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The Cost of Balanced Training-Data Production in an Online Data
Market

Anonymous Author(s)

ABSTRACT
Many ethical issues in machine learning are connected to the train-

ing data. Online data markets are an important source of train-

ing data, facilitating both production and distribution. Recently,

a trend has emerged of for-profit “ethical” participants in online

data markets. This trend raises a fascinating question: Can online

data markets sustainably and efficiently address ethical issues in

the broader machine-learning economy?

In this work, we study this question in a stylized model of an

online data market. We investigate the effects of intervening in

the data market to achieve balanced training-data production. The

model reveals the crucial role of market conditions. In small and

emerging markets, an intervention can drive the data producers out
of the market, so that the cost of fairness is maximal. Yet, in large

and established markets, the cost of fairness can vanish (as a fraction
of overall welfare) as the market grows.

Our results suggest that “ethical” online data markets can be

economically feasible under favorable market conditions, and mo-

tivate more models to consider the role of data production and

distribution in mediating the impacts of ethical interventions.

ACM Reference Format:
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conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
It is now widely recognized that machine-learning systems can

raise ethical issues, including issues of fairness, privacy, law, and

working conditions. Models can produce predictions that system-

atically differ by race [40], reproduce the photos of individuals in

their training data [11], be trained on copyrighted materials [37],

and require the labeling of psychologically harmful content [44].

Ethical issues have been documented across diverse applications

and domains [5, 8, 10].

Much work on addressing these issues has focused on the train-

ing data. Researchers have developed methods to analyze, trans-

form, or augment a given dataset [14, 22, 54], and built new training-

data resources [8, 39, 53]. Non-profit organizations have supported

the production of training data through innovation and subsidiza-

tion [23, 36]. Governments have reviewed and improved their data

infrastructure, emphasizing data that is widely used, including for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

machine learning [41, 42]. But these efforts have been largely re-

stricted to academia, non-profit organizations, and government.

Recently, a small and growing number of firms have been at-

tempting to address ethical issues in training data as profit-seeking

participants in online data markets. They are targeting a range of

issues including protecting creators’ copyright [50], creating job

opportunities with fair working conditions [29], and producing rep-

resentative training data [18]. And they are working together [4].

This trend is intriguing.

On the one hand, online data markets offer powerful possibil-

ities. Ethical issues in the training data could be addressed right

at the source—at the level of training-data production. Online in-

frastructure enables monetization and transaction on a web scale,

and can facilitate greater participation by under-represented and

disadvantaged communities [15]. On the other hand, online data

markets face economic pressures that may render addressing ethi-

cal issues in a free-market environment economically unviable. If

an ethical intervention increases production costs, this may dimin-

ish the economic surplus of machine learning, or place a firm at a

disadvantage to less scrupulous competitors. This fledgling trend

raises an exciting question: Can online data markets sustainably and
efficiently address ethical issues in the machine-learning economy?

In this work, we take a first step towards answering this question.

We study the problem of unbalanced training data, loosely defined

here (see Section (3.5) for a precise definition) as there being too

few samples of some group (such as racial group or gender) in the

training data. Unbalanced training data is linked to a number of

issues in fair machine learning including performance disparities

and equity assessments [3, 8, 14, 25]. We investigate the effects

of intervening to achieve balanced training-data production in an

online datamarket. Our aim is tomotivate further work by shedding

light on the economics of the intervention: How costly can it be to
achieve balanced training-data production?

An intervention changes the training-data demographics, but

also constrains the extraction of economic value. If fewer revenues

are extracted, then the budget for data production will decrease and

sellers will produce fewer training samples. In contrast to works

that assume a fixed budget for data production as in [9, 21], the

cost of fairness, loosely defined here as the loss in efficiency (see

Section (3.5) for details), now arises out of a complex dynamic that

includes this feedback and it is unclear what the overall impact will

be. How does the cost of fairness behave?

Summary of contributions. We investigate this question in a styl-

ized model of an online data market. Our main contributions are as

follow.

• We revisit a well-known model of Agarwal et al. [2]. Our

modeling contribution is to formulate a specialized vari-

ant that endogenizes data production and allows the mar-

ketplace to impose a fairness constraint. Our model cap-

tures two important factors that can lead to unbalanced

1
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training-data production absent an intervention. First, data

production is endogenous: sellers decide how many training
samples to produce for each group in order to maximize their

profit. Second, groups can systematically differ on three

dimensions that influence sellers’ profits: 1) the potential

economic value that can be extracted; 2) the difficulty of

the prediction tasks; and 3) the training-sample production

costs.

• We describe the Nash equilibria of the model in a tractable

and restricted quasi-symmetric setting. Our results reveal
the equilibrium outcomes in a baseline scenario, when no

fairness intervention is undertaken, and in an interven-

tion scenario, when the marketplace undertakes a fairness

intervention.

• We highlight the effects of applying fairness interventions

in small and emerging markets. We characterize how im-

posing a fairness intervention from the get-go interacts

with market formation. When the potential economic value

is small for all groups, the intervention can backfire. The
cost of fairness can be unbearable and the market may not

form at all. Thus, every agent loses the full utility it would

have received without an intervention. Worse still, this

can harm the very groups the intervention is intended to

benefit—leading to decreased accuracy and data produced

for them.

• Beyond emerging markets, we consider large and estab-

lished markets, where we find that the the cost of fairness

can be completely offset. When the potential economic

value of at least one group is sufficiently large and growing,

the intervention can affect agents in only two positive ways.

Some agents can be strictly better off; the intervention can

have a positive externality that benefits some market partic-

ipants in addition to creatingmore data and higher accuracy

for the intended groups. But perhaps more surprisingly, for

all the other market participants—the sellers, the buyers,

and the marketplace—the cost of fairness amortizes, i.e., the
cost of fairness, as a fraction of their utilities without inter-

vention decreases, even vanishes, and becomes arbitrarily

small.

Paper Organization. The remainder of this paper is organized

as follows. We discuss related work in Section (2). We present our

model in Section (3). We analyze the model equilibria in Section (4).

In Section (5), we study the conditions under which a fairness inter-

vention can backfire in the market. We study the conditions under

which the cost of fairness amortizes in Section (6). We conclude

with some limitations and discussion in Section (7)

2 RELATED LITERATURE
We study the cost of fairness in an online data market. The cost of

fairness has been studied in a large literature. We mention three

important threads: 1) characterizing the behavior of the cost of

fairness for a given fairness criterion [16, 35]; 2) working with the

cost of fairness by formulating relaxations or novel variants of

fairness criteria [13, 26]; and 3) studying the impact of interacting

fairness criteria on the cost of fairness [19, 31]. Our contribution is

to show that the relative severity of the cost of fairness can vary, in

particular, that it can be amortized by economic growth. Our hope

is that this may spin off a new thread in this literature.

We formulate our model to capture, as special cases, a wide range

of real-world online data markets. The literature on real-world

online data markets has focused on issues such as the structure of

datamarkets [46, 48, 49], pricingmechanisms [6, 47], and challenges

to market transactions [12, 30]. To the best of our knowledge, the

recent trend of emerging ethical data markets has not yet received

research attention. Ours is the first theoretical work to try and

understand this trend and its potential.

Although our focus is on fairness, there is a significant theo-

retical literature on privacy and data markets. This literature has

studied how to reconcile privacy and efficiency through pricing

mechanisms and architectural blueprints [24, 32, 33]. Our work

shows initial promise for reconciling fairness and efficiency. This

suggests that it may be possible to reconcile the efficiency of data

markets with ethical issues more broadly.

3 ONLINE DATA MARKET MODEL
We design our model to capture a wide range of real-world and

theoretical online data markets. We take the theoretical model of

Agarwal et al. [2] as a starting point. Their model is a practical blue-

print for an end-to-end automated, computationally efficient, and

real-time online data market for buying machine-learning predic-

tions and selling training data. We formulate a specialized variant

that endogenizes training-data production and enables the market-

place to impose a fairness constraint.

Formally, our data market is comprised of three kinds of agents:

1) 𝑀 sellers that produce and sell data to the marketplace; 2) 𝑁

buyers who buy predictions from the marketplace; and 3) a cen-

tralized marketplace that coordinates the market by aggregating

and allocating data, producing predictions by carrying out machine

learning, and setting prices. We next define each kind of agent and

their role in the data market.

3.1 Datasets and sellers
Our model endogenizes data production: sellers respond to market

conditions by deciding whether and what data to produce.

Datasets are a widespread form of data supply in real-world

and theoretical online data markets [9, 21]. Datasets are typically

organized into discrete elements called samples. To model fairness,

we also suppose that each sample is exclusively associated to some

group. A dataset could could be comprised of images of people,

each sample could be a single image of a person, and the group

could be the gender, age, or race of that person.

Definition 3.1. (Dataset) A dataset is made up of samples; each
sample is exclusively associated to one group 𝑔, from a possible set of
groups𝐺 . The dataset is described by a vector 𝑥 ∈ R |𝐺 | where 𝑥𝑔 ≥ 0

gives the number of samples associated to group 𝑔 in the dataset 𝑥 .
We denote the total number of samples in 𝑥 , by ∥𝑥 ∥ ≜ ∑

𝑔∈𝐺 𝑥𝑔 .

Sellers produce datasets. Each seller decides how many samples

to produce of each group. Bearing on their decision are production

costs. We use a simple model of production costs where each sample

costs a fixed amount. This is similar to sample-based pricing in real-

world data markets [43]. A common model in the fair machine

learning literature extends this to group-specific costs [9, 21].

2
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For example, a seller may produce text data including text from

different languages where the languages may be considered differ-

ent groups. Each word in a widely-used language may cost $0.001

to produce, whereas each word in a rarely-used language may cost

$0.003 to produce.

Definition 3.2. (Sellers) There are𝑀 sellers. Each seller 𝑗 produces
a dataset 𝑥 ( 𝑗 ) to sell. We assume that, for each group 𝑔, seller 𝑗 ’s
production process ensures that the 𝑥 ( 𝑗 )𝑔 samples in the dataset are
independent and identically distributed, and that samples are drawn
independently between groups.

Each seller 𝑗 faces a production-cost structure, 𝜅 ( 𝑗 ) ∈ R |𝐺 | ; 𝜅 ( 𝑗 )
𝑔 >

0 is the constant marginal cost incurred by seller 𝑗 to produce a sample
of group 𝑔. The cost to seller 𝑗 of producing dataset 𝑥 ( 𝑗 ) is

∑
𝜅
( 𝑗 )
𝑔 𝑥

( 𝑗 )
𝑔 ,

or in vector notation, 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) .

3.2 Data demand and the buyers
Demand for training data is driven by valuable machine-learning

applications. We decompose the value of a machine-learning appli-

cation into a machine-learning component, prediction task, and an

economic component, value of accuracy.
A prediction task distills an application problem into a form that

is workable by machine learning. For example, transcribe the words

spoken in a speech clip, score the risk of a borrower defaulting on

a loan, or conjecture a person’s gender from an image of their face.

We model a prediction task in terms of its learning curve, G(·)
which captures the relationship between the training data, 𝑥 , and

accuracy, G(𝑥). Learning curves are usually modeled as a function

of the number of samples in the training data [27, 28, 52]. But in

our model, a dataset 𝑥 is a vector that also captures the dataset

demographics. Prior work shows that dataset demographics affect

accuracy [3, 25], so presumably it affects the learning curve.

In general, it remains unclear exactly how to model learning

curves as a function of both the number of training samples and

their demographics, and assumptions must be made. One can ex-

pect that more training samples always help, and that a sample

typically contributes more to accuracy for prediction on similar

demographic groups. While we believe that this is an important

issue to consider in future work, we make the following simplifying

assumptions that still allows us to focus here on the economics of

fairness intervention: (1)We analyze the scenario in which the value

is extracted by buyers separately among groups, so the prediction

tasks may be written as group-specific. This captures situations in

which group-specific models are used or group-aware models are

allowed and preferred. For example, the state of Wisconsin ruled

that considering gender is permissible in recidivism prediction be-

cause it increases accuracy [45]. (2) Only the training samples of

the associated group contribute to learning on its prediction task.

Assumption 3.1. (Zero inter-group transfer) Let 𝑥 be a dataset, and
G be a prediction task associated to some group 𝑔, then

G(𝑥) = G(𝑥𝑔) . (1)

Note that we are abusing notation here, 𝑥 is a vector whereas 𝑥𝑔 is a
scalar, but we hope that this clarifies that when the whole dataset is
passed, only the training samples of the group 𝑔 are informative.

To be clear, prediction tasks for different group can differ or

follow the same exact learning curve. Here we only assume that

they are not interacting through transfer learning. Assumption (3.1)

may be seen as a simplified extreme version of the assumption,

common in the fair machine learning literature, that machine learn-

ing usually does not fully transfer across populations [16, 20]. Note

that, intuitively, some transfer learning ought to reduce learning

disparities among group. One can therefore informally interpret

that this model overestimates the cost of fairness. This provides

some indication that our results on amortizing the cost of fairness

(see Section (6)) are robust.

By Assumption (3.1), a learning curve depends only on the num-

ber of samples of an associated group. We use a common learning-

curve model [21, 27, 28, 52] that captures three of their fundamental

properties: 1) accuracy increase as the amount of training data in-

creases; 2) the gain in accuracy is diminishing; and 3) there is a

limit to the maximum possible accuracy.

Definition 3.3. Learning curve A learning curve, G, is defined by
three parameters: 𝑍 , 𝛼 , and 𝛽 . Given 𝑛 training samples, the accuracy,
G(𝑛), is defined to be

G(𝑛) ≜
(
𝑍 − 𝛼𝑛−𝛽

)
+
, (2)

where (·)+ denotes the positive part.

We model the economic component of data demand by a mar-
ginal value-of-accuracy, 𝜇, that we assume is constant. Thus, the

value of 𝑥𝑔 training samples for a prediction task associated to group

𝑔 and with a learning curve G is 𝜇G(𝑥𝑔). This is the amount that a

buyer with prediction task
1G is willing to pay for predictions de-

rived from 𝑥𝑔 samples. For example, an ecommerce company may

estimate that every 1% of accuracy in transcribing spoken words

yields revenues of $10,000. If 𝑥𝑔 training samples results in overall

accuracy of 73%, the company would expect revenues of $730,000

and be willing to pay up to that amount for those predictions.

Definition 3.4. (Buyers) There are 𝑁 buyers. Each buyer 𝑖 faces |𝐺 |
prediction tasks, one for each group 𝑔. Each prediction task has its
own learning curve with parameters 𝑍𝑖,𝑔 , 𝛼𝑖,𝑔 , and 𝛽𝑖,𝑔 . Buyer 𝑖 has a
private value-of-accuracy 𝜇𝑖,𝑔 for each group-specific prediction task;
we collectively denote these 𝜇𝑖 .

3.3 Market mechanics and the marketplace
The marketplace coordinates the market. The sellers give the mar-

ketplace access to their datasets and the buyers disclose to the

marketplace their values-of-accuracy and prediction tasks. The

role of the marketplace is to perform three functions: 1) produce

predictions; 2) set prices; and 3) divide payment between the sellers.

Market Mechanics. Market transactions begin with an interac-

tion between the sellers and the marketplace. Each seller 𝑗 gives

the marketplace access to its dataset, 𝑥 ( 𝑗 ) . The marketplace can

combine the sellers’ datasets for machine learning and revenue

division. For a subset of sellers𝑇 ⊆ [𝑀], the dataset 𝑥 (𝑇 )
is defined

1
Since a prediction task defines a learning curve, we refer to G as either depending

on which makes more sense in the context.

3
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𝑥
(𝑇 )
𝑔 =

∑︁
𝑗∈𝑇

𝑥
( 𝑗 )
𝑔 . (3)

In particular, 𝑥 ( [𝑀 ] )
is the aggregate dataset of all the sellers’

datasets. With access to the sellers’ data, the marketplace has one

of the key production factors for predictions.

Next, the marketplace chooses a reserve-price vector, 𝑝 ∈ R |𝐺 |
,

𝑝𝑔 > 0, and then publicly announces 𝑝 so that buyers know 𝑝 at

the beginning of the next step.

Once 𝑝 is announced, each buyer 𝑖 submits its prediction tasks

and a bid vector 𝑏𝑖 ∈ R |𝐺 |
to the marketplace. The bid vector 𝑏𝑖 is

buyer 𝑖’s report to the marketplace of its values-of-accuracy 𝜇𝑖 .

Then, the marketplace allocates training samples from the aggre-

gate dataset to carry out machine learning and produce predictions

for the buyers’ prediction tasks. The marketplace uses a reserve

price allocation mechanism,AF 𝑔 , for each group 𝑔. For each group

𝑔, the marketplace allocates all the samples in the aggregate dataset

to the machine learning for buyer 𝑖’s prediction task for group 𝑔 if

the buyer bids at least the reserve price 𝑝𝑔 , and otherwise nothing.

Formally,

AF 𝑔 (𝑏𝑖,𝑔, 𝑥 ( [𝑀 ] ) ) ≜
{
𝑥
( [𝑀 ] )
𝑔 if 𝑏𝑖,𝑔 ≥ 𝑝𝑔

0 if 𝑏𝑖,𝑔 < 𝑝𝑔
(4)

Note that we define AF 𝑔 (𝑏𝑖,𝑔, 𝑥 ( [𝑀 ] ) ) to be 𝑥
( [𝑀 ] )
𝑔 rather than

𝑥 ( [𝑀 ] )
when 𝑏𝑖,𝑔 ≥ 𝑝𝑔 for ease of presentation due to the zero

inter-group transfer assumption. For notational clarity, we define,

for any coalition 𝑇 ⊆ [𝑀],

𝑥 (𝑇 ) ≜ AF 𝑔 (𝑏𝑖,𝑔, 𝑥 (𝑇 ) ). (5)

Having allocated training samples for machine learning to buyer

𝑖’s prediction task for group 𝑔, the marketplace then carries out the

machine learning to produce predictions and sets a price for the

predictions of

RF 𝑖,𝑔 (𝑏𝑖,𝑔) ≜ 𝑝𝑔G(𝑥 ( [𝑀 ] ) ) . (6)

Note that this is the revenue function required by Myerson’s mech-

anism for the allocation function AF 𝑔 .

Finally, the marketplace divides the collected revenues between

the sellers using the Shapley value. For notational clarity, we define

𝑐𝑇 ≜ |𝑇 |!(𝑀 − |𝑇 | − 1)!/𝑀! for any coalition 𝑇 ⊆ [𝑀]. For each
buyer 𝑖 and group 𝑔, seller 𝑗 receives the payment division

PD𝑖,𝑔, 𝑗 (𝑥 ( 𝑗 ) ) = 𝑝𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇 ·
(
G𝑖,𝑔 (𝑥 (𝑇∪{ 𝑗 }) ) − G𝑖,𝑔 (𝑥 (𝑇 ) ))

)
.

(7)

3.4 Market outcomes: utilities and equilibria
We model the data market as a simultaneous game and study its

Nash equilibria.

2
We are abusing notation here; this means that seller 𝑗 ’s dataset could also be written

as 𝑥 ({ 𝑗 })
, but for the sake of notational clarity we will only use 𝑥 ( 𝑗 )

.

Utilities. Agents in the data market are strategic and act to max-

imize their utilities. The marketplace chooses the reserve-price

vector 𝑝 so as to maximize its total revenues,

𝑤 (𝑝) ≜
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

RF 𝑖,𝑔 (𝑏𝑖,𝑔). (8)

Each seller 𝑗 produces a dataset 𝑥 ( 𝑗 ) to maximize its profits,

𝑣 𝑗 (𝑥 ( 𝑗 ) ) ≜ ©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

PD𝑖,𝑔,𝑗 (𝑥 ( 𝑗 ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) . (9)

Each buyer 𝑖 submits bids 𝑏𝑖 to maximize its surplus,

𝑢𝑖 (𝑏𝑖 ) ≜
∑︁
𝑔∈𝐺

𝜇𝑖,𝑔G𝑖,𝑔 (𝑥 ( [𝑀 ] ) ) − RF 𝑖,𝑔 (𝑏𝑖,𝑔) (10)

Nash Equilibrium. A strategy profile (𝑝, {𝑏𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash
equilibrium if no agent can improve its utility by a unilateral devia-

tion in its strategy.

3.5 Fairness in the data market
The fairness model performs three critical functions. First, it pro-

vides a criterion that captures the notion of fairness that we study

and allows one to test whether fairness has been achieved. Second,

it stipulates a particular intervention that the marketplace can un-

dertake to achieve fairness in the intervention scenario. And, third,

it allows the cost of the fairness intervention to be assessed. We

develop each in turn below.

Fairness Criterion. There are many fairness criteria. Which is

appropriate depends on the context of an application. Here, we

explore just one fairness criterion that is based on the fraction

of samples associated to each group in a dataset, i.e., the dataset

demographics.

Definition 3.5. (Dataset demographics) The demographics of a

dataset 𝑥 is the vector 𝛾 (𝑥) ∈ R |𝐺 | whose 𝑔-th coordinate, 𝛾𝑔 (𝑥) is
given by,

𝛾𝑔 (𝑥) ≜
𝑥𝑔

∥𝑥 ∥ . (11)

Dataset demographics are important for fairness. Sufficiently

balanced demographics are important for conducting equity assess-

ments [7, 8]. Unbalanced demographics can unfairly favor machine-

learning performance on one group over another [7]. Obtaining

more training-data samples for a particular group is an interven-

tion to equalize excess errors [14]. Equalizing excess errors is often

applied in contexts where penalizing accuracy on any group is

considered unethical, even to achieve fairness, such as in health-

care [14, 40]. Implicit here is a notion that some demographics are

balanced, and therefore may be considered fair, while others are

unbalanced, and may be considered unfair. We formalize this as

follows.

Definition 3.6. (Demographic balance) Let 𝛾 ∈ [0, 1] |𝐺 | be a tar-
get vector satisfying

∑
𝑔∈𝐺 𝛾𝑔 = 1. We say that a dataset 𝑥 is 𝛾-

demographically balanced if for every 𝑔 it holds that

𝛾𝑔 =
𝑥𝑔

∥𝑥 ∥ . (12)
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Note that we are overloading notation here, we use standalone 𝛾 to
refer to a target vector and function invocation 𝛾 (𝑥) to refer to the
demographics of the dataset 𝑥 .

Fairness Intervention. The marketplace implements the following

intervention. The marketplace chooses a target vector 𝛾 . When the

sellers submit their datasets, the marketplace accepts a seller 𝑗 ’s

dataset 𝑥 ( 𝑗 ) if and only if 𝑥 ( 𝑗 ) is 𝛾-demographically balanced.

If a seller produces any data at equilibrium, its dataset will be

demographicaly balanced. Therefore, the aggregate dataset will

be demographically balanced. Each seller 𝑗 ’s decision is reduced

to the total number of samples it will produce, i.e., ∥𝑥 ( 𝑗 ) ∥. For
notational convenience, we define 𝑛 ( 𝑗 ) ≜ ∥𝑥 ( 𝑗 ) ∥ for a single seller
𝑗 and 𝑛 (𝑇 ) ≜

∑
𝑘∈𝑇 𝑛 (𝑘 ) for a coalition of sellers 𝑇 . In particular,

𝑛 ( [𝑀 ] ) = ∥𝑥 ( [𝑀 ] ) ∥ is the total number of samples produced by all

the sellers in the aggregate dataset.

4 DATA MARKET EQUILIBRIA
In this section we study the data market equilibria when the num-

ber of buyers is fixed in two scenarios. In the baseline scenario
the marketplace does not implement its fairness intervention. In

the intervention scenario the marketplace implements its fairness

intervention. We compare the outcomes in the two scenarios to

investigate the impacts of the fairness intervention in Sections (5)

and (6).

We first show, that solving the equilibria in closed form is elusive

in the general case, even under our simplifying assumptions. We

therefore focus on the interesting case of quasi-symmetric setting.

Proposition 4.1. There does not exist a general closed-form solution
over all the possible equilibrium equations in the general setting of
the model.

The proof is in Appendix (A.1). The impossibility arises when

prediction tasks can differ in their learnability within a group, as

captured by the decay parameters 𝛽𝑖,𝑔 .

Definition 4.1. (Quasi-symmetric setting) The buyers share a com-
mon prediction task within groups and between groups, denoted G(·),
and described by parameters 𝑍 , 𝛼 , and 𝛽 , i.e. for all 𝑖 ∈ [𝑁 ], 𝑔 ∈
𝐺,𝑛 ∈ R, G𝑖,𝑔 (𝑛) = G(𝑛).

The sellers share a common cost structure denoted 𝜅 , i.e., for every
pair of sellers 𝑗, 𝑗 ′ ∈ [𝑀], 𝜅 ( 𝑗 ) = 𝜅 = 𝜅 ( 𝑗 ′ ) .

Importantly, although this requires symmetry on the buyers’

prediction tasks that capture the learning aspect, we still allow

for the values-of-accuracy to vary arbitrarily among buyers and

groups to describe a range of economic scenarios (see below). We

now describe the buyers’ and marketplace’s equilibrium strategies

before analyzing the sellers’ equilibrium stratgies in each scenario.

Buyer’s Dominant Strategy. Since the marketplace’s allocation

function and revenue function are an application of Myerson’s

payment function [2, 38], it follows that truthfulness is a dominant

strategy for the buyers.

Fact 4.1. (Buyer Truthfulness) For every buyer 𝑖 , truthfully bidding
its values-of-accuracy, i.e., 𝑏𝑖 = 𝜇𝑖 is a dominant strategy.

Henceforth, we restrict our attention to strategy profiles in which

all the buyers bid truthfully, i.e., of the form 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }).

Marketplace Best Response. The marketplace has a best response

that depends only on the buyers’ strategies.

Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a strategy profile. Straightforward

substitution and algebraic manipulation show that the market-

place’s utility is given by,

𝑤 (𝑝) =
∑︁
𝑔∈𝐺

(
𝑝𝑔

𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
)
G(𝑥 ( [𝑀 ] )

𝑔 ) . (13)

Equation (13) shows that the marketplace extracts revenues from

each group independently of the others. The revenues extracted

from each group 𝑔 is the product of two factors: one factor is the

accuracy G(𝑥 ( [𝑀 ] ) ); and the other factor will turn out to be critical

in our analyses.

Definition 4.2. (Potential economic value) Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) })
be a strategy profile and 𝑔 be any group in𝐺 . The potential economic

value of group 𝑔 in the strategy profile 𝜎 , denoted 𝜌𝑔 , is defined to be

𝜌𝑔 ≜ 𝑝𝑔

(
𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
)
. (14)

The potential economic value, 𝜌𝑔 is the product of the reserve

price and the number of buyers who bid at least the reserve price.

Fact 4.2. (Marketplace Best Response) Let the buyers bid their values-
of-accuracy, i.e., 𝑏𝑖 = 𝜇𝑖 for all 𝑖 ∈ [𝑁 ]. Let the sellers’ datasets
{𝑥 ( 𝑗 ) }, 𝑗 ∈ [𝑀], be arbitrary. Then, the marketplace’s best response
is to maximize 𝜌𝑔 for every group 𝑔 ∈ 𝐺 , i.e., to set reserve prices 𝑝𝑔
to,

𝑝𝑔 ∈ argmax

𝑝
𝜌𝑔 . (15)

4.1 Baseline Scenario Equilibrium
We now analyze the sellers’ equilibrium strategies in the baseline

scenario, when the marketplace does not constrain their production

decisions. We determine the amount of data that the sellers produce,

when they produce data.

Lemma 4.1. (Baseline Data Production) If 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a
Nash equilibrium at which samples are produced for some group 𝑔,
i.e., 𝑥 ( [𝑀 ] )

𝑔 > 0, then every seller 𝑗 produces 𝑥 ( 𝑗 )𝑔 samples given by,

𝑥
( 𝑗 )
𝑔 =

1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

, (16)

and the total number of samples produced over all the sellers is,

𝑥
( [𝑀 ] )
𝑔 =

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

. (17)

The proof is in Appendix (A.3). Lemma (4.1) indicates that when

the sellers produce data, they produce more data for groups with

greater potential economic value, 𝜌𝑔 , and lower production costs,

𝜅𝑔 . Lemma (4.1) applies when the sellers produce data. But using it,

we can characterize the conditions under which the sellers produce

data.

Claim 4.1. (Sellers’ Baseline Participation Threshold)
Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium, and 𝑔 be any group
in 𝐺 . The sellers produce a positive number of samples for group 𝑔,
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i.e., 𝑥 ( [𝑀 ] )
𝑔 > 0, if and only if 𝜅𝑔 ≤ 𝜏𝑔 , where 𝜏𝑔 is a threshold value

given by

𝜏𝑔 ≜ 𝜌𝑔𝑐G, (18)

where

𝑐G ≜
𝑍

𝛽+1
𝛽

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

. (19)

The proof is in Appendix (A.5). Claim (4.1) indicates that the

seller’s participation at Nash equilibrium depends critically on the

relation between 𝜅𝑔 and 𝜏𝑔 . Putting it all together, we can describe

the baseline scenario equilibrium as follows.

Theorem 4.1. If (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash equilibrium, then for
each group 𝑔, the marketplace sets price 𝑝𝑔 to maximize 𝜌𝑔 and the
sellers produce samples depending on the following inequality,

𝜅𝑔 ≤ 𝜏𝑔 . (20)

If Inequality (20) holds, every seller 𝑗 produces

𝑥
( 𝑗 )
𝑔 =

1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

(21)

samples of group 𝑔, and otherwise 𝑥 ( 𝑗 )𝑔 = 0.

Theorem 4.1 indicates that samples are produced for the groups

independently of each other. Some groups may have zero samples

produced. Other groups may have differing numbers of samples

produced. All of this depends on each group’s economic potential.

Distinguishing these possibilities will be important in the next

section. Theorem (4.1) also enables us to describe the aggregate-

dataset demographics that hold at equilibrium.

Corollary 4.1. Let (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium, and
𝐻 = {𝑔 ∈ 𝐺 : 𝜅𝑔 ≤ 𝜏𝑔}. Then for every group 𝑔, if 𝑔 ∈ 𝐻 , then,

𝑥
( [𝑀 ] )
𝑔

∥𝑥 ( [𝑀 ] ) ∥
=

(
𝜌𝑔
𝜅𝑔

)
1/(𝛽+1)

∑
ℎ∈𝐻

(
𝜌ℎ
𝜅ℎ

)
1/(𝛽+1) , (22)

and
𝑥
( [𝑀 ])
𝑔

∥𝑥 ( [𝑀 ]) ∥ = 0 otherwise.

Corollary (4.1) reveals the dynamics of data production at base-

line equilibrium. Economic disparities drive disparities in the dataset

demographics. But the effect is dampened by the diminishing gains

in accuracy as the amount of training data grows. These findings

illuminate the dynamics of the data market in the baseline scenario

that can lead to unfair data production at equilibrium.

4.2 Intervention Scenario Equilibrium
We now analyze the sellers’ equilibrium strategies in the interven-

tion scenario, when the marketplace constrains the sellers’ pro-

duction decisions. Our goal is to understand how this impacts the

levels of data production and the sellers’ decisions to participate in

the data market. We determine the amount of data that the sellers

produce, when they produce data.

Lemma 4.2. (Intervention Data Production) Fix a target vector 𝛾 .
If 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash equilibrium such that samples are
produced, i.e. 𝑛 ( [𝑀 ] ) > 0, then there exists a group ℎ ∈ 𝐺 such that
every seller 𝑗 produces

𝑛 ( 𝑗 ) =
1

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1/(𝛽+1)

(23)

samples, where 𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (24)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝑀𝛾𝑔𝑛
( 𝑗 ) >

( 𝛼
𝑍

) 1

𝛽
. (25)

The proof is in Appendix (A.7). Lemma (4.2) shows how coupling

data production across the groups via 𝛾 affects data production. The

sellers produce more data as the groups’ potential economic val-

ues increase, but this is mediated by their required representation,

𝜌𝑔𝛾
−𝛽
𝑔 . And the sellers produce more data as the marginal produc-

tion cost 𝜅𝑇𝛾 decreases. We can use Lemma (4.2) to give a necessary

condition for the sellers to produce data.

Claim 4.2. (Sellers’ Intervention Participation Thresholds) Fix a
target vector 𝛾 . Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium. If the
sellers produce a positive number of samples, i.e., 𝑛 ( [𝑀 ] ) > 0, then
there exists a group ℎ ∈ 𝐺 such that the sellers’ marginal production
cost, 𝜅𝑇𝛾 , is at most a threshold value, 𝜏𝐻 (𝜌,𝛾), given by,

𝜏𝐻 (𝜌,𝛾) =

(∑
𝑔∈𝐻 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

· 𝑐G (26)

where 𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (27)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝛾𝑔𝑛
( [𝑀 ] ) >

( 𝛼
𝑍

) 1

𝛽
. (28)

The proof is in Appendix (A.8). Claim (4.2) tells us that if the sell-

ers produce data at Nash equilibrium in the intervention scenario,

then they must be profitably monetizing some groups. Altogether,

we have the following description of the intervention scenario

equilibrium.

Theorem 4.2. Let (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium, then for
each group 𝑔, the marketplace sets reserve price 𝑝𝑔 to maximize 𝜌𝑔
and each seller 𝑗 produces data if and only if the sellers’ marginal
production cost, 𝜅𝑇𝛾 , is at most a threshold value, 𝜏𝐻 (𝜌,𝛾), given by,

𝜏𝐻 (𝜌,𝛾) =

(∑
𝑔∈𝐻 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

· 𝑐G (29)

samples, where 𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (30)

for some group ℎ such that 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝛾𝑔𝑛
( [𝑀 ] ) >

( 𝛼
𝑍

) 1

𝛽
. (31)
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5 INTERVENTION CAN PREVENT
FORMATION IN EMERGING MARKETS

The emergence of ethical profit-seeking firms in online datamarkets

raises a fundamental question:Why now? Online data markets have

existed since at least 2009 [47]. Interest in ethical issues related to

data date back to at least the 1970’s [17]. Why would these firms

emerge in this moment, and not earlier or later?

In this section we get at this question by considering emerging

markets, i.e., markets where the economic potential is small or

not yet fully realized, and data production has not yet begun or

is still low. What happens if a fairness constraint is imposed from

the get-go? Can the market overcome the cost of fairness and still

incentivize sellers to participate? Or will the cost of fairness drive

the sellers out of the market?

Formally, we study the conditions under which the sellers pro-

duce data in the baseline scenario but not in the intervention sce-

nario. To make this precise we define market formation and inter-

vention backfire.

Definition 5.1. (Market Formation) Fix a set of 𝑁 buyers and 𝑀

sellers. In either the baseline or intervention scenario, we say the

market forms if there exists a Nash equilibrium, 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) ),
such that samples are produced, i.e., ∥𝑥 ( [𝑀 ] ) ∥ > 0.

Definition 5.2. (Intervention backfire) Let 𝛾 be a target vector, and
fix a data market. We say that the intervention 𝛾 backfires in the

data market if the market forms in the baseline scenario but not in
the intervention scenario.

Theorem 5.1. For every target vector 𝛾 there exists a data market
in which 𝛾 backfires.

The proof is in Appendix (A.9), and follows from constructing

a market in which the production cost for one group is arbitrarily

high relative to its economic potential. Theorem (5.1) tells us that all

interventions are risky when the intervention requires the sellers

to begin producing data for some group. If the marketplace does

not choose the target vector 𝛾 carefully, then the sellers may opt

out of the market.

This is striking because this magnifies the cost of fairness to
the maximum extent possible and to every single agent, i.e., the cost
of fairness for every agent is its full baseline utility. And this can

harm the very groups that are the intended beneficiaries of the

intervention. Some groups may be better off with some samples in

the baseline scenario—even if they are under-represented—versus

no samples in the intervention scenario.

Yet, Theorem (5.1) is tempered by its assumption that no data

is produced for some of the groups in the baseline scenario. It is

sensible to ask whether the backfire risk behaves differently when

data is produced for all the groups in the baseline scenario.

Definition 5.3. (Fully-forming Markets) Fix a set of 𝑁 buyers and𝑀
sellers. We say the market fully-forms if there exists a Nash equilib-
rium in the baseline scenario, 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) ), such that samples
are produced for every group, i.e., for all 𝑔 ∈ 𝐺 , ∥𝑥 ( [𝑀 ] )

𝑔 ∥ > 0.

In contrast to the general case, our next result shows there exists

a target vector that never backfires in fully-forming markets.

Definition 5.4. (Uniform intervention) The uniform intervention,
denoted 𝑢, is the target vector 𝑢𝑔 ≜ 1/|𝐺 |, for every group 𝑔.

Theorem 5.2. Let 𝑁 buyers and𝑀 sellers be a fully-forming data
market. If the marketplace chooses the uniform intervention, i.e.,𝛾 = 𝑢,
then the data market forms in the intervention scenario.

The proof is in Appendix (A.10). It is suprising that there exists

a target vector that never backfires in fully-forming markets. It is

natural to ask: How much flexibility does the marketplace have in

fully-forming markets?

Theorem 5.3. Let 𝛾 be the marketplace’s target vector. If 𝛾 is not
the uniform intervention, i.e., 𝛾 ≠ 𝑢, then there exists a data-market
that is fully forming in the baseline scenario but does not form in the
intervention scenario.

The proof is in Appendix (A.11). Theorem (5.3) clarifies that the

backfire risk is still present in fully-forming markets. Theorems

(5.2) and (5.3) underscore the question: How can the backfire risk

be mitigated in fully-forming markets? We next give sufficient

conditions for a fully-forming market that ensure the market will

form in the intervention scenario.

Theorem 5.4. Let 𝑁 buyers and𝑀 sellers be a fully-forming data
market. Define 𝜂 ∈ [0, 1] to be the minimum value satisfying for all
𝑔 ∈ 𝐺 ,

𝜅𝑔 ≤ 𝜂𝜏𝑔 . (32)

Let 𝛾 be an intervention. Define 𝑎 ≥ 1,
1

𝑎
= min

𝑔∈𝐺
𝛾𝑔, (33)

and 𝑏 ≥ 1

1

𝑏
= max

𝑔∈𝐺
𝛾𝑔 . (34)

If the marketplace chooses target vector 𝛾 and

𝜂 <

(
𝑏

𝑎

)𝛽+1
1

𝑟 |𝐺 | , (35)

where 𝑟 is a constant that depends on the 𝑁 buyers, then the market
will form in the intervention scenario.

The proof is in Appendix (A.12). Altogether, our results on the

backfire risk suggest that, in emerging markets, ethical firms may

not be economically viable or may lack sufficient flexibility to act

on their ethical objectives. This suggests that ethical firms may

not have emerged earlier because the economic potential of data

markets was insufficient to support them.

6 MARKET GROWTH CAN AMORTIZE THE
COST OF FAIRNESS IN ESTABLISHED
MARKETS

Our results on the backfire risk suggest an explanation for why

ethical firms have not emerged sooner. But what has changed that

is conducive to the emergence of ethical firms now? In this section,

we study one possibility: data markets may now be sufficiently

large and established. Formally, we study market growth.

We model market growth as markets with more buyers. For a

fixed number of sellers𝑀 , a sequence of values-of-accuracy vectors
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(𝜇𝑁 )𝑁 ∈N defines a sequence of buyers and in turn a sequence of

data markets. The 𝑁 -th data market is defined by the𝑀 sellers and

the first 𝑁 buyers in the buyers sequence. We examine the Nash

equilibrium outcomes of the individual data markets as well as in

the limit as an unbounded number of buyers enter the data market.

Market growth turns out to be sufficient to mitigate the backfire

risk.

Claim 6.1. Let 𝛾 be the marketplace’s target vector. If there exists
𝑔 ∈ 𝐺 such that max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞, then there exists an 𝑁0

such that 𝑁 > 𝑁0 implies that for all 𝑗 , ∥𝑦 ( 𝑗 ) ∥ > 0.

The proof is in Appendix (A.13). Claim (6.1) indicates that the

ability of market growth to mitigate the backfire risk is flexible.

It only requires the economic potential of a single group to be

sufficiently large. The intervention can then redirect value extracted

from one group towards data production for another group.

After the backfire risk is successfully mitigated, there will still

be a cost of fairness, therefore it is natural to ask: What happens to

the cost of fairness as the potential economic value of the market

continues to grow?

The cost of fairness quantifies the burden imposed by a fairness

intervention. It is typically defined as the difference between an

agent’s utility without fairness requirements and its utility with

fairness requirements. This definition is not suitable for our analysis

because: 1) we find that some agents can be strictly better off in

the intervention scenario; and 2) the cost of fairness is in absolute

terms which may be misleading in comparing markets of different

size.

Therefore we focus on the ratio of an agent’s intervention utility

to its baseline utility. This ratio is directly related to the cost of

fairness, and it captures the burden of a fairness intervention in

normalized terms.

Let (𝑝, {𝑏𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium in the baseline sce-

nario, and (𝑝 𝑓 , {𝑏 𝑓
𝑖
}, {𝑦 ( 𝑗 ) }) be a Nash equilibrium in the interven-

tion scenario. The marketplace’s utility ratio is,

𝑈𝑅𝑀𝑘𝑡 (𝑝, 𝑝 𝑓 ) ≜
𝑤 𝑓 (𝑝 𝑓 )
𝑤 (𝑝) , (36)

where𝑤 𝑓 (𝑝 𝑓 ) is the marketplace’s utility in the intervention sce-

nario. Seller 𝑗 ’s utility ratio is,

𝑈𝑅𝑆,𝑗 (𝑥 ( 𝑗 ) , 𝑦 ( 𝑗 ) ) ≜
𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) )

𝑣 𝑗 (𝑥 ( 𝑗 ) )
, (37)

where 𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) ) is seller 𝑗 ’s utility in the intervention scenario.

Buyer 𝑖’s utility ratio is,

𝑈𝑅𝐵,𝑖 (𝑏𝑖 , 𝑏
𝑓

𝑖
) ≜

𝑢
𝑓

𝑖
(𝑏 𝑓

𝑖
)

𝑢𝑖 (𝑏𝑖 )
, (38)

where 𝑢
𝑓

𝑖
(𝑏 𝑓

𝑖
) is buyer 𝑖’s utility in the intervention scenario.

Market growth also suffices to attenuate the cost of fairness in

normalized terms.

Theorem 6.1. If there exists 𝑔 ∈ 𝐺 such that max𝑝𝑔 𝜌𝑔 → ∞ as
𝑁 → ∞, then for the marketplace we have

lim

𝑁→∞
𝑤 𝑓 (𝑝)
𝑤 (𝑝) = 1, (39)

for every seller 𝑗 we have

lim

𝑁→∞

𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) )

𝑣 𝑗 (𝑥 ( 𝑗 ) )
= 1, (40)

and for every buyer 𝑖 we have

lim

𝑁→∞

𝑢
𝑓

𝑖
(𝜇𝑖 )

𝑢𝑖 (𝜇𝑖 )
≥ 1. (41)

The proof is in Appendix (A.17). Perhaps surprisingly, if the

potential economic value of at least one group grows unbounded

as buyers enter the market, then every agent in the data market
is asymptotically at least as well off in the intervention scenario

than in the baseline scenario, and sometimes some of the buyers

can be strictly better off. Stated another way: market growth can

amortize the cost of fairness, for any given group fairness either

has a vanishing cost or creates a positive externality.

Altogether, our results on market growth suggest that market

conditions may have become more hospitable to ethical firms. Surg-

ing demand for data may have driven market growth to a level that

can economically sustain them.

7 LIMITATIONS AND DISCUSSION
Our results come with some important limitations.

• The fairness intervention that we study is naive. For in-

stance, it does not allow sellers to specialize in producing

samples for specific groups while collectively remaining

balanced. Our work to reduce cost of fairness even further

while addressing it.

• Another limitation is that we study only one fairness con-

cern in this work, that stems from unavailability of represen-

tative data. We expect that economic growth can dampens

the cost of fairness for other criteria.

• Assuming no transfer of knowledge for prediction between

groups is an extreme case. It is interesting that it does not

prevent fairness to trickle down with market growth. Still

we expect intermediate regimes of transfer in practice [3,

25] and would like to leverage it for emerging or mid-size

data markets.

• We focus here on one comprehensive and often cited data-

market model [2]. Although it captures multiple aspects of

significant real-world and theoretical data markets, our re-

sults will vary when qualitatively different incentive struc-

ture are offered to sellers and buyers.

Notwithstanding these limitations, we believe that our work

points to exciting opportunities. Data markets are often praised for

their superior ability to extract value from data but criticized for the

ethical concerns they raise including fairness. So far fairness has

rarely been considered except as an obstacle [21, 34]. Our results

suggest that value extraction and fairness are not always at odds:

at least one established model of data markets aligns efficient value

extraction with a higher mandate to ensure fairness conditions

and convert economic growth into opportunities to intervene for

fairness. We believe that our results may be only the first in that

direction; other market mechanisms and other forms of fairness or

ethical objectives could also be leveraging interventions that take

into account the market’s endogenous response.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

The Cost of Balanced Training-Data Production in an Online Data Market Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Niels Henrik Abel. 1826. Démonstration de l’impossibilité de la résolution

algébrique des équations générales qui passent le quatrieme degré. Journal für
die reine und angewandte Mathematik 1 (1826), 65–96.

[2] Anish Agarwal, Munther Dahleh, and Tuhin Sarkar. 2019. A marketplace for

data: An algorithmic solution. In Proceedings of the 2019 ACM Conference on
Economics and Computation. 701–726.

[3] Vítor Albiero, Kai Zhang, and Kevin W Bowyer. 2020. How does gender balance

in training data affect face recognition accuracy?. In 2020 ieee international joint
conference on biometrics (ijcb). IEEE, 1–10.

[4] Dataset Providers Alliance. 2024. Dataset Providers Alliance. https://www.thedpa.

ai/

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine

Bias: There’s software used across the country to predict future criminals. And

it’s biased against blacks. ProPublica (2016).
[6] Santiago Andrés Azcoitia and Nikolaos Laoutaris. 2022. A survey of data mar-

ketplaces and their business models. ACM SIGMOD Record 51, 3 (2022), 18–29.

[7] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2023. Fairness and machine
learning: Limitations and opportunities. MIT press.

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-

racy disparities in commercial gender classification. In Conference on fairness,
accountability and transparency. PMLR, 77–91.

[9] WilliamCai, Ro Encarnacion, Bobbie Chern, SamCorbett-Davies, Miranda Bogen,

Stevie Bergman, and Sharad Goel. 2022. Adaptive sampling strategies to construct

equitable training datasets. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency. 1467–1478.

[10] Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. 2017. Semantics derived

automatically from language corpora contain human-like biases. Science 356,
6334 (2017), 183–186.

[11] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,

Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. Extracting

training data from diffusionmodels. In 32nd USENIX Security Symposium (USENIX
Security 23). 5253–5270.

[12] Raul Castro Fernandez. 2022. Protecting data markets from strategic buyers. In

Proceedings of the 2022 International Conference on Management of Data. 1755–
1769.

[13] Shuchi Chawla and Meena Jagadeesan. 2022. Individual fairness in advertis-

ing auctions through inverse proportionality. In 13th Innovations in Theoretical
Computer Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

[14] Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why is my classifier

discriminatory? Advances in neural information processing systems 31 (2018).
[15] Manu Chopra, Indrani Medhi Thies, Joyojeet Pal, Colin Scott, William Thies, and

Vivek Seshadri. 2019. Exploring crowdsourced work in low-resource settings. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–13.

[16] Sam Corbett-Davies and Sharad Goel. 2018. The measure and mismeasure of fair-

ness: A critical review of fair machine learning. arXiv preprint arXiv:1808.00023
(2018).

[17] Tore Dalenius. 1977. Towards a methodology for statistical disclosure control.

(1977).
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A PROOFS
A.1 Proof of Proposition (4.1)
Proposition 4.1. There does not exist a general closed-form solution
over all the possible equilibrium equations in the general setting of
the model.

Proof. Consider the seller’s marginal utility at equilibrium.

Observation A.1. Fix the bid 𝑏𝑖 of each buyer 𝑖 ∈ [𝑁 ], the mar-
ketplace’s posted price vector 𝑝 , and the dataset 𝑥 (𝑘 ) of each seller
𝑘 ∈ [𝑀] \ { 𝑗}. Let 𝑥 ( 𝑗 ) be seller 𝑗 ’s best response in the baseline sce-
nario. For each group 𝑔, if 𝑥 ( 𝑗 )𝑔 > 0, then 𝑥 ( 𝑗 )𝑔 satisfies the equation,

𝑝𝑔

∑︁
𝑖∈𝐵𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇𝛼𝑖,𝑔𝛽𝑖,𝑔 (𝑥 (𝑇 )
𝑔 + 𝑥

( 𝑗 )
𝑔 )−𝛽𝑖,𝑔−1 = 𝜅

( 𝑗 )
𝑔 , (42)

where 𝐵𝑔 ≜ {𝑖 ∈ [𝑁 ] : 𝑏𝑖,𝑔 ≥ 𝑝𝑔} is the set of buyers that bid at least
𝑝𝑔 for group 𝑔.

Equation (42) indicates that the set of possible equilibrium equa-

tions includes a large class of polynomial equations that includes

polynomial equations of arbitrarily large degree.

The celebrated Abel–Ruffini Theorem [1] tells us that there is

no general closed-form solution to polynomial equations of degree

five or higher. We cannot immediately apply the theorem, however,

because the coefficients that may appear in the equilibrium poly-

nomial equations are not unrestricted. Do polynomial equations

without closed-form solutions occur in the equilibrium equations

in the general setting of the model? Yes, as demonstrated by the

following toy example.

Example A.1. (van der Waerden’s Quintic) Consider the following
instance of the model. Let there be 2 buyers and 1 seller. For some
group𝑔, set the parameters as follows: 𝜇1,𝑔 = 1 = 𝜇2,𝑔 ,𝑍1,𝑔 = 5 = 𝑍2,𝑔 ,

𝛼1,𝑔 = 1/3, 𝛽1,𝑔 = 3, 𝛼2,𝑔 = 1/4, 𝛽2,𝑔 = 4, and 𝜅 (1)
𝑔 = 1.

We know that in the baseline, the marketplace and seller will choose
their strategies independently for each group. Since there are 2 buyers
each with the same value-of-accuracy for this group, at equilibrium,
the marketplace will set 𝑝𝑔 = 𝜇1,𝑔 = 𝜇2,𝑔 = 1. And since there is only
one seller, Equation (42) becomes∑︁

𝑖∈{1,2}
𝛼𝑖,𝑔𝛽𝑖,𝑔 (𝑥 (1)𝑔 )−𝛽𝑖,𝑔−1 = 𝜅

(1)
𝑔 . (43)

Multiplying both sides by (𝑥 (1)𝑔 )5 and rearranging yields the following
polynomial equation:

(𝑥 (1)𝑔 )5 − (𝑥 (1)𝑔 ) − 1 = 0, (44)

which is an example given in [51] as having no closed-form solution.
Still, the seller will only solve Equation (44) exactly at equilibrium if it
can achieve positive utility. The root of Equation (44) is approximately
1.1673, thus we can bound the utility the seller will receive from
group 𝑔 by the prediction gain of producing 1 sample and the cost of

producing 2 samples

𝑣1 (𝑥 (1) ) =
∑︁

𝑖∈{1,2}

∑︁
ℎ∈𝐺

𝑝ℎG(𝑥 (1)
ℎ

) − 𝜅
(1)
ℎ

𝑥
(1)
ℎ

(45)

≥
∑︁

𝑖∈{1,2}
G𝑖,𝑔 (1) − 2 (46)

=

(
5 − 1

3

)
+

(
5 − 1

4

)
− 2 > 0. (47)

We conclude that at equilibrium 𝑥
(1)
𝑔 > 0, hence the seller solves

Equation (44).

□

A.2 Proof of Fact (A.1)
Fact A.1. If 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash equilibrium, then for
every 𝑗, 𝑗 ′ ∈ [𝑀] we have that 𝑥 ( 𝑗 ) = 𝑥 ( 𝑗

′ ) .

Proof. Seller 𝑗 ’s utility is given by

𝑣 𝑗 (𝑥 ( 𝑗 ) ) ≜ ©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

PD𝑖,𝑔,𝑗 (𝑥 ( 𝑗 ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (48)

=
∑︁
𝑔∈𝐺

𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇

(
G(𝑥 (𝑇∪{ 𝑗 })𝑔 ) − G(𝑥 (𝑇 )

𝑔 )
)

(49)

−
∑︁
𝑔∈𝐺

𝜅𝑔𝑥
( 𝑗 )
𝑔 . (50)

where 1[·] is the indicator function. At equilibrium, seller 𝑗 ’s mar-

ginal utility in 𝑥
( 𝑗 )
𝑔 must be 0 for every group. Moreover, this must

also be true for any other seller 𝑘 . Hence, at equilibrium, seller 𝑗 ’s

marginal utility with respect to 𝑥
( 𝑗 )
𝑔 must equal seller 𝑘’s marginal

utility with respect to 𝑥
(𝑘 )
𝑔 for any two sellers 𝑗 and 𝑘 .

We now show that if two sellers, 𝑗 and 𝑘 produce different

amounts of data for any group 𝑔, 𝑥
( 𝑗 )
𝑔 ≠ 𝑥

(𝑘 )
𝑔 , then (𝑝, {𝜇𝑖 }, {𝑥 𝑗 })

is not a Nash equilibrium. By definition, seller 𝑗 ’s marginal utility

with respect to 𝑥
( 𝑗 )
𝑔 is

𝜕

𝜕𝑥
( 𝑗 )
𝑔

𝑣 𝑗 (𝑥 ( 𝑗 ) ) = 𝜌𝑔
©«

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇G′ (𝑥 (𝑇∪{ 𝑗 })𝑔 )ª®¬ − 𝜅𝑔 . (51)

We want to write seller 𝑗 ’s marginal utility in a form that can be

easily compared with seller 𝑘’s marginal utility. We can accomplish

this by changing the index set of the summation from [𝑀] \ { 𝑗} to
[𝑀] \ { 𝑗, 𝑘} as follows,

𝜕

𝜕𝑥
( 𝑗 )
𝑔

𝑣 𝑗 (𝑥 ( 𝑗 ) ) = 𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗,𝑘 }

𝑐𝑇G′ (𝑥 (𝑇∪{ 𝑗 })𝑔 )

+𝑐𝑇∪{𝑘 }G′ (𝑥 ( (𝑇∪{𝑘 })∪{ 𝑗 })𝑔 ) − 𝜅𝑔 .

Similarly, write seller 𝑘’s marginal utility with respect to 𝑥
(𝑘 )
𝑔 as

𝜕

𝜕𝑥
(𝑘 )
𝑔

𝑣𝑘 (𝑥 (𝑘 ) ) = 𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗,𝑘 }

𝑐𝑇G′ (𝑥 (𝑇∪{𝑘 })𝑔 )

+𝑐𝑇∪{𝑘 }G′ (𝑥 ( (𝑇∪{ 𝑗 })∪{𝑘 })𝑔 ) − 𝜅𝑔 .
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Note that G′
is strictly decreasing. Without loss of generality, as-

sume that 𝑥
( 𝑗 )
𝑔 > 𝑥

(𝑘 )
𝑔 , then for every 𝑇 ⊆ [𝑀] \ { 𝑗, 𝑘} it holds

that

G′ (𝑥 (𝑇∪{ 𝑗 })𝑔 ) < G′ (𝑥 (𝑇∪{𝑘 })𝑔 ),
and

G′ (𝑥 ( (𝑇∪{𝑘 })∪{ 𝑗 })𝑔 ) = G′ (𝑥 ( (𝑇∪{ 𝑗 })∪{𝑘 })𝑔 ) .
Consequently, the derivative of seller 𝑗 ’s utility is strictly less than

that of seller 𝑘’s. We conclude 𝜎 is not a Nash equilibrium. □

A.3 Proof of Lemma (4.1)
Lemma 4.1. (Baseline Data Production) If 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is
a Nash equilibrium at which samples are produced for some group 𝑔,
i.e., 𝑥 ( [𝑀 ] )

𝑔 > 0, then every seller 𝑗 produces 𝑥 ( 𝑗 )𝑔 samples given by,

𝑥
( 𝑗 )
𝑔 =

1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

, (16)

and the total number of samples produced over all the sellers is,

𝑥
( [𝑀 ] )
𝑔 =

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

. (17)

Proof. Seller 𝑗 ’s utility is given by

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

PD𝑖,𝑔, 𝑗 (𝑥 ( 𝑗 ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (52)

=
∑︁
𝑔∈𝐺

𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇

(
G(𝑥 (𝑇∪{ 𝑗 })𝑔 ) − G(𝑥 (𝑇 )

𝑔 )
)

−
∑︁
𝑔∈𝐺

𝜅𝑔𝑥
( 𝑗 )
𝑔 . (53)

By Fact (A.1) the sellers all make the same production decisions

at equilibrium, i.e. for every pair of sellers 𝑗, 𝑘 ∈ [𝑀] we have

𝑥 ( 𝑗 ) = 𝑥 (𝑘 ) . Consequently, every seller makes the same average

marginal contribution over all the coalitions, so the sellers split

the revenues collected from each buyer evenly. Therefore, seller 𝑗 ’s

utility is

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
1

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔G(𝑥 ( [𝑀 ] )
𝑔 ) − 𝜅𝑔𝑥

( 𝑗 )
𝑔 . (54)

Fact (A.1) also implies that 𝑥
( [𝑀 ] )
𝑔 = 𝑀𝑥

( 𝑗 )
𝑔 , thus

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
1

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔G(𝑀𝑥
( 𝑗 )
𝑔 ) − 𝜅𝑔𝑥

( 𝑗 )
𝑔 . (55)

Seller 𝑗 ’s marginal utility in 𝑥
( 𝑗 )
𝑔 is therefore,

𝜕

𝜕𝑥
( 𝑗 )
𝑔

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
1

𝑀
𝜌𝑔

©« 𝜕

𝜕𝑥
( 𝑗 )
𝑔

G(𝑀𝑥
( 𝑗 )
𝑔 )ª®¬ − 𝜅𝑔 . (56)

Now,

𝜕

𝜕𝑥
( 𝑗 )
𝑔

G(𝑀𝑥
( 𝑗 )
𝑔 ) =

{
0 if𝑀𝑥

( 𝑗 )
𝑔 < (𝛼/𝑍 )1/𝛽

𝛼𝛽𝑀−𝛽 (𝑥 ( 𝑗 )𝑔 )−𝛽−1 if (𝛼/𝑍 )1/𝛽 < 𝑀𝑥
( 𝑗 )
𝑔

(57)

If𝑀𝑥
( 𝑗 )
𝑔 < (𝛼/𝑍 )1/𝛽 , then seller 𝑗 ’s marginal utility is negative. By

assumption, 𝜎 is a Nash equilibrium at which the sellers produce

data. At equilibrium, seller 𝑗 ’s marginal utility in each 𝑥
( 𝑗 )
𝑔 must

be 0. So we must have𝑀𝑥
( 𝑗 )
𝑔 > (𝛼/𝑍 )1/𝛽 , and seller 𝑗 ’s marginal

utility is

𝜕

𝜕𝑥
( 𝑗 )
𝑔

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
1

𝑀
𝜌𝑔𝛼𝛽𝑀

−𝛽 (𝑥 ( 𝑗 )𝑔 )−𝛽−1 − 𝜅𝑔 . (58)

Setting this equal to 0 and solving for 𝑥
( 𝑗 )
𝑔 completes the proof. □

A.4 Proof of Fact (A.2)
Fact A.2. If 𝛽 > 0, then

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

> 1. (59)

Proof. Towards contradition, suppose that

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

≤ 1. (60)

And write,

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

≤ 1 (61)

=⇒ 𝛽
𝛽

𝛽+1

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

)
≤ 1 (62)

=⇒ 1 + 𝛽 ≤ 1 (63)

=⇒ 𝛽 ≤ 0. (64)

But 𝛽 > 0 by definition of the model, a contradiction. □

A.5 Proof of Claim (4.1)
Claim 4.1. (Sellers’ Baseline Participation Threshold)
Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium, and 𝑔 be any group
in 𝐺 . The sellers produce a positive number of samples for group 𝑔,
i.e., 𝑥 ( [𝑀 ] )

𝑔 > 0, if and only if 𝜅𝑔 ≤ 𝜏𝑔 , where 𝜏𝑔 is a threshold value
given by

𝜏𝑔 ≜ 𝜌𝑔𝑐G, (18)

where

𝑐G ≜
𝑍

𝛽+1
𝛽

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

. (19)

Proof. We first prove the forward direction, i.e., if 𝑥
( [𝑀 ] )
𝑔 > 0,

then 𝜅𝑔 ≤ 𝜏𝑔 . Fix a seller 𝑗 . By assumption, 𝜎 is a Nash equilibrium,

so every seller produces the same dataset at equilibrium by Fact

(A.1). Hence seller 𝑗 ’s utility is

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
1

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔G(𝑀𝑥
( 𝑗 )
𝑔 ) − 𝜅𝑔𝑥

( 𝑗 )
𝑔 . (65)

Also by assumption, 𝑥
( [𝑀 ] )
𝑔 > 0. Since value is extracted inde-

pendently by group in the baseline scenario, it must hold that

1

𝑀
𝜌𝑔G(𝑀𝑥

( 𝑗 )
𝑔 ) − 𝜅𝑔𝑥

( 𝑗 )
𝑔 ≥ 0, (66)

because otherwise seller 𝑗 could improve its utility by producing

no data for group 𝑔 and 𝜎 would not be a Nash equilibrium.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

By Lemma (4.1),

𝑥
( 𝑗 )
𝑔 =

1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
. (67)

Therefore, we can write Inequality (66) as

𝜌𝑔G
((

𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
)
− 𝜅𝑔

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
≥ 0. (68)

Recall that G is defined piecewise, we must ascertain which piece

applies, i.e., whether or not,(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
≥

( 𝛼
𝑍

) 1

𝛽
. (69)

Observe that if Inequality (69) does not hold, then seller 𝑗 can

improve its utility by producing no data for group 𝑔 and 𝜎 would

not be a Nash equilibrium. Therefore, Inequality (69) holds, and we

have

G
((

𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
)
= 𝑍 − 𝛼

((
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
)−𝛽

. (70)

Substituting Equation (70) into Inequality (68) and some straight-

forward algebra yields:

𝜅𝑔 ≤
𝜌𝑔𝑍

𝛽+1
𝛽

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

= 𝜏𝑔 . (71)

This proves the forward direction since 𝑗 is arbitrary.

We now prove the reverse direction, i.e., if𝜅𝑔 ≤ 𝜏𝑔 , then 𝑥
( [𝑀 ] )
𝑔 >

0. We must show that the sellers will obtain non-negative utility by

producing a positive number of samples, i.e., Inequality (66) holds.

To do so, we must evaluate

G
((

𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
)

(72)

which depends on whether Inequality (69) holds. We first show that

it does.

By assumption, 𝜅𝑔 ≤ 𝜏𝑔 and therefore(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
≥

(
𝜌𝑔

𝜏𝑔
𝛼𝛽

) 1

𝛽+1
(73)

=

( 𝛼
𝑍

) 1

𝛽 ©«𝛽
(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽 ª®¬

1

𝛽+1

(74)

>

( 𝛼
𝑍

) 1

𝛽
, (75)

since

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

> 1, (76)

by Fact (A.2).

Thus, we can write Inequality (66) as

1

𝑀
𝜌𝑔

©«𝑍 − 𝛼

((
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
)−𝛽ª®¬ − 𝜅𝑔

1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1
≥ 0. (77)

Applying the assumption 𝜅𝑔 ≤ 𝜏𝑔 and some straightforward algebra

complete the proof. □

A.6 Proof of Fact (A.3)
Fact A.3. If (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash equilibrium, then for every
𝑗, 𝑘 ∈ [𝑀] we have that 𝑥 ( 𝑗 ) = 𝑥 (𝑘 ) .

Proof. In the intervention scenario, the marketplace’s inter-

vention couples data production across the groups. Therefore, the

production decision that each seller 𝑗 faces is how many samples in

total to produce, i.e., 𝑛 ( 𝑗 ) ≜ ∥𝑥 ( 𝑗 ) ∥, because the number of samples

of each group, 𝑥
( 𝑗 )
𝑔 , is then determined by the marketplace’s choice

of target vector 𝛾 , i.e. 𝑥
( 𝑗 )
𝑔 = 𝛾𝑔𝑛

( 𝑗 )
. Define 𝑛 (𝑇 ) ≜

∑
𝑘∈𝑇 𝑛 (𝑘 ) for

any 𝑇 ⊆ [𝑀] and write seller 𝑗 ’s utility by

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
∑︁
𝑔∈𝐺

𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇

(
G(𝛾𝑔𝑛 (𝑇∪{ 𝑗 }) ) − G(𝛾𝑔𝑛 (𝑇 ) )

)
− 𝜅𝑇𝛾𝑛 ( 𝑗 ) (78)

≜𝑣 𝑗 (𝑛 ( 𝑗 ) ). (79)

At equilibrium, every seller 𝑗 ’s marginal utility must be 0. There-

fore, for any two sellers 𝑗 and 𝑘 , seller 𝑗 ’s marginal utility must

equal seller 𝑘’s marginal utility; formally, we must have,

𝜕

𝜕𝑛 ( 𝑗 )
𝑣 𝑗 (𝑛 ( 𝑗 ) ) = 0 =

𝜕

𝜕𝑛 (𝑘 )
𝑣𝑘 (𝑛 (𝑘 ) ) . (80)

We now show that if two sellers, 𝑗 and 𝑘 produce a different total

number of samples, i.e., 𝑛 ( 𝑗 ) ≠ 𝑛 (𝑘 ) , then (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is not a
Nash equilibrium. Write seller 𝑗 ’s marginal utility with respect to

𝑛 ( 𝑗 ) as
𝜕

𝜕𝑛 ( 𝑗 )
𝑣 𝑗 (𝑛 ( 𝑗 ) ) =

∑︁
𝑔∈𝐺

𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗,𝑘 }

𝑐𝑇G′ (𝛾𝑔𝑛 (𝑇∪{ 𝑗 }) )

+ 𝑐𝑇∪{𝑘 }G′ (𝛾𝑔𝑛 ( (𝑇∪{𝑘 })∪{ 𝑗 }) ) − 𝜅𝑇𝛾 . (81)

Write seller 𝑘’s marginal utility with respect to 𝑛 (𝑘 ) as

𝜕

𝜕𝑛 (𝑘 )
𝑣𝑘 (𝑛 (𝑘 ) ) =

∑︁
𝑔∈𝐺

𝜌𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗,𝑘 }

𝑐𝑇G′ (𝛾𝑔𝑛 (𝑇∪{𝑘 }) )

+ 𝑐𝑇∪{𝑘 }G′ (𝛾𝑔𝑛 ( (𝑇∪{ 𝑗 })∪{𝑘 }) ) − 𝜅𝑇𝛾 . (82)

Note that G′
is strictly decreasing. Without loss of generality and

towards contradiction, assume that 𝑛 ( 𝑗 ) > 𝑛 (𝑘 ) , then for every

𝑇 ⊆ [𝑀] \ { 𝑗, 𝑘} it holds that

G′ (𝛾𝑔𝑛 (𝑇∪{ 𝑗 }) ) < G′ (𝛾𝑔𝑛 (𝑇∪{𝑘 }) ), (83)

and

G′ (𝛾𝑔𝑛 ( (𝑇∪{𝑘 })∪{ 𝑗 }) ) = G′ (𝛾𝑔𝑛 ( (𝑇∪{ 𝑗 })∪{𝑘 }) ) . (84)

Consequently, the derivative of seller 𝑗 ’s utility is strictly less than

that of seller 𝑘’s, a contradiction. We conclude that 𝑛 ( 𝑗 ) = 𝑛 (𝑘 ) , i.e.,
𝑥 ( 𝑗 ) = 𝑥 (𝑘 ) . □

A.7 Proof of Lemma (4.2)
Lemma 4.2. (Intervention Data Production) Fix a target vector 𝛾 .
If 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) is a Nash equilibrium such that samples are
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produced, i.e. 𝑛 ( [𝑀 ] ) > 0, then there exists a group ℎ ∈ 𝐺 such that
every seller 𝑗 produces

𝑛 ( 𝑗 ) =
1

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1/(𝛽+1)

(23)

samples, where 𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (24)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝑀𝛾𝑔𝑛
( 𝑗 ) >

( 𝛼
𝑍

) 1

𝛽
. (25)

Proof. Write seller 𝑗 ’s utility as follows

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

PD𝑖,𝑔,𝑗 (𝑥 ( 𝑗 ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (85)

=

𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇 · G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 (𝑇∪{ 𝑗 }) ))

− G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 (𝑇 ) )) − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (86)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔
1

𝑀
G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 ( [𝑀 ] ) ))ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 )

(87)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G𝑖,𝑔 (𝑥 ( [𝑀 ] ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 )

(88)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G(𝑥 ( [𝑀 ] ) )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) (89)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G(𝑥 ( [𝑀 ] )

𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) (90)

=
1

𝑀

©«
∑︁
𝑔∈𝐺

𝑝𝑔

(
𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
)
G(𝑥 ( [𝑀 ] )

𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 )

(91)

=
1

𝑀

©«
∑︁
𝑔∈𝐺

𝜌𝑔G(𝑥 ( [𝑀 ] )
𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) . (92)

In order: Equation (85) is by definition of the seller’s utility; Equation

(86) is by definition of the payment division function; Equation (87)

is by Fact (A.3) since the sellers all play the same strategy; Equation

(88) is by definition of the allocation function; Equation (89) is by

quasi-symmetry; Equation (90) is by the assumption of zero group

inter-transfer; Equation (91) is by rearranging terms; and Equation

(92) is by definition of market value-of-accuracy.

In the intervention scenario, the marketplace’s target vector,

𝛾 , determines the sellers’ marginal production costs as 𝜅𝑇𝛾 , and

each participating seller 𝑗 has only to decide how many samples

to produce, 𝑛 ( 𝑗 ) , incurring total production costs of 𝜅𝑇𝛾𝑛 ( 𝑗 ) . And
again, because all the seller’s produce the same number of samples

at equilibrium, seller 𝑗 ’s utility becomes

𝑣 𝑗 (𝑛 ( 𝑗 ) ) =
1

𝑀

©«
∑︁
𝑔∈𝐺

𝜌𝑔G(𝑀𝛾𝑔𝑛
( 𝑗 ) )ª®¬ − 𝜅𝑇𝛾𝑛 ( 𝑗 ) . (93)

By assumption, the sellers produce some samples, i.e., 𝑛 ( [𝑀 ] ) >
0, and so 𝑛 ( 𝑗 ) > 0. It follows that there must exist at least one group

𝑔 ∈ 𝐺 satisfying

𝑀𝛾ℎ𝑛
( 𝑗 ) >

( 𝛼
𝑍

) 1

𝛽
, (94)

because otherwise seller 𝑗 ’s utility would be negative and 𝜎 would

not be a Nash equilibrium.

Now, let ℎ be the group with the smallest 𝛾ℎ satisfying Inequality

(94). Then, for every 𝑔 ∈ 𝐺 satisfying 𝛾𝑔 ≥ 𝛾ℎ we have

𝑀𝛾𝑔𝑛
( 𝑗 ) ≥ 𝑀𝛾ℎ𝑛

( 𝑗 ) >
( 𝛼
𝑍

) 1

𝛽
. (95)

Therefore we can define

𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (96)

and seller 𝑗 ’s utility becomes

𝑣 𝑗 (𝑛 ( 𝑗 ) ) =
1

𝑀

©«
∑︁
𝑔∈𝐻

𝜌𝑔

(
𝑍 − 𝛼 (𝑀𝛾𝑔𝑛

( 𝑗 ) )−𝛽
)ª®¬ − 𝜅𝑇𝛾𝑛 ( 𝑗 ) . (97)

Therefore, seller 𝑗 ’s marginal utility in 𝑛 ( 𝑗 ) is

𝑣 ′ (𝑛 ( 𝑗 ) ) = 1

𝑀

∑︁
𝑔∈𝐻

𝜌𝑔𝛼𝛽

(
𝑀𝛾𝑔𝑛

( 𝑗 )
)−𝛽−1

𝑀𝛾𝑔 − 𝜅𝑇𝛾 . (98)

At equilibrium, the seller’s marginal utility is 0; solving for 𝑛 ( 𝑗 )

completes the proof. □

A.8 Proof of Claim (4.2)
Claim 4.2. (Sellers’ Intervention Participation Thresholds) Fix a
target vector 𝛾 . Let 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) be a Nash equilibrium. If the
sellers produce a positive number of samples, i.e., 𝑛 ( [𝑀 ] ) > 0, then
there exists a group ℎ ∈ 𝐺 such that the sellers’ marginal production
cost, 𝜅𝑇𝛾 , is at most a threshold value, 𝜏𝐻 (𝜌,𝛾), given by,

𝜏𝐻 (𝜌,𝛾) =

(∑
𝑔∈𝐻 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

· 𝑐G (26)

where 𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (27)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝛾𝑔𝑛
( [𝑀 ] ) >

( 𝛼
𝑍

) 1

𝛽
. (28)
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Proof. Fix a seller 𝑗 , and write its utility as follows

𝑣 𝑗 (𝑥 ( 𝑗 ) ) = ©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

PD𝑖,𝑔,𝑗 (𝑥 ( 𝑗 ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (99)

=

𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔

∑︁
𝑇 ⊆[𝑀 ]\{ 𝑗 }

𝑐𝑇 · G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 (𝑇∪{ 𝑗 }) ))

− G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 (𝑇 ) )) − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 ) (100)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔
1

𝑀
G𝑖,𝑔 (AF 𝑔 (𝜇𝑖,𝑔, 𝑥 ( [𝑀 ] ) ))ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 )

(101)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G𝑖,𝑔 (𝑥 ( [𝑀 ] ) )ª®¬ − 𝜅 ( 𝑗 )𝑇 𝑥 ( 𝑗 )

(102)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G(𝑥 ( [𝑀 ] ) )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) (103)

=
©«
𝑁∑︁
𝑖=1

∑︁
𝑔∈𝐺

𝑝𝑔1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
1

𝑀
G(𝑥 ( [𝑀 ] )

𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) (104)

=
1

𝑀

©«
∑︁
𝑔∈𝐺

𝑝𝑔

(
𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
)
G(𝑥 ( [𝑀 ] )

𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 )

(105)

=
1

𝑀

©«
∑︁
𝑔∈𝐺

𝜌𝑔G(𝑥 ( [𝑀 ] )
𝑔 )ª®¬ − 𝜅𝑇 𝑥 ( 𝑗 ) . (106)

In order: Equation (99) is by definition of the seller’s utility; Equation

(100) is by definition of the payment division function; Equation

(101) is by Fact (A.3) since the sellers all play the same strategy;

Equation (102) is by definition of the allocation function; Equation

(103) is by quasi-symmetry; Equation (104) is by the assumption of

zero group inter-transfer; Equation (105) is by rearranging terms;

and Equation (106) is by definition of economic potential.

In the intervention scenario, the marketplace’s target vector,

𝛾 , determines the sellers’ marginal production costs as 𝜅𝑇𝛾 , and

each participating seller 𝑗 has only to decide how many samples

to produce, 𝑛 ( 𝑗 ) , incurring total production costs of 𝜅𝑇𝛾𝑛 ( 𝑗 ) . And
again, because all the seller’s produce the same number of samples

at equilibrium, seller 𝑗 ’s utility becomes

𝑣 𝑗 (𝑛 ( 𝑗 ) ) =
1

𝑀

©«
∑︁
𝑔∈𝐺

𝜌𝑔G(𝑀𝛾𝑔𝑛
( 𝑗 ) )ª®¬ − 𝜅𝑇𝛾𝑛 ( 𝑗 ) . (107)

By Lemma (4.2), there exists a group ℎ ∈ 𝐺 such that every seller

𝑗 produces

𝑛 ( 𝑗 ) =
1

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1/(𝛽+1)

(108)

samples, where

𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (109)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝑀𝛾𝑔𝑛
( 𝑗 ) >

( 𝛼
𝑍

) 1

𝛽
. (110)

Therefore, seller 𝑗 ’s utility is

𝑣 𝑗 (𝑛 ( 𝑗 ) ) =
1

𝑀

©«
∑︁
𝑔∈𝐻

𝜌𝑔G(𝑀𝛾𝑔𝑛
( 𝑗 ) )ª®¬ − 𝜅𝑇𝛾𝑛 ( 𝑗 ) (111)

=
1

𝑀

©«
∑︁
𝑔∈𝐻

𝜌𝑔

(
𝑍 − 𝛼

(
𝑀𝛾𝑔𝑛

( 𝑗 )
)−𝛽 )ª®¬ − 𝜅𝑇𝛾𝑛 ( 𝑗 ) (112)

=
1

𝑀

©«
∑︁
𝑔∈𝐻

𝜌𝑔

©«𝑍 − 𝛼
©«𝑀𝛾𝑔

1

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑓 ∈𝐻

𝜌 𝑓 𝛾
−𝛽
𝑓

ª®¬
1

𝛽+1 ª®®¬
−𝛽ª®®®¬

ª®®®¬
− 𝜅𝑇𝛾

1

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑓 ∈𝐻

𝜌 𝑓 𝛾
−𝛽
𝑓

ª®¬
1

𝛽+1

(113)

By assumption, 𝜎 is a Nash equilibrium, hence seller 𝑗 ’s util-

ity is non-negative; solving for 𝜅𝑇𝛾 with straightforward algebra

completes the proof. □

A.9 Proof of Theorem (5.1)
Theorem 5.1. For every target vector 𝛾 there exists a data market
in which 𝛾 backfires.

Proof. Fix a target vector 𝛾 . We will construct a data market

in which 𝛾 backfires. Let the 𝑁 buyers be arbitrary. Let there be

𝑀 sellers whose common cost structure 𝜅 is arbitrary except for

two groups ℎ and ℎ′ that we will specify. We will set 𝜅ℎ so that the

ℎ-specific sub-market forms in the baseline scenario, and we will set

𝜅ℎ′ so that the market does not form in the intervention scenario.

In other words, we will show that: 1) in the baseline scenario there

exists a Nash equilibrium 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) such that 𝑥
( [𝑀 ] )
ℎ

>

0; and 2) in the intervention scenario there does not exist a Nash

equilibrium 𝜎′ = (𝑝, {𝜇𝑖 }, {𝑦 ( 𝑗 ) }) such that ∥𝑦 ( [𝑀 ] ) ∥ > 0.

We show 1) first. By Fact (4.2), the marketplace sets the reserve

prices 𝑝𝑔 to maximize 𝜌𝑔 for every group 𝑔 in both scenarios. Now

set 𝜅ℎ to any value satisfying 𝜅ℎ ≤ 𝜏ℎ . We will set 𝜅ℎ′ more pre-

cisely when we turn to the intervention scenario, but we require

it to satisfy 𝜅ℎ′ > 𝜏ℎ′ . For every seller 𝑗 , and group 𝑔 set 𝑥
( 𝑗 )
𝑔 in

accordance with Theorem (4.1). It follows that 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) })
is a Nash equilibrium in the baseline scenario such that 𝑥

( [𝑀 ] )
ℎ

> 0.

We conclude that the data market forms in the baseline scenario.

We now show 2). We must further specify 𝜅ℎ′ . We wish to ensure

that 𝜅𝑇𝛾 > 𝜏𝐻 (𝜌,𝛾) for every𝐻 ⊆ 𝐺 . Observe that once the buyers

are fixed, then the maximum value of 𝜏𝐻 (𝜌,𝛾) over all possible 𝐻
is determined and finite. Define

⌈𝜏⌉ ≜ max

𝐻⊆𝐺
𝜏𝐻 (𝜌,𝛾) . (114)

Now we just need to ensure that

𝜅𝑇𝛾 > ⌈𝜏⌉, (115)
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which readily follows by setting 𝜅ℎ′ to any value satisfying,

𝜅ℎ′ >
⌈𝜏⌉
𝛾ℎ′

. (116)

Thus, the sellers’ intervention marginal cost of production is greater

than intervention participation threshold over all possible 𝐻 and

2) follows. We conclude that the data market does not form in the

intervention scenario. □

A.10 Proof of Theorem (5.2)
Theorem 5.2. Let 𝑁 buyers and𝑀 sellers be a fully-forming data
market. If the marketplace chooses the uniform intervention, i.e.,𝛾 = 𝑢,
then the data market forms in the intervention scenario.

Proof. Fix𝑁 buyers and𝑀 sellers such that every group-specific

sub-market forms at the Nash equilibrium, (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }), in the

baseline scenario. Because the market fully forms in the baseline

scenario, the groups’ production costs must not be too large. In

particular, for each group 𝑔, its production costs, 𝜅𝑔 , must be at

most the seller’s baseline participation threshold, 𝜏𝑔 ,

𝜅𝑔 ≤ 𝜏𝑔 . (117)

We want to show that the market forms in the intervention

scenario, i.e., the sellers will produce data when the marketplace

applies its fairness intervention with target vector 𝑢. The market

forms when the seller’s intervention production cost, 𝜅𝑇𝑢, is no

more than the seller’s intervention participation threshold, 𝜏 . The

seller’s intervention production cost is a function of 𝜅 and 𝑢, hence,

it is fixed once the sellers are fixed. In contrast, the seller’s in-

tervention participation threshold, 𝜏 , depends on the equilibrium

strategies of the marketplace and the buyers in the intervention

scenario.

Let (𝑝, {𝜇𝑖 }, {𝑦 ( 𝑗 ) }) be a Nash equilibrium in the intervention

scenario. We must show that there exists some subset of groups

𝐻 such that 𝜅𝑇𝑢 ≤ 𝜏𝐻 (𝜌,𝑢) and for every 𝑔 ∈ 𝐻 , 𝑛 ( [𝑀 ] )/𝑀 >

(𝛼/𝑍 )1/𝛽 . In fact, we will show that this holds for 𝐻 = 𝐺 . First we

analyze 𝜏𝐺 (𝜌,𝑢),

𝜏𝐺 (𝜌,𝑢) =

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐺 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

𝑐G (118)

=

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐺 𝜌𝑔

(
1

|𝐺 |

)−𝛽 ) 1

𝛽

𝑐G (119)

=

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐺 𝜌𝑔 |𝐺 |𝛽
) 1

𝛽

𝑐G (120)

=

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽(

|𝐺 |𝛽 ∑
𝑔∈𝐺 𝜌𝑔

) 1

𝛽

𝑐G (121)

=

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽

|𝐺 |
(∑

𝑔∈𝐺 𝜌𝑔

) 1

𝛽

𝑐G (122)

=
1

|𝐺 |
∑︁
𝑔∈𝐺

𝜌𝑔𝑐G (123)

=
1

|𝐺 |
∑︁
𝑔∈𝐺

𝜏𝑔 . (124)

By assumption, 𝜅𝑔 ≤ 𝜏𝑔 for every group 𝑔. It follows that

𝜅𝑇𝑢 =
1

|𝐺 |
∑︁
𝑔∈𝐺

𝜅𝑔 ≤ 1

|𝐺 |
∑︁
𝑔∈𝐺

𝜏𝑔 = 𝜏𝐺 (𝜌,𝑢) . (125)

It remains to show that

𝑦
( [𝑀 ] )
𝑔 =

𝑛 ( [𝑀 ] )

𝑀
>

( 𝛼
𝑍

) 1

𝛽
. (126)

When 𝐻 = 𝐺 we have,

𝑛 ( [𝑀 ] ) = ©« 𝛼𝛽

𝜅𝑇𝑢

∑︁
𝑔∈𝐺

𝜌𝑔𝑢
−𝛽
𝑔

ª®¬
1

𝛽+1

(127)

=
©« 𝛼𝛽∑

𝑔∈𝐺 𝜅 1

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔

(
1

𝑀

)−𝛽ª®¬
1

𝛽+1

(128)

=𝑀

(
𝛼𝛽

∑
𝑔∈𝐺 𝜌𝑔∑
𝑔∈𝐺 𝜅𝑔

) 1

𝛽+1

(129)

≥ 𝑀

(
𝛼𝛽

𝑐G

)
> 𝑀

( 𝛼
𝑍

) 1

𝛽
. (130)

This completes the proof. □

A.11 Proof of Theorem (5.3)
Theorem 5.3. Let 𝛾 be the marketplace’s target vector. If 𝛾 is not
the uniform intervention, i.e., 𝛾 ≠ 𝑢, then there exists a data-market
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that is fully forming in the baseline scenario but does not form in the
intervention scenario.

Let us first discuss the proof. The key high-level idea is the

following. We will construct a specific data market in which every

𝛾 ≠ 𝑢 backfires.
3
This will be due to two key features of the data

market: 1) it is just on the verge of formation; and 2) the dataset

demographics at baseline equilibrium will be uniform. Thus, any

𝛾 that forces the sellers to deviate from their baseline equilibrium

strategies also forces the sellers out of the data market. Although

the result is intuitive, the proof is quite involved due to one principal

technical challenge.

For any 𝛾 ≠ 𝑢, it is straightforward to check that if the mar-

ketplace sets the same reserve prices in the intervention scenario

as in the baseline-scenario equilibrium, then the market will not

form in the intervention scenario. This observation proves that 𝛾

backfires when the marketplace does not change its reserve prices.

The technical difficulty stems from the fact that the marketplace

can, in principle, set different reserve prices in the intervention

scenario. And Claim (4.2) indicates that sometimes the marketplace

can increase the sellers’ intervention participation threshold, 𝜏 , by
decreasing some of its reserve prices. To prove the theorem requires

us to prove that 𝛾 backfires for any set of reserve prices the market-

place may choose, not just the same ones as at baseline equilibrium.

And this must be over all possible choices of 𝛾 .

The proof establishes the theorem by showing that over all possi-

ble 𝛾 and all possible reserve prices, the sellers’ intervention partici-

pation threshold is less than the seller’s marginal cost of production

when 𝛾 ≠ 𝑢. This is done in two major steps. In the first step, the

quantification over all possible 𝛾 and reserve prices is reduced to

a quantification over all possible reserve prices by computing the

𝛾 that maximizes the sellers’ intervention participation threshold

given a fixed set of reserve prices. And the second step proves that

the maximum sellers’ intervention participation threshold over all

reserve prices is obtained when 𝛾 = 𝑢. This proves the theorem,

because that is precisely the seller’s marginal cost of production.

Proof. We first specify the data market. There is only 1 buyer

whose value-of-accuracy is the same across all the groups, i.e., for

all 𝑔 ∈ 𝐺 , we have 𝜇1,𝑔 = 𝑐𝜇 for some positive constant 𝑐𝜇 > 0.

There are𝑀 sellers that face a cost-structure 𝜅 , with the following

two properties: 1) the marginal production cost is the same across

all the groups, i.e., for all 𝑔 ∈ 𝐺 , we have 𝜅𝑔 = 𝑐𝜅 for some positive

constant 𝑐𝜅 > 0; and 2) 𝑐𝜅 is related to the buyer’s value-of-accuracy

and prediction gain function by 𝑐𝜅 = 𝑐𝜇𝑐G .
We now analyze the baseline equilibrium. Since there is only

one buyer, the marketplace’s value-of-accuracy for group 𝑔 when

it plays reserve price 𝑝𝑔 is 𝑝𝑔 if 𝑝𝑔 ≤ 𝑐𝜇 and 0 otherwise. Therefore,

the marketplace will set each group’s reserve price to the buyer’s

value-of-accuracy and all the reserve prices will be the same, i.e., for

all 𝑔 ∈ 𝐺 , 𝑝𝑔 = 𝑐𝜇 . Consequently, the seller’s baseline participation

threshold for each group 𝑔 is 𝜏𝑔 = 𝑐𝜇𝑐G . By construction, for every

group 𝑔, 𝜅𝑔 = 𝑐𝜅 = 𝑐𝜇𝑐G , therefore 𝜅𝑔 = 𝜏𝑔 and every seller will

produce samples of group 𝑔 at equilibrium, i.e., 𝑥
( 𝑗 )
𝑔 > 0. Moreover,

every seller will produce the same number of samples for every

3
We analyze a specific data market for ease and clarity of presentation, our analysis

readily generalizes to a more restricted class.

group, i.e., for all 𝑔, ℎ ∈ 𝐺 , 𝑥
( 𝑗 )
𝑔 = 𝑥

( 𝑗 )
ℎ

. Therefore every group

will have the same number of samples in the aggregate dataset,

i.e., for all 𝑔, ℎ ∈ 𝐺 , 𝑥
( [𝑀 ] )
𝑔 = 𝑥

( [𝑀 ] )
ℎ

, and the demographics of the

aggregate dataset will coincide with the uniform intervention, i.e.,

𝛾 (𝑥 ( [𝑀 ] ) ) = 𝑢.

We turn to analyzing the intervention scenario. We show that

over all the marketplace’s possible choices of target vector, 𝛾 , and

reserve prices 𝑞, the sellers’ intervention participation threshold

reaches its maximum when 𝛾 = 𝑢 and 𝑞𝑔 = 𝑐𝜇 . We do this in

two major steps. In the first step, we solve for the target vector

𝛾 that maximizes the seller’s intervention participation threshold

given fixed reserve prices 𝑞. This allows us to maximize the sellers’

intervention participation threshold solely in terms of the reserve

prices. In the second step, we show that the reserve prices that

maximize the seller’s intervention participation threshold are 𝑞𝑔 =

𝑐𝜇 , and this implies that 𝛾 = 𝑢.

We now take the first step. Fix the marketplace’s reserve prices 𝑞

in the intervention scenario. The sellers’ intervention participation

threshold is

𝜏 =

(∑
𝑔∈𝐻 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

· 𝑐G . (131)

Note that 𝜏 depends on 𝑞 through 𝜌𝑔 , and that the 𝜌𝑔 are fixed

because 𝑞 is fixed. Therefore, choosing𝛾 to maximize 𝜏 is equivalent

to choosing 𝛾 to minimize ∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔 . (132)

Define

𝑓 (𝛾) ≜
{∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔 if ∀ℎ ∈ 𝐻,𝛾ℎ > 0

∞ otherwise

(133)

Thus, we wish to solve the following program:

min

𝛾
𝑓 (𝛾), (134)

subject to ∑︁
𝑔∈𝐺

𝛾𝑔 = 1, (135)

and for all 𝑔 ∈ 𝐺 , 0 ≤ 𝛾𝑔 ≤ 1.

Define the following functions for the constraints:

ℎ(𝛾) ≜
∑︁
𝑔∈𝐺

𝛾𝑔 − 1; (136)

and for every 𝑔 ∈ 𝐺 ,

𝑏 (ℓ,𝑔) (𝛾) ≜ −𝛾𝑔, (137)

and

𝑏 (𝑢,𝑔) (𝛾) ≜ 𝛾𝑔 − 1. (138)

Compute the partial derivatives of the objective and constraint

functions. For the objective,

𝜕

𝜕𝛾𝑔
𝑓 (𝛾) =

{
−𝛽𝜌𝑔𝛾−𝛽−1𝑔 if 𝑔 ∈ 𝐻

0 otherwise

(139)

For the equality constraint,

𝜕

𝜕𝛾𝑔
ℎ(𝛾) = 1. (140)
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For the lower bound constraints,

𝜕

𝜕𝛾ℎ
𝑏 (ℓ,𝑔) (𝛾) =

{
−1 if 𝑔 = ℎ

0 otherwise

(141)

And for the upper bound constraints,

𝜕

𝜕𝛾ℎ
𝑏 (𝑢,𝑔) (𝛾) =

{
1 if 𝑔 = ℎ

0 otherwise

(142)

By the Karush-Kuhn-Tucker (KKT) conditions, we are searching

for solutions 𝛾 that satisfy the multiplier rule,

∇𝑓 (𝛾) + ∇𝑏 (𝛾)𝜆 + ∇ℎ(𝛾)𝜇 = 0, (143)

and complementarity conditions, i.e., 𝜆 ≥ 0 and

𝑏 (𝛾)𝑇 𝜆 = 0. (144)

Plug the partial derivatives into the KKTmultiplier rule. For each

𝑔 ∈ 𝐻 this gives

−𝛽𝜌𝑔𝛾−𝛽−1𝑔 − 𝜆(ℓ,𝑔) + 𝜆(𝑢,𝑔) + 𝜇 = 0. (145)

And for each 𝑔′ ∈ 𝐺 \ 𝐻 this gives

−𝜆(ℓ,𝑔′ ) + 𝜆(𝑢,𝑔′ ) + 𝜇 = 0. (146)

Now analyze the multipliers. By the definition of 𝑓 , observe that

an optimal solution 𝛾 must satisfy 𝛾𝑔 > 0 for all 𝑔 ∈ 𝐻 . This has

a number of consequences. First, if 𝑔 ∈ 𝐻 , then the lower bound

constraint is loose, i.e., 𝑏 (ℓ,𝑔) (𝛾) < 0, and the complementarity

conditions imply that 𝜆(ℓ,𝑔) = 0. Second, if 𝑔′ ∈ 𝐺 \ 𝐻 , then the

upper bound constraint for 𝑔′ is loose, i.e., 𝛾𝑔′ < 1, and the comple-

mentarity conditions imply that 𝜆(𝑢,𝑔′ ) = 0. Finally, if 𝑔′ ∈ 𝐺 \ 𝐻 ,

then 𝛾𝑔′ = 0, which can be seen as follows. Towards contradiction,

suppose 𝛾𝑔′ > 0. Then the KKT multiplier rule for 𝑔′ is

𝜇 = 0, (147)

and the KKT multiplier rule for any 𝑔 ∈ 𝐻 is

−𝛽𝜌𝑔𝛾−𝛽−1𝑔 + 𝜇 = −𝛽𝜌𝑔𝛾−𝛽−1𝑔 + 0 = −𝛽𝜌𝑔𝛾−𝛽−1𝑔 = 0. (148)

But this is a contradiction because𝛾𝑔 > 0 implies that−𝛽𝜌𝑔𝛾−𝛽−1𝑔 <

0.

It remains to solve for 𝛾𝑔 , for each 𝑔 ∈ 𝐻 . If |𝐻 | = 1, it follows

that 𝛾𝑔 = 1. Otherwise, |𝐻 | > 1, and the KKT multiplier rule is

−𝛽𝜌𝑔𝛾−𝛽+1𝑔 + 𝜇 = 0. (149)

It follows that for every ℎ ≠ 𝑔 ∈ 𝐻 we have

−𝛽𝜌𝑔𝛾−𝛽+1𝑔 = −𝛽𝜌ℎ𝛾
−𝛽+1
ℎ

, (150)

and with some straightforward algebra we obtain

𝛾ℎ =

(
𝜌ℎ

𝜌𝑔

) 1

𝛽+1
𝛾𝑔 . (151)

Plugging this into the equality constraint we obtain∑︁
ℎ∈𝐻

𝛾ℎ =
∑︁
ℎ∈𝐻

(
𝜌ℎ

𝜌𝑔

) 1

𝛽+1
𝛾𝑔 = 1. (152)

And solving for 𝛾𝑔 yields

𝛾𝑔 =
𝜌

1

𝛽+1
𝑔∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

. (153)

Plugging the solution for 𝛾 into the sellers’ intervention partici-

pation threshold 𝜏 , with some straightforward algebra, we obtain

that the maximum 𝜏 can be over all choices of 𝛾 for a fixed set of

reserve prices is

𝜏 =
©«

∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

ª®®¬
𝛽+1
𝛽

𝑐G . (154)

This completes the first major step.

We move on to the second step. What is the maximum sellers’

intervention participaiton threshold, 𝜏 , over all the possible reserve

prices, 𝑞, the marketplace can set? We first derive a non-standard

program and then formulate an equivalent program in standard

form. First, what are the possible reserve prices the marketplace

can set? In principle, the marketplace has the flexibility to set 𝑝𝑔 to

any non-negative value for each group 𝑔 ∈ 𝐺 , i.e., 𝑝𝑔 ≥ 0. Moreover

𝑝𝑔 enters 𝜏 via 𝜌𝑔 = 𝑝𝑔1[𝑏1,𝑔 ≥ 𝑝𝑔]. At intervention equilibrium,

the buyer will bid its value-of-accuracy for each group 𝑔 ∈ 𝐺 ,

𝜇1,𝑔 = 𝑐𝜇 . Therefore, the marketplace can set 𝜌𝑔 to any value in

[0, 𝑐𝜇 ] by setting 𝑝𝑔 appopriately. Thus, choosing 𝑝𝑔 is equivalent

to choosing 𝜌𝑔 , so we now focus on the marketplace’s choices of 𝜌 .

In this problem, 𝜌 determines 𝛾 . 𝛾 is set to maximize the sellers’

intervention participation threshold. As we have just shown, this

entails that any unmonetized group has no representation, i.e., for

any 𝑔 ∈ 𝐺 \𝐻 , 𝜌𝑔 = 0. Thus the search space over 𝜌 is 0 if 𝑔𝑖𝑛𝐺 \𝐻
and [0, 𝑐𝜇 if 𝑔 ∈ 𝐻 . We have derived the following program:

max

𝜌

©«
∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

ª®®¬
𝛽+1
𝛽

, (155)

subject to

0 ≤ 𝜌𝑔 ≤ 𝑐𝜇 , (156)

for all 𝑔 ∈ 𝐻 , where

𝜌𝑔 = 0, (157)

for all 𝑔 ∈ 𝐺 \ 𝐻 .

We now formulate an equivalent program in standard form. De-

fine objective,

𝑓 (𝜌) ≜ −
∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

. (158)

Define equality constraints: For each 𝑔 ∈ 𝐺 \ 𝐻 ,

ℎ𝑔 (𝜌) = 𝜌𝑔, (159)

subject to,

ℎ𝑔 (𝜌) = 0. (160)

Define inequality constraints: For each 𝑔 ∈ 𝐻 ,

𝑏 (ℓ,𝑔) (𝜌) = −𝜌𝑔 (161)

and

𝑏 (𝑢,𝑔) (𝜌) = 𝜌𝑔 − 𝑐𝜇 . (162)
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And define the program

min

𝜌
𝑓 (𝜌), (163)

subject to

𝑏 (𝜌) ≤ 0. (164)

We now solve the program. For each 𝑔 ∈ 𝐺 \ 𝐻 , the equality

constraintℎ𝑔 (𝜌) determines 𝜌𝑔 = 0. We turn to solving 𝜌𝑔 for𝑔 ∈ 𝐻 .

Compute the partial derivatives of the objective and inequality

constraint functions. For the objective,

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) = −

(∑
ℎ∈𝐻 𝜌

1

𝛽+1
𝑔

)
− (∑ℎ∈𝐻 𝜌ℎ) 1

𝛽+1𝜌
− 𝛽

𝛽+1
𝑔(∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

)
2

(165)

For the lower bound constraints,

𝜕

𝜕𝜌ℎ
𝑏 (ℓ,𝑔) (𝜌) =

{
−1 if ℎ = 𝑔

0 otherwise

(166)

And for the upper bound constraints,

𝜕

𝜕𝜌ℎ
𝑏 (𝑢,𝑔) (𝜌) =

{
1 if ℎ = 𝑔

0 otherwise

(167)

We first find the feasible solutions that satisfy the KKT conditions.

The multiplier rule of the KKT conditions gives

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) + 𝜕

𝜕𝜌𝑔
𝑏 (ℓ,𝑔) (𝜌)𝜆(ℓ,𝑔) +

𝜕

𝜕𝜌𝑔
𝑏 (𝑢,𝑔) (𝜌)𝜆(𝑢,𝑔) = 0. (168)

Substituting the partial derivatives of the inequality constraints

yields,

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) − 𝜆(ℓ,𝑔) + 𝜆(𝑢,𝑔) = 0. (169)

Observe that 𝜌 = 0 is not a local minimum. And for every feasible

solution 𝜌 ≠ 0 we have

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) ≠ 0. (170)

It follows that if a feasible solution 𝜌 satisfies the KKT conditions,

then for all 𝑔 ∈ 𝐻 either 𝜌𝑔 = 0 or 𝜌𝑔 = 𝑐𝜇 . Let us call such a

feasible solution a corner. Moreover, every corner satisfies the KKT

conditions by setting their multipliers appropriately. It follows that

if there is a local minimum, it is one of these corners.

We now show that every corner 𝜌 is a local minimum. It suffices

to show that for every 𝑔 ∈ 𝐻 the following two implications hold:

1) if 𝜌𝑔 = 0, then
𝜕

𝜕𝜌𝑔
𝑓 (𝜌) > 0; and 2) if 𝜌𝑔 = 𝑐𝜇 , then

𝜕
𝜕𝜌𝑔

𝑓 (𝜌) < 0.

And observe that in both cases, we have

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) = −

𝑐

1

𝛽+1
𝜇 − 1

𝛽+1𝑐𝜇𝜌
− 𝛽

𝛽+1
𝑔

𝑛(𝑐
1

𝛽+1
𝜇 )2

, (171)

where 𝑛 is the number of groups ℎ such that 𝜌ℎ = 𝑐𝜇 , because 𝜌 is

a corner.

Now consider the first implication. Suppose 𝜌𝑔 = 0. Observe that

𝜌
− 𝛽

𝛽+1
𝑔 → ∞ as 𝜌𝑔 → 0. We conclude that

𝜕
𝜕𝜌𝑔

𝑓 (𝜌) > 0.

Now consider the second implication. Suppose 𝜌𝑔 = 𝑐𝜇 . Then,

𝜕

𝜕𝜌𝑔
𝑓 (𝜌) = − 𝛽

(𝛽 + 1)𝑛 < 0. (172)

Therefore every corner 𝜌 is a local minimum. Actually, every cor-

ner is a global minimum because since they all achieve the same

objective value,

𝑓 (𝜌) = −
∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

= −
𝑛𝑐𝜇

𝑛𝑐

1

𝛽+1
𝜇

= 𝑐

𝛽

𝛽+1
𝜇 , (173)

where 𝑛 is the number of groups ℎ such that 𝜌ℎ = 𝑐𝜇 .

We conclude that the maximum sellers’ intervention participa-

tion threshold is achieved when the intervention stipulates uniform

intervention over the monetized groups and the marketplace sets

the reserve prices as high as the buyers can bear. Since the mar-

ketplace wishes to ensure that there is representation for all the

groups in the data market, this implies that the only such feasi-

ble intervention is the uniform intervention, i.e., 𝛾 = 𝑢. When the

intervention is 𝑢, the sellers’ intervention participation threshold

becomes,

𝜏 (𝑢) =
©«

∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

ª®®¬
𝛽+1
𝛽

𝑐G = 𝑐𝜇𝑐𝜅 = 𝜅𝑇𝑢, (174)

and the market will still form in the intervention scenario. But for

any other feasible 𝛾 ≠ 𝑢, this implies that

𝜏 (𝑢) =
©«

∑
ℎ∈𝐻 𝜌ℎ∑

ℎ∈𝐻 𝜌

1

𝛽+1
ℎ

ª®®¬
𝛽+1
𝛽

𝑐G < 𝑐𝜇𝑐𝜅 = 𝜅𝑇𝛾, (175)

and the market will not form in the intervention scenario. This

concludes the proof. □

A.12 Proof of Theorem (5.4)
Theorem 5.4. Let 𝑁 buyers and𝑀 sellers be a fully-forming data
market. Define 𝜂 ∈ [0, 1] to be the minimum value satisfying for all
𝑔 ∈ 𝐺 ,

𝜅𝑔 ≤ 𝜂𝜏𝑔 . (32)

Let 𝛾 be an intervention. Define 𝑎 ≥ 1,
1

𝑎
= min

𝑔∈𝐺
𝛾𝑔, (33)

and 𝑏 ≥ 1

1

𝑏
= max

𝑔∈𝐺
𝛾𝑔 . (34)

If the marketplace chooses target vector 𝛾 and

𝜂 <

(
𝑏

𝑎

)𝛽+1
1

𝑟 |𝐺 | , (35)

where 𝑟 is a constant that depends on the 𝑁 buyers, then the market
will form in the intervention scenario.

Proof. We will show that there must exist a subset of groups

that can be profitably monetized in the intervention scenario, i.e.,

there exists a strategy profile and a subset of groups such that

in the intervention scenario: 1) the sellers’ intervention marginal
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production cost is at most the sellers’ intervention participation

threshold; and 2) the sellers produce more than the learning ante

for every group in the subset. This implies that the market will

form in the intervention scenario.

We first show that the sellers’ intervention marginal production

cost is atmost the sellers’ intervention participation threshold. Since

M is a fully-forming data market in the baseline scenario, there

exists a strategy profile 𝜎 = (𝑝, {𝜇𝑖 }, {𝑥 ( 𝑗 ) }) such that 𝑥
( [𝑀 ] )
𝑔 > 0

for all 𝑔 ∈ 𝐺 , and 𝜎 is a Nash equilibrium in the baseline scenario.

Consider the following strategy profile 𝜎′ = (𝑞, {𝜇𝑖 }, {𝑛 ( 𝑗 ) }) in the

intervention scenario where 𝑞 = 𝑝 and

𝑛 ( 𝑗 ) =
1

𝑀

(
𝛼𝛽

𝜅𝑇𝛾

∑︁
ℎ∈𝐻

𝜌ℎ𝛾
−𝛽
ℎ

) 1

𝛽

, (176)

for some subset of monetized groups 𝐻 ⊆ 𝐺 , 𝐻 ≠ ∅.
Observe that we can bound the sellers’ intervention production

costs, 𝜅𝑇𝛾 , from above,

𝜅𝑇𝛾 =
∑︁
𝑔∈𝐺

𝜅𝑔𝛾𝑔 ≤
∑︁
𝑔∈𝐺

𝜂𝜏𝑔𝛾𝑔 ≤
∑︁
𝑔∈𝐺

𝜂𝜏𝑔
1

𝑏
=
𝜂

𝑏

∑︁
𝑔∈𝐺

𝜌𝑔𝑐G . (177)

The sellers’ intervention participation threshold, 𝜏 , depends on the

subset of monetized groups, 𝐻 . And observe that we can bound 𝜏

from below,

𝜏 =

(∑
𝑔∈𝐻 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

𝑐G =
©«

∑
𝑔∈𝐻 𝜌𝑔∑

𝑔∈𝐻 𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽 ©«
∑︁
𝑔∈𝐻

𝜌𝑔
ª®¬ 𝑐G (178)

≥ ©«
∑
𝑔∈𝐻 𝜌𝑔∑

𝑔∈𝐻 𝜌𝑔
1

𝑎

−𝛽
ª®¬

1

𝛽 ∑︁
𝑔∈𝐻

𝜌𝑔𝑐G =
1

𝑎

∑︁
𝑔∈𝐻

𝜌𝑔𝑐G . (179)

Except for their index sets, the bounds are structurally very similar.

We now derive an inequality to bridge the difference in their index

sets. Define 𝐻 ≜ 𝐺 \ 𝐻 ,

𝜌0 ≜ min

ℎ∈𝐻
𝜌ℎ, (180)

and

𝑟 ≜ max

𝑓 ,𝑔∈𝐺

𝜌 𝑓

𝜌𝑔
, (181)

and write∑︁
𝑔∈𝐺

𝜌𝑔 =
∑︁
ℎ∈𝐻

𝜌ℎ +
∑︁
𝑔∈𝐻

𝜌𝑔 =
∑︁
ℎ∈𝐻

𝜌ℎ +
∑︁
𝑔∈𝐻

𝜌0

𝜌0
𝜌𝑔 =

∑︁
ℎ∈𝐻

𝜌ℎ +
∑︁
𝑔∈𝐻

𝜌𝑔

𝜌0
𝜌0

(182)

≤
∑︁
ℎ∈𝐻

𝜌ℎ +
∑︁
𝑔∈𝐻

𝑟𝜌0 =
∑︁
ℎ∈𝐻

𝜌ℎ + 𝑟 |𝐻 |𝜌0 (183)

≤
∑︁
ℎ∈𝐻

𝜌ℎ + 𝑟 |𝐻 |
(
1

|𝐻 |
∑︁
ℎ∈𝐻

𝜌ℎ

)
=

(
1 + 𝑟 |𝐻 |

|𝐻 |

) ∑︁
ℎ∈𝐻

𝜌ℎ .

(184)

Now 1 ≤ |𝐻 | ≤ |𝐺 |, and |𝐻 | = |𝐺 | − |𝐻 | so

|𝐻 |
|𝐻 | =

|𝐺 | − |𝐻 |
|𝐻 | =

|𝐺 |
|𝐻 | − 1 ≤ |𝐺 | − 1, (185)

and therefore

1 + 𝑟 |𝐻 |
|𝐻 | ≤ 1 + 𝑟 ( |𝐺 | − 1) = 1 + 𝑟 |𝐺 | − 𝑟 ≤ 𝑟 |𝐺 |. (186)

Putting Inequalities (184) and (186) together we have,∑︁
𝑔∈𝐺

𝜌𝑔 ≤ 𝑟 |𝐺 |
∑︁
ℎ∈𝐻

𝜌ℎ . (187)

Applying this to Inequality (177) we obtain,

𝜅𝑇𝛾 ≤ 𝜂

𝑏
𝑟 |𝐺 |

∑︁
ℎ∈𝐻

𝜌ℎ𝑐G . (188)

By definition, 𝑏 ≤ 𝑎, and by assumption it follows that

𝜂 <

(
𝑏

𝑎

)𝛽+1
1

𝑟 |𝐺 | <
𝑏

𝑎

1

𝑟 |𝐺 | . (189)

Applying this to Inequality (188) yields,

𝜅𝑇𝛾 ≤ 1

𝑎

∑︁
ℎ∈𝐻

𝜌ℎ𝑐G, (190)

which we recognize as the lower bound on 𝜏 in Inequality (179),

i.e.,

𝜅𝑇𝛾 ≤ 𝜏 . (191)

Critically, the analysis of 𝜅𝑇𝛾 and 𝜏 depends on the sellers pro-

ducing more than the learning ante number of samples for each

group in 𝐻 , that is, it requires,

𝛾ℎ𝑛
( [𝑀 ] ) >

( 𝛼
𝑍

) 1

𝛽
, (192)

for every ℎ ∈ 𝐻 . We now show that this holds.

𝛾ℎ𝑛
( [𝑀 ] ) =𝛾ℎ

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

(193)

≥ 1

𝑎

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

(194)

≥ 1

𝑎

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝑏
𝛽ª®¬

1

𝛽+1

(195)

≥ 1

𝑎

©«𝛼𝛽 𝑏

𝜂𝑟 |𝐺 |∑ℎ∈𝐻 𝜌ℎ𝑐G

∑︁
𝑔∈𝐻

𝜌𝑔𝑏
𝛽ª®¬

1

𝛽+1

(196)

=
𝑏

𝑎

(
𝛼𝛽

𝜂𝑟 |𝐺 |𝑐G

) 1

𝛽+1
(197)

=
𝑏

𝑎

©«
𝛼𝛽

𝜂𝑟 |𝐺 |

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

𝑍
𝛽+1
𝛽

ª®®®®®¬

1

𝛽+1

(198)

≥𝑏
𝑎

(
1

𝜂𝑟 |𝐺 |

( 𝛼
𝑍

) 𝛽+1
𝛽

) 1

𝛽+1

(199)

=
𝑏

𝑎

(
1

𝜂𝑟 |𝐺 |

) 1

𝛽+1 ( 𝛼
𝑍

) 1

𝛽
>

( 𝛼
𝑍

) 1

𝛽
(200)
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because

𝑏

𝑎

(
1

𝜂𝑟 |𝐺 |

) 1

𝛽+1
> 1 (201)

by assumption. We conclude that there exists a subset of groups 𝐻

that can be profitably monetized. □

A.13 Proof of Claim (6.1)
Claim 6.1. Let 𝛾 be the marketplace’s target vector. If there exists
𝑔 ∈ 𝐺 such that max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞, then there exists an 𝑁0

such that 𝑁 > 𝑁0 implies that for all 𝑗 , ∥𝑦 ( 𝑗 ) ∥ > 0.

Proof. Let ⌈𝛾⌉ ≜ max𝑔∈𝐺 𝛾
−𝛽
𝑔 . In the intervention scenario, By

Claim (4.2), the sellers will produce data if

𝜅𝑇𝛾 ≤

(∑
𝑔∈𝐺 𝜌𝑔

) 𝛽+1
𝛽(∑

𝑔∈𝐺 𝜌𝑔𝛾
−𝛽
𝑔

) 1

𝛽

· 𝑍
𝛽+1
𝛽

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

, (202)

or equivalently

𝛼

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

)𝛽+1
𝑍𝛽+1

(
𝜅𝑇𝛾

)𝛽
≤

(∑
𝑔∈𝐺 𝜌𝑔

)𝛽+1(∑
𝑔∈𝐺 𝜌𝑔𝛾

−𝛽
𝑔

) (203)

Recall that the 𝛾𝑔 are fixed with respect to increasing 𝑁 . Bound the

right-hand side of Inequality (203) from below by:

1

⌈𝛾⌉
©«
∑︁
𝑔∈𝐺

𝜌𝑔
ª®¬
𝛽

≤

(∑
𝑔∈𝐺 𝜌𝑔

)𝛽+1(∑
𝑔∈𝐺 𝜌𝑔𝛾

−𝛽
𝑔

) (204)

Therefore, Inequality (203) will hold if

𝛼

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

)𝛽+1
𝑍𝛽+1

(
𝜅𝑇𝛾

)𝛽
≤ ©« 1

⌈𝛾⌉
∑︁
𝑔∈𝐺

𝜌𝑔
ª®¬
𝛽

(205)

Recall that 𝑍 , 𝛼 , 𝛽 , and 𝜅𝑔 are fixed with respect to increasing 𝑁 . By

assumption, there is at least one group 𝑔 such that max𝑝𝑔 𝜌𝑔 → ∞
as 𝑁 → ∞. Observe thatmax𝑝𝑔 𝜌𝑔 is non-decreasing in the number

of buyers 𝑁 . Therefore there is some 𝑁0 such that Inequality (205)

will be satisfied for all 𝑁 > 𝑁0. □

A.14 Proof of Claim (A.1)
Claim A.1. If max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞, then there exists an 𝑁0

such that 𝑁 > 𝑁0 implies that for all 𝑗 , 𝑥 ( 𝑗 )𝑔 > 0.

Proof. In the baseline scenario, the sellers will produce data if

𝜅𝑔 ≤ 𝜏𝑔 =
𝜌𝑔𝑍

𝛽+1
𝛽

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

, (206)

or equivalently

𝛼
1

𝛽

(
𝛽
− 𝛽

𝛽+1 + 𝛽
1

𝛽+1

) 𝛽+1
𝛽

𝑍
𝛽+1
𝛽

𝜅𝑔 ≤ 𝜌𝑔 (207)

Recall that 𝑍 , 𝛼 , 𝛽 , and 𝜅𝑔 are fixed with respect to increasing 𝑁 . By

assumption, max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞ and note that max𝑝𝑔 𝜌𝑔 is

non-decreasing in the number of buyers 𝑁 , therefore there is some

𝑁0 such that Inequality (207) is satisfied for every 𝑁 > 𝑁0. □

A.15 Proof of Claim (A.2)
Claim A.2. If max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞, then 𝑥 ( [𝑀 ] )

𝑔 → ∞.

Proof. By Lemma (??), at equilibrium we have that

𝑥
( [𝑀 ] )
𝑔 =

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

. (208)

By assumption, max𝑝𝑔 𝜌𝑔 → ∞, it follows that by Claim (A.1) the

sellers will participate in the market for all 𝑁 sufficiently large and

therefore

𝑥
( [𝑀 ] )
𝑔 =

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)
1/(𝛽+1)

→ ∞. (209)

□

A.16 Proof of Claim (A.3)
Claim A.3. If there exists 𝑔 ∈ 𝐺 such that max𝑝𝑔 𝜌𝑔 → ∞ as
𝑁 → ∞, then 𝑛 ( [𝑀 ] ) = ∥𝑦 ( [𝑀 ] ) ∥ → ∞.

Proof. By Lemma (??) and Claim (4.2) the sellers will produce

𝑛 ( [𝑀 ] ) = ©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐻

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1/(𝛽+1)

(210)

samples at equilibrium if

𝜅𝑇𝛾 ≤ 𝜏𝐻 (𝜌,𝛾) (211)

where

𝐻 ≜ {𝑔 ∈ 𝐺 : 𝛾𝑔 ≥ 𝛾ℎ}, (212)

and 𝛾ℎ is a minimum value over 𝛾𝑔 satisfying

𝛾𝑔𝑛
( [𝑀 ] ) >

( 𝛼
𝑍

) 1

𝛽
. (213)

Observe that 𝜅𝑇𝛾 is fixed as 𝜌𝑔 → ∞, whereas 𝑛 ( [𝑀 ] )
and 𝜏𝐺 (𝜌,𝛾)

grow unboundedly. □

A.17 Proof of Theorem (6.1)
Theorem 6.1. If there exists 𝑔 ∈ 𝐺 such that max𝑝𝑔 𝜌𝑔 → ∞ as
𝑁 → ∞, then for the marketplace we have

lim

𝑁→∞
𝑤 𝑓 (𝑝)
𝑤 (𝑝) = 1, (39)

for every seller 𝑗 we have

lim

𝑁→∞

𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) )

𝑣 𝑗 (𝑥 ( 𝑗 ) )
= 1, (40)

and for every buyer 𝑖 we have

lim

𝑁→∞

𝑢
𝑓

𝑖
(𝜇𝑖 )

𝑢𝑖 (𝜇𝑖 )
≥ 1. (41)
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Proof. Consider the marketplace’s utility in the baseline sce-

nario.

𝑤 (𝑝) =
∑︁
𝑔∈𝐺

𝑝𝑔

𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]G(𝑥 ( [𝑀 ] )
𝑔 ) (214)

=
∑︁
𝑔∈𝐺

𝜌𝑔

(
𝑍 − 𝛼 (𝑥 ( [𝑀 ] )

𝑔 )−𝛽
)

(215)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 − 𝛼
∑︁
𝑔∈𝐺

𝜌𝑔 (𝑥 ( [𝑀 ] )
𝑔 )−𝛽 (216)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 − 𝛼
∑︁
𝑔∈𝐺

𝜌𝑔

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)− 𝛽

𝛽+1
(217)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 − 𝛼
∑︁
𝑔∈𝐺

𝜌

1

𝛽+1
𝑔

(
𝛼𝛽

𝜅𝑔

)− 𝛽

𝛽+1
(218)

Note that the positive term is linear in the sum of the 𝜌𝑔 whereas

the negative term is sublinear. Now consider the marketplace’s

utility in the intervention scenario.

𝑤 𝑓 (𝑝) =
∑︁
𝑔∈𝐺

𝑝𝑔

𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]G(𝑦 ( [𝑀 ] )
𝑔 ) (219)

=
∑︁
𝑔∈𝐺

𝜌𝑔

(
𝑍 − 𝛼 (𝑦 ( [𝑀 ] )

𝑔 )−𝛽
)

(220)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 − 𝛼
∑︁
𝑔∈𝐺

𝜌𝑔 (𝑦 ( [𝑀 ] )
𝑔 )−𝛽 (221)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 − 𝛼
∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
− 𝛽

𝛽+1

(222)

= 𝑍
∑︁
𝑔∈𝐺

𝜌𝑔 −
𝛼

𝑀

𝛼𝛽

𝜅𝑇𝛾

− 𝛽

𝛽+1 ©«
∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

(223)

Note that the positive term is linear in the sum of the 𝜌𝑔 whereas

the negative term is sublinear. Consequently, the marketplace’s

utility ratio in the limit is

lim

𝑁→∞
𝑤 𝑓 (𝑝)
𝑤 (𝑝) = lim

𝑁→∞

𝑍
∑
𝑔∈𝐺 𝜌𝑔

𝑍
∑
𝑔∈𝐺 𝜌𝑔

= 1 (224)

Consider seller 𝑗 ’s utility in the baseline scenario.

𝑣 𝑗 (𝑥 ( 𝑗 ) ) =
∑︁
𝑔∈𝐺

𝑝𝑔

𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
∑︁

𝑇 ⊆[𝑀 ]\{ 𝑗 }
𝑐𝑇

(
G(𝑥 (𝑇∪{ 𝑗 })𝑔 ) − G(𝑥 (𝑇 )

𝑔 )
)

−
∑︁
𝑔∈𝐺

𝜅𝑔𝑥
( 𝑗 )
𝑔 (225)

=
∑︁
𝑔∈𝐺

𝜌𝑔
1

𝑀
G(𝑥 ( [𝑀 ] )

𝑔 ) −
∑︁
𝑔∈𝐺

𝜅𝑔𝑥
( 𝑗 )
𝑔 (226)

=
∑︁
𝑔∈𝐺

𝜌𝑔
1

𝑀

(
𝑍 − 𝛼 (𝑥 ( [𝑀 ] )

𝑔 )−𝛽
)
−

∑︁
𝑔∈𝐺

𝜅𝑔𝑥
( 𝑗 )
𝑔 (227)

=
𝑍

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔 −
𝛼

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

)− 𝛽

𝛽+1
−

∑︁
𝑔∈𝐺

𝜅𝑔
1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1

(228)

=
𝑍

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔 −
𝛼

𝑀

∑︁
𝑔∈𝐺

𝜌

1

𝛽+1
𝑔

(
𝛼𝛽

𝜅𝑔

)− 𝛽

𝛽+1
−

∑︁
𝑔∈𝐺

𝜅𝑔
1

𝑀

(
𝜌𝑔

𝜅𝑔
𝛼𝛽

) 1

𝛽+1

(229)

Note that the positive term is linear in the sum of the 𝜌𝑔 whereas

the two negative terms are sublinear. Now consider seller 𝑗 ’s utility

in the intervention scenario.

𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) ) =

∑︁
𝑔∈𝐺

𝑝𝑔

𝑁∑︁
𝑖=1

1[𝜇𝑖,𝑔 ≥ 𝑝𝑔]
∑︁

𝑇 ⊆[𝑀 ]\{ 𝑗 }
𝑐𝑇

(
G(𝑦 (𝑇∪{ 𝑗 })𝑔 ) − G(𝑦 (𝑇 )

𝑔 )
)

−
∑︁
𝑔∈𝐺

𝜅𝑔𝑦
( 𝑗 )
𝑔 (230)

=
∑︁
𝑔∈𝐺

𝜌𝑔
1

𝑀
G(𝑦 ( [𝑀 ] )

𝑔 ) −
∑︁
𝑔∈𝐺

𝜅𝑔𝑦
( 𝑗 )
𝑔 (231)

=
∑︁
𝑔∈𝐺

𝜌𝑔
1

𝑀

(
𝑍 − 𝛼 (𝑦 ( [𝑀 ] )

𝑔 )−𝛽
)
−

∑︁
𝑔∈𝐺

𝜅𝑔𝑦
( 𝑗 )
𝑔 (232)

=
𝑍

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔 −
𝛼

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
− 𝛽

𝛽+1

−
∑︁
𝑔∈𝐺

𝜅𝑔𝛾𝑔

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

(233)

=
𝑍

𝑀

∑︁
𝑔∈𝐺

𝜌𝑔 −
𝛼

𝑀

𝛼𝛽

𝜅𝑇𝛾

− 𝛽

𝛽+1 ©«
∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

−
∑︁
𝑔∈𝐺

𝜅𝑔𝛾𝑔

𝑀

©« 𝛼𝛽

𝜅𝑇𝛾

∑︁
𝑔∈𝐺

𝜌𝑔𝛾
−𝛽
𝑔

ª®¬
1

𝛽+1

(234)

Note that the positive term is linear in the sum of the 𝜌𝑔 where

as the two negative terms are sublinear. Consequently, seller 𝑗 ’s

utility ratio in the limit is

lim

𝑁→∞

𝑣
𝑓

𝑗
(𝑦 ( 𝑗 ) )

𝑣 𝑗 (𝑥 ( 𝑗 ) )
=

𝑍
𝑀

∑
𝑔∈𝐺 𝜌𝑔

𝑍
𝑀

∑
𝑔∈𝐺 𝜌𝑔

= 1. (235)
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Consider buyer 𝑖’s utility in the baseline scenario,

𝑢𝑖 (𝜇𝑖 ) =
∑︁
𝑔∈𝐺

(𝜇𝑖,𝑔 − 𝑝𝑔)G(AF 𝑔 (𝜇𝑖,𝑔, 𝑥 ( [𝑀 ] ) )) . (236)

Buyer 𝑖 will be allocated data for group 𝑔 if and only if 𝜇𝑖,𝑔 ≥ 𝑝𝑔 .

Let 𝐺𝑝 ≜ {𝑔 ∈ 𝐺 : 𝜇𝑖,𝑔 ≥ 𝑝𝑔}, and consider the buyer’s utility in

the limit,

lim

𝑁→∞
𝑢𝑖 (𝜇𝑖 ) = lim

𝑁→∞

∑︁
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔−𝑝𝑔)G(𝑥 ( [𝑀 ] )
𝑔 ) ≤ 𝑍

∑︁
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔−𝑝𝑔),

(237)

where the inequality follows because for all𝑔 and𝑥
( [𝑀 ] )
𝑔 ,G(𝑥 ( [𝑀 ] )

𝑔 ) ≤
𝑍 . By assumption, there is at least one group such thatmax𝑝𝑔 𝜌𝑔 →
∞ as 𝑁 → ∞. For any such group it follows that G(𝑥 ( [𝑀 ] )

𝑔 ) → 𝑍

as 𝑁 → ∞ because 𝑥
( [𝑀 ] )
𝑔 → ∞ by Claim (A.2).

Now consider buyer 𝑖’s utility in the intervention scenario.

𝑢
𝑓

𝑖
(𝜇𝑖 ) =

∑︁
𝑔∈𝐺

(𝜇𝑖,𝑔 − 𝑝𝑔)G(AF 𝑔 (𝜇𝑖,𝑔, 𝑦 ( [𝑀 ] ) )). (238)

Again, buyer 𝑖 will be allocated data for group 𝑔 if and only if

𝜇𝑖,𝑔 ≥ 𝑝𝑔 . Therefore, the buyer’s utility in the limit is

lim

𝑁→∞
𝑢
𝑓

𝑖
(𝜇𝑖 ) = lim

𝑁→∞

∑︁
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔−𝑝𝑔)G(𝑦 ( [𝑀 ] )
𝑔 ) = 𝑍

∑︁
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔−𝑝𝑔) .

(239)

The last equality follows from the assumption that there is at least

one group such that max𝑝𝑔 𝜌𝑔 → ∞ as 𝑁 → ∞. By Claim (A.3),

it follows that for every group 𝑔, 𝑦
( [𝑀 ] )
𝑔 → ∞ and consequently

G(𝑦 ( [𝑀 ] )
𝑔 ) → 𝑍 .

Putting these together we can evaluate the cost of fairness in the

limit

lim

𝑁→∞

𝑢
𝑓

𝑖
(𝜇𝑖 )

𝑢𝑖 (𝜇𝑖 )
≥

𝑍
∑
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔 − 𝑝𝑔)
𝑍

∑
𝑔∈𝐺𝑝

(𝜇𝑖,𝑔 − 𝑝𝑔)
= 1. (240)

□
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