Under review as a conference paper at ICLR 2025

GPU-ACCELERATED COUNTERFACTUAL REGRET
MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual regret minimization is a family of algorithms of no-regret learning
dynamics capable of solving large-scale imperfect information games. We pro-
pose implementing this algorithm as a series of dense and sparse matrix and vector
operations, thereby making it highly parallelizable for a graphical processing unit,
at a cost of higher memory usage. Our experiments show that our implementation
performs up to about 401.2 times faster than OpenSpiel’s Python implementation
and, on an expanded set of games, up to about 203.6 times faster than OpenSpiel’s
C++ implementation and the speedup becomes more pronounced as the size of the
game being solved grows.

1 INTRODUCTION

Counterfactual regret minimization (CFR) (Zinkevich et al., 2007) and its variants dominated the
development of Al agents for large imperfect information games like Poker (Tammelin et al., 2015;
Morav¢ik et al., 2017; Brown & Sandholm, 2018; 2019b) and The Resistance: Avalon (Serrino et al.,
2019) and were components of ReBeL (Brown et al., 2020) and student of games (Schmid et al.,
2023). Notable variants of CFR are as follows: CFR+ by Tammelin (2014) (optionally) eliminates
the averaging step while improving the convergence rate; Sampling variants (Lanctot et al., 2009)
makes a complete recursive tree traversal unnecessary; Burch et al. (2014) proposes CFR-D in which
games are decomposed into subgames; Brown & Sandholm (2019a) explores modifying CFR such
as alternate weighted averaging (and discounting) schemes; Xu et al. (2024) learns a discounting
technique from smaller games to be used in larger games.

We propose implementing CFR as a series of linear algebra operations, as done by Graph-
BLAS (Kepner et al., 2016) for graph algorithms, thereby parallelizing it for a graphical processing
unit (GPU) at a cost of higher memory usage. We analyze the runtimes of our implementation with
both computer processing unit (CPU) and GPU backends and compare them to Google DeepMind’s
OpenSpiel (Lanctot et al., 2020) implementations in Python and C++ on 20 games of differing sizes.

Our experiments show that, compared to Google DeepMind OpenSpiel’s (Lanctot et al., 2020)
Python implementation, our GPU implementation performs about 3.5 times slower for small games
but is up to about 401.2 times faster for large games. Against their C++ implementation, our per-
formance with a GPU is up to about 85.5 times slower for small games, but, on an expanded set of
games, is up to about 203.6 times faster for large games. Even without a GPU, our implementation
shows speedups compared to the OpenSpiel baselines (from about 1.5 to 46.8 times faster than their
Python implementation and from 16.8 times slower to 4.5 times faster than theirs in C++). We see
that the speedup becomes more pronounced as the size of the game solved grows.

2 BACKGROUND
The background of our work and the notations we use throughout this paper is introduced below.

2.1 FINITE EXTENSIVE-FORM GAMES

An extensive-form game is a representation of games that allow the specification of the rules of the
game, information sets (infosets), actions, actors (players and the nature), chances, and payoffs.

Under review as a conference paper at ICLR 2025

Definition 1 The formal definition of a finite extensive-form game (Osborne & Rubinstein, 1994)
is a structure G = (T, H, frn, A, fa,L, fi, 00, u) where:

o T =<(V,u,T, fpa) is a finite game tree with a finite set of nodes (i.e., vertices) V, a
unique initial node (i.e., a root) vy € V, a finite set of terminal nodes (i.e., leaves) T € V,
and a parent function fp, : V. — D that maps a non-initial node (i.e., a non-root)
vy € V, to an immediate predecessor (i.e., a parent) d € D, with V. = V\{uvg} the finite
set of non-initial nodes (i.e., non-roots) and D = V\T the finite set of decision nodes (i.e.,
internal vertices),

* His a finite set of infosets, f; :) — H is an information partition of ID associating each
decision node d € D to an infoset i € H,

* A is a finite set of actions, f, : V. — A is an action partition of V, associating each
non-initial node v; € V to an action a € A such that Vd € D the restriction f, 4 : S(d) —
A(fn(d)) is a bijection, with S(d € D) = {vy € V4 : fpa(vy) = d} the finite set of
immediate successors (i.e., children) of anode d € D and A(h € H) = {a € A : [Fuy €
Vil(fa(fra(vy)) = h A fo(vy) = a)} the finite set of available actions at an infoset
heH,

[is a finite set of (rational) players and, optionally, the nature (i.e., chance) iy € I,
fi : H — L is a player partition of H associating each infoset i € H to a player ¢ € I,

* 09 : Qo — [0,1] is a chance probabilities function that associates each pair of a nature
infoset and an available action (hg,a) € @Qq to an independent probability value, with
Q; = {(h,a) € Q : h € Hj} the finite set of pairs of a player infoset ; € H; and an
available action a € A(h;), Q = {(h,a) e H x A : a € A(h)} the finite set of pairs of an
infoset h € H and an available action a € A(h), and H; = {h € H : f;(h) = i;} the finite
set of infosets associated with a player i; € I, and

* u: T x I, — Ris autility function that associates each pair of a terminal node ¢ € T and
a (rational) player i, € I to a real payoff value. I, = I\{io} is the finite set of (rational)
players.

2.2 NASH EQUILIBRIUM

Each player i, € I selects a player strategy o, : Q; — [0, 1] from a set of player strategies X,.
A player strategy o; € ¥; associates, for each player infoset h; € H;, a probability distribution
over a finite set of available actions A(h,). A strategy profile o : Q — [0, 1] is a direct sum of the
strategies of each player o = P i;e1%3 which, for each infoset i € HI, gives a probability distribution

over a finite set of available actions A(h). X is a set of strategy profiles. o_; = @,, en\{i;} Ok isa
direct sum of all player strategies in o except o; (i.e., that of player ¢; € I).

Letm: ¥ x V — R be a probability of reaching a vertex v € V following a strategy profile o € 3.
7T(0’ c 27,0 c V) _ {i—(fh(fpa(v))a fa(U))’lT(O', fPa(U)) vE V+
V=1

Then, define @ : ¥ x I — R to be an expected payoff of a (rational) player ¢, € I, following a
strategy profile o € X.

(o eXiy ely) =Y m(o,thult,iy)
teT

A strategy profile o* € ¥ is a Nash equilibrium, a traditional solution concept for non-cooperative
games, if no player stands to gain by deviating from the strategy profile.

Vigjely a(o®, iy ;) > max a(o] @ o¥)i)

Under review as a conference paper at ICLR 2025

A strategy profile that approximates a Nash equilibrium o* is an e-Nash equilibrium ¢*€ € ¥ if

. ~ . ~ *,€ -
Vigjely a(o™ i) +e= max UCAACT RN
O'j J

2.3 COUNTERFACTUAL REGRET MINIMIZATION

Define @ : X x V x I — R as an expected payoff of a (rational) player iy € [, atanode v € V,
following a strategy profile o € X.

2ises(w) O(fn(v), fa(s))i(o, s,iv) veD
u(v,i+) veT

a(UEZ,UEV,’I;+€H+)—{ (1)

Let7: X x V xI — R be a probability of reaching a vertex v € V following a strategy profile
o € X while ignoring a strategy of a player i € 1.

~ ; U(fh(fPa(v))a fa(v)) fi(fh(fpa(v))) #i
foeSveV,iel) = { @ Tra):d) {1 Fifnfral)) =i "€V
1 v = v
2)
The below definition shows a counterfactual reach probability 77 : ¥ x H — R.
floeheH)= > #(od fi(h) 3)

deD: fr, (d)=h

Let 7 : ¥ x H — R be “player” reach probability, with 7 : ¥ x V x I — R the probability of
reaching a vertex v € V, only considering the strategy of one particular player.

. N Jo(fu(fra(v), fa(v) filfn(fPa(v))) =i
HoeSvev,iel) = { (O FPa(v)0) {1 L (Fra)) 20 € VH
1 v =g
“)
floeT,heH)= Y #(o.d, fi(h) 5)

deD: fr, (d)=h

Now, let @ : ¥ x H, — R be a counterfactual utility, with H, = H\Hj the finite set of infosets
associated with (rational) players.

. = 0 7d7 A h U 7d7 7 h
w(oceX, hy eHy) = R (@ ”(;(Ufhi;))“(a A (6)

0|n—a € X is an overrided strategy profile of o where an action a € A(h) is always taken at an
infoset i € H.

1= h="hn

U‘hﬁa((h/aa/) € Q) = {O'(h/ a/) bR

7 : 3 x Q4 — Ris the instantaneous counterfactual regret, with Q. = Q\Qy the finite set of pairs
of a (rational) player infoset by € H and an available action a € A(h.).

(o €%, (hy,a) € Qr) = 7(0; hy) (@(0|n, —ar hy) — (o, hy)) (7

Under review as a conference paper at ICLR 2025

1) . Q. — Ris the average counterfactual regret at an iteration 7. o™ e s the strategy at 7.

.z
r (g eQy) = T Z AN ®)
T=1

The strategy profile for Iteration 7" + 1 is PASREVNCD 3

7(T) h,a))™ _
Za'ei(m(i”)zi,a’))* Za’EA(h)(T(T)(h’a/))-i_ >0
|A(1h)| Diareamn(M (h,a'))* =0

oo(h,a) (h,a) € Qo

CFR (Zinkevich et al., 2007) is an algorithm that iteratively approximates a coarse correlated equi-
librium (™) : Q — R (Hart & Mas-Colell, 2000).

(h,a) € Q4

o T*((h,a) € Q) =)

=

&1 ((h,a) € Q) = ST 7o), b)) (h, a)

Sr_ 7 (o™, h)

Define (7) I+ — R as the average overall regret of a (rational) player ¢ ; € I at an iteration 7.

(10)

1

— Imax

TU"-EEj
F P

(@) @) iy ;) — a0, iy ;)

D=

rM(iyjely) =

Il
—

In 2-player zero-sum games, if Vi, € I} () (i1) < ¢, the average strategy ™) (at an iteration 7))
is also a 2¢-Nash equilibrium ¥ ey (Zinkevich et al., 2007).

2.4 PRIOR USAGES OF GPUs FOR CFR

In the mainstream literature, algorithms inspired by CFR or using CFR as a subcomponent like
DeepStack (Moravcik et al., 2017), Student of Games (Schmid et al., 2023), and ReBeL (Brown
et al., 2020) only perform a limited lookahead instead of a complete game tree traversal. A neural
network-based value function is typically used to evaluate the heuristic value of a node — GPUs can
be utilized for the evaluation of these networks. Besides the fact that the vanilla CFR considers the
entire game tree and does not use a value function, our approach differs significantly in that we use
the GPU to parallelize CFR at every step of the process.

A number of obscure unpublished works (Reis, 2015; Rudolf, 2021) have implemented CFR directly
on CUDA and found orders of magnitude improvements in performance. However, in the imple-
mentation by Rudolf (2021), every thread assigned to each node moves up the game tree (toward
the root), thus resulting in a quadratic number of visits to the game tree per iteration in the worst
case. The implementation by Reis (2015) is superior in that only one visit is made at each node
per iteration by doing level-by-level updates (an approach we also use). However, aside from re-
producibility issues with his work', both require each thread to perform a “large number of control
flow statements” — a limitation mentioned by Reis (2015) — and require more generalized kernel
instructions.

Our approach addresses these issues by framing this problem as a series of linear algebra operations,
and the utilization of GPUs for this task is an extremely well-studied problem in the field of systems,
and can take advantage of optimized opcodes for these operations. Our implementation is also com-
patible with discrete games in OpenSpiel, which are commonly used as benchmarks for evaluating
newly proposed CFR variants, unlike the work by Reis (2015) whose compatible games are limited
to customized poker variants. In addition, our pure Python code is open-source.

'Reis’s thesis contains screenshots of his code as figures that cannot compile due to syntax errors. For
example, we point out the missing semicolon in Line 4 of Figure 12 and the mismatched square brace in Line
8 of Figure 18. Aside from the obvious errors, the thesis’s code snippets do not handle chance nodes, decision
nodes, and terminal nodes separately.

Under review as a conference paper at ICLR 2025

3 IMPLEMENTATION

In order to highly parallelize the execution of CFR, we implement the algorithm as a series of dense
and sparse matrix and vector operations and avoid recursive game tree traversals.

3.1 SETUP

Calculating expected payoffs of players @ : ¥ x V x [, — R in Equation 1, and reach probabilities

7T:2xVxI—RinEquation2and 7 : ¥ x V x I — R in Equation 5 are problems of dynamic

programming on trees. To calculate these values with linear algebra operations, we represent the

game tree 7 as an adjacency matrix G € RY " and the level graphs of the game tree 7 as adjacency

matrices LV, L® ... L®) e RV with D = max dr(t) the maximum depth of any node in the
te

game tree 7 and dy : V — Z the depth of a vertex v € V in the game tree 7 from the root vg.

G- <{1Ufpa(vl) UED/\’U/EVJr)
= ,
0 veT vy =vg (0.07)eV2

We[,D]nz LO = ({Fo=tra@inare=t vED AV EV,
’ 0 veT v =g (0072

M@+V) ¢ ROV ppH+Q+) ¢ RE+xQe pp(Vili) ¢ RVXI+ are masking matrices that rep-
resent the game G. Matrix M (@+Y) describes whether a node v € V is a result of an action
from a (rational) player infoset (hy,a) € Q4. Matrix M (H+.Q+) describes whether a (rational)
player infoset h € H, is the first element of the corresponding (rational) player infoset-action pair
(h4,a) € Q. Finally, matrix M (V:I+) describes whether a node v € V has a parent whose associ-
ated infoset’s associated player is i € I (i.e., which player i € I acted to reach a node v € V).
Note that we omit the nature player ¢y and related infosets Hy and infoset-action pairs Qg as only
the strategies of (rational) players are updated by the algorithm. These mask-like matrices are later
used to “select” the values associated with a player, action, node, or infoset during the iteration.

M@eY) <{1q+—(fh<fpa<v>>,fu(v)) vev,

0 v=" >(¢1+’U)€Q+ xV

MHQ4) = (]_ Y) 1 (i (fra(v)))=i veV
Pa=hly (hy,(h' ,a))eHy xQy MW = Jin(Fra(o)) =t N

0 V=" >(U,i+)ewn+

G, LW, L? . LP) M@HV) AR+ Af(ViI+) are constant matrices. In the games we
experiment on, all aforesaid matrices except M ViI4) are highly sparse (as demonstrated in Ap-
pendix C).2 As such, they are implemented as sparse matrices in a compressed sparse row (CSR)
format. Matrix M (V>/+) and all other defined matrices and vectors are dense.

Define a vector s(7°) representing the probabilities of nature infoset-action pairs Q.

U€V+

{Uo(fh(fPa(U))vfa(U)) Jr(fpa(v)) € Ho
570 = 0 Jn(fpa(v)) € Hy
0 v =" veV

o € R+ is the strategy over (rational) player infoset-action pairs Q. at an iteration 7.

o= (cM(a1))

The sparsity of M VoI depends on the number of (rational) players. For games with many players, it
may be more efficient to implement this as sparse as well.

q+€Q+

Under review as a conference paper at ICLR 2025

A vector oT=1) ¢ RO+ representing the initial strategy profile (i.e., at ' = 1) is shown below.

— T
o™V = (61(¢)), oo, = (i) — 1g,10 ((MUE0) T ((MEH=2) 1))

(h+,a)eQy

On each iteration, the strategy at the next iteration o’ = (a(T+1) (q+)) is calculated using o.
q+€Q+

3.2 ITERATION

3.2.1 TREE TRAVERSAL

Let a vector s € R represent the probabilities of taking an action that reaches a node v € V at an
iteration 7T'. This value is irrelevant for the unique initial node vy.

o~ ({a<T><fh<fpa<v)>,fa<v>> V) (M) st
veV

0 v =

. 2 . .
For later use, we also broadcast the vector s to be a matrix § € R" . This is defined only for
notational convenience and, in our implementation, this matrix is not actually stored in memory.
S = (SU/)(U,'U’)EV2
The recurrence relations of the expected payoffs of (rational) players @ : X x V x I, — R (see Equa-

tion 1) is expressed with matrices. Define the following matrices ﬁ(l), 6(2), e U@+ ¢ RVL+

(e vyiy) dr(v)=l—1voveT

1,D+1]1nZ UO =
vielLD+1nZ U ({O dr(v) <l—1AveD

)(v7i+)€V><H+
o+ u(v,iy) veT Vie[1,D]nZ UO = (LU S) U+ L g+
0 veD) | (11)
(v,i4)eVxIL

Let U € RV represent ii: ¥ x V x I — R.

U= (ﬂ(a(T)7v,i+)) _ W

(v,i4)eV Iy

Let S € RV*™+ be a matrix to be used in a later calculation.

o Sy (M(V’I”) =0
S = 1 (M(var)) ’_+ 1 (12)
Uyt (v,i4)EVXIy
In order to represent a restriction (ignoring nature) of the “excepted” reach probabilities (defined
in Equation 2) 77 : ¥ x V x I — R with matrices, we, again, express the recurrence relations with

matrices. We therefore define the following matrices: 1!1(0)7 f[(l)7 ﬁ(2), el TP e RV*L+
~ ~((T) . <
Vie[0,D]~nZ IO = ({w(a ,0,04) dr(v) < l)
0 dr(v) > (v,it)EVXLy

1@ — - T - <~
I = (11):1)0)(1;,i+)er11+ Vie[l,D]nZ oo = ((L(Z)) H(l—1)> oS+ 1Y
(13)

Under review as a conference paper at ICLR 2025

For Equation 11 and Equation 13, we use in-place addition in our implementation to make sure only
newly “visited” nodes are touched at each depth. This way, each node is only “visited” once during
a single pass.

Leta vector 7 € R" be the terms in Equation 3 for counterfactual reach probabilities 7 : ¥ xH — R.

{ﬁ(U(T),U, filfn(fPa(®)))) fu(fpa(v)) € Hy v _
7= 0 fu(fra(v)) € Ho - = (M(V’I*) @H(D)> Ly
0

v="0 veV

A vector 7t € R representing the terms of the equation for “player” reach probabilities 7 : X x H —
R in Equation 5 can be calculated identically but with S instead of S (defined in Equation 12) where

R 1 (M(V’h))vmzo
S=Wew vy on)
v+ (vyi4)EV XTIy
{ff(U(T)MMfi(fh(fpa(v)))) fn(frPa(v)) € Hy

0 fn(fra(v)) € Ho

0 v = g

~ veV
PN +

3.2.2 AVERAGE STRATEGY PROFILE

The average strategy profile 7). Q — R at an iteration T, formulated in Equation 10 and rep-
resented as a vector & € RY+, can be updated from the previous iteration’s TV . Q - R,
represented as a vector ' € RZ+. For this, the “player” reach probabilities 7 : ¥ x H — R
(Equation 5), a restriction of which is represented by a vector 7 € RH+, and their sums, a restric-
tion of which is represented by a vector 7*) ¢ R¥+ | must be calculated. The previous sums of
counterfactual reach probabilities are denoted as a vector 73 e RH+

7= (ﬁ(U(T>7h+)) - (M(H+,Q+)> <M<Q+,V>) 7

hieH

T
75 = (Z 7(o(, h+)> —a®

T=1

&= ((}(T)(cu))MQ+ oy ((M(H+’Q+))T (71'@71'(2))> O (o —0a') (14)

3.2.3 NEXT STRATEGY PROFILE

Let a vector 7 € RY+ represent instantaneous counterfactual regrets 7 : ¥ x Q. — R, defined
in Equation 7, for a strategy profile o™ at an iteration 7.

P (10 00), o = (@) (Fo (M) 0 (0 -670)) 1,))

Average counterfactual regrets 7 . Q4 — Rin Equation 8 can be represented with a vector
7 € R%+. Let a vector 7 € RP+ be the average counterfactual regrets at the previous iteration
’F(T_l) . Q+ — R

P (fD) =T (77 13

Under review as a conference paper at ICLR 2025

The clipped regrets are normalized to get a restriction of the next strategy profile oI+ .Q, - R
from Equation 9 for (rational) player infoset-action pairs, represented as a vector o’

(2 Z (f(T)(h+,a/))+ - (M(H+:Q+))T ((M(H+7Q+)) 77'*‘)
a'eA(h+) (ht,a)eQ4
7t 1% F(+’Z) ,'7(-&-,2) >0
o' = (U(T+1)(Q+)) = ({EG(T—l)))q+ EF(+,E);(I+ -0
q+€Q4 4+ as 14€0,

4 BENCHMARKS

Time vs. Game Size

10? E1: OpenSpiel (Python)
E1l: OpenSpiel (C++)
E1: Ours (CPU)

E1: Ours (GPU-64)

E1: Ours (GPU-32)

E2: OpenSpiel (C++)

: Ours (GPU-64)
: Ours (GPU-32)

10*

10°

m
N

107!

1072

Average Iteration Runtime (s)

10? 103 104 10° 10° 107 108
Game Size (# Nodes)

Figure 1: A log-log graph showing the average CFR iteration runtime with respect to the game size
for both experiments. The four lines show the runtimes of the four benchmarked implementations.
Note that the iteration time of each game does not depend solely on the number of nodes — the
number of players and the number of infosets play a sizable role as well. In addition, for OpenSpiel
implementations, the efficiency of how the game logic is implemented also matters as, on each
iteration, their implementations traverse the game tree by generating new states online.

4.1 EXPERIMENT 1

We run 1,000 CFR iterations on 8 games of varying sizes implemented in Google DeepMind’s
OpenSpiel (Lanctot et al., 2020) (see Appendix C for more details) using their Python and C++ CFR
implementations and our implementations (with a CPU or GPU backend). The games represent a
diverse range of sizes from small (tiny Hanabi and Kuhn poker), medium (Kuhn poker (3-player),
first sealed auction, and Leduc poker), to large (tiny bridge (2-player), liar’s dice, and tic-tac-toe).

In our GPU implementation (written in Python), we use CuPy (Okuta et al., 2017) for GPU-
accelerated matrix and vector operations with both 64-bit and 32-bit floating-point data types. Here,
we only discuss the 32-bit implementation as it is generally faster than the 64-bit version. Note
that we save both memory and runtime if single-precision floating point numbers are used (by
roughly a factor of 2). We also simply run our implementation with NumPy (Harris et al., 2020) and
SciPy (Virtanen et al., 2020) (i.e., without a GPU) which we refer to as our CPU implementation
(with 64-bit floats). Our testbench computer contains an AMD Ryzen 9 3900X 12-core, 24-thread
desktop processor, 128 GB memory, and Nvidia GeForce RTX 4090 24 GB VRAM graphics card.

The results vary depending on the size of the game being played, and are tabulated in Appendix A.
The relationship between the game sizes and the runtimes of each implementation is shown more

Under review as a conference paper at ICLR 2025

clearly in the log-log graph in Figure 1. Note that our GPU implementation clearly scales better than
both OpenSpiel’s (Lanctot et al., 2020) and our CPU implementation.

4.1.1 SMALL GAMES: TINY HANABI AND KUHN POKER

In small games like tiny Hanabi (55 nodes) and Kuhn poker (58 nodes), our CPU implementation
shows modest gains over the OpenSpiel’s (Lanctot et al., 2020) Python baseline (about 1.5 times
faster for both). However, our GPU implementation is actually about 3.5 and 3.3 times slower for
both compared to OpenSpiel’s Python baseline. OpenSpiel’s C++ baseline vastly outperforms all
others by at least an order of magnitude. This suggests the overheads from GPU and Python make
our implementation impractical for games of similarly small sizes.

4.1.2 MEDIUM GAMES: KUHN POKER (3-PLAYER), FIRST SEALED AUCTION, AND LEDUC
POKER

In medium-sized games like Kuhn poker (3-player) (617 nodes), first sealed auction (7,096 nodes),
and Leduc poker (9,457 nodes), performance gains compared to OpenSpiel’s (Lanctot et al., 2020)
Python implementation can be observed for both our CPU (about 12.9, 46.8, and 44.6 times faster,
respectively) and GPU implementation (about 3.1, 23.2, and 24.9 times faster, respectively). How-
ever, comparisons with OpenSpiel’s C++ implementation are mixed. For Kuhn poker (3-player),
OpenSpiel’s C++ implementation is about 1.6 times faster than our CPU implementation and 6.8
times faster than our GPU implementation. But, for first sealed auction and Leduc poker, our CPU
implementation is about 2.1 and 4.5 times faster, respectively, and our GPU implementation is about
1.1 and 2.5 times faster, respectively, than their C++ baseline. Here, while we begin to see our im-
plementations outperform OpenSpiel’s baselines, we see that our CPU implementation is faster than
our GPU implementation. This suggests that, while the efficiency of our implementation overcomes
the Python overhead, the remaining GPU overhead makes using a GPU less preferable than not.

4.1.3 LARGE GAMES: TINY BRIDGE (2-PLAYER), LIAR’S DICE, AND TIC-TAC-TOE

In games like tiny bridge (2-player) (107,129 nodes), liar’s dice (294,883 nodes), and tic-tac-toe
(549,946 nodes), noticeable performance gains over OpenSpiel’s (Lanctot et al., 2020) Python im-
plementation can be observed for both our CPU (about 26.1, 13.9, and 16.8 times faster, respectively)
and GPU implementation (about 111.8, 160.0, and 401.2 times faster, respectively). The same can
be said for OpenSpiel’s C++ implementation to a lesser degree: our CPU implementation is about
1.5, 1.0, and 1.1 times faster, respectively, and our GPU implementation is about 6.5, 11.6, and 25.2
times faster, respectively. Here, the performance benefits of utilizing a GPU are clear, and we predict
that the differences will be even more pronounced for games of sizes larger than the ones explored.

4.1.4 MEMORY USAGES

Table 1: The peak memory usage of the benchmark scripts of the 4 CFR implementations. For GPU
implementations, peak usages of the process and the memory allocated by CuPy are shown.

[Implementation [[Peak Memory Usage (GB) |
. Python 0.894
OpenSpiel Crr 0.145
CPU 2.863
.. | Process 3.169
ous | oy 04-bit —=rpa 0273
32-bit Process 2.371
CUDA 0.176

The peak memory usages of the benchmark scripts for Experiment 1 are shown in Table 1. Note that
this is not exactly a fair comparison, as, in our implementations, we unnecessarily store the object
representations of all states. By not doing so, further reduction in process memory usage would be
possible. The allocated CUDA memory for each game is further analyzed in Appendix A.

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENT 2

In order to see further scaling behavior or our GPU (both 64-bit and 32-bit versions) and OpenSpiel’s
C++ implementations, we run these implementations with much larger imperfect information games
(12 battleship games of differing parameters) for 10 iterations each. The iteration times for Exper-
iment 2 are tabulated in Appendix B. For games as large as up to over 57.9 million nodes, our
GPU implementation performs up to 203.6 times faster than OpenSpiel’s C++ baseline. Again, the
relationship between the game sizes and the runtimes is shown in the log-log graph in Figure 1.

5 DISCUSSION

Our CFR implementations require a single complete game tree traversal during a setup phase to
construct the game tree matrices. The time it takes to complete this one-time operation for the 20
games we test are tabulated in Appendix D. One advantage of our approach is that inefficient game
logic implementation does not impact the runtime of our implementations as the game tree itself is
encoded into matrices, whereas it can severely impact the performance of OpenSpiel’s implemen-
tations which evaluate game logic during the traversal itself. This may explain the sizable gap in
runtime between the speed of OpenSpiel’s C++ implementation between the experiments even for
the games of roughly the same sizes.

We only explore parallelizing the vanilla CFR algorithm, as proposed by Zinkevich et al. (2007).
Later variants of CFR show improvements, namely in convergence speeds, which modify various
aspects of the algorithm. The discounting techniques proposed by Brown and Sandholm can triv-
ially be applied by altering Equation 14 and Equation 15. However, pruning techniques (Brown &
Sandholm, 2015) would require non-trivial manipulations on the game-related matrices — possibly
between iterations — problematic since updating CSR matrices is computationally expensive.

On each iteration, our implementation deals with the entire game tree and stores values for every
node — impractical for extremely large games. In traditional implementations of CFR, while a com-
plete recursive game tree traversal is carried out, counterfactual values are typically not stored for
each node but instead for each infoset-actions. We demonstrate that it is possible to achieve a sig-
nificant parallelization (and hence speedup) at a cost of higher memory usage. Intuitively, the root-
to-leaf paths can be partitioned to construct subgraphs of which separate adjacency and submask
matrices can be loaded and applied as necessary — a similar approach can be used for alternating
player updates (Burch et al., 2019) and sampling variants (Lanctot et al., 2009).

Our approach provides an alternate way for CFR to be run on supercomputers. During the develop-
ment of Cepheus (Tammelin et al., 2015), the game tree was chunked into a trunk and many subtrees,
each of which was assigned to a compute node to be traversed independently. This introduced a bot-
tleneck in the trunk as the subtree nodes (which depend on the trunk’s results) must wait for the trunk
calculation to complete during the downward pass, and wait again while the trunk uses the values
returned by the subtrees during the upward pass. Our approach is simply a series of matrix/vector
operations, and distributing this is a well-studied problem in systems.

In our GPU implementation, we used CuPy (Okuta et al., 2017) without any customizations in
configurations and did not profile or probe into resource usage. A careful analysis of these for
further optimizations will most likely yield further performance improvements.

6 CONCLUSION

We introduced our CFR implementation, designed to be parallelized by computing each iteration as
dense and sparse matrix and vector operations and eliminating costly recursive tree traversal. While
our goal was to run the algorithm on a GPU, the tight nature of our code also allows for a vastly more
efficient computation even when a GPU is not leveraged. Our experiments on solving 20 games
of differing sizes show that, in larger games, our implementation achieves orders of magnitude
performance improvements over Google DeepMind’s OpenSpiel (Lanctot et al., 2020) baselines in
Python and C++, and predict that the performance benefit will be even more pronounced for games
of sizes larger than those we tested. Addressing the memory inefficiency and incorporating the use
of a GPU with non-vanilla CFR variants remains a promising avenue for future research.

10

Under review as a conference paper at ICLR 2025

REFERENCES
URL https://docs.nvidia.com/cuda/cusparse/index.html.

Noam Brown and Tuomas Sandholm. Regret-Based Pruning in Extensive-Form Games.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/c54e7837e0cd0ced286cb5995327dlab-Paper.pdf.

Noam Brown and Tuomas Sandholm. Superhuman Al for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418-424, 2018. doi: 10.1126/science.aaol733. URL
https://www.science.org/doi/abs/10.1126/science.aaol733.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, AAAT 19/IAAT’ 19/EAAT’ 19.
AAAI Press, 2019a. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33011829. URL
https://doi.org/10.1609/aaai.v33101.33011829.

Noam Brown and Tuomas Sandholm. Superhuman Al for multiplayer poker. Science, 365(6456):
885-890, 2019b. doi: 10.1126/science.aay2400. URL https://www.science.org/doi/
abs/10.1126/science.aay2400.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining Deep Re-
inforcement Learning and Search for Imperfect-Information Games. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 17057-17069. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/c61£571dbd2£fb949d3fe5ael1608dd48b-Paper.pdf.

Neil Burch, Michael Johanson, and Michael Bowling. Solving Imperfect Information Games Us-
ing Decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1), Jun.
2014. doi: 10.1609/a2ai.v28i1.8810. URL https://o0js.aaai.org/index.php/AAAI/
article/view/8810.

Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting CFR+ and alternating updates. J.
Artif. Int. Res., 64(1):429-443, jan 2019. ISSN 1076-9757. doi: 10.1613/jair.1.11370. URL
https://doi.org/10.1613/jair.1.11370.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357-362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

Sergiu Hart and Andreu Mas-Colell. A Simple Adaptive Procedure Leading to Correlated Equi-
librium. Econometrica, 68(5):1127-1150, 2000. ISSN 00129682, 14680262. URL http:
//www.jstor.org/stable/2999445.

Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Bulug, Franz Franchetti, John Gilbert, Dy-
lan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl
Yang, John D. Owens, Marcin Zalewski, Timothy Mattson, and Jose Moreira. Mathematical
foundations of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1-9, 2016. doi: 10.1109/HPEC.2016.7761646.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo Sampling for
Regret Minimization in Extensive Games. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,
and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 22. Cur-
ran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper_files/
paper/2009/£file/00411460£7¢c92d2124a67ea0f4cb5£85-Paper.pdf.

11

https://docs.nvidia.com/cuda/cusparse/index.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/c54e7837e0cd0ced286cb5995327d1ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/c54e7837e0cd0ced286cb5995327d1ab-Paper.pdf
https://www.science.org/doi/abs/10.1126/science.aao1733
https://doi.org/10.1609/aaai.v33i01.33011829
https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400
https://proceedings.neurips.cc/paper_files/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/8810
https://ojs.aaai.org/index.php/AAAI/article/view/8810
https://doi.org/10.1613/jair.1.11370
https://doi.org/10.1038/s41586-020-2649-2
http://www.jstor.org/stable/2999445
http://www.jstor.org/stable/2999445
https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf

Under review as a conference paper at ICLR 2025

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Jdnos Kramdr, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A Framework for Reinforcement Learning in Games, 2020. URL https://arxiv.
org/abs/1908.09453.

Matej Moravc¢ik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. DeepStack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Science, 356(6337):508-513, 2017. doi: 10.1126/
science.aam6960. URL https://www.science.org/doi/abs/10.1126/science.
aam6960.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Programming with
CUDA: Is CUDA the parallel programming model that application developers have been waiting
for? Queue, 6(2):40-53, mar 2008. ISSN 1542-7730. doi: 10.1145/1365490.1365500. URL
https://doi.org/10.1145/1365490.1365500.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. CuPy: A
NumPy-Compatible Library for NVIDIA GPU Calculations. In Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural In-
formation Processing Systems (NIPS), 2017. URL http://learningsys.org/nipsl7/
assets/papers/paper_16.pdf.

M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994. ISBN
9780262650403. URL https://books.google.ca/books?id=PuSMEAAAQBAJ.

Jodo Reis. A GPU implementation of Counterfactual Regret Minimization. Master’s thesis, Mas-
ter Thesis, University of Porto, 2015. URL https://repositorio—-aberto.up.pt/
handle/10216/83517.

Jan Rudolf. Counterfactual Regret Minimization on GPU. Jan. 2021. URL https://cent.
felk.cvut.cz/courses/GPU/archives/2020-2021/W/rudoljal/.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
Bard, Finbarr Timbers, Marc Lanctot, G. Zacharias Holland, Elnaz Davoodi, Alden Christianson,
and Michael Bowling. Student of Games: A unified learning algorithm for both perfect and imper-
fect information games. Science Advances, 9(46):eadg3256, 2023. doi: 10.1126/sciadv.adg3256.
URL https://www.science.org/doi/abs/10.1126/sciadv.adg3256.

Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding Friend and Foe
in Multi-Agent Games. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/912d2blc7b2826caf99687388d2e8f7c—Paper.pdf.

Oskari Tammelin. Solving Large Imperfect Information Games Using CFR+, 2014. URL https:
//arxiv.org/abs/1407.5042.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
Texas Hold’em. In Proceedings of the 24th International Conference on Artificial Intelligence,
IJCAT’ 15, pp. 645-652. AAAI Press, 2015. ISBN 9781577357384.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, flhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

12

https://arxiv.org/abs/1908.09453
https://arxiv.org/abs/1908.09453
https://www.science.org/doi/abs/10.1126/science.aam6960
https://www.science.org/doi/abs/10.1126/science.aam6960
https://doi.org/10.1145/1365490.1365500
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://books.google.ca/books?id=PuSMEAAAQBAJ
https://repositorio-aberto.up.pt/handle/10216/83517
https://repositorio-aberto.up.pt/handle/10216/83517
https://cent.felk.cvut.cz/courses/GPU/archives/2020-2021/W/rudolja1/
https://cent.felk.cvut.cz/courses/GPU/archives/2020-2021/W/rudolja1/
https://www.science.org/doi/abs/10.1126/sciadv.adg3256
https://proceedings.neurips.cc/paper_files/paper/2019/file/912d2b1c7b2826caf99687388d2e8f7c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/912d2b1c7b2826caf99687388d2e8f7c-Paper.pdf
https://arxiv.org/abs/1407.5042
https://arxiv.org/abs/1407.5042

Under review as a conference paper at ICLR 2025

Hang Xu, Kai Li, Haobo Fu, QIANG FU, Junliang Xing, and Jian Cheng. Dynamic Discounted
Counterfactual Regret Minimization. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=6PbvbLygT6.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret Min-
imization in Games with Incomplete Information. In J. Platt, D. Koller, Y. Singer, and
S. Roweis (eds.), Advances in Neural Information Processing Systems, volume 20. Curran
Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper_files/
paper/2007/£i1e/08d98638c6fcdl94a4ble6992063e944-Paper.pdf.

A EXPERIMENT 1

In Experiment 1, we tested all four implementations — OpenSpiel’s C++, OpenSpiel’s Python, our
CPU, and our GPU - in 8 commonly tested games (including a perfect-information game, tic-tac-
toe, which CFR can be used to solve) by running CFR for 1,000 iterations.

Table 2: The average per-iteration runtimes (and the standard errors of the means, in brackets) of
CFR implementations: reference OpenSpiel’s and ours (with a CPU or a GPU). The performances
of the fastest implementation for each game are bolded. The games are sorted by the number of
nodes in the game tree and their names in the first column correspond exactly to the game name in
Deepmind’s OpenSpiel library.

Average CFR Iteration Runtime (milliseconds)
Game (in OpenSpiel) OpenSpiel Ours
Python Cit CPU GPU
64-bit [32-bit

tiny-hanabi 0.851 (0.00) 0.035 (0.00) 0.581 (0.00) | 2.958 (0.10) | 2.968 (0.10)
kuhn_poker 1.011 (0.00) 0.042 (0.00) 0.684 (0.00) | 3.319 (0.01) | 3.362 (0.00)
kuhn_poker (players=3) 15.224 (0.01) 0.725 (0.00) 1.177 (0.00) | 4.692 (0.01) | 4.906 (0.01)
first_sealed.auction 81226 (002) 3696 (001) 1.736 (0-00) 3355 (001) 3495 (000)
leduc.poker 153.731 (0.19) | 15.444 (0.02) | 3.449 (0.00) | 6.269 (0.01) |6.178 (0.01)
tiny bridge2p 640.783 (1.57) | 37.524 (0.25) | 24.513 (0.02) | 5.902 (0.01) |5.732 (0.01)
liars.dice 1351.281 (8.39) | 98.109 (0.79) | 96.939 (0.07) |10.766 (0.02) | 8.443 (0.01)
tic-tac.toe 2629.924 (11.04) | 165.389 (0.78) | 156.429 (0.15) | 10.756 (0.02) | 6.556 (0.00)

Table 3: The average per-iteration speedups or slowdowns in runtimes of our CFR implementations
over reference OpenSpiel’s. The positive values represent speedups and the negative values represent
the slowdowns. The games are sorted by the number of nodes in the game tree and their names in
the first column correspond exactly to the game name in Deepmind’s OpenSpiel library. A similar
table showing the original raw runtime values is Table 2.

Average Speedup or Slowdown (times)
Game (in OpenSpiel) OpenSpiel’s Python OpenSpiel’s C++
Our GPU Our GPU
Our CPU- i T 3201t | O “PYU [6abir | 3200
tiny_hanabi 1.5 -3.5 -3.5 -16.8 -852 | -85.5
kuhn_poker 1.5 -3.3 -33 -16.1 <783 | -79.3
kuhn_poker (players=3) 129 3.2 3.1 -1.6 -6.5 -6.8
first_sealed.auction 46.8 24.2 23.2 2.1 1.1 1.1
leduc_poker 44.6 24.5 24.9 4.5 2.5 2.5
tiny bridge_2p 26.1 108.6 | 111.8 1.5 6.4 6.5
liars_dice 13.9 125.5 | 160.0 1.0 9.1 11.6
tic_tac_toe 16.8 244.5 | 401.2 1.1 15.4 252

The raw values and speedups (or slowdowns) are tabulated in Table 2 and Table 3, respectively.

The total allocated CUDA memory by CuPy (Okuta et al., 2017) in our GPU implementation to
solve each game through CFR in Experiment 1 is plotted in Figure 2 and tabulated in Table 4. Note

13

https://openreview.net/forum?id=6PbvbLyqT6
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

Under review as a conference paper at ICLR 2025

Space vs. Game Size

o h
s 64-b!t
S —— 32-bit
o

§

s 10!

<

a

3

- 10°

2

©

19

kel

<107!

8

]

102 103 104 10°

Game Size (# Nodes)

Figure 2: A log-log graph showing the total allocated CUDA memory by our GPU implementation
for each game tested in Experiment 1.

Table 4: The total allocated CUDA memory during CFR iterations for each game tested in Experi-
ment 1. The games are sorted by the number of nodes in the game tree and their names in the first
column correspond exactly to the game name in Deepmind’s OpenSpiel library.

Game (in OpenSpiel) Total Allocated CUDA Memory (MB)
Double-Precision (64-bit) | Single-Precision (32-bit)
tiny_hanabi 0.031 0.026
kuhn_poker 0.032 0.028
kuhn_poker (players=3) 0.261 0.157
first_sealed_auction 1.911 1.121
leduc_poker 3.224 1.978
tiny bridge_2p 35.327 20.373
liars_dice 104.731 65.520
tic_tac_toe 217.263 139.977

that noticeable improvement in memory usage is seen when 32-bit floating-point numbers are used
instead of 64-bit floating-point numbers.

While exploitability is a concept only valid for 2-player zero-sum games (and our method is also
applicable to and tested on non-2-player general-sum games), we ran our algorithm again (separately
from the benchmarks) with exploitabilities for Experiment 1 (on GPU 64-bit implementation). These
are plotted in Figure 3. Note that the convergence behavior of CFR is already well-known, and
our contribution is not about optimizing the convergence metrics like exploitability as most past
CFR works have been about. We calculated exploitabilities purely for the sanity testing of our
implementation.

B EXPERIMENT 2

In Experiment 2, we tested two implementations — OpenSpiel’s C++ and our GPU —in 12 very large
battleship games (up to over 57.9 million nodes) by running CFR for 10 iterations. As these games
are large, we loaded the game without storing all state objects into memory (instead, we use Python
integers).

The raw values and speedups (or slowdowns) are tabulated in Table 5 and Table 6, respectively. Note
that our 32-bit GPU implementation performs about 2.8 times slower for the zeroth battleship game,
but is up to 203.6 times faster (for the seventh battleship game).

14

Under review as a conference paper at ICLR 2025

tiny_hanabi kuhn_poker kuhn_poker(players=3) first_sealed_auction

Exp\mtabmr;\:

Expl tgb\ty

Exp\o\[ab%ﬁy

Exploitability
S

2

~ B

10% 102

s

102 10¢ 102 10° 102

10° 10° 10° 10°
Iterations # Iterations # Iterations # Iterations

leduc_poker tiny_bridge 2p liars_dice tic_tac_toe

2

Explmtabih%{
Explmtab%my
Exploitability
Exploitability

s
s

2

107 10° 10° 107 10° 10° 107 10° 10¢ 107 10° 10°
Iterations # Iterations # Iterations # Iterations

Figure 3: Log-log graphs of exploitabilities for each game tested using our GPU implementation for
the first 16,384 iterations. Note that some of these games are not 2-player zero-sum games where
the concept of exploitability is not well-defined. These are only analyzed for games we tested in
Experiment 1.

Table 5: The average per-iteration runtimes (and the standard errors of the means, in brackets) of
CFR implementations: reference OpenSpiel’s (C++) and ours (with a GPU). The performances of
the fastest implementation for each game are bolded. The games are sorted by the number of nodes
in the game tree. The comma-separated parameters represent the board width, board height, ship
sizes, and number of shots, respectively. The ship values were set to a list of ones.

Game (Named by Us) | Parameters Operg\;re?g(eCSf)R Iteration Runtlmoelfgl(lgs;éc))nds)
64-bit [32-bit
Battleship-0 2,2,[1],2 5.134 (0.26) 14.197 (10.21) 14.393 (10.57)
Battleship-1 2,2,[1;2],2 61.807 (4.50) 5.099 (0.20) 4.880 (0.14)
Battleship-2 2,2,[1],3 40.392 (4.21) 5.247 (0.21) 4.939 (0.13)
Battleship-3 2,3,[1],2 59.662 (3.53) 4.104 (0.27) 3.983 (0.13)
Battleship-4 2,2,[1;2],3 959.262 (122.18) 9.558 (0.42) 7.094 (0.32)
Battleship-5 3,3,[1],2 676.297 (36.66) 17.034 (9.80) 6.510 (0.20)
Battleship-6 2,3,[1],3 1499.620 (120.59) 15.913 (0.83) 10.156 (0.43)
Battleship-7 3.4,[1],2 4161.539 (159.38) 38.554 (2.36) 20.437 (1.04)
Battleship-8 4.4,[1],2 23262.634 (1034.90) 233.995 (9.59) 131.795 (3.48)
Battleship-9 2,3,[1],4 33245.108 (4039.16) | 528.117 (25.22) | 384.525 (5.81)
Battleship-10 3,3,[1;2],2 106613.962 (6977.96) | 933.899 (48.55) | 563.536 (9.90)
Battleship-11 4,5,[1],2 90346.083 (5783.18) | 856.541 (59.31) | 446.369 (10.94)

C GAME PROPERTIES

Table 7 gives details (e.g. number of nodes, terminal nodes, infosets, actions, and players) about the
games we solve during both our experiments, and Table 8 shows the sparsities of the mask matrices
when the discrete games we explore are converted into our desired format.

D SETUP

In order to use our implementation, the game tree must first be transformed into sparse matrices
encoding the game rules. This requires a single complete game tree traversal. Note that this is a
one-time operation performed prior to running our CFR implementations. Table 9 shows the time it
takes to serialize each discrete game from OpenSpiel (Lanctot et al., 2020).

15

Under review as a conference paper at ICLR 2025

Table 6: The average per-iteration speedups or slowdowns in runtimes of our GPU-CFR implemen-
tation over reference OpenSpiel’s (C++). The positive values represent speedups and the negative
values represent the slowdowns. The games are sorted by the number of nodes in the game tree. A
similar table showing the original raw runtime values is Table 5.

Game Average Speedup or Slowdown (times)
Double-Precision (64-bit) | Single-Precision (32-bit)

Battleship-0 -2.8 -2.8

Battleship-1 12.1 12.7

Battleship-2 7.7 8.2

Battleship-3 14.5 15.0
Battleship-4 100.4 135.2
Battleship-5 39.7 103.9
Battleship-6 94.2 147.7
Battleship-7 107.9 203.6
Battleship-8 99.4 176.5
Battleship-9 63.0 86.5
Battleship-10 114.2 189.2
Battleship-11 105.5 202.4

Table 7: The 8 (Experiment 1) plus 12 (Experiment 2) games tested in our benchmark and relevant
statistics: number of nodes, terminal nodes, infosets, actions, and (rational) players. The games
were grouped by the experiment they belonged to, and then sorted by the number of nodes in the
game tree.

[Game [[#Nodes [#Terminals | #Infosets | # Actions [# Players]
tiny_hanabi 55 36 8 3 2
kuhn_poker 58 30 12 3 2
kuhn_poker (players=3) 617 312 48 4 3
first_sealed_auction 7,096 3,410 20 11 2
leduc_poker 9,457 5,520 936 6 2
tiny bridge_2p 107,129 53,340 3,584 28 2
liars.dice 294,883 147,420 24,576 13 2
tic_tac_toe 549,946 255,168 294,778 9 2
Battleship-0 2,581 1,936 210 8 2
Battleship-1 21,877 16,384 1,970 10 2
Battleship-2 23,317 17,488 2,514 8 2
Battleship-3 33,739 28,116 1,118 12 2
Battleship-4 324,981 243,712 46,962 10 2
Battleship-5 426,556 379,161 5,915 18 2
Battleship-6 843,739 703,116 33,518 12 2
Battleship-7 2,529,949 2,319,120 19,154 24 2
Battleship-8 14,811,409 | 13,885,696 61,698 32 2
Battleship-9 21,093,739 | 17,578,116 | 1,005,518 12 2
Battleship-10 52,081,183 | 46,294,416 204,980 24 2
Battleship-11 57,920,421 | 55,024,400 152,402 40 2

16

Under review as a conference paper at ICLR 2025

Table 8: The sparsities of sparse matrix constants in our implementation. CUDA’s (Nickolls
et al., 2008) cuSPARSE “library targets matrices with sparsity ratios in the range between 70%-
99.9%" (cuS). Our values fall under this recommended range. We project that the matrices for
games not tested in our work will typically have similar sparsity values as those we test.

Game Sparsities (%)
M@+V) ‘ ME+E+) ‘ L (Average) ‘ G

tiny_hanabi 96.4 87.5 99.6 98.2
kuhn_poker 96.6 91.7 99.7 98.3
kuhn_poker (players=3) 99.0 97.9 99.9+ 99.8
first_sealed-auction 99.5 95.0 99.9+ 99.9+
leduc-poker 99.9+ 99.9 99.9+ 99.9+
tiny bridge_2p 99.9+ 99.9+ 99.9+ 99.9+
liars_dice 99.9+ 99.9+ 99.9+ 99.9+
tic_tac_toe 99.9+ 99.9+ 99.9+ 99.9+
Battleship-0 99.9+ 99.9+ 99.9+ 99.9+
Battleship-1 99.9+ 99.9+ 99.9+ 99.9+
Battleship-2 99.9+ 99.9+ 99.9+ 99.9+
Battleship-3 99.9+ 99.9+ 99.9+ 99.9+
Battleship-4 99.9+ 99.9+ 99.9+ 99.9+
Battleship-5 99.9+ 99.9+ 99.9+ 99.9+
Battleship-6 99.9+ 99.9+ 99.9+ 99.9+
Battleship-7 99.9+ 99.9+ 99.9+ 99.9+
Battleship-8 99.9+ 99.9+ 99.9+ 99.9+
Battleship-9 99.9+ 99.9+ 99.9+ 99.9+
Battleship-10 99.9+ 99.9+ 99.9+ 99.9+
Battleship-11 99.9+ 99.9+ 99.9+ 99.9+

Table 9: The times it took to convert OpenSpiel’s discrete games into sparse matrices in our imple-
mentations. These games include those tested in any one of our experiments.

[Game [[Setup Time (seconds)]
tiny_hanabi 0.427
kuhn_poker 0.010
kuhn_poker (players=3) 0.070
first_sealed.auction 0.734
leduc_poker 1.051
tiny bridge_2p 11.795
liars_dice 34.264
tic_tac_toe 62.521
Battleship-0 0.706
Battleship-1 2.939
Battleship-2 2.995
Battleship-3 6.660
Battleship-4 48.742
Battleship-5 53.252
Battleship-6 117.131
Battleship-7 254.096
Battleship-8 6736.911
Battleship-9 2280.204
Battleship-10 5446.435
Battleship-11 5470.082

17

	Introduction
	Background
	Finite Extensive-Form Games
	Nash Equilibrium
	Counterfactual Regret Minimization
	Prior Usages of GPUs for CFR

	Implementation
	Setup
	Iteration
	Tree Traversal
	Average Strategy Profile
	Next Strategy Profile

	Benchmarks
	Experiment 1
	Small Games: Tiny Hanabi and Kuhn Poker
	Medium Games: Kuhn Poker (3-Player), First Sealed Auction, and Leduc Poker
	Large Games: Tiny Bridge (2-Player), Liar's Dice, and Tic-Tac-Toe
	Memory Usages

	Experiment 2

	Discussion
	Conclusion
	Experiment 1
	Experiment 2
	Game Properties
	Setup

