005), CIDEr (Vedantam et al., 2015), and428

ROUGE (Lin, 2004) scores between generated cap-429

tions and the ground truth when the predicted and430

ground-truth segment “match” (i.e., with IoU score431

above a given threshold t); if a ground truth seg-432

ment does not have a matching prediction, it con-433

tributes a zero to the average score for the corre-434

sponding threshold. Again, we compute this for a435

set of IoU thresholds of {0.3, 0.5, 0.7, 0.9}, and436

report the average over these thresholds.437

5.3 Implementation Details 438

Models were trained on 4x4 TPUs and we used 439

about 180k GPU hours for around 1380 training 440

runs including pretraining the WikiHow check- 441

point, pilot studies with toy examples, debugging 442

and hyperparameter tuning. The models have 443

around 70 million parameters. We used the Adafac- 444

tor (Shazeer and Stern, 2018) optimizer and a learn- 445

ing rate schedule of 1000 warmup steps followed 446

by square-root decay. We did a few initial ex- 447

ploratory runs over base learning rates of {0.001, 448

0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1, 2, 5} to determine 449

that a base learning rate of 1 worked well and used 450

it for all the experiments reported. 451

For our visual representations, we computed 3D 452

CNN features pretrained on the Kinetics (Carreira 453

and Zisserman, 2017; Kay et al., 2017) dataset for 454

frames sampled at 1fps. 455

5.4 Experiments in the modified setting 456

Experimental setup We conduct comparisons 457

of the two different target formulations – tagging- 458

based and length-based– in the modified setting, 459

using the following experimental setup: (a) Max 460

input text length and target length are set to 1024, 461

and max input visual feature length is set to 800; 462

this can truncate longer ASR sequences, but allow 463

us to quickly iterate through different settings with 464

fewer computational resources; (b) Only one run 465

for each setting. We report results on the validation 466

set in Table 2. 467

Target formulations The best performing model 468

(length-based with T5 checkpoint) outperforms a 469

random partition baseline5 (row #0 in Table 2), This 470

indicates our target formulation approach to the 471

5For the random parition baseline, a video is randomly split
into n segments, where n is sampled from 1 to 15 (ground
truth averages at 8).
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* Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU mIoU B@4 METEOR CIDEr ROUGE-L

YouCook2

0 Random Segmentation 21.79 ± 0.56 - - - - -

1

SimpleConcat

- 12.99 ± 1.55 16.45 ± 8.72 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 24.21 ± 1.64 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 23.33 ± 0.79 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 30.26 ± 1.24 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ EmbTIME

- 18.51 ± 1.95 18.71 ± 0.17 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
6 T5 23.02 ± 1.05 23.96 ± 0.08 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
7 WikiHow 21.68 ± 1.93 21.88 ± 0.86 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
8 WikiHow T5 26.51 ± 0.45 28.70 ± 0.92 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

9 Random Segmentation 26.16 ± 0.06 - - - - -

10

SimpleConcat

- 33.85 ± 0.70 32.69 ± 0.71 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
11 T5 37.89 ± 0.10 38.07 ± 0.65 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
12 WikiHow 38.20 ± 0.27 37.80 ± 0.62 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
13 WikiHow T5 41.87 ± 0.26 42.40 ± 0.30 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

14

+ EmbTIME

- 33.89 ± 0.21 35.37 ± 3.18 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
15 T5 37.78 ± 0.15 38.50 ± 0.55 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
16 WikiHow 37.27 ± 0.08 36.97 ± 0.48 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
17 WikiHow T5 41.64 ± 0.12 43.22 ± 0.72 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 3: Performance on the dense video captioning on YouCook2 and ViTT test set with the length-based and the
Timestamp markers formulations. We ran 3 set of repeating experiments for each setting, and report the evaluation
results (mean ± std) with models initialized from random weights, T5 checkpoints, WikiHow checkpoints, and T5
checkpoints further pretrained on WikiHow. Seg: segmentation task. Cap: captioning task.

segmentation task are capturing some segmentation472

information effectively.473

When trained from scratch, the length-based for-474

mulation achieves higher performance across the475

board (#3 vs #1), with a smaller gap for the Seg-476

only model, and more marked lead for the Seg+Cap477

model. We hypothesize that while treating the seg-478

mentation task as a tagging task is more or less fea-479

sible on its own, combining segmentation tags and480

captions are not a good formulation for the com-481

bined task – to the point that the Seg+Cap model482

underperforms the Seg-only model in segmentation483

metrics (mIoU of 19.72 vs 33.59 in #1).484

The length-based formulation overall benefits485

from the T5 checkpoint (#3 vs #4 in Table 2) across486

different sub-tasks. Note that for the Seg-only487

model, the target strings (sequences of numbers)488

are not typically seen in T5 pre-training, but the T5489

checkpoint still boosts its performance. In contrast,490

the tagging-based is not able to benefit from the491

T5 checkpoint at all. One possible explanation is492

that the target strings in tagging-based (with large493

chunks of padding tokens) are just too different494

from the T5 pretraining targets.495

Given the results obtained in the modified set-496

ting, we focus our efforts on using length-based 497

target formulation in the more challenging original 498

setting. 499

Ablation studies We also conducted ablation 500

studies on input modalities (not surprisingly, text- 501

only models stand to benefit more from the pre- 502

trained checkpoints than visual-only models) and 503

ablation studies on loading partial checkpoints 504

from pretrained models (loading checkpoints for 505

both encoder and decoder works the best). See 506

Appendix (A.2) for more details. 507

5.5 Experiments in the original setting 508

Experimental setup Using length-based target 509

formulation, we conduct a more extensive compar- 510

ison of the effect of different pretraining strategies, 511

as well as different input formulations on the origi- 512

nal dense video captioning task on both YouCook2 513

and ViTT. Max sequence lengths are set to ensure 514

no truncation happens in either dataset – input text: 515

4096; visual feature: 800 (YouCook2) / 500 (ViTT); 516

target: 512 (YouCook2) / 256 (ViTT). We ran each 517

each experiment with different seeds for 3 times 518

to account for performance variance from random 519

initializations. We report the mean and standard 520

7



deviation (using 3 runs) for each metric in Table 3.521

We chose the checkpoint according to performance522

on the validation set, and report the corresponding523

performance on the test set.524

Effects of Pretraining For both datasets, there525

are significant performance improvements from uti-526

lizing pretrained checkpoints in terms of both seg-527

mentation metrics and captioning metrics. Interest-528

ingly, training from the WikiHow checkpoint (us-529

ing in-domain task over in-domain data) provides530

similar performance improvement to T5 alone (see,531

for instance, #2 vs #3, or #11 vs #12 in Table 3).532

However, starting from the generic-language T5533

checkpoint and adding in-domain WikiHow pre-534

training (WikiHow T5, e.g., #4 and #13) boosts all535

metrics by a large and significant margin.536

Effects of Joint Modeling If we compare the537

mIoU score achieved by Seg+Cap model vs the538

mIoU score by Seg-only model in Table 3, across539

different settings, we observe a general trend where540

the Seg+Cap model outperforms the Seg-only541

model on this segmentation metric. This indicates542

that with the right formulation, the segmentation543

subtask (predicting event boundary) can indeed544

benefit from joint learning with a related caption-545

ing subtask (summarizing event content).546

Input formulations Comparing results using547

SimpleConcat against their counterparts using548

EmbTIME in Table 3, results are largely inconclusive.549

While EmbTIME seems to bring non-trivial improve-550

ment to models trained from scratch, the trained551

from scratch settings also have the largest variance552

in our experiments6. That said, the Seg+Cap model553

did achieve its best mIoU score on ViTT using554

EmbTIME. More work is needed to fully understand555

the potential of the temporal embedding.556

Comparison against prior work for YouCook27557

Table 4 provides a summary of dense video cap-558

tioning performance on YouCook2 reported in prior559

work. The related work is provided for reference560

but results are not always strictly and directly com-561

6To the extent that the Seg+Cap model performance in #1
can be considered an outlier: its mIoU scores for the 3 runs
are (11, 11, 26), which resulted in a large std value not seen
anywhere else in the table. We intend to run more repeats to
investigate this issue, but wanted to report results from these 3
original runs to avoid cherry picking.

7ViTT is a relatively newer dataset and past work has only
reported performance of the segment-level captioning subtask
using groundtruth segments; we are not aware of existing work
reporting end-to-end dense video captioning performance.

Model mIoU Prec. Rec. B@4 M

vsLSTM (Zhang et al., 2016) 33.9 24.1 22.1 - -
SCNN-prop (Shou et al., 2016) 28.0 23.2 28.2 - -
ProcNet (Zhou et al., 2018b) 37.5 30.4 37.1 - -
Bi-LSTM + TempoAttn (Yao et al.) - - - 0.08 4.62
End2end Transformer (Zhou et al., 2018c) - - - 0.30 6.58
Context-aware Fusion (Shi et al., 2019) 41.4 - - 2.61 17.43

End2end Sequence Generation (Ours) 30.3 20.8 20.7 3.0 3.5

Table 4: Dense video captioning performance on
YouCook2 in the context of prior work. Segmentation
performance is measured by the mIoU, precision (Prec.)
and recall (Rec.). Captioning performance is measured
by BLEU-4 (B@4) and METEOR (M).

parable (due to, e.g., dataset changing overtime). 562

Some of the prior work focused only on the segmen- 563

tation subtask (which in turn can be decomposed 564

into event proposal and candidate ranking), some 565

approached the end-to-end task as a two-stage task 566

and solved the two subtasks separately. In this con- 567

text, we find the results from our first attempt at a 568

simple approach quite encouraging, and hope this 569

inspires future studies to fully realize the potential 570

of this alternative approach. 571

6 Discussion 572

Limitations and Risks Our experiments are con- 573

ducted only on videos with available English ASR 574

annotations, as we inherit this limitation from the 575

available data for this task. We use existing datasets 576

based on public YouTube videos. As a conse- 577

quence, any videos that are no longer publicly avail- 578

able on YouTube (e.g., removed by user) at the time 579

of the study needed to be excluded from our exper- 580

imental setup. Our models are experimental, and 581

their outputs are not meant to be used outside the 582

intended research work presented in this paper. 583

7 Conclusion 584

In this paper, we describe different task formula- 585

tions for solving the dense video captioning task 586

in an end-to-end manner, which allows us to take 587

advantage of pretrained text-only encoder-decoder 588

models. We conduct experiments on the YouCook2 589

and the ViTT dataset with several pretraining set- 590

tings. Experimental results show text-only pre- 591

trained models can improve video partitioning and 592

segmentation performance. Also, the segmenta- 593

tion subtask benefits from jointly modeling with 594

the captioning subtask. We hope our work can 595

inspire future studies on utilizing pretrained mod- 596

els and large-scale text corpora to further improve 597

language generation tasks in multimodal settings. 598
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A Appendix 800

A.1 Timestamp markers (T-marker) 801

Here we describe an alternative way to encode tem- 802

poral alignment between textual and visual input. 803

Since the frames are extracted at a fixed rate, we 804

can explicitly add time markers to the text input to 805

“mark” out tokens spoken at the corresponding time 806

points. In our work, the video features are extracted 807

with a frame rate of 1 frame per second. For each 808

frame, we insert a time marker after the last ASR 809

token spoken before the corresponding timestamp. 810

A time marker consists of a special anchor token, 811

followed by the timestamp token (an integeter cor- 812

responding to the timestamp in seconds). 813
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Performance using this input formuation can be814

found in the T-marker rows in Table 7. For mod-815

els trained from scratch, including the timestamp816

markers can have a positive impact on model per-817

formance, indicating that these markers do indeed818

provide useful information. However for any model819

trained from an existing checkpoint, adding these820

markers only hurt the performance. We hypothe-821

size that this is because the text sequence with fre-822

quent markers is too different from the pretrained823

datasets, leaving the pretrained checkpoints less824

effective for models using this input formulation.825

A.2 Ablation studies826

Ablation on Input Data Table 5 lists out827

the comparisons of different input sources on828

YouCook2 dense video captioning task. For all829

three ablated settings, pre-training on WikiHow830

has the best performance on the two subtasks, and831

loading the T5 checkpoint has better performance832

than training from scratch. With the pre-trained833

WikiHow checkpoint, the “Text-only” setting has834

comparable performance as the “Text+Video” set-835

ting that takes both the ASR transcript and the836

video features as input. Using the video features837

alone results in worse performance, indicating the838

high-value of text transcripts to the captioning task.839

Ablation on T5 Checkpoint Table 6 lists out the840

comparisons of using different pretrained check-841

points on YouCook2 modified dense video cap-842

tioning. Both the T5 an the WikiHow T5 check-843

points surpass the model initialized from random844

weights, which verifies the effectiveness of pre-845

training. Among all three ablated settings, using846

the complete checkpoint has better performance847

than only loading the Transformer encoder or de-848

coder.849

A.3 Comprehensive experimental results850

Table 7 provides a more comprehensive summary851

of our experimental results in the original setting.852

It is the same experimental setting as Table 3, but853

we also report additional performance metrics for854

the segmentation tasks, as well as performance for855

the T-marker input formulation. Table 8 is again856

under the same experimental setting, but reports857

median instead of (mean, std) to summarize the 3858

repeats for each setting, so that the metrics are less859

affected by occasional outliers.860
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Input Checkpoint Segmentation Segmentation + Captioning

Precision Recall F1 F1 B@4 METEOR CIDEr ROUGE-L

Text-only
- 31.86 30.66 31.25 30.39 0.55 1.88 0.07 5.23
T5 36.22 37.06 36.64 37.89 3.36 4.76 0.28 10.61
WikiHow T5 71.13 63.77 67.25 58.71 9.57 11.99 0.85 23.21

Video-only
- 28.02 19.48 22.98 27.5 0.52 1.89 0.07 4.82
T5 27.43 27.25 27.34 27.86 0.40 1.65 0.05 4.11
WikiHow T5 25.45 24.93 25.19 23.19 0.42 1.48 0.05 3.84

Text + Video
- 32.53 30.90 31.69 29.09 0.34 1.68 0.06 4.78
T5 36.96 37.99 37.47 32.58 2.99 4.22 0.26 9.20
WikiHow T5 71.07 62.76 66.66 57.84 9.87 11.96 0.86 23.25

Table 5: Ablation on input modalities. Performance using length-based target formulation on YouCook2 dense
video captioning task with IoU threshold=50%. Results are reported on three ablated input settings: “Text-only”
feeds in the ASR tokens, “Video-only” reveals the video features, while “Text+Video” provides both the ASR and
the video features as input.

Checkpoint F1 B@4 METEOR CIDEr ROUGE-L

- 30.39 0.55 1.88 0.07 5.23

T5 (full) 37.89 3.36 4.76 0.28 10.61
T5 (enc-only) 31.00 0.28 1.93 0.07 4.88
T5 (dec-only) 32.37 1.39 3.02 0.14 7.73

WikiHow T5 (full) 58.71 9.57 11.99 0.85 23.21
WikiHow T5 (enc-only) 59.30 8.44 11.72 0.80 22.89
WikiHow T5 (dec-only) 36.88 0.99 3.19 0.15 8.00

Table 6: Ablation on pretrained checkpoints. Performance using length-based target formulation on YouCook2
modified dense video captioning with IoU threshold=50%. Results are reported on three settings: “full” loads the
complete checkpoint, “enc-only” loads the Transformer encoder weights, while “dec-only” loads the Transformer
decoder weights.

* Input
Formulation Checkpoint? Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

YouCook2

0 Random Segmentation 21.79 ± 0.56 12.51 ± 0.46 12.34 ± 0.68 11.71 ± 0.54 - - - - - -

1

SimpleConcat

- 12.99 ± 1.55 12.24 ± 1.08 8.60 ± 0.90 9.39 ± 0.75 16.45 ± 8.72 11.23 ± 5.16 0.17 ± 0.11 0.66 ± 0.04 0.02 ± 0.01 1.99 ± 0.20
2 T5 24.14 ± 1.07 14.22 ± 0.16 15.09 ± 0.85 14.10 ± 0.44 24.21 ± 1.64 14.20 ± 1.35 0.88 ± 0.04 1.50 ± 0.12 0.09 ± 0.01 3.34 ± 0.27
3 WikiHow 22.58 ± 1.09 13.39 ± 0.96 14.57 ± 1.19 13.27 ± 1.00 23.33 ± 0.79 14.22 ± 0.94 0.67 ± 0.15 1.47 ± 0.05 0.08 ± 0.01 3.51 ± 0.13
4 WikiHow T5 27.77 ± 0.09 16.68 ± 1.04 18.43 ± 0.75 16.87 ± 0.62 30.26 ± 1.24 20.24 ± 1.06 2.96 ± 0.28 3.49 ± 0.30 0.25 ± 0.03 7.00 ± 0.42

5

+ T-marker

- 20.13 ± 2.59 13.68 ± 1.78 12.18 ± 1.88 12.01 ± 1.91 18.41 ± 2.65 9.99 ± 1.55 0.08 ± 0.02 0.44 ± 0.04 0.01 ± 0.00 1.33 ± 0.15
6 T5 20.29 ± 1.30 12.13 ± 2.52 11.43 ± 0.64 11.09 ± 1.38 22.12 ± 1.29 12.56 ± 0.74 0.88 ± 0.23 1.38 ± 0.22 0.08 ± 0.02 3.07 ± 0.39
7 WikiHow 19.98 ± 0.55 10.54 ± 1.36 12.11 ± 1.29 10.68 ± 1.32 20.84 ± 1.02 11.82 ± 0.64 0.39 ± 0.05 0.99 ± 0.09 0.05 ± 0.00 2.44 ± 0.18
8 WikiHow T5 20.98 ± 0.69 11.99 ± 1.07 12.49 ± 0.60 11.86 ± 0.82 20.22 ± 0.70 11.20 ± 0.70 0.38 ± 0.08 0.92 ± 0.05 0.05 ± 0.00 2.27 ± 0.13

9

+ EmbTIME

- 18.51 ± 1.95 10.85 ± 0.59 11.42 ± 1.16 10.29 ± 0.58 18.71 ± 0.17 9.80 ± 0.80 0.12 ± 0.07 0.48 ± 0.08 0.02 ± 0.01 1.41 ± 0.22
10 T5 23.02 ± 1.05 13.52 ± 0.76 14.15 ± 0.94 13.23 ± 0.77 23.96 ± 0.08 15.44 ± 0.67 1.32 ± 0.08 1.91 ± 0.07 0.11 ± 0.01 4.20 ± 0.13
11 WikiHow 21.68 ± 1.93 13.13 ± 1.42 13.88 ± 1.60 12.83 ± 1.41 21.88 ± 0.86 13.15 ± 0.74 0.69 ± 0.19 1.30 ± 0.07 0.07 ± 0.01 3.06 ± 0.13
12 WikiHow T5 26.51 ± 0.45 15.61 ± 0.61 17.08 ± 0.58 15.82 ± 0.62 28.70 ± 0.92 18.71 ± 0.94 2.58 ± 0.19 3.23 ± 0.10 0.22 ± 0.01 6.45 ± 0.17

ViTT

13 Random Segmentation 26.16 ± 0.06 14.69 ± 0.11 16.0 ± 0.21 14.81 ± 0.13 - - - - - -

14

SimpleConcat

- 33.85 ± 0.70 23.54 ± 0.36 24.04 ± 0.40 22.98 ± 0.22 32.69 ± 0.71 22.49 ± 0.36 0.11 ± 0.01 3.76 ± 0.35 0.08 ± 0.01 3.86 ± 0.28
15 T5 37.89 ± 0.10 28.16 ± 1.18 27.15 ± 0.19 27.15 ± 0.53 38.07 ± 0.65 27.39 ± 0.91 0.57 ± 0.03 5.92 ± 0.37 0.16 ± 0.02 6.59 ± 0.69
16 WikiHow 38.20 ± 0.27 26.95 ± 0.67 27.71 ± 0.25 26.85 ± 0.41 37.80 ± 0.62 26.74 ± 0.81 0.40 ± 0.07 5.48 ± 0.18 0.14 ± 0.01 6.02 ± 0.34
17 WikiHow T5 41.87 ± 0.26 31.75 ± 1.94 31.74 ± 0.34 31.26 ± 1.10 42.40 ± 0.30 32.01 ± 0.50 1.29 ± 0.07 8.10 ± 0.34 0.25 ± 0.01 9.26 ± 0.39

18

+ T-marker

- 32.19 ± 1.17 20.05 ± 1.89 21.62 ± 0.82 20.04 ± 0.48 32.03 ± 0.14 20.89 ± 0.28 0.05 ± 0.00 2.96 ± 0.13 0.06 ± 0.00 2.93 ± 0.07
19 T5 34.94 ± 0.37 21.24 ± 0.11 23.95 ± 0.41 22.07 ± 0.21 37.56 ± 0.78 27.50 ± 0.69 0.59 ± 0.09 5.11 ± 0.52 0.16 ± 0.01 6.26 ± 0.56
20 WikiHow 33.00 ± 0.10 19.13 ± 0.87 22.02 ± 0.13 20.05 ± 0.54 35.14 ± 0.99 22.88 ± 0.41 0.23 ± 0.04 3.51 ± 0.14 0.09 ± 0.01 4.12 ± 0.37
21 WikiHow T5 34.23 ± 0.55 21.01 ± 1.34 23.26 ± 0.51 21.62 ± 0.94 33.20 ± 1.65 19.63 ± 0.98 0.16 ± 0.02 3.01 ± 0.22 0.08 ± 0.01 3.40 ± 0.36

22

+ EmbTIME

- 33.89 ± 0.21 20.75 ± 2.37 23.69 ± 0.08 21.27 ± 1.49 35.37 ± 3.18 22.28 ± 0.49 0.04 ± 0.03 3.42 ± 0.61 0.07 ± 0.01 3.28 ± 0.83
23 T5 37.78 ± 0.15 25.98 ± 0.20 27.12 ± 0.16 26.05 ± 0.16 38.50 ± 0.55 27.95 ± 0.46 0.75 ± 0.10 6.37 ± 0.39 0.18 ± 0.01 7.19 ± 0.48
24 WikiHow 37.27 ± 0.08 25.96 ± 0.38 26.87 ± 0.04 25.91 ± 0.21 36.97 ± 0.48 26.37 ± 0.36 0.38 ± 0.06 5.31 ± 0.06 0.13 ± 0.01 5.82 ± 0.23
25 WikiHow T5 41.64 ± 0.12 31.07 ± 0.67 31.53 ± 0.12 30.84 ± 0.33 43.22 ± 0.72 32.49 ± 0.25 1.22 ± 0.08 8.05 ± 0.20 0.25 ± 0.01 9.18 ± 0.45

Table 7: Performance on the dense video captioning on YouCook2 and ViTT test set with the length-based and
the Timestamp markers formulations. We report the evaluation results (mean ± std) with models initialized from
random weights, T5 checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow.
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* Dataset Input
Formulation Checkpoint Seg-only model Seg+Cap model

mIoU Precision Recall F1 mIoU F1 B@4 METEOR CIDEr ROUGE-L

0

YouCook2

Random Segmentation 21.55 12.25 12.2 11.55 - - - - - -

1
SimpleConcat

- 12.83 12.80 8.62 9.07 11.47 8.78 0.22 0.64 0.03 1.95
2 T5 24.18 14.19 14.83 13.89 25.13 14.09 0.86 1.47 0.09 3.39
3 WikiHow 22.36 13.11 14.42 12.99 23.00 14.16 0.66 1.50 0.08 3.48
4 WikiHow T5 27.81 17.21 18.16 17.01 30.97 20.57 2.85 3.48 0.24 7.02

5

+ T-marker

- 18.82 14.42 11.28 11.38 17.18 9.53 0.06 0.45 0.01 1.34
6 T5 20.91 13.21 11.48 11.65 22.75 12.87 0.90 1.42 0.08 3.19
7 WikiHow 19.76 10.17 11.52 10.19 21.09 11.79 0.37 0.94 0.05 2.35
8 WikiHow T5 21.26 12.34 12.83 12.24 20.56 11.35 0.38 0.89 0.05 2.31

8

+ EmbTIME

- 19.52 10.99 11.70 10.26 18.77 9.83 0.11 0.52 0.02 1.46
10 T5 22.93 13.84 13.78 13.30 24.00 15.70 1.34 1.90 0.11 4.24
11 WikiHow 21.41 13.11 13.88 12.76 22.08 13.18 0.79 1.30 0.07 3.09
12 WikiHow T5 26.61 15.86 17.28 16.08 28.80 18.41 2.67 3.18 0.23 6.41

13

ViTT

Random Segmentation 26.16 14.69 16.03 14.81 - - - - - -

14
SimpleConcat

- 33.74 23.71 23.95 23.10 33.10 22.59 0.12 3.78 0.08 3.87
15 T5 37.90 28.28 27.14 27.13 38.35 27.66 0.57 5.85 0.15 6.36
16 WikiHow 38.23 26.82 27.78 26.89 37.75 26.92 0.44 5.58 0.14 6.06
17 WikiHow T5 41.78 31.00 31.62 30.78 42.25 31.85 1.34 7.97 0.25 9.21

18

+ T-marker

- 32.62 19.94 22.02 20.27 32.01 20.90 0.05 2.96 0.06 2.95
19 T5 34.83 21.20 23.89 22.08 37.36 27.80 0.57 5.31 0.16 6.46
20 WikiHow 33.00 19.12 22.09 20.09 35.54 23.09 0.23 3.43 0.09 4.03
21 WikiHow T5 33.92 21.12 23.01 21.52 34.04 19.46 0.16 2.96 0.07 3.23

14

+ EmbTIME

- 33.79 21.21 23.68 21.61 34.56 22.37 0.05 3.12 0.06 2.92
15 T5 37.75 25.97 27.13 26.13 38.44 27.94 0.69 6.18 0.18 7.15
16 WikiHow 37.22 25.85 26.86 25.84 37.07 26.39 0.37 5.28 0.13 5.73
17 WikiHow T5 41.62 30.76 31.52 30.68 43.51 32.50 1.19 8.05 0.25 9.02

Table 8: Performance on the dense video captioning on YouCook2 and ViTT test set with the length-based and the
Timestamp markers formulations. We report the evaluation results with models initialized from random weights, T5
checkpoints, WikiHow checkpoints, and T5 checkpoints further pretrained on WikiHow. We ran 3 set of repeating
experiments for each setting, and report the median value on each metric in this Table.
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