
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVER: AGENT-BASED AUTOMATED
PROOF OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have been used to generate formal proofs of
mathematical theorems in proofs assistants such as Lean. However, we often
want to optimize a formal proof with respect to various criteria, depending on its
downstream use. For example, we may want a proof to adhere to a certain style, or
to be readable, concise, or modularly structured. Having suitably optimized proofs
is also important for learning tasks, especially since human-written proofs may not
optimal for that purpose. To this end, we study a new problem of automated proof
optimization: rewriting a proof so that it is correct and optimizes for an arbitrary
criterion, such as length or readability. As a first method for automated proof
optimization, we present ImProver, a large-language-model agent that rewrites
proofs to optimize arbitrary user-defined metrics in Lean. We find that naively
applying LLMs to proof optimization falls short, and we incorporate various
improvements into ImProver, such as the use of symbolic Lean context in a
novel Chain-of-States technique, as well as error-correction and retrieval. We test
ImProver on rewriting real-world undergraduate, competition, and research-level
mathematics theorems, finding that ImProver is capable of rewriting proofs so that
they are substantially shorter, more modular, and more readable.

1 INTRODUCTION

The fundamental virtue of a mathematical proof is that it provides certainty: a deductive argument
shows that the assumptions of a mathematical statement logically guarantee the conclusion. In
practice, however, informal, natural-language proofs are prone to imprecision, ambiguity, and error.
Using a formal language such as Lean (Moura & Ullrich, 2021) removes ambiguity and precision and
enables a proof assistant to verify correctness down to the primitives of a formal axiomatic system.

Formal proofs, however, can be hard to read and often suffer from low reusability or excessive detail.
For example, formal proofs in Lean’s extensive mathematical library, Mathlib (mathlib Community,
2020), are generally designed to be concise and very general, often at the expense of readability.
Formal proofs in an expository text, in contrast, may include detailed calculations steps, making
them readable but verbose. Machine learning systems trained on such proofs learn to mimic these
varied conventions (Hu et al., 2024), which may not be the optimal use of the limited supply of
human-written proofs. As a result, we would like to be able to automatically refactor proofs to meet a
secondary objective such as length or readability.

To this end, we study a new problem of automated proof optimization: rewriting a proof so that it is
correct and optimizes a criterion such as length or readability. We find that naively applying LLMs to
proof optimization falls short, often resulting in incorrect or poorly optimized proofs. We develop
various improvements that can be applied on top of a black-box language model, including Chain-of-
States prompting–an analogy to chain-of-thought prompting (Wei et al., 2022) that shows intermediate
proof states–along with error-correction and retrieval. We incorporate these into ImProver: a large
language model agent that rewrites proofs to optimize arbitrary user-defined metrics in Lean. We test
ImProver on rewriting real-world undergraduate theorems, competition problems, and research-level
mathematics, finding that ImProver is capable of rewriting proofs so that they are substantially
shorter, more readable, and more declarative in style. We make our code and data open-source.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Original (human-written)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
have h2' : Classical.choose (h1 x).exists =

y :=
h1u _ (Classical.choose_spec (h1
x).exists)

rw [h2']
obtain ⟨w, h1e', h1u'⟩ := h1 y
have h4 := Classical.choose_spec (h1

y).exists
have hxw : x = w := by
apply h1u'
rw [h2]
exact h1e

rw [hxw]
exact h1u' _ h4

ImProver (length-optimized)
lemma lemma0 {α : Type} {p : α → α → Prop}

(h1 : ∀ x, ∃! y, p x y)
(h2 : ∀ x y, p x y ↔ p y x) :
∀ x, Classical.choose

(h1 (Classical.choose (h1
x).exists)).exists=x := by

-- PROOF START
intro x
obtain ⟨y, h1e, h1u⟩ := h1 x
rw [h1u _ (Classical.choose_spec _)]
obtain ⟨w, h1e', h1u'⟩ := h1 y
rw [h1u' _ ((h2 _ _).mpr h1e)]
exact h1u' _ (Classical.choose_spec _)

Figure 1: ImProver automatically rewrites formal proofs to optimize a criterion such as length or
readability while remaining correct. In this example, ImProver optimizes a human-written lemma
(right) from the 2022 International Math Olympiad (Question 2, solution from Compfiles (David
Renshaw, 2024)) for length. ImProver’s optimized proof is correct and more concise.

2 RELATED WORK

Recently there has been wide interest in automating theorem proving in interactive proof assistants;
see (Lu et al., 2023; Li et al., 2024) for surveys. A typical approach (Polu & Sutskever, 2020)
is to train on a large corpus of mathematical proofs such as Lean’s Mathlib (mathlib Community,
2020; Han et al., 2022; Polu et al., 2022; Lample et al., 2022; Yang et al., 2023; Hu et al., 2024). A
model learns from the distribution of proofs in the corpus, such as Mathlib-style proofs. Recently,
the AlphaProof (AlphaProof & Teams, 2024) system was shown to produce proofs with an arcane,
non-human structure and syntax. We consider the new problem of rewriting a proof to optimize a
metric, such as rewriting a proof into a more readable or more concise one. Proof optimization is
more general than theorem proving, since we can also rewrite an empty proof to optimize correctness.
Finally, there is a rich literature on the varied styles of (human) formal proofs (e.g., (Autexier &
Dietrich, 2010; Wiedijk, 2004)). Our model, ImProver, builds on neural theorem proving techniques
including full proof generation (Jiang et al., 2023; First et al., 2023), conditioning on example
proofs (Jiang et al., 2023), retrieval (Yang et al., 2023; Thakur et al., 2024), and preceding file
context (First et al., 2023; Hu et al., 2024), as well as error correction (Madaan et al., 2023; Chen
et al., 2023) and documentation retrieval (Zhou et al., 2023) from code generation. ImProver brings
these code generation techniques, along with new Chain-of-States prompting and meta-programmed
contextual information, into a unified proof optimization agent.

3 AUTOMATED PROOF OPTIMIZATION WITH ImProver

Automated Proof Optimization. Given a theorem statement x, additional context c, and an initial
proof y0, proof optimization consists of generating a new proof y that is correct and minimizes
(or maximizes) a metric µ(x, c, y0, y) → R. By varying the metric, we can perform tasks such as
shortening proofs, making them more readable, or even automated proving. We consider 3 metrics:

Length Metric: The length metric measures the number of tactic invocations in the tactic proof,
aiming to reduce the proof’s length while ensuring its correctness. Note that shorter proofs often
represent more efficient proofs.

Readability Metric: We consider a proof to be readable if it is written in a declarative style (Autexier
& Dietrich, 2010; Wiedijk, 2004), which is related to the number of independent subproofs in a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Without Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
· use xs; left; exact xt
. use xs; right; exact xu

With Chain-of-States
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
rintro x (⟨xs, xt⟩ | ⟨xs, xu⟩)
/-
case inl.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xt : x ∈ t
⊢ x ∈ s ∩ (t ∪ u)
case inr.intro
α : Type u_1
s t u : Set α
x : α
xs : x ∈ s
xu : x ∈ u
⊢ x ∈ s ∩ (t ∪ u)
-/
· use xs; left; exact xt
/-
Goals Solved!
-/
. use xs; right; exact xu
/-
Goals Solved!
-/

Figure 2: A Lean proof (left) with Chain-of-States prompting annotations (right).

proof. Concretely, we evaluate this using the ratio of number of explicitly typed have tactics to total
number of tactic invocations.

Completion Metric: The completion of a proof simply describes its correctness. This is a trivial
metric which measures the number of errors present. The completion metric is used for concretely
viewing proof optimization as a generalization of neural theorem proving.

3.1 IMPROVER

We develop several improvements that can be applied to a black-box LLM generator yout ∼ G(·|xin),
such as GPT-4 (OpenAI et al., 2024), and specify ImProver with respect to these parameters. The
explicit prompts and templates that are sent to the LLM can be found in (§A).

3.1.1 CHAIN-OF-STATES PROMPTING

Typical formal proofs are a sequence of tactics (akin to steps) and states that show the hypotheses
and goals at each step. The intermediate states often contain valuable information (e.g., an expression
after it has been simplified) that is not present in the tactics. To allow the model to reason about
these intermediate goals and hypotheses, we use tools from Lean metaprogramming to automatically
annotate each proof state as a comment prior to each tactic. We refer to this method as Chain-of-
States (CoS) prompting since it makes intermediate states explicit, akin to how chain-of-thought
prompting (Wei et al., 2022) makes intermediate steps of a solution explicit.

These states are extracted directly and symbolically from the underlying Lean compilation steps using
Lean’s rich metaprogramming suite. Specifically, in the compiler’s elaboration and evaluation stages
– where the parsed theorem code is first converted into concrete syntax trees (in practice, Syntax
objects) and abstract syntax trees (Expr objects) – we convert the CST and AST output objects
into the relevant proof data and proof states in the form of proof trees (Lean.Elab.InfoTree).
These proof trees contain detailed context and information on a tactic-by-tactic level relating to the
modification of the proof state, metavariable context, and proof correctness. After state extraction
is completed and cached for efficient future access, we annotate the proof text itself to contain the
intermediate states in the form as comments. Figure 2 shows an example. This explicit reasoning
aims to help the generator model construct more optimized proofs via additional symbolic data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1.2 OUTPUT FORMATTING.

LLM outputs often contain ancillary and syntactically invalid content, especially before and after
the actual proof. Additionally, by applying additional structure to the LLM outputs, we may hope
to generate more structured proofs. To analyze this hypothesis, we introduce two additional output
formats to the standard str output: flat and structured. The former enforces a tactic sequence
output as a list of strings, and the latter enforces a proof tree output as a tree of strings.

3.1.3 SAMPLING METHOD

We also introduce different methods of sampling between many (sequential or parallel) LLM inference
calls, involving best-of-n and iterative refinement implementations, as well as combinations thereof.

Best-of-n The best-of-n technique generates multiple (n) calls to the language model and selects the
“best” via a simple selection policy that first prioritizes output correctness, and secondly prioritizes the
evaluated metric delta score. More specifically, our scoring function is given by the 2-ary comparison
function S, whose arguments are output objects y, y′.

S(y, y′) =

max(y, y′, key: x 7→ µ(x)), E(y) = E(y′) = 0

y, E(y) = 0, E(y′) > 0

y′, E(y) > 0, E(y′) = 0

min(y, y′, key: x 7→ E(x)), E(y) = E(y′) > 0

Where µ(x) is the metric score of x, and E(x) is the number of errors in x. This comparison function
can be extended to evaluate the best output of any finite n via induction.

This best-of-n technique is implemented as a curried function such that each of the n calls can be
handled by any arbitrary sampling method, or just a single standard prompt at user discretion. It
utilizes thread-based parallelism to speed up the relatively large number of calls to the language
model, as well as process-based parallelism for the n evaluation calls to the Lean language server.

Error correction and Refinement Inspired by self-debugging techniques in code genera-
tion (Madaan et al., 2023; Chen et al., 2023), ImProver identifies and corrects errors in the generated
proofs by iteratively refining its outputs. The refinement process relies on user-defined parameters
n and prev_num to specify the number of iterations and the number of previous iteration info to
forward, respectively. Each iteration carries information on the last prev_num iterations, including
input, output, metric score, correctness, and error messages.

The refinement technique iteratively improves the prompt output by feeding back the results into
the prompt function, additionally forwarding errors and metric scores. Similar to the best-of-n
technique, it relies on an argument n for the number of refinement steps, and is curried such that each
refinement step can be handled by any other prompting function. However, unlike best-of-n, there is
no opportunity for parallelism as each iteration is dependent on information from the previous call.

Combination Sampling and Compound Prompt Functions Compound prompt functions utilize
the curried nature of the implementations of best-of-n and refinement to nest these techniques within
one another. For example:

best_of_n((refinement,m),n) is a compound sampling method that run a best-of-n, where
each call is a m-step refinement.

refinement((best_of_n,m),n) is a compound sampling method that runs a n-step refine-
ment, where each call is a best-of-m call to the LLM.

Note that with each of these compound prompt functions, there are always a total of mn iterations.

3.1.4 RETRIEVAL

ImProver uses MMR (Maximum Marginal Relevance)-based (Carbonell & Goldstein, 1998) retrieval-
augmented generation to select relevant examples and documents.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

More specifically, example retrieval selects the most relevant user-generated examples of proof
optimization on a specific metric. Namely, each metric is loaded with a cached (vector) database
populated with human-made examples of preoptimized and postoptimized pairs of Lean theorems.
The number of examples that are retrieved is user-specified.

Document retrieval extracts information using MMR from a pair of fixed (vector) databases. The
databases store semantically chunked data from the Theorem Proving in Lean (TPiL) handbook –
containing syntax guides and tactic explanations – and the Mathlib mathematics libary – containing
thousands of theorems and lemmas. The chunking is handled by a recursive character splitter, which
splits the TPiL markdown files at on its headers and Mathlib files at the start of theorems, examples,
lemmas, and definitions – with chunk sizes of 1000 characters with a 200 character overlap.

The Mathlib retriever finds the top k documents that score the highest MMR score against the current
theorem, the TPiL retriever finds the top k documents that score the highest MMR score against the
current theorem in context and all current error messages. This retrieval process helps in generating
more contextually accurate prompts that allow the language model to better correct its own errors as
well as find useful lemmas to reference.

4 EXPERIMENTS

We test ImProver on rewriting real-world undergraduate theorems, competition problems, and
research-level mathematics and compare its results to those of the base GPT-4o and GPT-4o-mini
models. We examine the optimization capabilities of ImProver for the length and readability metrics
- studying the effectiveness in maintaining the correctness of the tactic proof while making it more
concise, as well as making it more declarative in style and readable in practice.

4.1 SETUP

Our experimentation is split into three distinct stages. We first perform ablation testing on the
ImProver model parameters (§3.1) to ensure that ImProver’s parameter specification is the optimal
one with respect to correctness and metric optimization score. We then evaluate this optimal parameter
combination on datasets of varying complexity and analyze the performance and results thereof.
Lastly, we note the performance of ImProver in NTP applications in comparison to the base GPT-4o
and GPT-4o-mini models.

Datasets. We evaluate ImProver on subsets of the following datasets.

Mathematics in Lean (MIL) (leanprover-community, 2024): this dataset contains pedagogical
solutions of common undergraduate-level exercises, and as such contains many readable, yet verbose
and inefficient proofs. We use exercise solutions from set theory, elementary number theory, group
theory, topology, differential calculus, and integration & measure theory. This dataset contains
theorems at an undergraduate-level of complexity. For our main results, we evaluated on 72 theorems
from exercise solutions from MIL chapters 4, 5, 8, 9, and 10.

Compfiles (David Renshaw, 2024): Solutions of International Mathematics Olympiad (IMO) and
American Mathematics Olympiad (USAMO) competition problems from 2016 to 2024. This is a
dataset of internationally-renowned competitive math problems, many of which are readable, yet quite
verbose. This dataset contains theorems of a competitive format, and although they contain concepts
only at a high-school level, the logical complexity of internationally-renowned competition results
is far above that. For our main results, we used all 26 theorems and lemmas from the Compfiles
database of complete solutions to the International Mathematics Olympiad (IMO) and the American
Mathematics Olympiad (USAMO) from 2016-2024.

Mathlib (mathlib Community, 2020): Mathlib contains many advanced results at the forefront
of mathematics, and has been at the center of research-level formalizations. These proofs are
extremely efficient, concise, and generalized - which often comes at the cost of readability
and understandability. These results and theorems often are at the cutting edge of research.
For our main results, we evaluated our methods on 43 advanced research-level proofs from
Mathlib/AlgebraicTopology/FundamentalGroupoid. This is the most difficult dataset.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Models. Our base generator uses GPT-4o (OpenAI et al., 2024). Since no prior methods currently
exist for automated proof optimization, we consider a prompted GPT-4o without the improvements
described in (§3.1) as our baseline. Additionally, for a given metric, we write a prompt that briefly
describes the metric and the proof optimization task. We also provide instructions, context, and
information depending on the features selected, and add the theorem and proof to the prompt. Specific
prompt information is detailed in (§A)

Performance metrics. Since proof optimization is a new task, we define four performance metrics
for measuring aspects of correctness and improvement.

First, we define improvement for length as percentage change in length, µlen(y0)−µlen(y)
µlen(y0)

× 100. For
readability, we use the difference, µread(y)− µread(yo). If no correct output is generated by the model
for a specific theorem, improvement is defined to be zero. We define nonempty improvement as the
improvement restricted to theorems for which some output has nonzero improvement. Intuitively,
improvement is the expected improvement in metric score from the input to output, accounting for
errors in the generation. The nonempty improvement score is the expected improvement in metric
score, given that there are no errors in the generation. Similar improvement scores can be defined for
other metrics using a binary function of the metric assigned to the original and optimized proofs.

Additionally, the accuracy is the percentage of theorems in the dataset which the model was able to
generate a correct output for. The improved accuracy is the percentage of theorems in the dataset
which the model was able to generate a correct output for, as well as improve the metric to be nonzero.

4.1.1 ABLATIONS

When performing our ablation studies, we used a fixed dataset (MIL) and metric (length) and varied
the parameters of all the features to find the optimal combination. However, as there are over 8640
possible combinations, it is inefficient to test all combinations at once. As such, we evaluate using a
factorial testing method.

Testing Groups. We define the following testing groups with the specified parameter combinations:

GPT-4o-mini/GPT-4o: This varies the GPT-4o model, outputting a string with no other features.

Output and CoS: We evaluate the effects of different output formatting styles (string, string
list, string tree) and CoS (True, False), with the model fixed as GPT-4o, with no other
features enabled.

Example Retrieval: We evaluate the effects of increasing the number of examples provided (multi-
shot prompting) in the range of 0, 3, 5, 7, and 10, with the model fixed as GPT-4o, CoS and output
formatting fixed as the best combination from the previous test, and no other features enabled.

Sampling Method: Here, we evaluate the effects of best-of-n and refinement for a fixed n = 5.
Additionally we test on the refinement cases if forwarding the most recent iteration result, or all
previous iteration results is the best, and if we should keep the best out of the iterations, or the most
recent. The model is fixed as GPT-4o, CoS, output formatting, and examples are fixed as the best
combination from the previous test, and no other features enabled.

n and Model: Here, we evaluate the effects of larger n values and different models. We test
n = 3, 5, 7, 10, 15 on GPT-4o and GPT-4o-mini, as well as n = 20 for GPT-4o-mini (as it is of a
far lower token cost). CoS, output formatting, examples, and sampling method are fixed as the best
combination from the previous test, and no other features enabled.

Combos and RAG: We evaluate combination methods refinement(best_of_m',m) and
best_of_m'(refinement(m)), for m ̸= m′ with mm′ equal to the optimal value m from the
previous test. We also test the effect of enabling document retrieval. Model, CoS, output formatting,
examples, n, and sampling method are fixed as the best combination from the previous test.

Ablation data. We evaluate our ablations on a subset of MIL. However, due to the increase in
model calls for larger n values, we switch a representative sample of this subset for some test
groups. Namely, GPT-4o-mini, GPT-4o, Output and Cos, Example Retrieval, and Sampling Method
are tested on the 133 theorems in the solutions of C03_Logic, C04_Sets_and_Functions,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 3.7 15.15 26.36% 8.31%
ImProver 20.96 55.29 100.0% 35.44%

Readability GPT-4o 2.21 8.02 18.75% 6.13 %
ImProver 9.34 30.53 100.0% 24.56%

Table 2: MIL Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 6.25 18.58 37.5% 14.42%
ImProver 30.54 56.56 74.0% 50.0%

Readability GPT-4o 4.18 14.48 28.85% 11.54%
ImProver 13.45 30.97 100.0% 34.21%

and C05_Elementary_Number_Theory. n and Model are tested on 55 theorems from a
representative sample of the aforementioned, and Combos and RAG are tested on a representative
sample of 32 theorems from the aforementioned.

4.2 RESULTS

ImProver is capable of optimizing proofs in all settings. From Table 2, Table 3, and Table 4,
we can see that ImProver is capable of optimizing proofs on all datasets for both the length and
readability metrics. Furthermore, Table 1 shows that across all metrics, ImProver significantly
outperforms GPT-4o on proof optimization tasks on every experimental measure – aggregated from
all datasets. Additionally, from Table 2, Table 3, and Table 4, we can see that ImProver outperforms
GPT-4o on each dataset as well. We proceed to analyze this data and its implications.

Length optimization. First focusing on the length metric, we see that ImProver outperforms
GPT-4o with respect to the improvement score by 566% (aggregated over all datasets). Additionally,
we are guaranteed that ImProver produces a correct output, although that output may just be the same
as the input. However, 35.44% of the time, it generates a correct output that is not the same length
as the input, and in that case, we expect an average of a 55.29% reduction in length. Comparing
this with GPT-4o, we conclude that not only can ImProver optimize at a higher level on arbitrary
theorems, but its ability to generate nontrivial correct outputs is far greater in comparison to GPT-4o.

Readability optimization. Readability optimization is similar, with ImProver outperforming GPT-
4o by 423%. Moreover, the accuracy, improved accuracy, and nonempty improvement disparities for
readability parallel those of the length tests. However, it should be noted that for both GPT-4o and
ImProver, the accuracy and improved accuracy scores were markedly smaller for readability than
length optimization. This suggests that for both models, it was generally more “difficult” to generate
a correct output, and moreover, generate a correct output with a better metric score than the input,
for readability optimization than length optimization. In other words, optimizing for readability is
more difficult for the underlying generator than optimizing for length. However, we speculate with
higher-quality prompts, descriptions of the metric, and examples, this disparity can be minimized.
Regardless, we note that different metrics can be less likely to be correctly optimized, and that model
performance is correlated with the metric it seeks to optimize – both for GPT-4o and ImProver.

Optimization varies based on dataset difficulty. Additionally noting Table 2, Table 3, and Table 4,
we observe that the improvement score for both metrics for both GPT-4o and ImProver is highest for
the MIL dataset, lower for Compfiles, and the lowest on the Mathlib theorems. This suggests that the
expected improvement in metric score decreases with higher difficultly – with undergraduate-level
theorems having a significantly higher expected improvement than research-level theorems. However,
it should be noted that for both metrics, the nonempty improvement of ImProver stayed consistent,
whereas for GPT-4o, it followed the aforementioned trend of decreasing with difficulty. Similarly, the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Compfiles Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 2.75 30.7 11.54% 5.13%
ImProver 18.86 54.48 100.0% 34.62%

Readability GPT-4o 0.39 3.38 14.1% 1.28%
ImProver 5.74 24.89 100.0% 19.23%

Table 4: Mathlib Proof optimization results.
Metric Model Improvement Nonempty Improvement Accuracy Improved Acc.

Length GPT-4o 0.0 0.0 16.67% 0.0%
ImProver 6.19 53.65 100.0% 11.54%

Readability GPT-4o 0.0 0.0 4.65% 0.0%
ImProver 4.63 33.19 100.0% 11.63%

accuracy and improved accuracy scores for both metrics and models decreased with higher difficulty
datasets (disregarding ImProver’s accuracy scores, as they are ensured to be 100%). This suggests
that although the base GPT-4o generator is less likely to generate a correct output for higher difficulty
datasets, the improvements that ImProver makes to the base generator allows it to maintain its
improvement in the metric score whenever a correct output is generated. As such, we can speculate
that the bottleneck in the improvement score is not the model’s ability to optimize the proof for a
metric, but rather its ability to generate a new correct proof at all. As such, we conjecture that with
more capable generator models, the accuracy – and thus, the improvement score – in optimization
tasks will continue to increase, until the improvement scores match the nonempty improvement.

Overall, we conclude that although the performance of both ImProver and GPT-4o decreases on
length and readability optimization on more difficult datasets, ImProver significantly outperforms
GPT-4o on all datasets for length and readability optimization.

4.2.1 ABLATION TESTING

Table 5: Ablation results. Each cell in the ablation tests shows best / worst, which are the best
and worst parameter combinations in the test group. The ImProver specification outputs the input
theorem when no correct proof is generated, which results in an accuracy of 100% on MIL.

Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o-mini 0 0 3.62% 0%
GPT-4o 7.03 19.67 35.77% 15.33%
+ Output and CoS 8.04 / 6.31 12.38 / 14.17 64.96% / 44.53% 21.17% / 16.06%
+ Example Retrieval 9.34 / 5.67 14.7 / 8.44 63.5% / 67.15% 21.9% / 16.79%
+ Sampling Method 15.35 / 9.34 18.44 / 14.7 83.21% / 63.5% 36.5% / 21.9%
+ n and Model 23.51 / 3.65 26.28 / 4.63 89.47% / 78.95% 45.61% / 8.77%
+ Combos and RAG 34.88 / 28.25 57.56 / 33.48 60.61% / 84.38% 54.55% / 53.12%

ImProver 34.88 57.56 100% 54.55%

We perform ablation studies using a subset of the MIL dataset as discussed in §4.1.1. The results
of this factorial study are aggregated in Table 5. We measure the baseline results from the GPT-
4o and GPT-4o-mini models, noting that GPT-4o is the better-scoring model (with respect to the
improvement score). Thus, fixing this model, we vary the output formatting type and if CoS is
enabled, and determine that outputting flat with CoS enabled maximizes the improvement score.
Fixing these parameters, we now vary the number of examples retrieved, noting that prompting
with 10 examples maximizes the improvement score. Fixing this parameter, we vary the sampling
methods (excluding compound methods and fixing n = 5) and observe that best-of-n is the best
parameter combination. Now, as GPT-4o-mini is significantly less computationally expensive than
its GPT-4o counterpart, we test both models with the sample method fixed to best-of-n, and vary
n = 1, 3, 5, 7, 10, 15, and for GPT-4o-mini, also n = 20. We conclude that GPT-4o with n = 15 is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: CoS Readability Ablation results.
Improvement Nonempty Improve. Accuracy Improved Acc.

GPT-4o 4.97 15.89 37.5% 12.5%
ImProver, CoS Disabled 9.23 24.61 100.0% 28.12%
ImProver 16.69 31.42 100.0% 46.88%

Table 7: Proof generation results. Each cell shows percent accuracy.
MIL Set Theory Group Theory Overall

GPT-4o 18.18% 25% 21.73%
ImProver 45.45% 33.33% 39.13%

the most effective. Fixing these parameters, we consider all mixed compound sampling methods with
and without document retrieval enabled, concluding that a 5-step refinement with best-of-3 on each
iteration, with RAG enabled, is the optimal combination.

Thus, as we can see from Table 5, the optimal parameter combination comes from gpt-4o outputting
as a string list with CoS, RAG, 10 examples, 5-step refinement with each iteration being a
best-of-3 evaluation. Changing any one of these parameters them leads to a reduction in performance.
Additional ablation data can be found at (§B.1).

Readability and Chain-of-States (CoS) Ablation. We additionally examine the effects of disabling
CoS on readability optimization tasks, as the previous study focused on length optimization tasks,
and we speculate that CoS has a high impact on the performance of readability optimization tasks, as
the proof states that are embedded due to CoS seem to be a critical aspect to generating the explicit
declarations that the readability metric measures.

We confirm this result by considering Table 6 and observe that simply enabling CoS nearly doubles
the improvement score, and significantly improves the nonempty improvement score, suggesting that
CoS has a high degree of impact on optimizing for the readability metric, as conjectured. However,
we also note a significant increase in improved accuracy, which suggests that embedding the chain of
states also improves the ability of the model to generate nontrivial correct outputs, implying that the
symbolic information contained in the states are critical to effectively modifying the structure and
content of a proof.

4.2.2 NEURAL THEOREM PROVING EVALUATION

We evaluate ImProver’s neural theorem proving (NTP) performance using the completion metric.
We evaluate on 23 exercises in group theory (12) and set theory (11) from MIL, with an empty input
proof. Table 7 shows the accuracy on the dataset split by topic for both ImProver and GPT-4o.
ImProver substantially outperforms GPT-4o across all topics, with an 80% increase in accuracy
compared to the base model, showing that proof optimization systems are easily extendable to NTP
systems.

4.3 QUALITATIVE RESULTS

Next, we discuss qualitative examples showing the improvements from ImProver in proof optimiza-
tion. These examples show the balance between correctness and the desired optimization metric,
showing how ImProver can produce more concise or readable proofs depending on the use case.
Additional examples can be found in (§B.2)

Example 1: Compfiles Optimization. Consider Figure 1, a lemma from the 2022 IMO Question 2
(Compfiles) that we optimize for length. The original proof consisted of 12 tactic steps and multiple
intermediate calculations. After applying ImProver for length optimization, the proof was halved
to only 6 tactics, eliminating redundant steps while maintaining correctness. In comparison, the
shortened proof makes multiple nontrivial optimizations, such as eliminating the h2’ and h4 and
hxw hypotheses, as well as fully generating proof terms for specific rewrites and other tactics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Example 2: MIL. Consider Figure 3, a result from MIL that we optimize for readability.

Original (human-written)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G H := by

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
· rw [← ker_eq_bot_iff, (QuotientGroup.mk'

H).ker_restrict K]
simp [h]

· symm
exact aux_card_eq h'

ImProver (readability-optimized)
def iso1 [Fintype G] (h : Disjoint H K) (h' :

card G = card H * card K)
: K ≃* G H := by
have injectivity : Function.Injective

((QuotientGroup.mk' H).restrict K) := by
rw [← ker_eq_bot_iff, (QuotientGroup.mk'
H).ker_restrict K]
simp [h]

have card_eq : card (G H) = card K := by
exact aux_card_eq h'

apply MulEquiv.ofBijective
((QuotientGroup.mk' H).restrict K)

rw [bijective_iff_injective_and_card]
constructor
exact injectivity
symm
exact card_eq

Figure 3: Optimizing a group-theoretic result from MIL Chapter 8 Section 1 for readability. We
define a proof to be readable if it is written in a declarative style, which consists of intermediate
conjectures (have · · · statements). ImProver introduces two intermediate conjectures into the proof.

This original proof carried a score of 0, as it does not contain any declarative statements. In
comparison, after applying ImProver, we transformed the proof to be more declarative, with many
more intermediate steps with explicit have tactics for improved clarity. Additionally observe how
the model defines hypotheses for use in the latter half of the proof; these predefined hypotheses could
easily be converted into standalone lemmas for reuse.

Example 3: Full Proof Generation. We analyze the application of ImProver to neural theorem
proving in the MIL example from Figure 4.

Original (human-written)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
sorry

ImProver (completeness-optimized)
example (φ : G →* H) (S T : Subgroup H) (hST

: S ≤ T) : comap φ S ≤ comap φ T := by
intro g
simp only [mem_comap]
intro hS
exact hST hS

Figure 4: Solving a group theorem exercise from MIL Chapter 8 Section 1 for readability.

This theorem relating to group theory originally has no proof, however, ImProver generates one from
scratch. This generated proof is verified to be correct by Lean, utilizing all the included hypotheses
as well as a retrieved mathlib theorem.

5 CONCLUSION

In this paper, we introduced ImProver, a novel agent-based tool for automated proof optimization
in Lean. By incorporating CoS, RAG, and other features, ImProver significantly outperforms base
language models in proof optimization over undergraduate, competition, and research-level problems.

However, ImProver is limited by its high cost and slow runtime, which is exacerbated by its reliance
on black-box LLM’s. We intend to address this inefficiency in future work by applying fine-tuning
and RL on a smaller model to match performance at a lower cost.

ImProver demonstrates its ability to generate substantially shorter, more readable, and modular
proofs while maintaining correctness. As such, we believe that ImProver sets the stage for further
work on proof optimization to advance the study and use of AI in mathematics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AlphaProof and AlphaGeometry Teams. AI achieves silver-medal standard solving interna-
tional mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Serge Autexier and Dominik Dietrich. A tactic language for declarative proofs. In Matt Kaufmann and
Lawrence C. Paulson (eds.), Interactive Theorem Proving, pp. 99–114, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering documents
and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’98, pp. 335–336, New York, NY, USA, 1998.
Association for Computing Machinery. ISBN 1581130155. doi: 10.1145/290941.291025. URL https:
//doi.org/10.1145/290941.291025.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug,
2023. URL https://arxiv.org/abs/2304.05128.

David Renshaw. compfiles. https://github.com/dwrensha/compfiles, 2024.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and repair with
large language models, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-training for
theorem proving with language models. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=rpxJc9j04U.

Jiewen Hu, Thomas Zhu, and Sean Welleck. minictx: Neural theorem proving with (long-)contexts, 2024. URL
https://arxiv.org/abs/2408.03350.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal theorem provers
with informal proofs. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=SMa9EAovKMC.

Guillaume Lample, Timothee Lacroix, Marie anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut Lavril,
Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem proving. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=J4pX8Q8cxHH.

leanprover-community. mathematics_in_lean. https://github.com/leanprover-community/
mathematics_in_lean, 2024.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A survey
on deep learning for theorem proving, 2024.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for mathematical
reasoning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14605–14631,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.817.
URL https://aclanthology.org/2023.acl-long.817.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-
feedback. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=S37hOerQLB.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi: 10.1145/3372885.
3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In Automated
Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15,
2021, Proceedings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-030-79875-8. doi:
10.1007/978-3-030-79876-5_37. URL https://doi.org/10.1007/978-3-030-79876-5_37.

11

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://arxiv.org/abs/2304.05128
https://github.com/dwrensha/compfiles
https://openreview.net/forum?id=rpxJc9j04U
https://arxiv.org/abs/2408.03350
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=J4pX8Q8cxHH
https://github.com/leanprover-community/mathematics_in_lean
https://github.com/leanprover-community/mathematics_in_lean
https://aclanthology.org/2023.acl-long.817
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
http://dx.doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-030-79876-5_37

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd,
Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie
Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry,
Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet,
Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin,
Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider,
Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim,
Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey
Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati,
Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo,
Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam
Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri,
Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross,
Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry,
Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica
Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie
Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward,
Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave
Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4
technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. Formal
mathematics statement curriculum learning, 2022.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-context learning
agent for formal theorem-proving, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.

Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani (eds.),
Types for Proofs and Programs, pp. 378–393, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN
978-3-540-24849-1.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger,
and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models. In Neural
Information Processing Systems (NeurIPS), 2023.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Generating code
by retrieving the docs. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=ZTCxT2t2Ru.

12

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=ZTCxT2t2Ru

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPTS

In this appendix, we note the prompts used by ImProver both for general LLM prompting, as well as
the metric-specific prompts.

A.1 TEMPLATE

For the main prompt sent to the LLM on each sample, we build a prompt string using a chat prompt
template that is then invoked at runtime to fill in the variables.

Namely, these variables include the set of metric prompts, previous results, input theorem, context, a
syntax documents, Mathlib documents, and examples.

The prompt template is a conversation of the format:

Placeholder: All metric prompts with a ‘System’ role
System: You will be given the proof context (i.e. the lean file contents/imports leading up
to the theorem declaration) wrapped by <CONTEXT>...</CONTEXT>.
You will be given the previous num_prev input/output pairs as well as their metric (met-
ric.name) score and correctness score, as well as any error messages, for your reference to
improve upon. Each of these previous results will be wrapped with <PREV I=0></PREV
I=0>,...,<PREV I=num_prev-1></PREV I=num_prev-1>, with I=num_prev-1 being the most
recent result.
Remember to use lean 4 syntax, which has significant changes from the lean 3 syntax. To
assist with the syntax relating to the current theorem and current error messages, you will be
given num_syntax_docs documents to refer to for fixing these syntax issues. Each of these
documents will be wrapped with <SYNTAX_DOC>...</SYNTAX_DOC>.
You will also receive num_mathlib_docs documents relevant to the current theorem to
help with formulating your modified proof. Each of these will be wrapped with <CON-
TENT_DOC>...</CONTENT_DOC>
You will also receive num_examples examples of input-output pairs of proofs that
were optimized for the metric metric. Each of these will be wrapped with <EXAM-
PLE>...</EXAMPLE>
You will be given the tactic states as comments for reference. The current theorem will be
wrapped in <CURRENT>...</CURRENT>
System: Output format instructions
Placeholder: All retrieved syntax documentation
Placeholder: All retrieved mathlib documentation
Placeholder: All retrieved examples
User: <CONTEXT> context </CONTEXT>
Placeholder: Previous results and inputs/outputs
Placeholder: All metric prompts with a ‘User’ role
User: <CURRENT> theorem </CURRENT>

This prompt is then invoked and sent to the language model by filling in all the variables and
placeholders. Notably, when we invoke the chain given by chain|llm|parser, we throttle the
invocation with a randomized exponential rate limit throttling to account for API rate limits, especially
in highly-parallelized requests like when benchmarking over a large number of theorems.

A.2 METRIC PROMPTS

Length Metric

System: You are an AI assistant who shortens Lean 4 proofs while ensuring their correctness.
You will aim to reduce the number of lines of the tactic proof while ensuring that it properly
compiles in Lean 4.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

User: Shorten the current theorem (wrapped in <CURRENT>...</CURRENT>) to be as
short in length—measured in the number of lines of the proof—as possible, while also
ensuring that the output is still syntactically correct."

Readability Metric

System: You are an AI assistant who rewrites Lean 4 proofs to be more readable while
ensuring their correctness. We measure readablity by considering the ratio of the number
ofexplicitly typed have tactics against the total number of tactics in the proof, as this is
proportional to whether a proof is declarative in style, and thus, readable.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is
more readable and declarative and modular.

Completion Metric

System: You are an AI assistant who automatically solves Lean 4 proofs (as in, generates
the tactic proof) and ensures its correctness. You will receive a Lean 4 proof you must
modify to eliminate any errors so that it compiles correctly and eliminate any “sorry”s with
full proofs.

User: Rewrite the current theorem (wrapped in <CURRENT>...</CURRENT>) so it is a
formal, complete, and correct Lean 4 proof by filling in its tactic proof.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more detailed information on the experimental setup and results used to
evaluate ImProver.

B.1 ABLATION DETAILS

We now proceed to show detailed results from our ablation testing.

Table 8: Output and Chain-of-States Ablations
Output Format CoS Improvement Nonempty Improve. Accuracy Improved Acc.

string True 7.53 16.12 46.72% 16.79%
string False 7.03 19.67 35.77% 15.33%
string list True 8.04 12.38 64.96% 21.17%
string list False 7.04 13.58 51.82% 18.98%
string tree True 7.62 15.34 49.64% 18.25%
string tree False 6.31 14.17 44.53% 16.06%

By Table 8, we see that the optimal combination in this testing group is a string list output
format with CoS enabled. Fix these values for all future tests.

Table 9: Example Retrieval Ablations
Examples Improvement Nonempty Improve. Accuracy Improved Acc.

0 5.67 8.44 67.15% 16.79%
3 8.49 13.68 62.04% 19.71%
5 8.38 12.9 64.96% 21.17%
7 7.56 12.04 62.77% 19.71%
10 9.34 14.7 63.5% 21.9%

With the previous optimal parameters fixed, run the ablation on the number of examples. By Table 9,
we see that the optimal combination in this testing group is 10 examples. Fix this value for all future
tests.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Sampling Method Ablations
Method Forward Keep Best Improvement Nonempty Improve. Accuracy Improved Acc.

None N/A N/A 9.34 14.7 63.5% 21.9%
refinement 1 False 14.76 30.63 48.18% 30.66%
refinement 5 False 12.5 20.88 59.85% 30.66%
refinement 1 True 14.95 14.95 100.0% 30.66%
refinement 5 True 13.15 13.15 100.0% 29.93%
best-of-n N/A N/A 15.35 18.44 83.21% 36.5%

Note that forward and keep-best values are parameters for refinement of how many previous iterations
to forward, and whether to keep the most recent or the best iteration in subsequent refinement steps.

Now, with the previous optimal parameters fixed, run the ablation on the sample method. By Table 10,
we see that the optimal combination in this testing group is best-of-n. Fix this value for all future
tests.

Table 11: Model and n Ablations
Model n Improvement Nonempty Improve. Accuracy Improved Acc.

gpt-4o 3 19.66 24.36 80.7% 38.6%
gpt-4o 5 20.12 24.97 80.56% 36.11%
gpt-4o 7 22.44 27.21 82.46% 42.11%
gpt-4o 10 21.73 25.28 85.96% 40.35%
gpt-4o 15 23.51 26.28 89.47% 45.61%
gpt-4o-mini 3 3.65 4.63 78.95% 8.77%
gpt-4o-mini 5 5.12 6.21 82.46% 10.53%
gpt-4o-mini 7 3.65 4.34 84.21% 8.77%
gpt-4o-mini 10 4.99 5.69 87.72% 12.28%
gpt-4o-mini 15 4.35 5.06 85.96% 12.28%
gpt-4o-mini 20 4.87 5.56 87.72% 14.04%

With the previous optimal parameters fixed, run the ablation on the value of n and model. By Table 11,
we see that the optimal combination in this testing group is GPT-4o with n = 15. Fix this value for
all future tests.

Table 12: RAG and Combination Sampling Method Ablations
Combination m m′ RAG Improvement Nonempty Improve. Accuracy Improved Acc.

best-of-n(refinement) 3 5 True 33.78 33.78 100.0% 50.0%
best-of-n(refinement) 3 5 False 31.23 31.23 100.0% 46.88%
best-of-n(refinement) 5 3 True 31.85 31.85 100.0% 50.0%
best-of-n(refinement) 5 3 False 31.35 31.35 100.0% 50.0%
refinement(best-of-n) 3 5 True 32.66 51.32 63.64% 48.48%
refinement(best-of-n) 3 5 False 32.88 50.1 65.62% 53.12%
refinement(best-of-n) 5 3 True 34.88 57.56 60.61% 54.55%
refinement(best-of-n) 5 3 False 29.54 49.75 59.38% 43.75%
best-of-n N/A 15 True 29.64 32.71 90.62% 56.25%
best-of-n N/A 15 False 28.25 33.48 84.38% 53.12%

With the previous optimal parameters fixed, run the ablation on the combination methods and if
RAG is enabled. By Table 12, we see that the optimal combination in this testing group is a 5-step
refinement with each iteration being a best-of-3 call, with RAG enabled.

B.2 ADDITIONAL QUALITATIVE EXAMPLES

In this section, we provide qualitative examples demonstrating the improvements ImProver achieves
in proof optimization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Compfiles: Length Optimization See (§4.3)

Compfiles: Readability Optimization Consider Figure 5, in which a lemma from the 2019
IMO problem 1 (from the Compfiles dataset) is optimized for readability. This introduces multiple
new hypotheses, which generalize a linear_property of the functions, and then reuses and
instantiates that (and others, too) hypothesis throughout the proof, creating a significantly more
declaritive, modular, and therefore readable proof.

Original (human-written)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by
let g := AddMonoidHom.toIntLinearMap <|

AddMonoidHom.mk' f h
refine ⟨f 1, fun a => ?_⟩
change g a = g 1 * a
rw [mul_comm, ← smul_eq_mul, ←

LinearMap.map_smul, smul_eq_mul, mul_one]

ImProver (readability-optimized)
lemma additive_to_int_linear (f : Z → Z) (h:

∀ (x y : Z), f (x + y) = f x + f y):
∃ c, ∀ a, f a = c * a := by

let g := AddMonoidHom.toIntLinearMap <|
AddMonoidHom.mk' f h

have linear_property : ∀ a, f a = g a := by
intro a
rfl

have g_smul : ∀ a, g a = g 1 * a := by
intro a
rw [mul_comm, ← smul_eq_mul, ←
LinearMap.map_smul, smul_eq_mul, mul_one]

refine ⟨f 1, fun a => ?_⟩
have f_eq_g : f a = g a := linear_property a
have g_a_eq : g a = g 1 * a := g_smul a
rw [f_eq_g, linear_property 1, g_a_eq]

Figure 5: Optimizing a lemma from IMO 2019 P1 for readability

MIL: Length Optimization Consider Figure 6, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, eliminating simp calls and introducing proof terms
into the structure of the proof to shorten it from 9 tactic invocations to 7.

Original (human-written)
example (φ : G →* H) (ψ : H →* K) (S :

Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) := by

ext x
simp only [mem_map]
constructor
· rintro ⟨y, y_in, hy⟩
exact ⟨φ y, ⟨y, y_in, rfl⟩, hy⟩

· rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩
use z, z_in
calc ψ.comp φ z = ψ (φ z) := rfl
_ = ψ y := by congr

ImProver (length-optimized)

example (φ : G →* H) (ψ : H →* K) (S :
Subgroup G) :
map (ψ.comp φ) S = map ψ (S.map φ) :=
by

ext x
simp only [mem_map]
constructor
rintro ⟨y, y_in, hy⟩; exact ⟨φ y, ⟨y, y_in,

rfl⟩, hy⟩
rintro ⟨y, ⟨z, z_in, hz⟩, hy⟩; exact ⟨z,

z_in, (congr_arg ψ hz).trans hy⟩

Figure 6: Optimizing a lemma from the solutions of MIL CH08 S01 for length

MIL: Length Optimization 2 Consider Figure 6, which optimizes an exercise solution from MIL
Chapter 8, Section 1 (Group theory) for length, converting a full tactic proof into a single proof term
to shorten it from 28 tactic invocations to 1. Note that the model does not have access to the Lean
commands that symbolically generate proof terms, and therefore generates and estimates the proof
term entirely by itself.

MIL: Readability Optimization See (§4.3)

Mathlib: Length Optimization Consider Figure 8, which optimizes a theorem in algebraic
topology from mathlib for length, eliminating simp calls and combining tactics to shorten it from 3
tactic invocations to 1.

Mathlib: Readability Optimization Consider Figure 9, a theorem from Mathlib that we optimize
for readability.

This original proof carried a score of 0, as it does not contain any declarative statements. It is concise
and efficient, however, it is difficult to understand and read.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Original (human-written)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
ext x; constructor
· rintro (⟨xs, xnt⟩ | ⟨xt, xns⟩)
· constructor
left
exact xs
rintro ⟨_, xt⟩
contradiction

. constructor
right
exact xt
rintro ⟨xs, _⟩
contradiction

rintro ⟨xs | xt, nxst⟩
· left
use xs
intro xt
apply nxst
constructor <;> assumption

. right; use xt; intro xs
apply nxst
constructor <;> assumption

ImProver (length-optimized)
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t)

:= by
exact Set.ext fun x => ⟨fun h => h.elim

(fun ⟨xs, xnt⟩ => ⟨Or.inl xs, fun ⟨_, xt⟩ =
> xnt xt⟩) (fun ⟨xt, xns⟩ => ⟨Or.inr xt,
fun ⟨xs, _⟩ => xns xs⟩),

fun ⟨h, nxst⟩ => h.elim (fun xs => Or.inl ⟨
xs, fun xt => nxst ⟨xs, xt⟩⟩) (fun xt =>
Or.inr ⟨xt, fun xs => nxst ⟨xs, xt⟩⟩)⟩

Figure 7: Optimizing a lemma from MIL CH04 S01 solution for length

Original (human-written)
/-- If `f(p(t) = g(q(t))` for two paths `p`

and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map p) ((πm g).map q) := by
simp only [map_eq, ←

Path.Homotopic.map_lift]; apply
Path.Homotopic.hpath_hext; exact hfg

ImProver (length-optimized)

/-- If `f(p(t) = g(q(t))` for two paths `p`
and `q`, then the induced path homotopy
classes

`f(p)` and `g(p)` are the same as well,
despite having a priori different types
-/

theorem heq_path_of_eq_image : HEq ((πm

f).map p) ((πm g).map q) := by
exact Path.Homotopic.hpath_hext hfg

Figure 8: Optimizing a theorem from Mathlib/FundamentalGroupoid/InducedMaps for
length

After optimizing for readability, we see that the model did not change the structure of the proof.
Rather, it added an intermediate declaration so that users can better understand the state after the
convert. This intermediate tactic greatly helps in the understandability and clarity of the proof.

Original (human-written)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]; rfl

ImProver (length-optimized)
/-- Another version of

`simply_connected_iff_paths_homotopic` -/
theorem simply_connected_iff_paths_homotopic'

{Y : Type*} [TopologicalSpace Y] :
SimplyConnectedSpace Y ↔
PathConnectedSpace Y ∧ ∀ {x y : Y} (p1

p2 : Path x y), Path.Homotopic p1 p2 :=
by

convert
simply_connected_iff_paths_homotopic (Y
:= Y)

have h1 : ∀ x y : Y, Subsingleton
(Path.Homotopic.Quotient x y) ↔ ∀ {p1 p2

: Path x y}, Path.Homotopic p1 p2 := by
intro x y
simp [Path.Homotopic.Quotient,
Setoid.eq_top_iff]
rfl

simp only [h1]

Figure 9: Optimizing a theorem from Mathlib/FundamentalGroupoid/SimplyConnected
for readability

17

	Introduction
	Related work
	Automated Proof Optimization with ImProver
	Improver
	Chain-of-States Prompting
	Output formatting.
	Sampling Method
	Retrieval

	Experiments
	Setup
	Ablations

	Results
	Ablation Testing
	Neural Theorem Proving Evaluation

	Qualitative Results

	Conclusion
	Prompts
	Template
	Metric Prompts

	Additional Experimental Results
	Ablation Details
	Additional Qualitative Examples

