
Published as a conference paper at ICLR 2025

IMPROVER: AGENT-BASED AUTOMATED
PROOF OPTIMIZATION

Riyaz Ahuja Jeremy Avigad Prasad Tetali Sean Welleck
Carnegie Mellon University
{riyaza,avigad,ptetali,swelleck}@andrew.cmu.edu

ABSTRACT

Large language models (LLMs) have been used to generate formal proofs of
mathematical theorems in proofs assistants such as Lean. However, we often
want to optimize a formal proof with respect to various criteria, depending on
its downstream use. For example, we may want a proof to adhere to a certain
style, be declaratively structured, or concise. Having suitably optimized proofs is
also important for learning tasks, especially since human-written proofs may not
optimal for that purpose. To this end, we study a new problem of automated proof
optimization: rewriting a proof so that it is correct and optimizes for an arbitrary
criterion, such as length or declarativity. As a first method for automated proof
optimization, we present ImProver, a large-language-model agent that rewrites
proofs to optimize arbitrary user-defined metrics in Lean. We find that naively
applying LLMs to proof optimization falls short, and we incorporate various
improvements into ImProver, such as the use of symbolic Lean context in a
novel Chain-of-States technique, as well as error-correction and retrieval. We test
ImProver on rewriting real-world undergraduate, competition, and research-level
mathematics theorems, finding that ImProver is capable of rewriting proofs so that
they are substantially shorter and more declarative in structure.

1 INTRODUCTION

The fundamental virtue of a mathematical proof is that it provides certainty: a deductive argument
shows that the assumptions of a mathematical statement logically guarantee the conclusion. In
practice, however, informal, natural-language proofs are prone to imprecision, ambiguity, and error.
Using a formal language such as Lean (de Moura & Ullrich, 2021) removes such ambiguity and
imprecision and enables a proof assistant to verify correctness down to the primitives of a formal
axiomatic system.

Although any two correct formal proofs of a statement equally establish the validity of their conclusion,
there are various criteria on which one of them may be preferred over another. When an expert
formalizer finishes a proof, they always go back and revise it, aiming, for example, to improve
readability and robustness. Instructors show their students how to shorten their proofs and structure
them better, and the maintainers of Lean’s Mathlib (mathlib Community, 2020) demand revisions to
submissions to improve their robustness and adhere to style guidelines.

To this end, we study a new problem of automated proof optimization: rewriting a proof so that it
is correct and optimizes a user-specified criterion such as length or readability. To mathematicians
and formalizers, the ability to improve proofs automatically is invaluable to the maintenance and
development of libraries for research and pedagogy alike. For example, the development of Mathlib
as an evolving corpus maintained by hundreds of human formalizers requires strict guidelines to
ensure efficient and generalized theorems — a task that proof optimizers can excel at automating, in
order to generate proofs that rely on existing lemmas with concision and generalizability.

Moreover, automated proof optimization is not only useful in its own right, but also for the purposes of
improving AI that can find proof on its own. At the very least, it provides a form of data augmentation:
the limited amount of formal training data is currently a bottleneck for machine learning, and our
methods provide ways of generating additional data automatically. More interestingly, our methods
also provide a means of optimizing training data. For example, other work (Jiang et al., 2023)

1

Published as a conference paper at ICLR 2025

suggests that a promising means for generating formal proofs is to have an LLM sketch a high-level
outline of a proof that can be filled in by symbolic automated reasoning methods. For that purpose, it
is useful to have a corpus of proofs that are written in such a structured form. Our methods provide
means of generating such proofs from less structured ones.

Our work shows that naively applying LLMs to proof optimization falls short, often resulting in
incorrect or poorly optimized proofs. We develop various improvements that can be applied on top of
a black-box language model, including Chain-of-States prompting – an analogy to chain-of-thought
prompting (Wei et al., 2022) that shows intermediate proof states, contextual information, error-
correction, and retrieval. We incorporate these into ImProver: a large language model agent that
rewrites proofs to optimize arbitrary user-defined metrics in Lean. We test ImProver on rewriting
real-world undergraduate theorems, competition problems, and research-level mathematics, finding
that ImProver is capable of rewriting proofs so that they are substantially shorter and more declarative
in style.1

Original (human-written)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
have h2' : Classical.choose (h1 x).exists =

y :=
h1u _ (Classical.choose_spec (h1
x).exists)

rw [h2']
obtain ⟨w, h1e', h1u'⟩ := h1 y
have h4 := Classical.choose_spec (h1

y).exists
have hxw : x = w := by
apply h1u'
rw [h2]
exact h1e

rw [hxw]
exact h1u' _ h4

ImProver (length-optimized)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
rw [h1u _ (Classical.choose_spec _)]
obtain ⟨w, h1e', h1u'⟩ := h1 y
rw [h1u' _ ((h2 _ _).mpr h1e)]
exact h1u' _ (Classical.choose_spec _)

Figure 1: ImProver automatically rewrites formal proofs to optimize a criterion such as length or
readability while remaining correct. In this example, ImProver optimizes a human-written lemma
from the 2022 International Math Olympiad (Question 2, solution from Compfiles (David Renshaw,
2024)) for length. ImProver’s optimized proof is correct and more concise.

2 RELATED WORK

Recently there has been wide interest in automating theorem proving in interactive proof assistants;
see (Lu et al., 2023; Li et al., 2024) for surveys. Indeed, at a high level, proof assistants constitute a
sound verifier in a prover-verifier game (Anil et al., 2021), suggesting that a machine-learning based
prover that interfaces with such a verifier is a natural next step for formal reasoning systems.

A typical approach to developing machine learning provers (Polu & Sutskever, 2020) is to train
on a large corpus of mathematical proofs such as Lean’s Mathlib (mathlib Community, 2020; Han
et al., 2022; Polu et al., 2022b; Lample et al., 2022; Yang et al., 2023; Hu et al., 2024). A model
learns from the distribution of proofs in the corpus, such as Mathlib-style proofs. Recently, the
AlphaProof (AlphaProof & Teams, 2024) system was shown to produce proofs with an arcane,
non-human structure and syntax. We consider the new problem of rewriting a proof to optimize a
metric, such as rewriting a proof into a more declarative or more concise one. Proof optimization is
more general than theorem proving, since we can also rewrite an empty proof to optimize correctness.
Finally, there is a rich literature on the varied styles of (human) formal proofs (e.g., (Autexier &
Dietrich, 2010; Wiedijk, 2004)). Our model, ImProver, builds on neural theorem proving techniques

1Code is available at https://github.com/riyazahuja/ImProver.

2

https://github.com/riyazahuja/ImProver

Published as a conference paper at ICLR 2025

including full proof generation (Jiang et al., 2023; First et al., 2023), conditioning on example
proofs (Jiang et al., 2023), retrieval (Yang et al., 2023; Thakur et al., 2024), and preceding file
context (First et al., 2023; Hu et al., 2024), as well as error correction (Madaan et al., 2023; Chen
et al., 2023) and documentation retrieval (Zhou et al., 2023) from code generation. ImProver brings
these code generation techniques, along with new Chain-of-States prompting and meta-programmed
contextual information, into a unified proof optimization agent.

3 AUTOMATED PROOF OPTIMIZATION WITH ImProver

Given a theorem statement x, additional context c, and an initial proof y0, proof optimization consists
of generating a new proof y that is correct and minimizes (or maximizes) a metric µ(x, c, y0, y) → R.

3.1 METRICS

By varying the metric, we can perform tasks such as shortening proofs, making them more declarative
in structure, or even automated proving. We consider four metrics:

Length Metric: The length metric measures the number of tactic invocations in the tactic proof,
aiming to reduce the proof’s length while ensuring its correctness. Note that shorter proofs often
represent more efficient proofs.

Declarative Metric: We aim to rewrite proofs to be written in a declarative style (Autexier & Dietrich,
2010; Wiedijk, 2004), which is related to the number of independent subproofs in a proof. Intuitively,
this corresponds with a sense of structure for the proof, and can be interpreted as being more readable,
explicit, or modular in style. Concretely, we evaluate declarativity using the ratio of number of
explicitly typed have tactics to total number of tactic invocations.

Mixed Metric: We aim to combine the length and declarative metrics as described above to generate
proofs that are both concise and declarative. This is done by penalizing all tactics, and rewarding
declarative tactics (e.g. have) in order to amortize the net total. We then aim to maximize the
net score. In practice, we assign a value of −1 to each tactic in the proof, and a value of +5 for
declarative tactics, meaning that each declarative tactic “pays” for 4 additional tactics.

Completion Metric: The completion of a proof simply describes its correctness. This is a trivial
metric which measures the number of errors present. The completion metric is used for concretely
viewing proof optimization as a generalization of neural theorem proving.

Degenerate Solutions. Our goal here has been to provide a flexible means to optimize proofs with
respect to any metric that might prove useful. The particular metrics we use here are intentionally
simplistic, in that they are used only to test and evaluate the method. The task of designing metrics
that correspond more accurately to human criteria or are optimal for various training tasks is left to
later work as what defines a good metric are dependent on the use case.

Additionally, we note the possibility of degenerate solutions, as in, generations of proofs that score
highly on a certain metric, while not corresponding to the intuitive sense of that metric. For example,
overuse of have statements can greatly increase the declarativity of the proof, despite not being used
in the proof’s deductive process whatsoever. It is undesirable for a model to generate such degenerate
solutions, and to account for this, we guide the model with many human-written examples of each
metric in question, rather than requiring it to solely maximize a reward function. For more complex,
user-defined metrics, the possibilities for degenerate solutions only increases, and as such, guiding
models using concrete examples as well as using reward models rather than reward functions to score
metrics may mitigate the risks of such degenerate solutions.

3.2 IMPROVER

We develop several improvements that can be applied to a black-box LLM generator yout ∼ G(·|xin),
such as GPT-4 (OpenAI et al., 2024), and specify ImProver with respect to these parameters. The
explicit prompts and templates that are sent to the LLM can be found in (§A).

3

Published as a conference paper at ICLR 2025

Without Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
· use xs; left; exact xt
. use xs; right; exact xu

With Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
/-
case inl.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xt : x ∈ t
⊢ x ∈ s ∩ (t ∪ u)
case inr.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xu : x ∈ u
⊢ x ∈ s ∩ (t ∪ u)
-/
· use xs; left; exact xt
/-
Goals Solved!
-/
. use xs; right; exact xu
/-
Goals Solved!
-/

Figure 2: A Lean proof (left) with Chain-of-States prompting annotations (right).

3.2.1 CHAIN-OF-STATES PROMPTING

Typical formal proofs are a sequence of tactics (akin to steps) and states that show the hypotheses
and goals at each step. The intermediate states often contain valuable information (e.g., an expression
after it has been simplified) that is not present in the tactics. To allow the model to reason about
these intermediate goals and hypotheses, we use tools from Lean metaprogramming to automatically
annotate each proof state as a comment prior to each tactic. We refer to this method as Chain-of-
States (CoS) prompting since it makes intermediate states explicit, akin to how chain-of-thought
prompting (Wei et al., 2022) makes intermediate steps of a solution explicit.

These states are extracted directly and symbolically from the underlying Lean compilation steps using
Lean’s rich metaprogramming suite. The implementation of this extraction system is modeled from
the work (Kim Morrison, 2024). Specifically, in the compiler’s elaboration and evaluation stages
– where the parsed theorem code is first converted into concrete syntax trees (in practice, Syntax
objects) and abstract syntax trees (Expr objects) – we convert the CST and AST output objects
into the relevant proof data and proof states in the form of proof trees (Lean.Elab.InfoTree).
These proof trees contain detailed context and information on a tactic-by-tactic level relating to the
modification of the proof state, metavariable context, and proof correctness.

After state extraction is completed and cached for efficient future access, we annotate the proof text
itself to contain the intermediate states in the form as comments. Figure 2 shows an example.

This explicit reasoning aims to help the generator model construct more optimized proofs via
additional symbolic data.

3.2.2 OUTPUT FORMATTING.

LLM outputs often contain ancillary and syntactically invalid content, especially before and after
the actual proof. Additionally, by applying additional structure to the LLM outputs, we may hope
to generate more structured proofs. To analyze this hypothesis, we introduce two additional output
formats in addition to the standard string output: string list and string tree. The
former enforces the model output of a proof to be a tactic sequence represented as a list of strings,
and the latter enforces proofs to be written as proof trees, represented as a tree of strings.

3.2.3 SAMPLING METHOD

We also introduce different methods of sampling between many (sequential or parallel) LLM inference
calls, involving best-of-n and iterative refinement implementations, as well as combinations thereof.

4

Published as a conference paper at ICLR 2025

Best-of-n. The best-of-n technique generates multiple (n) calls to the language model and selects the
“best” via a simple selection policy that first prioritizes output correctness, and secondly prioritizes
the evaluated metric delta score.

Using a temperature value of 1, we ensure that our n calls to the model are diverse, as the temperature
hyperparameter (ranging between 0 and 2) controls the randomness of the outputs. The default
value of 1 ensures that outputs are sufficiently random without sacrificing accuracy and generating
unpredictable behavior. Moreover, this allows for sufficient variance that the best-of-n scoring
function has many distinct inputs to choose from.

More specifically, our scoring function is given by the 2-ary comparison function S, whose arguments
are output objects y, y′.

S(y, y′) =


max(y, y′, key: x 7→ µ(x)), E(y) = E(y′) = 0

y, E(y) = 0, E(y′) > 0

y′, E(y) > 0, E(y′) = 0

min(y, y′, key: x 7→ E(x)), E(y) = E(y′) > 0

Where µ(x) is the metric score of x, and E(x) is the number of errors in x. This comparison function
can be extended to evaluate the best output of any finite n via induction.

Error correction and Refinement. Inspired by self-debugging techniques in code genera-
tion (Madaan et al., 2023; Chen et al., 2023), ImProver identifies and corrects errors in the generated
proofs by iteratively refining its outputs. The refinement process relies on user-defined parameters n
and prev_num to specify the number of iterations and the number of previous iterations’ data to
forward, respectively. Each iteration carries information on the last prev_num iterations, including
input, output, metric score, correctness, and error messages.

Combination Sampling and Compound Prompt Functions. Compound prompt functions utilize
the curried nature of the back-end implementations of best-of-n and refinement to nest these techniques
within one another. For example:

best_of_n((refinement,m),n) is a compound sampling method that run a best-of-n, where
each call is a m-step refinement.

refinement((best_of_n,m),n) is a compound sampling method that runs a n-step refine-
ment, where each call is a best-of-m call to the LLM.

Note that with each of these compound prompt functions, there are always a total of mn iterations.

3.2.4 RETRIEVAL

ImProver uses MMR (Maximum Marginal Relevance)-based (Carbonell & Goldstein, 1998) retrieval-
augmented generation to select relevant examples and documents. More specifically, for a user-
specified k, example retrieval selects the k most relevant examples of proof optimization on a specific
metric. additionally, document retrieval extracts information using MMR from a pair of fixed (vector)
databases for the specified metric. The databases store syntactically chunked data from the Theorem
Proving in Lean (TPiL) handbook – containing syntax guides and tactic explanations – and the
Mathlib mathematics libary – containing thousands of theorems and lemmas.

The Mathlib retriever finds the top k documents that score the highest MMR score against the current
theorem, the TPiL retriever finds the top k documents that score the highest MMR score against the
current theorem in context and all current error messages. This retrieval process helps in generating
more contextually accurate prompts that allow the language model to better correct its own errors as
well as find useful lemmas to reference.

4 EXPERIMENTS

We test ImProver on rewriting real-world undergraduate theorems, competition problems, and
research-level mathematics and compare its results to those of the base GPT-4o and GPT-4o-mini
models. We examine the optimization capabilities of ImProver for the length and declarative metrics,

5

Published as a conference paper at ICLR 2025

studying the effectiveness in maintaining the correctness of the tactic proof while making it more
concise as well as making it more declarative in style and structure.

4.1 SETUP

Our experimentation is split into three distinct stages. We first perform ablation testing on the
ImProver model parameters (§3.2) to ensure that ImProver’s parameter specification is the optimal
one with respect to correctness and metric optimization score. We then evaluate this optimal parameter
combination on datasets of varying complexity and analyze the performance and results thereof.
Lastly, we note the performance of ImProver in NTP applications in comparison to the base GPT-4o
and GPT-4o-mini models.

Datasets. We evaluate ImProver on subsets of the Mathematics in Lean (MIL) (leanprover-
community, 2024), Compfiles (David Renshaw, 2024), and Mathlib (mathlib Community, 2020)
datasets. Additionally, ablations are performed on a subset of MIL, and theorem proving is bench-
marked on various subsets of MIL as well as the MiniF2F (Zheng et al., 2022) dataset. Details of the
datasets used in each experiment is included in appendix B.1.

Models. Our base generator uses GPT-4o (OpenAI et al., 2024) (gpt-4o-2024-08-06). Since
no prior methods currently exist for automated proof optimization, we consider a prompted GPT-
4o without the improvements described in (§3.2) as our baseline. Additionally, the baseline and
ImProver both receive a prompt containing instructions to optimize for the given metric, with the
theorem statement, context, and initial proof. ImProver augments this prompt with the data from the
improvements described in §3.2. Additional input information is detailed in appendix A.

Performance metrics. Since proof optimization is a new task, we define four performance metrics
for measuring aspects of correctness and improvement.

First, we define improvement for length as percentage change in length, µlen(y0)−µlen(y)
µlen(y0)

× 100. For
readability, we use the difference, µread(y)− µread(yo). If no correct output is generated by the model
for a specific theorem, improvement is defined to be zero. We define nonempty improvement as the
improvement restricted to theorems for which some output has nonzero improvement. Intuitively,
improvement is the expected improvement in metric score from the input to output, accounting for
errors in the generation. The nonempty improvement score is the expected improvement in metric
score, given that there are no errors in the generation.

Additionally, the accuracy is the percentage of theorems in the dataset which the model was able to
generate a correct output for. The improved accuracy is the percentage of theorems in the dataset
which the model was able to generate a correct output for, as well as improve the metric to be nonzero.

4.1.1 ABLATION SETUP

When performing our ablation studies, we used a fixed dataset (MIL; see appendix B.1) and metric
(length) and varied the parameters of all the features to find the optimal combination. However, as
there are over 8640 possible combinations, rather than test all combinations, we evaluate using a
factorial testing method.

Testing Groups. We define the following testing groups with the specified parameter combinations:

GPT-4o-mini/GPT-4o: This varies the GPT-4o model, outputting a string with no other features.

Output and CoS: We evaluate the effects of different output formatting styles (string, string
list, string tree) and CoS (True, False), with the model fixed as GPT-4o, with no other
features enabled.

Example Retrieval: We evaluate the effects of increasing the number of examples provided (multi-
shot prompting) in the range of 0, 3, 5, 7, and 10, with the model fixed as GPT-4o, CoS and output
formatting fixed as the best combination from the previous test, and no other features enabled.

Sampling Method: Here, we evaluate the effects of best-of-n and refinement for a fixed n = 5.
Additionally we test on the refinement cases if forwarding the most recent iteration result, or all
previous iteration results is the best, and if we should keep the best out of the iterations, or the most

6

Published as a conference paper at ICLR 2025

Table 1: Average Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 3.7 15.15 26.36% 8.31%
ImProver 20.96 55.29 100.0% 35.44%

Declarativity GPT-4o 2.21 8.02 18.75% 6.13 %
ImProver 9.34 30.53 100.0% 24.56%

Mixed GPT-4o 3.51 23.90 14.70% 5.11%
ImProver 27.31 39.24 100.0% 30.55

Table 2: MIL Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 6.25 18.58 37.5% 14.42%
ImProver 30.54 56.56 100.0% 50.0%

Declarativity GPT-4o 4.18 14.48 28.85% 11.54%
ImProver 13.45 30.97 100.0% 34.21%

Mixed GPT-4o 3.70 27.38 13.51% 0.0%
ImProver 43.55 44.76 100.0% 45.94%

recent. The model is fixed as GPT-4o, CoS, output formatting, and examples are fixed as the best
combination from the previous test, and no other features enabled.

n and Model: Here, we evaluate the effects of larger n values and different models. We test
n = 3, 5, 7, 10, 15 on GPT-4o and GPT-4o-mini, as well as n = 20 for GPT-4o-mini (as it is of a
far lower token cost). CoS, output formatting, examples, and sampling method are fixed as the best
combination from the previous test, and no other features enabled.

Combos and RAG: We evaluate combination methods refinement(best_of_m',m) and
best_of_m'(refinement(m)), for m ̸= m′ with mm′ equal to the optimal value m from the
previous test. We also test the effect of enabling document retrieval. Model, CoS, output formatting,
examples, n, and sampling method are fixed as the best combination from the previous test.

Selection. For each testing group, we select the best parameter combination — which is then held as
constant for the testing of all future testing groups — based on the combination that has the maximal
improvement score. This improvement score represents the expected improvement in metric score,
accounting for possible errors in the generation; selecting the parameter combination with the highest
such score allows for rewarding both generation accuracy and large improvements in the metric score.

Comparing this with the other three performance metrics, accuracy is not prefered as a selection
heuristic, as by simply returning the initial input, we can get 100% accuracy. Improved accuracy
accounts for this by only counting theorems that has some positive improvement in metric score in
the calculation, but this does not reward larger improvements to metric score any differently than
smaller ones. Conversely, nonempty improvement ignores incorrect generations, so it is also not
preferable for selection. The improvement score accounts for all this, rewarding correct generations
and discouraging incorrect ones, and placing a higher weight to larger improvements in metric score.

Ablation datasets. We evaluate our ablations on a subset of MIL as detailed in appendix B.1.

4.2 RESULTS

ImProver is capable of optimizing proofs in all settings. From Table 2, Table 3, and Table 4, we can
see that ImProver is capable of optimizing proofs on all datasets for both the length and declarative
metrics, as well as on the mixed metric. Furthermore, Table 1 shows that across all metrics, ImProver
significantly outperforms GPT-4o on proof optimization tasks on every experimental measure –
aggregated from all datasets. Additionally, from Table 2, Table 3, and Table 4, we can see that
ImProver outperforms GPT-4o on each dataset as well. We proceed to analyze this data and its
implications.

7

Published as a conference paper at ICLR 2025

Table 3: Compfiles Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 2.75 30.7 11.54% 5.13%
ImProver 18.86 54.48 100.0% 34.62%

Declarativity GPT-4o 0.39 3.38 14.1% 1.28%
ImProver 5.74 24.89 100.0% 19.23%

Mixed GPT-4o 3.96 3.96 26.9% 20.0%
ImProver 20.60 76.53 100.0% 23.07%

Table 4: Mathlib Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 0.0 0.0 16.67% 0.0%
ImProver 6.19 53.65 100.0% 11.54%

Declarativity GPT-4o 0.0 0.0 4.65% 0.0%
ImProver 4.63 33.19 100.0% 11.63%

Mixed GPT-4o 2.92 30.14 9.30% 4.65%
ImProver 4.16 7.45 100.0% 9.30%

Length optimization. First focusing on the length metric, we see that ImProver outperforms GPT-4o
with respect to the improvement score by 566% (aggregated over all datasets). Additionally, we are
guaranteed that ImProver produces a correct output, although that output may just be the same as the
input. However, 35.44% of the time, it generates a correct output that is not the same length as the
input, and in that case, we expect an average of a 55.29% reduction in length. Comparing this with
GPT-4o, we conclude that not only can ImProver optimize at a higher level on arbitrary theorems,
but its ability to generate nontrivial correct outputs is far greater in comparison to GPT-4o.

Declarativity optimization. Declarativity optimization is similar, with ImProver outperforming
GPT-4o by 423%. Moreover, the accuracy, improved accuracy, and nonempty improvement disparities
for declarativity parallel those of the length tests. However, it should be noted that for both GPT-4o
and ImProver, the accuracy and improved accuracy scores were markedly smaller for declarativity
than length optimization. This suggests that for both models, it was generally more “difficult” to
generate a correct output, and moreover, generate a correct output with a better metric score than
the input, for declarativity optimization than length optimization. In other words, optimizing for
declarativity is more difficult for the underlying generator than optimizing for length. However, we
speculate with higher-quality prompts and metrics, this disparity can be minimized. Regardless, we
note that different metrics can be less likely to be correctly optimized, and that model performance is
correlated with the metric it seeks to optimize, both for GPT-4o and ImProver.

Mixed optimization. For the mixed optimization of both length and declarativity, we observe a
778% outperformance by ImProver in the aggregate, with similar increases across all experimental
measures. It is notable that the combined improvements and accuracies mirror the trends from the
individual length and declarativity metrics, suggesting that ImProver is able to scale its optimizations
to align with the increased complexity of the metric. Moreover, this empirically shows that for
more complex and arbitrarily-defined metrics, ImProver maintains its ability to generate nontrivial
optimizations, given sufficiently high-quality examples, prompts, and scoring functions.

Optimization varies based on dataset difficulty. Additionally noting Table 2, Table 3, and Table 4,
we observe that the improvement score for all metrics for both GPT-4o and ImProver is highest for
the MIL dataset, lower for Compfiles, and the lowest on the Mathlib theorems. This suggests that the
expected improvement in metric score decreases with higher difficultly, with undergraduate-level
theorems having a significantly higher expected improvement than research-level theorems. However,
it should be noted that for all metrics, the nonempty improvement of ImProver stayed somewhat
consistent, whereas for GPT-4o, it followed the aforementioned trend of decreasing with difficulty.
Similarly, the accuracy and improved accuracy scores for both metrics and models decreased with
higher difficulty datasets (disregarding ImProver’s accuracy scores, as they are ensured to be 100%).
This suggests that although the base GPT-4o generator is less likely to generate a correct output for

8

Published as a conference paper at ICLR 2025

higher difficulty datasets, the improvements that ImProver makes to the base generator allows it
to maintain its improvement in the metric score whenever a correct output is generated. As such,
we can speculate that the bottleneck in the improvement score is not the model’s ability to optimize
the proof for a metric, but rather its ability to generate a new correct proof at all. As such, we
conjecture that with more capable generator models, the accuracy — and thus, the improvement score
— in optimization tasks will continue to increase, until the improvement scores match the nonempty
improvement.

Overall, we conclude that although the performance of both ImProver and GPT-4o decreases on
length and declarativity optimization on more difficult datasets, ImProver significantly outperforms
GPT-4o on all datasets for length, declarativity, and mixed optimization.

4.2.1 ABLATION TESTING

Table 5: Ablation results. Each cell in the ablation tests shows best / worst, which are the best
and worst parameter combinations in the test group.

Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o-mini 0 0 3.62% 0%
GPT-4o 7.03 19.67 35.77% 15.33%
+ Output and CoS 8.04 / 6.31 12.38 / 14.17 64.96% / 44.53% 21.17% / 16.06%
+ Example Retrieval 9.34 / 5.67 14.7 / 8.44 63.5% / 67.15% 21.9% / 16.79%
+ Sampling Method 15.35 / 9.34 18.44 / 14.7 83.21% / 63.5% 36.5% / 21.9%
+ n and Model 23.51 / 3.65 26.28 / 4.63 89.47% / 78.95% 45.61% / 8.77%
+ Combos and RAG 34.88 / 28.25 57.56 / 33.48 60.61% / 84.38% 54.55% / 53.12%

ImProver 34.88 57.56 100% 54.55%

We perform ablation studies using a subset of the MIL dataset as discussed in §4.1.1. The results
of this factorial study are aggregated in Table 5. We measure the baseline results from the GPT-
4o and GPT-4o-mini models, noting that GPT-4o is the better-scoring model (with respect to the
improvement score). Thus, fixing this model, we vary the output formatting type and if CoS is enabled,
and determine that outputting string list with CoS enabled maximizes the improvement score.
Fixing these parameters, we now vary the number of examples retrieved, noting that prompting
with 10 examples maximizes the improvement score. Fixing this parameter, we vary the sampling
methods (excluding compound methods and fixing n = 5) and observe that best-of-n is the best
parameter combination. Now, as GPT-4o-mini is significantly less computationally expensive than
its GPT-4o counterpart, we test both models with the sample method fixed to best-of-n, and vary
n = 1, 3, 5, 7, 10, 15, and for GPT-4o-mini, also n = 20. We conclude that GPT-4o with n = 15 is
the most effective. Fixing these parameters, we consider all mixed compound sampling methods with
and without document retrieval enabled, concluding that a 5-step refinement with best-of-3 on each
iteration, with RAG enabled, is the optimal combination.

Thus, as we can see from Table 5, the optimal parameter combination comes from gpt-4o outputting
as a string list with CoS, RAG, 10 examples, 5-step refinement with each iteration being a
best-of-3 evaluation. Changing any one of these parameters them leads to a reduction in performance.
Additional ablation data can be found at (§B.2).

Declarativity and Chain-of-States (CoS) Ablation. We additionally examine the effects of dis-
abling CoS on declarativity optimization tasks, as we speculate that CoS has a high impact on the
performance of declarativity optimization tasks, as the proof states that are embedded due to CoS
seem to be a critical aspect to generating the explicit declarations that the declarative metric measures.

We confirm this result by considering Table 6 and observe that enabling CoS nearly doubles the
improvement score, and significantly improves the nonempty improvement score, suggesting that CoS
has a large impact on optimizing for the declarative metric, as conjectured. However, we also note a
significant increase in improved accuracy, which suggests that embedding the chain of states also
improves the ability of the model to generate nontrivial correct outputs, implying that the symbolic
information contained in the states are critical to effectively making a proof more declarative.

Syntax Guidance Ablation. We examine the effects of syntax guidance on ImProver’s performance.
To test this, we consider a subset of MIL (B.1), and optimize for length with and without error

9

Published as a conference paper at ICLR 2025

Table 6: CoS Declarativity Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 4.97 15.89 37.5% 12.5%
ImProver, CoS Disabled 9.23 24.61 100.0% 28.12%
ImProver 16.69 31.42 100.0% 46.88%

Table 7: Syntax Guidance Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 11.00 25.94 42.42% 21.21%
ImProver, No Syntax Guidance 23.42 49.97 100.0% 46.88%
ImProver 28.94 48.74 100.0% 59.38%

message forwarding. Considering the results of this ablation in Table 7, we observe that without
syntax guidance and error forwarding, the ability of the model to improve the metric score is
approximately unchanged, but there is a significant 13% spike in improved accuracy. This signifies
that the syntax guidance improves the model’s ability to generate correct results – as is expected – but
does not improve the model’s ability to optimize proofs assuming correct generations. This ensures
that the large improvement in performance compared to GPT-4o is not solely due to simple syntax
guidance, but moreso caused by improvements like CoS, example retrieval, retrieval, etc.

4.2.2 NEURAL THEOREM PROVING EVALUATION

Table 8: Proof generation results. Each cell shows percent accuracy.
MIL-C04 Pass@15 MIL-C08 Pass@15 MIL Pass@15 MiniF2F-test Pass@8

GPT-4o 18.18% 25% 21.73% 9.02%
ImProver 45.45% 33.33% 39.13% 16.39%
Lean Expert Iteration - - - 34.5%

We evaluate ImProver’s neural theorem proving (NTP) performance using the completion metric
on a subset from MIL with empty input proofs (B.1).Table 8 shows the accuracy on the dataset split
by topic for both ImProver and GPT-4o. ImProver substantially outperforms GPT-4o across all
datasets. Thus, proof optimization systems do indeed generalize NTP systems.

Additionally, we note that specialized neural theorem proving models such as GPT-f (Zheng et al.,
2022) and Lean Expert Iteration (Polu et al., 2022a) outperform ImProver, but as they are specially
trained on a large corpus of Lean code (whereas ImProver is an extension of GPT-4o), as well as
designed for theorem proving rather than proof optimization, it is worthwhile for future works to
consider fine-tuning or specializing ImProver’s methodology specifically for theorem proving. We
reiterate that the purpose of this experiment is to empirically prove that proof optimization systems
like ImProver do indeed generalize the problem of theorem proving as claimed in §3.1.

5 CONCLUSION

In this paper, we introduced ImProver, a novel agent-based tool for automated proof optimization
in Lean. By incorporating CoS, RAG, and other features, ImProver significantly outperforms base
language models in proof optimization over undergraduate, competition, and research-level problems.

However, ImProver is limited by its high cost, which is exacerbated by its reliance on proprietary
LLM’s. In future work, we will apply SFT and RL on a smaller model to match performance locally.

ImProver demonstrates its ability to generate substantially shorter and more declarative proofs while
maintaining correctness. As such, we believe that ImProver sets the stage for further work on proof
optimization to advance the study and use of AI in mathematics.

ACKNOWLEDGEMENTS

We thank the L3 Lab, Hoskinson Center for Formal Mathematics, Convergent Research, Lean FRO,
and the OpenAI Researcher Access Program for their support.

10

Published as a conference paper at ICLR 2025

REFERENCES

AlphaProof and AlphaGeometry Teams. AI achieves silver-medal standard solving interna-
tional mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Cem Anil, Guodong Zhang, Yuhuai Wu, and Roger Grosse. Learning to give checkable answers with
prover-verifier games, 2021. URL https://arxiv.org/abs/2108.12099.

Serge Autexier and Dominik Dietrich. A tactic language for declarative proofs. In Matt Kaufmann
and Lawrence C. Paulson (eds.), Interactive Theorem Proving, pp. 99–114, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’98, pp. 335–336,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 1581130155. doi:
10.1145/290941.291025. URL https://doi.org/10.1145/290941.291025.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

David Renshaw. compfiles. https://github.com/dwrensha/compfiles, 2024.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag.
ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.

Jiewen Hu, Thomas Zhu, and Sean Welleck. minictx: Neural theorem proving with (long-)contexts,
2024. URL https://arxiv.org/abs/2408.03350.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Kim Morrison. lean-training-data. https://github.com/kim-em/
lean-training-data, 2024.

Guillaume Lample, Timothee Lacroix, Marie anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=J4pX8Q8cxHH.

leanprover-community. mathematics_in_lean. https://github.com/
leanprover-community/mathematics_in_lean, 2024.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving, 2024.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14605–14631, Toronto, Canada, July 2023. Association for Computational

11

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2108.12099
https://doi.org/10.1145/290941.291025
https://arxiv.org/abs/2304.05128
https://github.com/dwrensha/compfiles
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://openreview.net/forum?id=rpxJc9j04U
https://arxiv.org/abs/2408.03350
https://openreview.net/forum?id=SMa9EAovKMC
https://github.com/kim-em/lean-training-data
https://github.com/kim-em/lean-training-data
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=J4pX8Q8cxHH
https://github.com/leanprover-community/mathematics_in_lean
https://github.com/leanprover-community/mathematics_in_lean

Published as a conference paper at ICLR 2025

Linguistics. doi: 10.18653/v1/2023.acl-long.817. URL https://aclanthology.org/
2023.acl-long.817.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

12

https://aclanthology.org/2023.acl-long.817
https://aclanthology.org/2023.acl-long.817
https://openreview.net/forum?id=S37hOerQLB
http://dx.doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2303.08774

Published as a conference paper at ICLR 2025

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. CoRR, abs/2202.01344, 2022a.
URL https://arxiv.org/abs/2202.01344.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning, 2022b.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An
in-context learning agent for formal theorem-proving, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani
(eds.), Types for Proofs and Programs, pp. 378–393, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-24849-1.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language
models. In Neural Information Processing Systems (NeurIPS), 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9ZPegFuFTFv.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ZTCxT2t2Ru.

13

https://arxiv.org/abs/2202.01344
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=ZTCxT2t2Ru

Published as a conference paper at ICLR 2025

A PROMPTS

In this appendix, we note the prompts used by ImProver both for general LLM prompting, as well as
the metric-specific prompts.

A.1 TEMPLATE

For the main prompt sent to the LLM on each sample, we build a prompt string using a chat prompt
template that is then invoked at runtime to fill in the variables.

Namely, these variables include the set of metric prompts, previous results, input theorem, context, a
syntax documents, Mathlib documents, and examples.

The prompt template is a conversation of the format:

Placeholder: All metric prompts with a ‘System’ role
System: You will be given the proof context (i.e. the lean file contents/imports leading up
to the theorem declaration) wrapped by <CONTEXT>...</CONTEXT>.
You will be given the previous num_prev input/output pairs as well as their metric (met-
ric.name) score and correctness score, as well as any error messages, for your reference to
improve upon. Each of these previous results will be wrapped with <PREV I=0></PREV
I=0>,...,<PREV I=num_prev-1></PREV I=num_prev-1>, with I=num_prev-1 being the most
recent result.
Remember to use lean 4 syntax, which has significant changes from the lean 3 syntax. To
assist with the syntax relating to the current theorem and current error messages, you will be
given num_syntax_docs documents to refer to for fixing these syntax issues. Each of these
documents will be wrapped with <SYNTAX_DOC>...</SYNTAX_DOC>.
You will also receive num_mathlib_docs documents relevant to the current theorem to
help with formulating your modified proof. Each of these will be wrapped with <CON-
TENT_DOC>...</CONTENT_DOC>
You will also receive num_examples examples of input-output pairs of proofs that
were optimized for the metric metric. Each of these will be wrapped with <EXAM-
PLE>...</EXAMPLE>
You will be given the tactic states as comments for reference. The current theorem will be
wrapped in <CURRENT>...</CURRENT>
System: Output format instructions
Placeholder: All retrieved syntax documentation
Placeholder: All retrieved mathlib documentation
Placeholder: All retrieved examples
User: <CONTEXT> context </CONTEXT>
Placeholder: Previous results and inputs/outputs
Placeholder: All metric prompts with a ‘User’ role
User: <CURRENT> theorem </CURRENT>

This prompt is then invoked and sent to the language model by filling in all the variables and
placeholders. Notably, when we invoke the chain given by chain|llm|parser, we throttle the
invocation with a randomized exponential rate limit throttling to account for API rate limits, especially
in highly-parallelized requests like when benchmarking over a large number of theorems.

A.2 METRIC PROMPTS

Length Metric

System: You are an AI assistant who shortens Lean 4 proofs while ensuring their correctness.
You will aim to reduce the number of lines of the tactic proof while ensuring that it properly
compiles in Lean 4.

14

Published as a conference paper at ICLR 2025

User: Shorten the current theorem (wrapped in <CURRENT>...</CURRENT>) to be as
short in length—measured in the number of lines of the proof—as possible, while also
ensuring that the output is still syntactically correct."

Declarativity Metric

System: You are an AI assistant who rewrites Lean 4 proofs to be more readable while
ensuring their correctness. We measure readablity by considering the ratio of the number
of explicitly typed have tactics against the total number of tactics in the proof, as this is
proportional to whether a proof is declarative in style, and thus, readable.
User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is
more readable and declarative and modular.

Mixed Metric

System: You are an AI assistant who rewrites Lean 4 proofs to be higher quality, namely,
more concise and more readable/declarative in style and structure. We measure the length of
a proof by the number of tactics, and readability/declarativity by the number of explicitly
typed have tactics.
User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is
more readable and declarative and concise, while also being correct. Namely, we penalize
1 point for every tactic, and reward 5 points for every declarative tactic (namely, have
statements). Your goal is to maximize that reward function as much as possible while
generating a correct proof using the provided template as a starting point.

Completion Metric

System: You are an AI assistant who automatically solves Lean 4 proofs (as in, generates
the tactic proof) and ensures its correctness. You will receive a Lean 4 proof you must
modify to eliminate any errors so that it compiles correctly and eliminate any “sorry”s with
full proofs.
User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is a
formal, complete, and correct Lean 4 proof by filling in its tactic proof.

A.3 METRIC EXAMPLES

In this section, we illustrate side-by-side examples of metric optimization. These examples are part
of a larger set of examples provided to the model as described in §A.1.

Length Metric As shown in Figure 3, we provide the model an example of using more advanced
tactics like rintro and inlining apply statements to shorten the proof from 5 tactics to 2.

Suboptimal
example : (P → Q) ∧ (Q → R) → P → R := by
intro h p
rcases h with ⟨a,b⟩
apply b
apply a
exact p

Length Optimized
example : (P → Q) ∧ (Q → R) → P → R := by
rintro (⟨hpq,hqr⟩) hp
exact hqr (hpq hp)

Figure 3: A human-written example of length optimization.

Declarative Metric

As shown in Figure 4, we provide the model an example of adding an intermediate result hp_nq with
an explicitly written type of P → ¬Q. Additionally, we show the model an example of simplifying
tactics and external lemmas and dependencies to solve the problem in a more direct, declarative, and
readable manner.

Mixed Metric

15

Published as a conference paper at ICLR 2025

Suboptimal
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
push_neg at h
exact not_or_of_imp h

Declarativity Optimized
example (h : ¬ (P ∧ Q)) : ¬ P ∨ ¬ Q := by
have hp_nq : P → ¬ Q := by
intro p q
exact h ⟨p,q⟩

by_cases hp:P
. right
exact hp_nq hp

. left
exact hp

Figure 4: A human-written example of declarativity optimization.

As shown in Figure 5, we provide the model an example of adding multiple intermediate results as
well as using proof terms and structural modifications to shorten the number of tactics, resulting in a
more optimized proof.

We note that although the “Suboptimal” example is taken from MIL C04, it is ensured to not be in
our testing split to avoid data contamination.

Suboptimal
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
ext x; constructor
· rintro (⟨xs, xnt⟩ | ⟨xt, xns⟩)
· constructor
left
exact xs
rintro ⟨_, xt⟩
contradiction

. constructor
right
exact xt
rintro ⟨xs, _⟩
contradiction

rintro ⟨xs | xt, nxst⟩
· left
use xs
intro xt
apply nxst
constructor <;> assumption

. right; use xt; intro xs
apply nxst
constructor <;> assumption

Joint Length/Readability Optimized
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
ext x
constructor
have in_union_not_inter : ∀ x, x ∈ s ∪ t →

x /∈ s ∩ t → x ∈ (s ∪ t) \ (s ∩ t) := by
intro x hx hnx
exact ⟨hx, hnx⟩

have in_diff_union : ∀ x, (x ∈ s \ t ∨ x ∈
t \ s) → x ∈ (s ∪ t) \ (s ∩ t) := by
rintro x (⟨xs, xnt⟩ | ⟨xt, xns⟩)
. exact in_union_not_inter x (Or.inl xs)
(fun ⟨_, ht⟩ => xnt ht)
. exact in_union_not_inter x (Or.inr xt)
(fun ⟨hs, _⟩ => xns hs)

exact in_diff_union x
have in_diff_or : ∀ x, x ∈ (s ∪ t) \ (s ∩

t) → (x ∈ s \ t ∨ x ∈ t \ s) := by
rintro x ⟨hx, hnx⟩
by_cases xs : x ∈ s
. left; exact ⟨xs, fun ht => hnx ⟨xs, ht⟩⟩
. right; exact ⟨hx.resolve_left xs, fun
hs => hnx ⟨hs, hx.resolve_left xs⟩⟩

exact in_diff_or x

Figure 5: A human-written example of mixed length/declarativity optimization optimization.

Completion Metric

As shown in Figure 6, we provide the model an example of showing a property about Set’s, an
externally defined datastructure, using simple tactics and forward reasoning, without external lemmas.

Suboptimal
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
sorry

Completion Optimized
example {α : Type*} (s : Set α) : s ∩ s = s

:= by
ext x
constructor
. intro h

rcases h with ⟨hs,_⟩
exact hs

. intro h
constructor
. exact h
. exact h

Figure 6: A human-written example of proof completion.

16

Published as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more detailed information on the experimental setup and results used to
evaluate ImProver.

B.1 DATASET DETAILS

Main Datasets We evaluate our experiments on subsets of the following datasets:

Mathematics in Lean (MIL) (leanprover-community, 2024): this dataset contains pedagogical
solutions of common undergraduate-level exercises, and as such contains many declarative, yet
verbose and inefficient proofs. We use exercise solutions from set theory, elementary number theory,
group theory, topology, differential calculus, and integration & measure theory. This dataset contains
theorems at an undergraduate-level of complexity. For our main results, we evaluated on 72 theorems
from exercise solutions from MIL chapters 4, 5, 8, 9, and 10.

Compfiles (David Renshaw, 2024): Solutions of International Mathematics Olympiad (IMO) and
American Mathematics Olympiad (USAMO) competition problems from 2016 to 2024. This is a
dataset of internationally-renowned competitive math problems, many of which are readable and
declarative, yet quite verbose. This dataset contains theorems of a competitive format, and although
they contain concepts only at a high-school level, the logical complexity of internationally-renowned
competition results is far above that. For our main results, we used all 26 theorems and lemmas from
the Compfiles database of complete solutions to the International Mathematics Olympiad (IMO) and
the American Mathematics Olympiad (USAMO) from 2016-2024.

Mathlib (mathlib Community, 2020): Mathlib contains many advanced results at the forefront of
mathematics, and has been at the center of research-level formalizations. These proofs are concise
and generalized - which often comes at the cost of readability, declarativity, and understandability.
These results and theorems often are at the cutting edge of research and a highest level of complexity
compared the the other two datasets.

For our main results, we evaluated our methods on 43 advanced research-level proofs from
Mathlib/AlgebraicTopology/FundamentalGroupoid. This is the most difficult dataset.

Ablation Datasets

We evaluate our ablations on a subset of MIL. Additional details on this subset is included in appendix
B.1.However, due to the increase in model calls for larger n values, we switch a representative sample
of this subset for some test groups. Namely,

GPT-4o-mini, GPT-4o, Output and Cos, Example Retrieval, and Sampling Method are tested
on the 133 theorems in the solutions of C03_Logic, C04_Sets_and_Functions, and
C05_Elementary_Number_Theory.

n and Model are tested on 55 theorems from a representative sample of the aforementioned, and
Combos and RAG are tested on a representative sample of 32 theorems from the aforementioned.

Additionally, we note that both the Declarativity/CoS ablation and the Syntax Guidance ablation are
performed on the same 32 theorems sample as mentioned above.

Completion Datasets

We initially evaluate our completion/NTP dataset on 23 exercises from Mathematics in Lean. Namely,
we consider a representative sample of 12 exercises in group theory (Chapter 8; denoted “MIL-C08”,
done at 15 samples), 11 exercises in set theory (Chapter 4; denoted “MIL-C04”, done at 15 samples).
Moreover, we ensure that all these theorems have an empty proof.

Additionally, we evaluate on the MiniF2F-test (Zheng et al., 2022) dataset with 8 samples (where
ImProver runs the samples as 2 refinement steps of a best-of-4 call each).

This experiment is intended to be an initial evaluation to show that automated proof optimization
systems can generalize neural theorem proving, however, future work will explore the effects of
policy optimization and fine-tuning of ImProver’s methodology to perform neural theorem proving
more competitively against specialized NTP models.

17

Published as a conference paper at ICLR 2025

B.2 ABLATION DETAILS

We now proceed to show detailed results from our ablation testing.

Table 9: Output and Chain-of-States Ablations
Output Format CoS Improvement Nonempty Improve. Accuracy Improved Acc.

string True 7.53 16.12 46.72% 16.79%
string False 7.03 19.67 35.77% 15.33%
string list True 8.04 12.38 64.96% 21.17%
string list False 7.04 13.58 51.82% 18.98%
string tree True 7.62 15.34 49.64% 18.25%
string tree False 6.31 14.17 44.53% 16.06%

By Table 9, we see that the optimal combination in this testing group is a string list output
format with CoS enabled. Fix these values for all future tests.

Table 10: Example Retrieval Ablations
Examples Improvement Nonempty Improve. Accuracy Improved Acc.

0 5.67 8.44 67.15% 16.79%
3 8.49 13.68 62.04% 19.71%
5 8.38 12.9 64.96% 21.17%
7 7.56 12.04 62.77% 19.71%
10 9.34 14.7 63.5% 21.9%

With the previous optimal parameters fixed, run the ablation on the number of examples. By Table 10,
we see that the optimal combination in this testing group is 10 examples. Fix this value for all future
tests.

Table 11: Sampling Method Ablations
Method Forward Keep Best Improvement Nonempty Improve. Accuracy Improved Acc.

None N/A N/A 9.34 14.7 63.5% 21.9%
refinement 1 False 14.76 30.63 48.18% 30.66%
refinement 5 False 12.5 20.88 59.85% 30.66%
refinement 1 True 14.95 14.95 100.0% 30.66%
refinement 5 True 13.15 13.15 100.0% 29.93%
best-of-n N/A N/A 15.35 18.44 83.21% 36.5%

Note that forward and keep-best values are parameters for refinement of how many previous iterations
to forward, and whether to keep the most recent or the best iteration in subsequent refinement steps.

Now, with the previous optimal parameters fixed, run the ablation on the sample method. By Table 11,
we see that the optimal combination in this testing group is best-of-n. Fix this value for all future
tests.

With the previous optimal parameters fixed, run the ablation on the value of n and model. By Table 12,
we see that the optimal combination in this testing group is GPT-4o with n = 15. Fix this value for
all future tests.

With the previous optimal parameters fixed, run the ablation on the combination methods and if
RAG is enabled. By Table 13, we see that the optimal combination in this testing group is a 5-step
refinement with each iteration being a best-of-3 call, with RAG enabled.

B.3 ADDITIONAL QUALITATIVE EXAMPLES

In this section, we provide additional qualitative examples demonstrating the improvements ImProver
achieves in proof optimization.

18

Published as a conference paper at ICLR 2025

Table 12: Model and n Ablations
Model n Improvement Nonempty Improve. Accuracy Improved Acc.

gpt-4o 3 19.66 24.36 80.7% 38.6%
gpt-4o 5 20.12 24.97 80.56% 36.11%
gpt-4o 7 22.44 27.21 82.46% 42.11%
gpt-4o 10 21.73 25.28 85.96% 40.35%
gpt-4o 15 23.51 26.28 89.47% 45.61%
gpt-4o-mini 3 3.65 4.63 78.95% 8.77%
gpt-4o-mini 5 5.12 6.21 82.46% 10.53%
gpt-4o-mini 7 3.65 4.34 84.21% 8.77%
gpt-4o-mini 10 4.99 5.69 87.72% 12.28%
gpt-4o-mini 15 4.35 5.06 85.96% 12.28%
gpt-4o-mini 20 4.87 5.56 87.72% 14.04%

Table 13: RAG and Combination Sampling Method Ablations
Combination m m′ RAG Improvement Nonempty Improve. Accuracy Improved Acc.

best-of-n(refinement) 3 5 True 33.78 33.78 100.0% 50.0%
best-of-n(refinement) 3 5 False 31.23 31.23 100.0% 46.88%
best-of-n(refinement) 5 3 True 31.85 31.85 100.0% 50.0%
best-of-n(refinement) 5 3 False 31.35 31.35 100.0% 50.0%
refinement(best-of-n) 3 5 True 32.66 51.32 63.64% 48.48%
refinement(best-of-n) 3 5 False 32.88 50.1 65.62% 53.12%
refinement(best-of-n) 5 3 True 34.88 57.56 60.61% 54.55%
refinement(best-of-n) 5 3 False 29.54 49.75 59.38% 43.75%
best-of-n N/A 15 True 29.64 32.71 90.62% 56.25%
best-of-n N/A 15 False 28.25 33.48 84.38% 53.12%

Compfiles: Length Optimization Consider Figure 1, a lemma from the 2022 IMO Question 2
(Compfiles) that we optimize for length. ImProver halves thr proof from 12 tactics to 6. Here,
ImProver makes multiple nontrivial optimizations, such as eliminating the h2’ and h4 and hxw
hypotheses, as well as fully generating proof terms for specific rewrites and other tactics.

Compfiles: Declarativity Optimization Consider Figure 7, in which a lemma from the 2019
IMO problem 1 (from the Compfiles dataset) is optimized for declarativity. This introduces multiple
new hypotheses, which generalize a linear_property of the functions, and then reuses and
instantiates that (and others, too) hypothesis throughout the proof, creating a significantly more
declarative proof.

Original (human-written)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by
let g := AddMonoidHom.toIntLinearMap <|

AddMonoidHom.mk' f h
refine ⟨f 1, fun a => ?_⟩
change g a = g 1 * a
rw [mul_comm, ← smul_eq_mul, ←

LinearMap.map_smul, smul_eq_mul, mul_one]

ImProver (declarativity-optimized)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by

let g := AddMonoidHom.toIntLinearMap <|
AddMonoidHom.mk' f h

have linear_property : ∀ a, f a = g a := by
intro a
rfl

have g_smul : ∀ a, g a = g 1 * a := by
intro a
rw [mul_comm, ← smul_eq_mul, ←
LinearMap.map_smul, smul_eq_mul, mul_one]

refine ⟨f 1, fun a => ?_⟩
have f_eq_g : f a = g a := linear_property a
have g_a_eq : g a = g 1 * a := g_smul a
rw [f_eq_g, linear_property 1, g_a_eq]

Figure 7: Optimizing a lemma from IMO 2019 P1 for declarativity

19

Published as a conference paper at ICLR 2025

Compfiles: Mixed Optimization Consider Figure 8, in which a lemma from the 2023 USAMO
problem 2 (from the Compfiles dataset) is optimized for mixed declarativity and length. This
introduces a new hypothesis, which declares a powerful intermediate lemma, which is then applied to
solve the problem. Moreover, this declarativity is introduced in such a way that it makes the proof
more concise than the original, with 3 tactics rather than 5.

Original (human-written)
lemma lemma_3 {a b c : R+} (h : a = b + c) :

c < a := by
rw [h]
obtain ⟨b, hb⟩ := b
obtain ⟨c, hc⟩ := c
rw [←Subtype.coe_lt_coe, Positive.coe_add]
exact lt_add_of_pos_left c hb

ImProver (mix-optimized)

lemma lemma_3 {a b c : R+} (h : a = b + c) :
c < a := by

have : ↑c < ↑b + ↑c := lt_add_of_pos_left
c.val b.property

rw [h, ←Subtype.coe_lt_coe,
Positive.coe_add]

exact this

Figure 8: Optimizing a lemma from USAMO 2023 P2 for mixed declarativity/length

MIL: Length Optimization Consider Figure 9, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, modifying the proof structure and introducing proof
terms into the structure of the proof to shorten it from 9 tactic invocations to 7.

Original (human-written)
example (φ : G →* H) (ψ : H →* K) (S :

Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) := by

ext x
simp only [mem_map]
constructor
· rintro ⟨y, y_in, hy⟩
exact ⟨φ y, ⟨y, y_in, rfl⟩, hy⟩

· rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩
use z, z_in
calc ψ.comp φ z = ψ (φ z) := rfl
_ = ψ y := by congr

ImProver (length-optimized)

example (φ : G →* H) (ψ : H →* K) (S :
Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) :=
by

ext x
simp only [mem_map]
constructor
rintro ⟨y, y_in, hy⟩; exact ⟨φ y, ⟨y, y_in,

rfl⟩, hy⟩
rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩; exact ⟨z,

z_in, (congr_arg ψ hz).trans hy⟩

Figure 9: Optimizing a lemma from the solutions of MIL CH08 S01 for length

MIL Declarativity Optimization. Consider Figure 10, a result from MIL that we optimize for
the declarative metric. This original proof carried a score of 0, as it has no have statements. In
comparison, after applying ImProver, the model explicitly defines hypotheses for use in the latter
half of the proof; these hypotheses can easily be converted into standalone lemmas for reuse.

Original (human-written)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
· rw [← ker_eq_bot_iff, (QuotientGroup.mk'

H).ker_restrict K]
simp [h]

· symm
exact aux_card_eq h'

ImProver (declarativity-optimized)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G / H := by
have injectivity : Function.Injective

((QuotientGroup.mk' H).restrict K) := by
rw [← ker_eq_bot_iff, (QuotientGroup.mk'
H).ker_restrict K]
simp [h]

have card_eq : card (G / H) = card K := by
exact aux_card_eq h'

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
exact injectivity
symm
exact card_eq

Figure 10: Optimizing a group-theoretic result from MIL Chapter 8 Section 1 for declarativity.

20

Published as a conference paper at ICLR 2025

MIL: Mixed Optimization Consider Figure 11, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for mixed length/declarativity. ImProver significantly modifies
the structure of the proof, applying more general-purpose tactics like simpa to simplify the proof
(via eliminating the need for manual step-by-step calculations). Moreover, the proof introduces
declarativity by a intermediate result, which is used by the simpa call to finish the proof in an
efficient and declarative manner.

Original (human-written)
lemma eq_bot_iff_card {G : Type*} [Group G]

{H : Subgroup G} [Fintype H] :
H = ⊥ ↔ card H = 1 := by

suffices (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈
H, a = x by

simpa [eq_bot_iff_forall, card_eq_one_iff]
constructor
· intro h
use 1, H.one_mem

· rintro ⟨y, -, hy'⟩ x hx
calc x = y := hy' x hx
_ = 1 := (hy' 1 H.one_mem).symm

ImProver (mix-optimized)
lemma eq_bot_iff_card {G : Type*} [Group G]

{H : Subgroup G} [Fintype H] :
H = ⊥ ↔ card H = 1 := by

have : (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈
H, a = x :=
⟨λ h => ⟨1, H.one_mem, h⟩, λ ⟨y, _, hy'⟩ x
hx => (hy' 1 H.one_mem).symm ▷ hy' x hx⟩

simpa [eq_bot_iff_forall, card_eq_one_iff]
using this

Figure 11: Optimizing a lemma from MIL CH08 S01 solution for mixed declarativity/length

Mathlib: Length Optimization Consider Figure 12, which optimizes a theorem in algebraic
topology from mathlib for length, eliminating simp calls and combining tactics to shorten it from 3
tactic invocations to 1.

Original (human-written)
/-- If `f(p(t) = g(q(t))` for two paths `p`

and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
simp only [map_eq, ←

Path.Homotopic.map_lift]; apply
Path.Homotopic.hpath_hext; exact hfg

ImProver (length-optimized)

/-- If `f(p(t) = g(q(t))` for two paths `p`
and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map JpK) ((πm g).map JqK) := by
exact Path.Homotopic.hpath_hext hfg

Figure 12: Optimizing a theorem from Mathlib/FundamentalGroupoid/InducedMaps
for length

Mathlib: Declarativity Optimization Consider Figure 13, a theorem from Mathlib that we
optimize for declarativity.

This original proof carried a score of 0, as it does not contain any declarative statements. It is concise
and efficient, however, it is difficult to understand and read.

After optimizing for declarativity, we see that the model did not change the structure of the proof.
Rather, it added an intermediate declaration so that users can better understand the state after the
convert. This intermediate tactic greatly helps in the understandability and clarity of the proof.

Mathlib: Mixed Optimization Consider Figure 14, a theorem from Mathlib that we optimize for
mixed length/declarativity.

We observe that ImProver applies more complex tactics such as all_goals and split_ifs to
significantly decrease the number of tactics in the proofs, while maintaining the overall structure.

21

Published as a conference paper at ICLR 2025

Original (human-written)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]; rfl

ImProver (declarativity-optimized)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

have h1 : ∀ x y : Y, Subsingleton
(Path.Homotopic.Quotient x y) ↔ ∀ {p1 p2

: Path x y}, Path.Homotopic p1 p2 := by
intro x y
simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]
rfl

simp only [h1]

Figure 13: Optimizing a theorem from Mathlib/FundamentalGroupoid/SimplyConnected
for declarativity
Original (human-written)
theorem trans_refl_reparam (p : Path x0 x1) :

p.trans (Path.refl x1) =
p.reparam (fun t => ⟨

transReflReparamAux t,
transReflReparamAux_mem_I t⟩) (by
continuity)

(Subtype.ext
transReflReparamAux_zero) (Subtype.ext
transReflReparamAux_one) := by
p.reparam (fun t => ⟨

transReflReparamAux t,
transReflReparamAux_mem_I t⟩) (by
continuity)

(Subtype.ext
transReflReparamAux_zero) (Subtype.ext
transReflReparamAux_one) := by

ext
unfold transReflReparamAux
simp only [Path.trans_apply, not_le,

coe_reparam, Function.comp_apply,
one_div, Path.refl_apply]

split_ifs
· rfl
· rfl
· simp
· simp

ImProver (mix-optimized)
theorem trans_refl_reparam (p : Path x0 x1) :

p.trans (Path.refl x1) =
p.reparam (fun t => ⟨

transReflReparamAux t,
transReflReparamAux_mem_I t⟩) (by
continuity)

(Subtype.ext
transReflReparamAux_zero) (Subtype.ext
transReflReparamAux_one) := by
p.reparam (fun t => ⟨

transReflReparamAux t,
transReflReparamAux_mem_I t⟩) (by
continuity)

(Subtype.ext
transReflReparamAux_zero) (Subtype.ext
transReflReparamAux_one) := by

ext t
simp only [Path.trans_apply,

Path.refl_apply, coe_reparam,
Function.comp_apply]

unfold transReflReparamAux
split_ifs
all_goals { simp }

Figure 14: Optimizing a theorem from Mathlib/FundamentalGroupoid/SimplyConnected
for mixed length/declarativity

Full Proof Generation (MIL). We analyze the application of ImProver to neural theorem proving
in the MIL example from Figure 15. This theorem relating to group theory originally has no proof,
however, ImProver generates one from scratch. This generated proof is verified to be correct by
Lean, utilizing all the included hypotheses as well as a retrieved mathlib theorem.

Original (human-written)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
sorry

ImProver (completeness-optimized)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
intro g
simp only [mem_comap]
intro hS
exact hST hS

Figure 15: Solving a group theorem exercise from MIL Chapter 8 Section 1.

Full Proof Generation (MiniF2F). We analyze the application of ImProver to neural theorem
proving in the MiniF2F example from Figure 16. This theorem relating to number theory originally

22

Published as a conference paper at ICLR 2025

has no proof, however, ImProver generates one from scratch by calculating step by step, applying
theorems retrieved from Mathlib, as well as general tactics like simp.

Original (human-written)
theorem mathd_numbertheory_345 :

(2000 + 2001 + 2002 + 2003 + 2004 + 2005 +
2006) % 7 = 0 := by sorry

ImProver (completeness-optimized)

theorem mathd_numbertheory_345 :
(2000 + 2001 + 2002 + 2003 + 2004 + 2005 +

2006) % 7 = 0 := by
calc
(2000 + 2001 + 2002 + 2003 + 2004 + 2005 +
2006) % 7 = (0 + 1 + 2 + 3 + 4 + 5 + 6)
% 7 := by
simp [Nat.add_mod,

Nat.mod_eq_zero_of_dvd, Nat.dvd_refl,
Nat.mod_add_mod, Nat.mod_self]
_ = 21 % 7 := by simp
_ = 0 := by simp

Figure 16: Solving a number theoretic theorem from MiniF2F.

23

	Introduction
	Related work
	Automated Proof Optimization with ImProver
	Metrics
	Improver
	Chain-of-States Prompting
	Output formatting.
	Sampling Method
	Retrieval

	Experiments
	Setup
	Ablation Setup

	Results
	Ablation Testing
	Neural Theorem Proving Evaluation

	Conclusion
	Prompts
	Template
	Metric Prompts
	Metric Examples

	Additional Experimental Results
	Dataset Details
	Ablation Details
	Additional Qualitative Examples

