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Abstract

We present Mesh Field Theory (MeshFT) and its neural realization, MeshFT-Net:
a structure-preserving framework for mesh-based continuum physics that cleanly
separates the physics’ topological structure from its metric structure. Impos-
ing minimal physical principles (locality, permutation equivariance, orientation
covariance, and energy balance/dissipation inequality), we prove a reduction theo-
rem for mesh-based physics. Under these conditions, the physical dynamics admit
a local factorization into a port–Hamiltonian form: the conservative interconnec-
tion is fixed uniquely by mesh topology, whereas metric effects enter only through
constitutive relations and dissipation. This reduction clarifies what must be fixed
and what should be learned, directly informing MeshFT-Net’s design. Across
evaluations on analytic and realistic datasets, physics-consistency tests, and out-
of-distribution validation, MeshFT-Net achieves near-zero energy drift and strong
physical fidelity—correct dispersion and momentum conservation—along with
robust extrapolation and high data efficiency. By eliminating non-physical degrees
of freedom and learning only metric-dependent structure, MeshFT provides a
principled inductive bias for stable, faithful, and data-efficient physical simulation.

1 Introduction

Machine learning is increasingly used to accelerate continuum simulations, from data-driven surro-
gates and weak-form training to operator learning that transfers across meshes and parameters (Lu
et al., 2021; Kovachki et al., 2023; E & Yu, 2018; Li et al., 2021; Gupta et al., 2021; Raissi et al.,
2019; Sirignano & Spiliopoulos, 2018; Ummenhofer et al., 2020; Cao, 2021; Battaglia et al., 2018).
Another line of work represents a discretized domain as a graph built from a mesh and learns time
evolution by message passing, yielding strong results in analysis of fluid and deformable solids while
remaining flexible in resolution and topology (Pfaff et al., 2021; Sanchez-Gonzalez et al., 2020).

However, a key structural point is often left implicit. In exterior calculus on a manifold (Flanders,
1963), the exterior derivative d is topological—metric-independent—while geometry and material
properties appear only through metric-dependent operators such as the Hodge star ⋆. In almost all
existing learned mesh simulators, these roles are conflated, letting non-physical effects contaminate
predicted fields and produce spurious modes and instabilities.

Discrete exterior calculus (DEC) (Hirani, 2003; Desbrun et al., 2005a;b) argues that mesh topology
already provides the algebraic backbone for differential operators describing mesh-based physics.
Also, metric-dependent part is clearly divided from such topological structures. Classical structure-
preserving numerical schemes—e.g., finite-difference time-domain (FDTD)—exploits the same ge-
ometric structure and, as a results, yield stable and conservative updates (Yee, 1966; Taflove et al.,
2005; Noguchi et al., 2020; Bossavit, 1998). These observations suggest a clean division of roles
in mesh-based physics simulators: hard-code physics’ topological structures based on the algebraic
backbone given by fixed mesh topology, and learn only metric-dependent structures.

We develop this idea as Mesh Field Theory (MeshFT) and its neural realization MeshFT-Net.
We formalize four minimal physical requirements—locality, permutation equivariance, orientation
covariance, and energy balance/dissipation inequality—and prove a reduction theorem. Under
these conditions, the mesh-based physics admit a local reduction to port–Hamiltonian in which the
conservative interconnection is uniquely fixed by mesh topology, while metric-dependent effects enter
only through constitutive or dissipative operators. This reduction removes non-physical freedoms
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and focuses learning on the metric-dependent parts. Guided by the theorem, MeshFT-Net is designed
as a sparse and orientation-aware model that updates states with a symplectic conservative step with
an explicit dissipative step, without partial differential equation (PDE) residual losses.

Across evaluations on analytic dataset and real acoustic-scattering data from The Well (Ohana et al.,
2024; Mandli et al., 2016), physics-consistency tests, and out-of-distribution (OOD) validation,
MeshFT-Net achieves near-zero energy drift with correct dispersion and momentum behavior, strong
generalization, and roughly 5 times data efficiency relative to baselines. These results strongly
support the view that making the topology/metric separation explicit is an principled inductive bias
for stable, faithful, and data-efficient mesh-based simulation.

Our contributions can be summarized as follows:

• Reduction theorem. We formalize four minimal physical requirements and prove a local
reduction theorem for mesh-based physics: the dynamics reduce to a port–Hamiltonian
form in which the conservative interconnection is uniquely fixed by mesh topology, while
only metric-dependent constitutive and dissipative effects are learnable.

• Neural architecture. We design a neural mash-based physics simulator (MeshFT-Net)
that fixes incidence-based wiring and learns only metric maps for constitutive relation and
dissipation.

• Empirical results. Across evaluations on analytic dataset and real acoustic-scattering
data from The Well, physics-consistency tests, and OOD validation, MeshFT-Net shows
near-zero energy drift with strong physical fidelity, robust extrapolation performance, and
roughly 5 times data efficiency relative to baselines.

2 Related Works

MeshGraphNets(MGN). MGN learn mesh-based physics via message passing on graphs induced by
meshes (Pfaff et al., 2021). Nodes carry physical states (velocity, pressure, strain), while edges encode
adjacency and geometry (coordinate differences, distances); features can include conditioning signals
(boundary types, material parameters). A standard encoder–processor–decoder (Battaglia et al.,
2018) applies T permutation-equivariant message-passing steps m̄i =

∑
j∈N (i) ϕe(hi, hj , eij),

h′
i = ϕv(hi, m̄i; g), where hi, eij are node/edge features, g optional global features, and ϕe, ϕv

shared learnable maps. A decoder outputs accelerations or state increments for time integration.
MGN transfer across geometries and resolutions in fluids, deformable solids, and contact settings.

Structure-Preserving Learning for Physical Dynamics. Hamiltonian Neural Networks (HNN)
learn a Hamiltonian Hθ to induce XHθ

(in canonical coordinates, XHθ
(q, p) = (∂pHθ,−∂qHθ));

variants learn a Lagrangian Lθ (Greydanus et al., 2019; David & Méhats, 2023; Eidnes & Lye,
2024; Cranmer et al., 2020). These chiefly impose geometric structures via loss penalties, whereas
MeshFT-Net constrains the architecture: the conservative interconnection is hard-wired by signed
mesh incidences (topology), yielding a port–Hamiltonian form with learned metric/dissipation.
Symplectic-ODE methods similarly preserve symplectic structure by integrating learned dynamics
with symplectic schemes (Zhong et al., 2020), but they preserve a nondegenerate global sym-
plectic two-form on finite-dimensional (often particle) phase spaces and do not expose the mesh
chain–complex or separate topology from metric. By contrast, MeshFT-Net fixes the antisymmetric
interconnection via incidence operators Dk with DkDk+1 = 0, enforcing topological identities that
remove non-physical modes; learning is confined to metric maps. See Appendix C.3 for details.

Neural Constitutive Laws. Neural constitutive laws (Ma et al., 2023) assume a continuous PDE
and learns a constitutive law. In contrast, MeshFT does not assume continuum PDE: it works at
the discrete level, fixes the conservative interconnection by mesh topology, and learns only the
metric-dependent structure without PDE-residual supervision.

Discrete Exterior Calculus (DEC). DEC gives a structure-preserving discrete counterpart of exterior
calculus on meshes (Hirani, 2003; Desbrun et al., 2005a). Fields are k-cochains on k-cells; the
discrete derivative is the coboundary (signed incidence matrix) Dk with Dk+1Dk = 0 (discrete
Stokes, d2=0). Metric-dependent structure enters via the discrete Hodge star built from primal–dual
volumes, inducing inner products and defining discrete energies; constitutive laws use these metric-
dependent operators. Thus DEC (and finite-element exterior calculus (Arnold et al., 2006)) makes the
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Figure 1: Core concept—comparison of MeshFT and MGN by underlying physical assumptions:
(L) locality; (P) Permutation equivariance; (O) Orientation covariance; (E) Non-increasing energy.
MGN attains (L) and (P) by architecture design, whereas MeshFT additionally enforces (O) and
(E), yielding a clear modeling guideline: fix topology (incidence-based interconnection) and learn
metric-dependent structures, which directly leads to MeshFT-Net.

separation explicit: differential structure is topological (signed incidences), while metric-dependent
structure appears only through constitutive relation.

3 Local Reduction of MGN to a Port–Hamiltonian Dynamics

In this section, we establish a port–Hamiltonian formulation for mesh-based physics. To this end, we
show that the dynamics of MGN reduce to a port–Hamiltonian form at the differential level under a
minimal set of physical requirements, with several of these requirements already implicitly satisfied
by vanilla MGN. Fig. 1 compares MeshFT and MGN in terms of their underlying assumptions,
clarifying the paper’s central idea. In particular, enforcing the orientation consistency and the energy
balance eliminates non-physical degrees of freedom and reveals a clean separation between the
topology-driven interconnection and the metric-dependent energetic part of the dynamics, thereby
clarifying which must remain fixed and which components should be learned.

Notation LetK be a finite oriented cell complex of dimension d. For each k, let Ck ∼= Rnk denote
the space of real-valued k-cochains (one scalar per oriented k-cell), and let Dk : Ck → Ck+1 be
the signed incidence (coboundary) operator, with the usual property Dk+1Dk = 0 (Hirani, 2003;
Desbrun et al., 2005a). We stack the cochain degrees that interact via incidence (e.g., k and k+1)
as z := (zk, zk+1) ∈ Ck ⊕ Ck+1, and consider an autonomous update ż = F (z). For example, a
one-layer update in standard MGN often takes z = (z0, z1) with node features z0 ∈ C0 and edge
features z1 ∈ C1 on undirected edges. Hence, z1 is not a DEC 1-cochain; the coupling is via
permutation-invariant message passing rather than the signed incidence D0. More generally, z need
not be limited to nodes and edges—it may include face features (C2) or cell-centered features (Cd);
vector-valued features are handled by replacing Ck with Ck ⊗ Rrk . Also, non-physical features
(e.g., node/edge types) are excluded from the state z here; they may only enter as fixed parameters
of learnable maps, and are not treated as dynamical variables.

We equip the state z = (zk, zk+1) ∈ Ck ⊕ Ck+1 with a storage function H : Ck ⊕ Ck+1 → R≥0,
strictly convex, and block-separable by degree, i.e., H(z) = Hk(zk) + Hk+1(zk+1). It is time-
invariant but may encode spatial/material heterogeneity. Define the co-energy (conjugate) variable
e := ∇H(z) ∈ Ck ⊕ Ck+1, where the gradient is taken with respect to the canonical Euclidean
pairing, so the instantaneous power delivered to the state is ⟨e, ż⟩ = e⊤ż. The Hessian G(z) :=
∇2H(z) ≻ 0 is block-diagonal across degrees and acts as a state-dependent metric. We write
the associated mass map as M(z) := G(z)−1 ≻ 0. The linear–quadratic case is recovered when
G(z) ≡M−1 is constant, i.e., H(z) = 1

2 z
⊤M−1z and e = M−1z.

3.1 What MGN Guarantees by Design, and What Physics Still Requires

In this section, we identify physical requirements that MGN implicitly respects and the essential
ones absent from the standard formulation despite their importance in faithful physical modeling. In
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this section, we focus on the spatial structure and do not explicitly enforce additional temporal priors
(e.g., causality), which are addressed by the causal time-stepping scheme.

MGN Built-in Symmetry and Locality. We note two inductive biases that MGN inherently
satisfies—local interactions and permutation equivariance (label symmetry):
Assumption 1 (MGN built-ins: Locality and Symmetry). (L) Locality. The output on a k-cell may
depend only on inputs within L hops in the graph of K. For L = 1, a k-cell receives only from
itself, its own faces (k − 1)-cell, and its own cofaces (k + 1)-cell. (P) Permutation equivariance.
For any permutation π that preserves the partition of indices by degree/type, the predictor satisfies
f(π ·x) = π ·f(x); i.e., relabeling within each degree/type class only permutes the outputs.

Informally, MGN realizes (L) and (P) by gathering messages (1-cochain) from 1-hop neighbor nodes
(0-cell) with an order-independent reducer (e.g., sum/mean/max), applying a shared message/update
kernel, and aggregating back to 1-hop neighbor nodes. This realizes permutation equivariance and
spatial locality in the architecture, which happens to match common physical desiderata—local and
uniform governing laws. Intuitive visualization is shown in Fig. 1. However, only these assumptions
do not guarantee geometric/orientation correctness or energetic consistency. With these in place,
we now formalize the two additional physical requirements not enforced by MGN—orientation
covariance and energy balance.

Physical Requirements Beyond MGN. The following two physical requirements, typically not
enforced by standard MGN, will be added:
Assumption 2 (Orientation & Energy). (O) Orientation covariance. Changing the sign convention
of oriented entities (e.g., flipping edge/face directions) should only flip the signs of the corresponding
oriented variables; scalar quantities such as energy and power must be unchanged. The formal
flip-operator statement is given in Appendix A. (E) Energy balance and passivity. The dynamics
split into a conservative part that never does net work and a dissipative part that never injects energy;
consequently, in the absence of sources the stored energy cannot increase over time.

Formally, we assume an energy balance with a conservative–dissipative split F = Fcon + Fdiss and
e = ∇H(z). Pointwise power satisfies, for all z, e⊤Fcon(z) = 0 and e⊤Fdiss(z) ≤ 0, so Ḣ =
e⊤ż = e⊤F (z) ≤ 0. We also impose the incremental (two-point) form in energy variables: for z1, z2
with ei = ∇H(zi), (e1 − e2)

⊤(Fcon(z1)− Fcon(z2)
)
= 0, (e1 − e2)

⊤(Fdiss(z1)− Fdiss(z2)
)
≤ 0.

Thus the conservative part does no net work between states, while the dissipative part is monotone
in e. If F is differentiable, these incremental conditions are equivalent to Sym

(
∂Fcon

∂e

)
= 0 and

Sym
(
∂Fdiss

∂e

)
⪯ 0 which yields the skew/dissipative split used in our reduction.

Importance of Orientation Covariance Orientation is a sign gauge: flipping the orientation of k-
cells (edge arrows, face normals) changes coordinates but not physics. Let ρ = diag(ρ0, . . . , ρd)with
ρk ∈ {±I} act on all oriented variables on k-cells. Scalars are gauge-invariant: H(ρz) = H(z)
and e(ρz)⊤F (ρz) = e(z)⊤F (z). Fluxes carried by oriented k-cells are gauge-covariant: qk 7→
ρkqk. The signed incidence transforms as Dkρk = −Dk, ρk+1Dk = −Dk, andρk+1Dkρk = Dk,
corresponding to flipping degree k only, degree k+1 only, or both simultaneously. Assumption 2
(O) ensures sign-gauge equivariance: the physical laws retain their form and scalar pairings (e.g.,
e⊤ż) remain unchanged under orientation flips. In other words, this guarantees that physical system
is universal regardless of the choice of mesh orientation showin in Fig. 1.

3.2 Theorem: Local Reduction to Port–Hamiltonian Dynamics

We show that mesh-based dynamics of MGN satisfying the built-in biases (locality and permutation
equivariance) together with the physical principles introduced above—orientation covariance and
energy balance/passivity—admit a local reduction to port–Hamiltonian representation.

We now state the reduction; a complete proof of Theorem 1 appears in Appendix A.
Theorem 1 (Local reduction to port–Hamiltonian dynamics). Let F : Ck ⊕ Ck+1→Ck ⊕ Ck+1

be a mesh network defining the continuous-time dynamics ż = F (z). Assume (L), (P), (O), and (E).
Then, at any point where the Jacobian exists, there is a local energy reparameterization under which

∂F

∂z
(z) =

(
J −R(z)

)
G(z), J⊤ = −J, R(z)⊤ = R(z) ⪰ 0, G(z) ≻ 0, (1)
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where J is assembled from the signed incidence matrices {Dk} and thus depends only on topology.

Here, we focus on the simplest case of a state-independent interconnection J . When J depends
only on geometry/material (i.e., not on the current state z), any geometry/material-dependece factors
can be absorbed into the energy metric G, yielding a constant, purely incidence-based (topological)
wiring; see the remark in Appendix A.4

Limitation and Practical Note. If one allows state-dependent interconnection, the same incidence
sparsity and blockwise skew structure hold at each state z, but no scaling factors can be absorbed
into G and J need not be constant; see the remark in Appendix A.4. In continuum physics (e.g.,
ideal fluids and ideal magnetohydrodynamics (MHD)), energy-preserving couplings often depend
on the fields; this arises from the Poisson-bracket structure in such systems (Morrison & Greene,
1980; Morrison, 1982). Practically, because the sparsity pattern is fixed by topology, learning
reduces to estimating the (possibly state-/geometry-/material-dependent) coefficients that scale the
interconnection blocks of J , under (P) permutation equivariance and (O) orientation covariance. The
incidence wiring Dk is known a priori and need not be learned. To clarify the structure and strengths
of MeshFT and MeshFT-Net, the main text focuses on the state-independent case—which already
covers all canonical Hamiltonian settings (e.g., linear waves and linear electromagnetics/elasticity);
the state-dependent extension is straightforward and appears in Appendix B.

As a consequence, we may writeF (z) = J ∇H(z) + Fdiss(z), with ∂Fdiss

∂e (z) = −R(z) ⪰ 0. If
dissipation is absent, set Fdiss≡0 (equivalently R≡0). Then ż = J e, Ḣ = e⊤F = e⊤Je = 0,
so the flow conserves energy; in the general case, Ḣ = e⊤F = e⊤Fdiss ≤ 0. In addition, while
beyond the present scope, external source/supply terms can be also introduced in the standard
port–Hamiltonian manner without altering the topology-determined interconnection J .

The novelty here is not merely to assert a port–Hamiltonian form, but to prove what is fixed
and learnable and to identify sufficient conditions for this separation. Under (L), (P), (O), and
(E)—independently of model architecture—the conservative interconnection J is uniquely deter-
mined by mesh topology, while geometry/material and dissipation enter only through G and R.
Hence learning reduces to estimating G and R, with J kept fixed.

4 MeshFT-Net: Neural Realization of MeshFT

We now instantiate the reduction as an architecture. We can consider two instantiations consistent
with the differential form above: General. Parameterize a strictly convex storage Hθ (and a convex
dissipation potential Ψθ). Here Ψθ is a convex function whose gradient yields the dissipative force
in the energy variables. With the co-energy e = ∇Hθ(z), define the dynamics in energy coordinates
by ż = J e − ∇eΨθ(e), so that ∂F/∂e = J − ∇2

eΨθ(e) and G(z) = ∇2Hθ(z). This covers
nonlinear constitutive laws. Quadratic first-order model. For efficiency we use a quadratic storage
and a first-order (Picard) linearization around the current state. With Hθ(z) =

1
2 z

⊤Gθz (degreewise
Gθ≻0, state-independent), we have e = Gθz and

ż ≈
(
J −Rθ(z)

)
e =

(
J −Rθ(z)

)
Gθz. (2)

In experiments presented in this paper, we adopt this quadratic, state-independent Gθ.

Fixed vs. Learned. By Theorem 1, the conservative interconnection is incidence-only, J =(
0 −D⊤

k

Dk 0

)
, so we do not train J . The learnable components are Gθ (degreewise symmetric

positive-definite, SPD; shared within each degree/type and encoding geometry/material) and Rθ

(optional dissipation; positive-semidefinite, PSD).

Time Stepping (one-layer update). We advance the state with a Strang splitting (Strang, 1968); one
concrete realization is given in Algorithm 1 (exponential half-damping + conservative KDK). This
realization is illustrative rather than unique—other numerically consistent variants can be also used.
CFLGuard(∆t) in Algorithm 1 scales the step (or selects substeps) to satisfy a target CFL condition
(Courant et al., 1967; LeVeque, 1992). Also, all heavy operations here are sparse matrix–vector
products, yielding O(N) time and memory, where N is the total number of degrees of freedom.

Parameterization. Gθ is degreewise SPD (positivity by construction), implemented as diag-
onals (softplus) or small Cholesky blocks, optionally conditioned by permutation-equivariant,
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Algorithm 1 MeshFT-Net: One-Layer Update

Require: step ∆t; fixed J =
(

0 −D⊤
k

Dk 0

)
; learnable SPD Gθ; PSD Rθ; inputs zn = (z n

k , z n
k+1)

Ensure: outputs zn+1 = (z n+1
k , z n+1

k+1 })
(A) Half-damp (in)

1: z n,−
k ← exp

(
− ∆t

2
Rk,θ

(
{z n

k , z n
k+1}

)
Gk

)
z n
k

2: z n,−
k+1 ← exp

(
− ∆t

2
Rk+1,θ

(
{z n

k , z n
k+1}

)
Gk+1

)
z n
k+1 note: exp(·) is the matrix exponential.

(B) Conservative pass (KDK under J)
3: z half

k ← z n,−
k − ∆t

2
D⊤

k

(
Gk+1 z

n,−
k+1

)
4: z pre

k+1 ← z n,−
k+1 + ∆tDk

(
Gk z

half
k

)
5: z pre

k ← z half
k − ∆t

2
D⊤

k

(
Gk+1 z

pre
k+1

)
6: zpre ← { z pre

k , z pre
k+1 } (CFLGuard(∆t))

(C) Half-damp (out)
7: z n+1

k ← exp
(
− ∆t

2
Rk,θ(z

pre)Gk

)
zprek

8: z n+1
k+1 ← exp

(
− ∆t

2
Rk+1,θ(z

pre)Gk+1

)
zprek+1

orientation-even local MLPs using geometry/material features. Rθ(z) is PSD (e.g., Rayleigh-type
z 7→ γ(·)G−1

θ z); state dependence enters only through Rθ(z).

Training. Given zn, compute the layer output ẑ n+1 = MeshFT-Net∆t

(
zn; J, Gθ, Rθ

)
. Training

uses a supervised one–step loss, e.g.
∑

k∈I Loss
(
ẑ n+1
k , z n+1

k

)
, where I may be all components or

a chosen subset. Optionally, this time-stepping can also be stacked, with supervision applied only
to the final output composed of sub-step evolution. No PDE–residual terms are used; the inductive
bias comes from the fixed interconnection J and the SPD/PSD structure of Gθ and Rθ.

5 Experiments

We test the key implication of Theorem 1: after eliminating non-physical degrees of freedom, the
predictor has a port–Hamiltonian form where the interconnection J is fixed by mesh topology,
and learning targets only the metric G and dissipation R. We hypothesize that this structural
prior preserves long-horizon stability, increases physical fidelity, and improves data efficiency. For
comparisons with HNN, we work in canonical variables (xk, pk), where pk is the momentum
conjugate to x(k), rather than using flux variables xk+1; see Appendix D for details.

Baselines Consider four graph-based simulators, ranging from unconstrained to structure-
preserving. All models are trained on the same data with identical training protocols. To isolate
architectural differences, every model uses the same symmetric second-order integrator.

Ours: MeshFT-Net. A structure-preserving model based on Theorem 1: the interconnection is
fixed by signed incidences, while the metric Gθ and optional dissipation Rθ are learned. MGN. A
structure-agnostic message-passing network that predicts ż = vϕ(z) from node/edge features without
enforcing physical structure. MGN-HP (MGN with Hamiltonian Penalty). An MGN augmented
with a learned scalar energy Hθ(z) and a penalty that aligns vϕ(z) with the Hamiltonian vector field
XHθ

(z) (in canonical coordinates XHθ
(q, p) = (∂pHθ,−∂qHθ)). This preserves MGN’s flexibility

while nudging it toward conservative dynamics. HNN. A Hamiltonian model that learns Hθ(z) and
defines the field by XHθ

; training minimizes derivative mismatch ∥ż−XHθ
(z)∥2. The Hamiltonian

structure is embedded in the loss. We instantiate the common separable formH(q, p) = U(q)+T (p),
though nonseparable Hθ is also compatible.

5.1 Analytic Plane-Wave Benchmark

We evaluate each model with periodic 2D plane waves with closed-form solutions on regular grids
and Delaunay triangulations. Metrics: (i) one-step mean squared error (MSE) and (ii) normalized
energy drift over open-loop rollouts. We also report the instantaneous power Π = ⟨∇Htheory, vmodel⟩,
≈ 0 in conservative dynamics. In addition, we vary the training-set size. On regular grids (Table 5),
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Table 1: One-step MSE, normalized energy drift (∆E/E0), and instantaneous power (Π =
⟨∇Htheory, vmodel⟩) on regular grids. Lower is better; drift and Π closer to 0 is better. All num-
bers are computed on held-out validation data. Mean ± s.d. over 5 seeds are reported.

Model One-step MSE Energy drift ∆E/E0 |⟨∇Htheory, vmodel⟩|

MeshFT-Net 1.3× 10−9 ± 5.6× 10−10 1.3× 10−4 ± 2.1× 10−5 7.3× 10−4

MGN 1.6× 10−7 ± 6.1× 10−8 25.9± 40.8 58.9
MGN-HP 5.7× 10−4 ± 1.8× 10−5 16.0± 6.8 38.4
HNN 3.5× 10−8 ± 5.2× 10−8 1.0× 10−2 ± 1.5× 10−2 4.1× 10−1

Figure 2: Relationship between the size of training dataset and one-step MSE (left) and rollout
energy drift (right) for regular grid mesh.

MeshFT-Net attains the lowest error and drift with near-zero power, while MGN, MGN-HP, and HNN
show orders-of-magnitude larger drift and spurious power injection. The same ordering holds on
Delaunay meshes. Across data sizes (Figs. 2, 4), MeshFT-Net maintains near-zero drift and achieves
about 5 times data efficiency vs. MGN. See Appendix D.1 for details. HNN enforce Hamiltonian
structure via soft penalties; although they improves stability over vanilla MGN, MeshFT-Net’s
topological interconnection with a symplectic step yields orders of magnitude greater robustness.
Implementation details and additional results appear in Appendix D.1.

We also test a Rayleigh-damped setting (amplitude ∝ e−γt); details appear in Appendix D.2. For
HNN, we also learn an explicit Rayleigh damping term same as MeshFT-Net. We report one-step
MSE and the normalized energy error (NEE) relative to the theoretical energy. As shown in Table 2,
MGN attains the lowest one-step error (5.2×10−8 ± 2.2×10−8), while MeshFT-Net achieves the
best energy fidelity (NEE 2.1×10−2 ± 3.8×10−3). However, relative to MeshFT-Net, MGN is
1.0×102 times worse in NEE (2.2 ± 1.0). These results indicate that fixing the incidence-based
interconnection and learning only metric/dissipation captures dissipation most faithfully.

5.2 Physics-Consistency Benchmark

Beyond accuracy and energy drift, we ask whether models respect the physics on dissipation-free 2D
plane waves (periodic grids). We use model-agnostic diagnostics shared by all baselines: (i) wave
speed error, (ii) canonical consistency, (iii) PDE residual, (iv) kinetic–potential equipartition, and (v)
momentum conservation. We also run lightweight learning-validity checks: vector-field alignment
and amplitude/phase fit. Full definitions appear in Appendix D.3. Across all five diagnostics
(Table 3 (a)), MeshFT-Net is most physically faithful: smallest wave-speed error (∼ 10−2), near-
exact canonical relation (∼ 10−6), minimal PDE residual (∼ 10−3), closest equipartition, and
essentially zero momentum change (∼ 10−8), outperforming the baselines on all metrics, often by
orders of magnitude. Momentum is preserved without explicit constraints because MeshFT-Net
enforces action–reaction at interfaces guaranteed by (O); the other baselines lacking this property
need not conserve it. Learning-validity checks (Table 3 (b)) reinforce the advantage of MeshFT-Net:
it achieves the best alignment (L2=3.03×10−3), second-smallest short-horizon error (∼ 10−2),
and the most accurate amplitude/phase recovery (1.25×10−2, 0.806◦). While a soft Hamiltonian
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Table 2: Dissipative benchmark. NEE = normalized energy error relative to the theoretical energy
(lower is better). All numbers are computed on held-out validation data. Mean ± s.d. over 3 seeds
are reported.

Model One-step MSE NEE

MeshFT-Net 1.2× 10−7 ± 3.4× 10−9 2.1× 10−2 ± 3.8× 10−3

MGN 5.2× 10−8 ± 2.2× 10−8 2.2± 1.0
MGN-HP 4.5× 10−4 ± 1.3× 10−5 5.0± 1.9
HNN 2.5× 10−7 ± 3.8× 10−7 0.49± 0.16

Table 3: Physical-consistency and learning-adequacy diagnostics. Physical-consistency usesT=200,
∆t=0.002 (lower is better). Learning-adequacy uses Tshort=16 (higher is better for cosine; lower
otherwise). All numbers are computed on held-out validation data. Mean over 5 seeds are reported.

(a) Physical-consistency

Model Wave-speed Canonical PDE resid. Equipartition Momentum
MeshFT-Net 2.03×10−2 9.63×10−6 3.32×10−3 4.11×10−2 4.89×10−8

MGN 2.00×10−1 1.02×10−3 2.68×10−1 1.68×10−1 3.90×10−1

MGN-HP 3.91×10−1 1.65×10−3 2.21×10−1 2.60×10−1 9.01×10−2

HNN 8.88×10−2 6.49×10−5 2.01×10−1 2.01×10−1 1.07

(b) Learning-adequacy

Model VF cosine (↑) VF L2 Short roll MSE Amp err Phase err (deg)
MeshFT-Net 0.999996 3.03×10−3 9.36×10−2 1.25×10−2 8.06×10−1

MGN 0.999882 2.85×10−2 1.06×10−1 5.05×10−2 2.47
MGN-HP 0.999353 2.80×10−2 2.11×10−1 1.66×10−1 5.99
HNN 0.999922 1.14×10−2 6.34×10−2 2.14×10−2 1.05

penalty (as in HNN) can slightly improve physical consistency, MeshFT-Net achieves substantially
more robust physical consistency. Overall, fixing topology-driven interconnection while learning
metric/dissipation yields physically consistent—not merely accuracy-matched—predictions.

5.3 OOD Generalization

We also evaluate OOD generalization on periodic 2D waves under three shifts—(i) frequency
(ktest

max > ktrain
max), (ii) resolution (coarse→fine), and (iii) parameter (ctest ̸= ctrain). Metrics are one-

step MSE and normalized energy drift after a fixed-horizon rollout; details in Appendix D.4. This
tests whether inductive bias—not just capacity—supports accurate, physically consistent rollouts
under spectral, discretization, and parameter shifts. Across all OOD shifts in Table 4, MeshFT-Net
delivers the lowest energy drift overall and the best one-step MSE on Frequency and Resolution. Fre-
quency/Resolution: lowest error and drift, with drift reduced by 30–103 times lower than baselines.
Parameter: lowest drift (0.17 vs. 0.24/0.25; 150 times lower vanila MGN) with competitive error
(5.8×10−6 comparing with the best 3.1×10−6). Notably, a lower one-step MSE does not necessar-
ily imply lower long-horizon energy drift (cf. the Parameter column), underscoring the importance
of satisfying fundamental physical constraints. Overall, fixing the incidence-based interconnection
while learning only metric/dissipation extrapolates robustly across spectral, resolution, and parameter
shifts, whereas unconstrained MGN degrades in both error and drift out of distribution.

5.4 Validation on Real Physics Field Data from The Well

To assess transfer beyond synthetic data, we evaluate MeshFT-Net on a subset of The Well—Acoustic
Scattering (Discontinuous) (Ohana et al., 2024) (see also (Mandli et al., 2016))—which is near-
Hamiltonian but includes discontinuous media and open/reflective boundaries. We train with one-
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Table 4: OOD generalization (lower is better). Columns show one-step MSE/normalized energy
drift. All numbers are computed on held-out validation data. Mean over 3 seeds are reported. Full
results are shown in Appendix D.4.

Frequency Parameter Resolution
Model One-step MSE Drift One-step MSE Drift One-step MSE Drift
MeshFT-Net 4.1×10−6 5.1×10−3 5.8×10−6 0.17 7.0×10−7 2.9×10−3

MGN 2.3×10−5 >100 3.1×10−6 25.5 8.6×10−4 3.4
MGN-HP 6.5×10−3 0.16 3.2×10−3 0.25 1.5×10−3 5.6
HNN 4.8×10−5 0.45 8.7×10−6 0.24 8.6×10−4 2.0

Tr
ue

M
es
hF
T–
N
et

Figure 3: Pressure snapshots at equal time steps ordered right to left; the rightmost frame is the
initial state (shared colormap).

step teacher forcing for the pressure field. This probes whether a topology-fixed interconnection
that preserves structure also maintains fidelity for more realistic data. The details of this experiment
appear in Appendix D.5. Fig. 3 shows the snapshots of predicted and ground-truth pressure fields
on the validation set, using a common colormap. MeshFT-Net closely matches wavefront position,
curvature, and interference nodes; differences are limited to slight smoothing of high-frequency
details and reduced peak contrast, while boundary reflections remain consistent. These visuals agree
with the quantitative findings of low drift and correct dispersion.

6 Conclusion

We established Mesh Field Theory (MeshFT): under four physical principles—locality, permuta-
tion equivariance, orientation covariance, and energy balance/dissipation inequality—mesh-based
physics locally reduce to a port–Hamiltonian form in which the conservative interconnection is
uniquely determined by mesh topology, while metric effects enter only through constitutive relations
and dissipation. The contribution is not merely to assert the existence of a port–Hamiltonian struc-
ture, but to prove which components are structurally fixed and learnable and to identify sufficient
physical conditions for this identification, thereby unifying ideas from DEC with learnable models.

Building on the reduction theorem, we designed MeshFT-Net. Across analytic datasets and real
acoustic-scattering data, physics-consistency tests, and OOD validation, MeshFT-Net delivers accu-
rate, long-horizon-stable, and physically consistent rollouts, achieves roughly 5 times data efficiency
over baselines, and exhibits robust extrapolation across frequency, resolution, and parameter shifts.
These gains follow from the modeling principle made explicit by the reduction: the topological
structure has no learnable freedom—the incidence-based interconnection is predetermined—while
learning is confined to the metric (constitutive operators and dissipation). This topology/metric
separation removes non-physical degrees of freedom, yields interpretable parameters, and provides a
rigorous inductive bias for stable, faithful, and data-efficient simulation on meshes. Taken together,
these findings lay the foundation for a MeshFT: topology determines the interconnection, and the
metric is what we need to learn.
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A Proof and Technical Details to Theorem 1

We adopt the notation of the main text. The state is z, the storage is a strictly convex energy H ,
the co-energy is e = ∇H(z), and the Hessian G(z) = ∇2H(z) ≻ 0. The dynamics split as
ż = F (z) = Fcon(z) + Fdiss(z) with conservative power balance e⊤Fcon(z) = 0 and passivity
e⊤Fdiss(z) ≤ 0 (no sources).

Orientation/Sign Conventions. Let K be an oriented cell complex with cochain spaces {Ck}dk=0

and signed coboundaries Dk : Ck → Ck+1 satisfying Dk+1Dk = 0. Degree-wise flips are
encoded by ρ = diag(ρ0, . . . , ρd), where each ρk is diagonal with ±1 entries (orientation gauge).
Consistent flips leave incidences invariant, ρk+1Dkρk = Dk, whereas single-degree flips change
sign: Dkρk = −Dk and ρk+1Dk = −Dk. Orientation covariance (O) is expressed by

H(ρz) = H(z), ∇H(ρz) = ρ∇H(z), F (ρz) = ρF (z), (3)
so scalar quantities (energy, power) are gauge-invariant while flux-like quantities co-transform with
their carriers. These conventions will be used repeatedly in the proofs below.

A.1 Local Symmetry Basis and Orientation Covariance

We first formalize the structure forced by (L), (P), and orientation covariance (O).
Lemma 1 (Local, permutation-equivariant linear basis). Let T : Ck−1×Ck×Ck+1→Ck be linear,
interface-local (depends only on cells incident to the output k-cell), and permutation-equivariant
(with permutations acting within each degree/type class). Then T decomposes as

T (xk−1, xk, xk+1) = a xk + bAkxk + αDk−1xk−1 − β D⊤
k xk+1, (4)

whereAk is the unsigned adjacency ofk-cells onK, and coefficients (a, b, α, β) are label-independent
scalars.

Proof. (L) implies that the output on any k-cell can only use: itself, adjacent k-cells (sharing an
interface), its (k−1) faces, and its (k+1) cofaces. From (P), relabeling cells within a degree/type must
only relabel the output, so values within the same relation type (self, k-neighbors, faces, cofaces)
must share one common weight. With linearity, the only degree-compatible linear maps supported
on this incident neighborhood are the identity on Ck, the unsigned k–k adjacency Ak : Ck→Ck,
the boundary Dk−1 : Ck−1→Ck, and the coboundary −D⊤

k : Ck+1→Ck.

Hence T is the stated linear combination. Any other term would either use non-incident cells
(violating locality) or assign different weights within a relation type (violating permutation equiv-
ariance).

Lemma 2 (Orientation covariance rules out same-degree terms). From (O), in the decomposition of
Lemma 1, we must have a = b = 0. Consequently,

T (xk−1, xk, xk+1) = αDk−1xk−1 − β D⊤
k xk+1. (5)

Proof. By (O), if we change the sign convention only at degree k, then the k-oriented output flips
sign accordingly:

ρ−1
k T (xk−1, ρkxk, xk+1) = −T (xk−1, xk, xk+1) for all inputs.

Evaluate the basis terms from Lemma 1 under this operation. Since Ak is unsigned and depends
only on incidence, it commutes with ρk. Hence

ρ−1
k (a ρkxk) = a xk, ρ−1

k

(
bAk ρkxk

)
= bAkxk,

while the cross-degree terms change sign on the k-side:
ρ−1
k

(
Dk−1xk−1

)
= −Dk−1xk−1, ρ−1

k

(
D⊤

k xk+1

)
= −D⊤

k xk+1.

Therefore the left-hand side equals a xk + bAkxk − αDk−1xk−1 + β D⊤
k xk+1. Since this must be

the negative of T (xk−1, xk, xk+1) for all inputs, the within-degree part must vanish, i.e., a = b = 0.

Finally, (O) also requires consistency under simultaneous flips across degrees. Using the standard
sign behavior,

ρ−1
k Dk−1ρk−1 = Dk−1, ρ−1

k D⊤
k ρk+1 = D⊤

k ,

so the remaining cross-degree terms satisfy (O). This yields the stated form.
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Note on Same-Degree Adjacency. If we split Ak into lower/upper k–k adjacencies (sharing a
(k−1)- or a (k+1)-cell) with independent weights, (O) still forces both weights to be zero. Indeed,
both adjacency operators commute with the degree-k flip, while (O) requires T to change sign
under that flip (after compensating the output sign). Hence Lemma 2 and its consequences remain
unchanged.

A.2 Skew/Dissipative Split from Energy Balance

The next lemma formalizes, at the differential level, the split implied by the incremental energy
assumptions (E).
Lemma 3 (Passivity induces a skew/dissipative representation). Let H be strictly convex and twice
differentiable in a neighborhood of z, with co-energy e = ∇H(z) and HessianG(z) = ∇2H(z) ≻ 0.
Assume F is differentiable at z. Suppose the incremental energy conditions hold in a neighborhood
of z, i.e., for all z1, z2 near z with ei = ∇H(zi),

(e1 − e2)
⊤(Fcon(z1)− Fcon(z2)

)
= 0, (e1 − e2)

⊤(Fdiss(z1)− Fdiss(z2)
)
≤ 0. (6)

Then there exist matrices J(z) and R(z) with J⊤ = −J and R⊤ = R ⪰ 0 such that

∂F

∂z
(z) =

(
J(z)−R(z)

)
G(z). (7)

Proof. Fix z and a direction δz. Set z1 = z + ε δz, z2 = z and define

ϕcon(ε) := (e1−e2)⊤
(
Fcon(z1)−Fcon(z2)

)
, ϕdiss(ε) := (e1−e2)⊤

(
Fdiss(z1)−Fdiss(z2)

)
. (8)

By the incremental energy conditions, ϕcon(ε) ≡ 0 and ϕdiss(ε) ≤ 0 for small ε. Differentiability of
H gives

e1 − e2 = εG(z) δz + re(ε), ∥re(ε)∥ = o(ε), (9)

and differentiability of Fcon, Fdiss with the chain rule at z yields

Fcon(z1)− Fcon(z2) = ε
∂Fcon

∂e
(z)G(z) δz + rcon(ε), (10)

Fdiss(z1)− Fdiss(z2) = ε
∂Fdiss

∂e
(z)G(z) δz + rdiss(ε), (11)

with ∥rcon(ε)∥, ∥rdiss(ε)∥ = o(ε). Writing δe := G(z) δz, we obtain the expansions

ϕcon(ε) = ε2 δe⊤
(

∂Fcon

∂e (z)
)
δe+ o(ε2), ϕdiss(ε) = ε2 δe⊤

(
∂Fdiss

∂e (z)
)
δe+ o(ε2). (12)

Divide by ε2 and let ε→ 0:

δe⊤
(

∂Fcon

∂e (z)
)
δe = 0, δe⊤

(
∂Fdiss

∂e (z)
)
δe ≤ 0 (∀ δe). (13)

Since x⊤Kx = x⊤ Sym(K)x, the first equality forces Sym(∂Fcon

∂e (z)) = 0; set J(z) := ∂Fcon

∂e (z)

so J⊤ = −J . The second inequality implies Sym(∂Fdiss

∂e (z)) ⪯ 0; define

R(z) := − Sym
(

∂Fdiss

∂e (z)
)
⪰ 0, J̃(z) := J(z) + Skew

(
∂Fdiss

∂e (z)
)
, (14)

so that ∂F
∂e (z) = J̃(z)−R(z) with J̃⊤ = −J̃ . Renaming J̃ as J and using ∂e

∂z (z) = G(z) yields

∂F

∂z
(z) =

∂F

∂e
(z)

∂e

∂z
(z) =

(
J(z)−R(z)

)
G(z), (15)

as claimed. □
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A.3 Identification of J with the Topology–Induced Interconnection

Lemma 4 (Conservative interconnection is incidence–assembled). Assume (L), (P), and (O). Then,
up to permuting cochains within each degree and choosing orientation conventions, the conservative
interconnection J coincides with the topology–induced wiring assembled from the signed cobound-
aries {Dk}. Equivalently, there exists a degree–wise positive diagonal matrix S (independent of
state and time) such that, for all k,

SJS⊤ has off–diagonal (k, k+1) blocks equal to
(

0 −D⊤
k

Dk 0

)
.

In particular, J is metric–free and determined solely by the mesh topology.

Proof. By Lemma 1, any degree–k output can involve only {Id, Ak, Dk−1, −D⊤
k }. By Lemma 2,

the same–degree terms (Id and Ak) are excluded by orientation oddness, so only Dk−1 and −D⊤
k

remain in the k–th row/column. Writing the (k, k+1) and (k+1, k) blocks as −ckD⊤
k and dkDk,

skew–symmetry J⊤ = −J forces ck = dk. By (P), ck is uniform within each degree/type class;
after fixing an orientation we may take ck > 0. Collecting these positive degree–wise scalings into
a diagonal S yields the stated similarity form, which depends only on {Dk} and not on the state or
time.

Let S = diag(s0I, . . . , sdI) and set J ′ := SJS⊤. Then

J ′
k,k+1 = −(sksk+1ck)D

⊤
k , J ′

k+1,k = (sksk+1ck)Dk.

Choosing sksk+1 = 1/ck normalizes each adjacent pair to
(

0 −D⊤
k

Dk 0

)
. Hence (up to cochain

ordering, orientation gauge, and degree-wise rescaling) J is the incidence-assembled interconnection
built from {Dk}.

A.4 Proof of Theorem 1

Fix a point z where the Jacobian exists. By Lemma 3,

∂F

∂z
(z) =

(
J(z)−R(z)

)
G(z), J(z)⊤ = −J(z), R(z)⊤ = R(z) ⪰ 0, (16)

with G(z) = ∇2H(z) ≻ 0. By Lemma 4 (using (L), (P), and (O)), the conservative part J(z)
matches the incidence-assembled interconnection built from the signed coboundaries {Dk}, up
to harmless conventions (reordering cochains, choosing orientations, and positive rescalings per
degree). Concretely,

J(z) ∼ blkdiag
(
. . . ,

(
0 −D⊤

k
Dk 0

)
, . . .

)
, (17)

where “∼” means equality up to cochain ordering, orientation gauge, and degree-wise positive
scalings.

Permutation equivariance (P) rules out interface-by-interface variability within a fixed degree/type
pair, so any remaining scale is uniform per adjacent degree pair. In general these scales may depend
on z, in which case J need not be constant; the pointwise factorization above is the final statement.

If, in addition, the degree-pair scales are state-independent (geometry/material only), a fixed degree-
wise rescaling of units absorbs them, yielding a constant, topology-only J (up to ordering/orientation
gauge). Under this additional assumption we obtain, locally,

∂F

∂z
(z) =

(
J −R(z)

)
G(z), J⊤ = −J, R(z)⊤ = R(z) ⪰ 0, (18)

with J the incidence-assembled (topology-induced) interconnection built from {Dk}, proving The-
orem 1 in the main text. State-/material-/geometry-dependency of the interconnection J is discussed
in the following remark.
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Remark: State-/Material-/Geometry-Dependent Interconnection. Relaxing the topol-
ogy–metric split to allow state-dependence (and materil-/geometry-dependent) in the conservative
coupling does not change the pointwise structure. At any z where the Jacobian exists, Lemmas 3
implies

∂F

∂z
(z) =

(
J(z)−R(z)

)
G(z), J(z)⊤ = −J(z), R(z)⊤ = R(z) ⪰ 0, (19)

and, under (L), (P), (O), each off–diagonal (k, k+1) block of J(z) must have the incidence form
Jk,k+1(z) = − ck(z)D

⊤
k , Jk+1,k(z) = ck(z)Dk, (20)

with ck(z) > 0. Here ck may depend on state as well as on geometry/material; it must be orientation-
even (unchanged by degree-k flips) to respect (O). To respect permutation equivariance (P), ck must
be computed from type-shared, order-invariant local features (ML view: weight sharing over a
degree/type pair), i.e.

ck(π ·z) = ck(z) for any degree/type–preserving permutation π. (21)

If ck is state-independent (e.g., depends only on geometry/material), it can be absorbed by
a fixed, degree-wise positive rescaling (a change of units): choose a block-diagonal S =
diag(. . . , skI, sk+1I, . . .) with

sk sk+1 ck = 1 for each adjacent pair (k, k+1), (22)
so that

SJS⊤ has (k, k+1) blocks
(

0 −D⊤
k

Dk 0

)
. (23)

Under the associated change of variables z = S z̃ (equivalently, a degree-wise unit rescaling), the
vector field and factors transform as

F̃ (z̃) = S−1F (Sz̃), J̃ = S−1JS−T , R̃ = S−1RS−T , G̃ = S⊤GS, (24)
and the Jacobian factorization is preserved:

∂F̃

∂z̃
(z̃) = S−1

(∂F
∂z

(z)
)
S = S−1

(
(J −R)G

)
S = (J̃ − R̃) G̃. (25)

Thus the normalization moves the degree-pair gains into G/R while leaving the incidence wiring
intact.

In contrast, if ck depends on z, the rescaling S(z) would be state-dependent, and absorbing ck(z)
would introduce extra Jacobian terms (by the product/chain rule), so the interconnection remains
state-dependent:

∂

∂z

(
S(z)−1F (z)

)
= S(z)−1 ∂F

∂z
(z) − S(z)−1

(∂S
∂z

(z)S(z)−1
)
F (z). (26)

Practically, one may either (i) restrict ck to be state-independent (geometry/material only), recovering
a fixed wiring after absorption, or (ii) keep the incidence pattern fixed and learn coefficients ck(z)
under the constraints above. In both cases the local reduction

∂F

∂z
(z) =

(
J(z)−R(z)

)
G(z) (27)

holds pointwise; the difference is whether ck can be absorbed into a fixed energy metric. State-
dependent example phenomena and their specific handling will be discussed in Appendix B.

Generality and Sharpness. The reduction is architecture-independent and applies to any dynamics
F whose Jacobian satisfies (L), (P), (O), and (E), yielding the pointwise factorization ∂F/∂z =
(J(z) − R(z))G(z) with J(z) incidence-assembled; under state-independent interconnection this
further specializes to a constant, topology-only J . In addition, the hypotheses are essentially
minimal: dropping (O) allows same-degree, orientation-insensitive terms (identity I and unsigned
adjacency Ak) to persist; dropping (P) permits interface-wise heterogeneity within a degree/type
class (coefficients vary per interface), breaking equivariance and the clean topological assembly;
dropping (L) admits nonlocal couplings that cannot be expressed on the incident matrix; relaxing (E)
forfeits the (J−R)G skew–dissipative split. Thus each assumption rules out a concrete failure mode,
and together they deliver a strong structure theorem that separates what is fixed (topological wiring)
from what is learnable (metric/dissipation), with a clear constant-J specialization when appropriate.
An empirical ablation study of each component is provided in Appendix D.6.
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Linear-Media Corollary. If, in addition,H(z) = 1
2z

⊤M−1z with constantM ≻ 0 andFdiss(z) =

−Re with state-independent R⊤ = R ⪰ 0, then G ≡M−1 and the dynamics reduce to

ż = (J −R)M−1z, J⊤ = −J, R⊤ = R ⪰ 0, (28)

with (M,R) carrying the metric and dissipation.

B Extension of MeshFT-Net for State-Dependent Interconnection

Motivation. In continuum physics, energy-preserving couplings are often state-dependent: their
strength is modulated by the physical states while remaining skew (doing no work). An impor-
tant example is ideal MHD, in which the conservative interconnection depends on fields such as
mass density and the magnetic field due to the underlying noncanonical Poisson-bracket structure
(Morrison & Greene, 1980; Morrison, 1982). Although we focus on the state-independent conser-
vative interconnection to clarify the basic structure of MeshFT and MeshFT-Net in this paper, the
state-dependent case is essential for more realistic and general physical phenomena.

Nevertheless, with a straightforward extension—replacing the constant interconnection J by its state-
dependent counterpart J(z) while retaining the same sparsity pattern and skew structure—MeshFT
and MeshFT-Net readily accommodate state-dependent interconnections. We briefly outline this
extension below.

Pointwise Reduction. At any state z where the Jacobian exists, Lemmas 3 gives the local factor-
ization

∂F

∂z
(z) =

(
J(z)−R(z)

)
G(z), J(z)⊤ = −J(z), R(z)⊤ = R(z) ⪰ 0, (29)

with the same sparsity pattern for J(z) (up to cochain ordering and orientation gauge). Concretely,
each off–diagonal (k, k+1) block has the incidence form

Jk,k+1(z) = − ck(z)D
⊤
k , Jk+1,k(z) = ck(z)Dk, ck(z) > 0, (30)

where ck(z) may depend on the current fields but must be unchanged under reversing the orientation
convention of all degree-k cells, and remain permutation-equivariant within each degree/type class.
If ck is state-independent (geometry/material only), a fixed degree-wise rescaling absorbs ck into G,
recovering a constant, topology-only J (the main-text setting), as noted in the preceding remark.

Time Stepping. In practice, the dynamics given by Eq. 29 can be advanced with standard numerical
schemes. Note that there is a trade-off between structure preservation and computational cost, and the
optimal choice is problem-dependent; a full comparison lies beyond our scope, so we list minimal op-
tions and trade-offs. (i) Midpoint discrete gradient (energy balanced): evaluate (J,R) at the midstate
z̄ = 1

2 (z
n+1+zn) and use a discrete gradient ∇̄H withH(zn+1)−H(zn) = ∇̄H⊤(zn+1−zn); this

preserves the energy inequality exactly (Gonzalez, 1996). (ii) Poisson–dissipative splitting (Strang):
freeze J,R at z⋆ (e.g., z̄) and compose a symplectic Hamiltonian substep with an implicit/discrete-
gradient dissipative substep; this is second order and structure preserving (Strang, 1968). (iii) Fully
explicit baseline: an RK2/Heun step with J,R frozen per stage is simple to implement, but does not
enforce the exact energy balance.

Computational note: Methods (i)–(ii) are implicit and therefore more expensive per step, trading
cost for stability and exact structure preservation, whereas (iii) is cheaper but forfeits exact energy
balance.

Topology and State-Dependent Coefficients. In the case of state-dependent interconnection, the
wiring is assembled from signed incidences {Dk} (topology only), while state-dependence enters
only via the scalar gains ck(z) per degree pair. Consequently, identification/learning reduces to
estimating these (possibly state-/geometry-/material-dependent) gains ck(z); the incidence wiring
{Dk} is fixed by topology and need not be learned. This keeps the main reduction intact: J(z)
retains the same incidence sparsity and blockwise skew structure, so the theorem’s significance is
unaffected.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C Electromagnetism Example

As an intuitive example, we revisit electromagnetism though the lens of Theorem 1.

C.1 Recovering Source-Free Maxwell from Topology-Fixed Incidence Structure

On an oriented mesh with edge–face incidence D1, the constitutive maps are the (degree–wise) SPD
Hodge stars

H = ⋆µ−1 B, E = ⋆ε−1 D, (31)
where B is the magnetic flux density and H the magnetic field intensity; D is the electric flux
density and E the electric field. The operator ⋆κ denotes the (discrete) Hodge star composed with
the material tensor κ (e.g., µ−1, ε−1).

So, stacking z =
(
B,D

)
and e =

(
H,E

)
, one has

e =

(
⋆µ−1 0

0 ⋆ε−1

)
︸ ︷︷ ︸

G−1
θ

z. (32)

The conservative Maxwell update (no sources) is

Ḃ = −D1 E (Faraday), Ḋ = D⊤
1 H (Ampère), (33)

which compactly reads

ż = J e =

(
0 −D⊤

1

D1 0

)
︸ ︷︷ ︸

J

G−1
θ︸︷︷︸

SPD

z. (34)

i.e., the special case of our update ż = (J − Rθ)G
−1
θ z with Rθ ≡ 0. Here J is fixed entirely by

signed incidences (mesh topology and orientation), while material/geometry enter only through the
learned SPD metric blocks G−1

θ (the constitutive law ε−1, µ−1).

Maxwell Structure as a Consequence. Under the requirements used in the main text, the MeshFT
thus recovers the source–free Maxwell update on arbitrary oriented meshes without explicitly pos-
tulating the Maxwell equations: orientation–aware incidences determine the conservative wiring J ,
and the only trainable physical freedom is the degree–wise SPD Hodge blocks in G−1

θ (the ma-
terial law). Unlike residual–based designs, we do not enforce a PDE loss; the structure rules out
non-physical couplings by construction and focuses learning on the constitutive mapping.

Note on Learning Freedom. The structural constraint above does not fix any particular formula for
the discrete Hodge stars; it only requires the degree-wise blocks of G−1

θ to be SPD (and, if desired,
local and permutation-equivariant). Thus the incidence wiring J is fixed by topology, whereas all
geometry/material dependence resides in G−1

θ —precisely the learnable, unconstrained degrees of
freedom (e.g., metric structure and spatially varying ε−1, µ−1) that can be identified from data
without violating the topological structure.

C.2 Degeneracy from Topology and Elimination of Spurious Modes

Because DEC encodes the chain–complex identity Dk+1Dk = 0, the interconnection J above is
rank–deficient (degenerate): it has a nontrivial kernel aligned with topological constraints. Two
immediate invariants on closed, source–free domains are

D2 Ḃ = −D2D1 E = 0, (35)
D⊤

0 Ḋ = D⊤
0D

⊤
1H = (D1D0)

⊤H = 0, (36)
expressing discrete ∇· B = 0 and the charge–free ∇·D = 0, respectively. These invariants do not
depend on the metric maps G−1

θ and hold to machine precision, thereby suppressing non-physical
(spurious) modes such as fake magnetic monopoles or artificial charge accumulation. Crucially,
these invariants are not a post hoc regularizer but a direct consequence of the physical constraints
structurally enforced by MeshFT. This topological guarantee is a major difference from methods that
learn physical dynamics on meshes, which typically cannot preserve such invariants exactly.
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C.3 Relation to Symplectic–ODE (Nondegenerate) Formulations

Symplectic ODE integrators preserve a global symplectic two-form on a finite-dimensional (gauge-
reduced) phase space—e.g., in canonical coordinates (q, p) with Ω =

∑
i dpi ∧ dqi, and dynamics

XH = Ω−1dH . This is structure-preserving, but Ω by itself does not encode the mesh incidence
operators or the exactness Dk+1Dk = 0. Consequently, discrete Gauss-type constraints (e.g.,
divergence constraints) are not automatically invariant: they must be enforced by projection/cleaning
or by special constraint-preserving discretizations; otherwise spurious modes can emerge over long
horizons even though the global symplectic form is conserved.

By contrast, fixing the interconnection via DEC (the J matrix) builds the topology into the dy-
namics: J is assembled from incidences, so the relations like Dk+1Dk = 0 are hard-wired,
and the corresponding constraint subspaces are preserved mechanically. This cleanly separates
topology/interconnection (J) from metric/constitutive content (Hodge stars), which can then carry
geometry/material information.

D Details of Experiments and Additional Results

Link to Theorem 1 (notation). In this section, we use the standard FEM symbols M (0-form
Hodge on nodes) and W (1-form Hodge on edges) as the concrete metric blocks of Theorem 1.
Throughout the experiments given in this paper, we assumed M and W are state-independent. With
canonical packaging z = (q, p) ∈ Ck ⊕ Ck, we define the canonical momentum as p := M q̇ (so
that the kinetic energy is 1

2 q̇
⊤M q̇ = 1

2 p
⊤M−1p). Then

H(z) = 1
2 q

⊤K q + 1
2 p

⊤M−1p, K = D⊤
0 WD0, (37)

so
e = ∇H(z) =

(
Kq

M−1p

)
= G−1z, G−1 =

(
K 0

0 M−1

)
. (38)

The conservative interconnection is the canonical symplectic matrix J =
( 0 I
−I 0

)
, and the dynamics

is ż = (J − R(z)) e with R(z)⊤ = R(z) ⪰ 0. (Equivalently, under the mixed packaging z =

(x(k), x(k+1)) ∈ Ck ⊕ Ck+1, J =
(

0 −D⊤
0

D0 0

)
; absorbing D0 into K = D⊤

0 WD0 yields the
canonical form above.)

D.1 Analytic Plane-Wave on Periodic 2D Meshes

Meshes and Geometry. On a torus, we use (i) a periodic axis-aligned grid and (ii) a Delaunay
triangulation. We report results on regular grid or Delaunay mesh at a nominal 32× 32 resolution.
Node dual areas V0 come from cell/barycentric areas; edge weights V −1

1 use nonnegative cotangent
weights computed with periodic minimum–image distances, with small quantile floors to avoid
degenerate areas/edges. Edge features are (∆x,∆y, ∥e∥) ; node features are (x, y, V0).

Data Generation. Each training pair (zt, zt+∆t) uses the canonical state z = (q, p) with a single
traveling wave

q(t) = a sin
(
k⊤x− ωt+ ϕ

)
, ω = c∥k∥, p = V0 q̇(t),

where x are nodal coordinates on the periodic box [0, L)2 and V0 is the node volumes. For each
sample we draw a wavenumber k = 2π

L (kx, ky) with kx = sxUx, Ux ∼ Unif{1, · · · , 4}, sx ∈ {±1}
equiprobable, and ky = syUy , Uy ∼ Unif{0, · · · , 4}, sy ∈ {±1}; the zero mode (kx, ky) = (0, 0)
is excluded. Independently, we sample the phase ϕ ∼ Unif[0, 2π), amplitude a ∼ Unif[0.5, 1.5],
and start time t0 ∼ Unif[0, 2π). We then set

zt =
(
q(t0), V0 q̇(t0)

)
, zt+∆t =

(
q(t0+∆t), V0 q̇(t0+∆t)

)
.

Randomness is controlled via synchronized seeds; splits and batches are identical across models.

Hodge Parametrization. MeshFT-Net fixes the interconnection J via the signed incidences {Dk}
and learns only the metric. A small geometry–conditioned Hodge maps node/edge features to
positive stars:

Mi = V0,i σ
(
ϕnode(xi, yi, V0,i)

)
, We = V −1

1,e σ
(
ϕedge(∆xe,∆ye, |e|)

)
,
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Table 5: One-step MSE and energy drift by models trained on sufficient amount of training data
for the regular grid data. Lower is better; drift closer to 0 is better. All numbers are computed on
held-out validation data. Mean ± s.d. over 3 seeds are reported.

Model One-step MSE Energy drift ∆E/E0

MeshFT-Net 1.4× 10−7 ± 6.1× 10−9 7.2× 10−3 ± 1.4× 10−3

MGN 1.2× 10−6 ± 2.5× 10−7 12.0± 12.6
MGN-HP 5.7× 10−4 ± 1.8× 10−5 7.3± 3.1
HNN 4.3× 10−7 ± 4.7× 10−7 0.63± 0.25

Figure 4: Relationship between the size of training dataset and one-step MSE (left) and rollout
energy drift (right) for random delaunay mesh.

with σ = softplus. Here ϕnode and ϕedge are state–independent MLPs (2 layers, width 64) that
take standardized geometry as input and output a scalar log–scale; applying σ ensures Mi > 0
and We > 0. This geometry-conditioned Hodge is used throughout the experiments below, unless
otherwise stated.

Metrics and Hyperparameters. For evaluation, a shared theory Hodge (M,W ) = (V0, c
2V −1

1 ) de-
fines the physical norm used for relative error and for energy-drift over open-loop rollouts (∆t=0.002,
T=200). Training runs for 10 epochs with a mini-batch size of 8 on 2000 training pairs and 256
validation pairs. The wave speed in the analytic solution is set to 1.0. MGN and MGN-HP use
hidden width 64 with 4 message-passing layers; the network for predicting Hamiltonian in MGN-HP
is configured identically (hidden 64, 4 layers). The HNN likewise uses hidden width 64 with 4 layers.
The other exact hyperparameters are provided in the released code.

Additional Results. For completeness, in addition to the regular-grid results reported in the main
text (Sec. 5.1), this appendix presents the same analytic plane-wave benchmark on periodic Delau-
nay triangulations under identical training protocols. The Delaunay results corroborate our main
findings—MeshFT-Net maintains the lowest error and near-zero drift, while the baselines exhibit
substantially larger drift—with detailed numbers and visualizations provided in Table 5 and Fig. 4.

D.2 Dissipative Benchmark

Data Generation. We benchmark damped plane-waves on a periodic 2D grid, using the canonical
packing x = (q, p). Samples are generated as

q(x, t) = Ae−γt sin
(
k⊤x− ωt+ ϕ

)
, γ ∼ Unif [0.01, 0.1],

and we form one-step pairs (xt, xt+∆t) on a periodic 32×32 grid over [0, 1)2, with∆t = 0.002, wave
speed c = 1.0, and integer wavenumbers up to 6 (excluding the zero mode). The other parameters
are same as the analytic plane-wave benchmark shown in Appendix D.1.

Models and Integration. Time stepping mirrors the conservative structure: MeshFT-Net uses KDK
(with exact half–step damping, i.e., Strang split), HNN uses the same KDK-with-damping scheme,
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and MGN/MGN–HP are wrapped in a symmetric KDK integrator applied to their learned vector
field v(x). For MeshFT-Net and HNN we use nodewise Rayleigh dissipation: ṗ = −Kq − Rp
with rates ri ≥ 0 (equivalently R = diag(r) ⪰ 0). Concretely, we use GammaInferNet—a small
per-node damping MLP (message passing; width 64, 2 layers)—that ingests node/edge features,
outputs raw rates r̃ ∈ R, and sets r = softplus(r̃) ≥ 0. In continuous time the momentum channel
obeys ṗ = −Kq − Rp, and in our Strang-split KDK step we apply the exact exponential decay
over a step ∆t: p ← e−

∆t
2 R p (before and after the conservative pass). MGN/MGN–HP do not

receive an explicit damping operator and must infer dissipation from data.

Metrics and Hyperparameters. We report (i) one–step MSE; and (ii) normalized energy drift over
open-loop rollouts (T = 200) comparing with the true trajectory including the dissipation. Training
runs for 20 epochs with a mini-batch size of 16 on 4000 training pairs and 256 validation pairs.
MGN and MGN-HP use hidden width 64 with 4 message-passing layers; the network for predicting
Hamiltonian in MGN-HP is configured identically (hidden 64, 4 layers). The HNN likewise uses
hidden width 64 with 4 layers. The other exact hyperparameters are provided in the released code.

D.3 Physically-Consistency Benchmark

Meshes and Geometry. We use periodic axis–aligned grids on the torus [0, 1)2. The grid is 32×32,
which is same as the analytic plane-wave benchmark shown in Appendix D.1.

Data Generation. Training pairs (zt, zt+∆t) come from analytic plane-waves q(t) = a sin(k⊤x−
ωt+ϕ), with ω = c∥k∥ and c = 1.0. Per sample we draw integer wavenumbers up to 6 (exclude the
zero mode), a phase ϕ∼Unif[0, 2π), amplitude a∼Unif[0.5, 1.5], and start time t0∼Unif[0, 2π).

Metrics and Hyperparameters. All physics diagnostics are computed with a shared theory Hodge,
(M,W ) = (V0, c

2V −1
1 ), to ensure fair comparison, independent of a model’s internal param-

eterization. The details of metrics for physical consistency are summarized in Table 6. Each
hyperparameters are set as ∆t = 0.002, T = 200; epochs = 10, batch = 16, train size = 4000, val
size = 256. The other exact hyperparameters are provided in the released code.

In addition to physics diagnostics, we evaluate model–PDE agreement at the vector-field level and
short-horizon behavior, using the same theory Hodge. (i) Vector-field alignment: at a batch of
states z we compute the PDE field vPDE(z) = [M−1p, −Kq] and the model field vmodel(z), and
report the cosine similarity and the relative L2 error ∥vmodel − vPDE∥/∥vPDE∥. (ii) Short-horizon
rollout: from the same initial states we roll out Tshort=16 steps and report the final relative error. (iii)
Amplitude/phase recovery: for the predicted field at t = t0+Tshort∆t, fit q(x) ≈ a sin(k·x)+b cos(k·x)
(2×2 least squares) and report amplitude error |Â − A|/|A| with Â =

√
a2 + b2, and phase error

|ϕ̂− ϕeff | in degrees with ϕeff = ϕ− ωt.

D.4 OOD Generalization

Data generation. We use periodic 2D wave dynamics. Training and test pairs (zt, zt+∆t) are
sampled from analytic plane-waves q(x, t) = a sin(k⊤x−ωt+ϕ) with ω = c ∥k∥. For each sample
we draw integer wavenumbers up to 3 (excluding the zero mode). The other parameters are same as
the analytic plane-wave benchmark shown in Appendix D.1. Training uses one–step teacher forcing.
We generate three OOD settings by changing the test distribution relative to training: (i) frequency
(ktest > ktrain), (ii) resolution (coarse→fine grid), (iii) parameter (ctest ̸= ctrain).

Metrics and Hyperparameters. All long-horizon errors and energy drift are evaluated with a
theory Hamiltonian: on grids we use (M,W ) = (V0, c

2Ie). We report (i) one-step MSE on the test
distribution; and (ii) normalized energy drift over the trajectory.

Training is performed on a 32×32 periodic grid with time step ∆ttrain = 0.004, and wave speed
ctrain = 1.0, using 4000 training pairs, batch size 16, and 10 epochs. Testing uses ∆ttest = 0.004,
T = 200, and 512 test pairs; scenario-specific shifts are: (a) frequency—test kmax = 6; (b)
resolution—a finer 64×64 grid; (c) parameter—wave speed ctest = 1.4. MGN and MGN-HP use
hidden width 64 with 4 message-passing layers; the network for predicting Hamiltonian in MGN-HP
is configured identically (hidden 64, 4 layers). The HNN likewise uses hidden width 64 with 4 layers.
The other exact hyperparameters are provided in the released code.
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Table 6: Details of physics metrics (computed on closed-loop rollouts with the shared theory Hodge
(M,W ) = (V0, c

2
speedV

−1
1 )). Frames are indexed t = 0, . . . , T (initial included).

Diagnostic Physical meaning and exact computation
Dispersion Wave speed from the phase of q at wavenumber k; estimate ω̂ from weighted

phase increments and set ĉ = ω̂/∥k∥. Reported as relative absolute errors vs.
ground truth.

Canonical consis-
tency

Check p ≈ M q̇ using central differences (sum over interior times t =

1, . . . , T−1): q̇t ≈
qt+1 − qt−1

2∆t
, pmid

t = 1
2 (pt+1 + pt−1). Reported∑T−1

t=1 ∥ pmid
t −Mq̇t ∥22∑T−1

t=1 ∥Mq̇t ∥22
.

PDE residual Discrete wave equation mismatch with K = D⊤
0 WD0 (again t =

1, . . . , T−1): q̈t ≈
qt+1 − 2qt + qt−1

(∆t)2
, rt = Mq̈t +Kqt. Reported

∑T−1
t=1 ∥rt∥22∑T−1

t=1

(
∥Mq̈t∥22 + ∥Kqt∥22

) .
Equipartition Time-averaged kinetic/potential balance: Tt = 1

2 p
⊤
t M

−1pt, Ut =

1
2 q

⊤
t Kqt (=

1
2 (Bqt)

⊤W (Bqt)), ⟨T ⟩ = 1
T+1

T∑
t=0

Tt, ⟨U⟩ = 1
T+1

T∑
t=0

Ut,

and reported
|⟨T ⟩ − ⟨U⟩|
⟨T ⟩+ ⟨U⟩

.

Momentum Normalized range of total momentum over time: mt =
∑N

n=1 pt[n]. Re-
ported

max0≤t≤T mt −min0≤t≤T mt

1
T+1

∑T
t=0

∑N
n=1 |pt[n]|

.

Additional Results. The full results are provided in Table 7.

D.5 Validation on Real Physics Field Data from The Well

Data generation. We evaluate the acoustic scattering discontinuous subset of The Well (2D acous-
tics; near-Hamiltonian with discontinuous media). Fields are placed on a Cartesian grid of 256×256
nodes over [−1, 1]× [−1, 1] with mixed boundary conditions—reflecting in x and open in y. From
each short sequence we build one–step pairs (zt, zt+∆t) in canonical packing z = (q, p), where q is
pressure and p = M q̇ with node mass M = V0 (cell area). The p used for training is discretely cal-
culated based on q. The dataset time step is ∆t = 2/101 ≈ 0.0198. To emulate open y-boundaries
consistently across time stepping, we apply a light sponge after each update: p← p− γbias(y) p∆t,
with the bias ramped over the top/bottom 8% of the domain.

Hyperparameters. Training follows the runner settings: 5 epochs, batch size 2, and 800 steps/epoch
(validation every 50 steps). For stability, MeshFT-Net employs CFL-based substepping with target
Courant number 0.5; on 256× 256 and ∆t≈0.0198 this yields about 8 substeps per data step. The
other exact hyperparameters are provided in the released code.

Parameterization We parameterize the discrete Hodge operators with compact, data-driven MLPs
that are evaluated locally on nodes and edges.
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Table 7: OOD generalization across three scenarios. Lower is better; best in bold. Mean± s.d. over
3 seeds are reported

(a) Frequency extrapolation (ktest > ktrain)

Model One-step MSE Drift

MeshFT-Net 4.1× 10−6 ± 2.6× 10−6 5.1× 10−3 ± 1.2× 10−3

MGN 2.3× 10−5 ± 1.8× 10−5 >100
MGN-HP 6.5× 10−3 ± 4.0× 10−3 0.16± 9.3× 10−2

HNN 4.8× 10−5 ± 5.9× 10−5 0.45± 0.53

(b) Parameter shift (ctest ̸= ctrain)

Model One-step MSE Drift

MeshFT-Net 5.8× 10−6 ± 5.9× 10−6 0.17± 8.0× 10−3

MGN 3.1× 10−6 ± 2.6× 10−6 24.5± 25.2
MGN-HP 3.2× 10−3 ± 2.7× 10−3 0.25± 0.20
HNN 8.7× 10−6 ± 1.1× 10−5 0.24± 0.12

(c) Resolution transfer (32×32→ 64×64)

Model One-step MSE Drift

MeshFT-Net 7.0× 10−7 ± 5.4× 10−7 2.9× 10−3 ± 9.2× 10−4

MGN 8.6× 10−4 ± 7.0× 10−4 3.4± 2.7
MGN-HP 1.5× 10−3 ± 1.3× 10−3 5.6± 4.4
HNN 8.6× 10−4 ± 7.0× 10−4 2.0± 0.47

For each node i, we predict a positive mass scale ρi > 0 with a small node-MLP fed by geomet-
ric/context features, including coordinates (xi, yi) and cell area V0,i. We then set

Mi = ρi V0,i, log ρi = tanh
(
ϕnode(·)

)
,

where ϕnode is a two-layer MLP (width 32).

For each edge e = (i, j), we assemble geometric edge features (∆xe,∆ye, |e|) and feed them to an
edge-MLP. The edge-MLP outputs a positive scale σe > 0, and we define

We = σe V
−1
1,e , log σe = tanh

(
ϕedge(·)

)
,

with ϕedge a two-layer MLP (width 32). Here V1,e denotes the (diagonal) discrete Hodge star on
edges (primal 1-forms). On a regular grid we set V1,e = 1 (hence V −1

1,e = 1); on irregular meshes
V1 is precomputed from geometry. All other hyperparameters follow the released code.

Visualization. From a validation sequence we form the canonical initial state z0 = [q0, p0]. We then
perform an open-loop K-step rollout with the symplectic KDK step, ẑj+1 = MeshFT-Net∆t(ẑ

j)
for j = 0, . . . ,K−1, always feeding the predicted state into the next step. We set K = 48 and, in the
main text, display five representative snapshots at frames 1, 12, 24, 36, and 48 (start/midpoints/end).
At each step we record the predicted pressure q̂j and render GT vs. MeshFT-Net contours side-by-side
(using a color scale fixed by the GT frames).

D.6 Ablations on Topology, Orientation, and Metric Structure

Objective. Guided by Theorem 1, we test which structural assumptions matter in practice. Recall
that locally ∂F

∂z (z) = (J −R(z))G(z) with J⊤ = −J assembled from the signed incidences {Dk}
(topology), R(z)⊤ = R(z) ⪰ 0 (dissipation), and G(z) ≻ 0 (metric/constitutive). Our ablations
selectively violate these ingredients while keeping data, optimizer, supervision, and the integrator
fixed.

Common setup. All models are trained with one-step teacher forcing on analytic plane-wave pairs
x = [q, p] (p = M q̇) on a 32 × 32 torus with step ∆t = 0.002. Long-horizon evaluation uses
T = 200 steps. For fair comparison, all rollout metrics use a common theory Hodge.
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Table 8: Ablation results. Each number is mean for three seeds.

Model One-step MSE Energy drift Energy injection Momentum
MeshFT-Net 4.142× 10−6 2.03× 10−3 8.75× 10−3 4.85× 10−8

No-Orientation |Dk| 1.08× 10−4 13.7 >100 >100
Scrambled-Topology 3.85× 10−5 13.1 31.1 4.90× 10−8

Indefinite-Metric 4.145× 10−6 2.30× 10−3 9.85× 10−3 4.28× 10−8

Learned-J (PSD metric) 4.37× 10−6 1.34× 10−1 4.59× 10−1 7.79× 10−3

Learned-J (free metric) 4.16× 10−6 8.25 14.8 9.37× 10−2

Metrics. (1) one-step MSE; (2) normalized energy drift |Et−E0|
|E0| over the rollout; (3) energy injection

Einj =
∑T−1

t=0 max(Et+1 − Et, 0)
/
(|E0| + ε); (4) momentum variation: time variation of

∑
n pn

on the torus, normalized by the mean ℓ1 amplitude, as in the physics-consistency test in Table 3.
Lower is better for all.

Compared Variants. We consider the following variants for ablation study. The other mplemen-
tation details are provided in the released code. MeshFT-Net (structured baseline). J is assembled
from the signed incidences {Dk} (topology + orientation), the metric is positive (G ≻ 0), and
R ≡ 0 (conservative). No assumptions are violated; energy and momentum are conserved up to
integrator error, and dispersion is correct. No-Orientation (orientation dropped). Replace the
signed incidence by an orientation–even map, violating (O). The resulting interconnection is no
longer skew, J⊤ ̸= −J , so the conservative pass can inject/remove energy; expect systematic en-
ergy drift and spurious momentum leakage. Scrambled-Topology (topology broken). Randomly
re–pair the node–edge incidences so that J is not the topology–assembled one in Theorem 1 and
interface locality (L) is broken. Algebraic skew of J is retained by construction, but under the
common theory energy for evaluation, expect incorrect modal coupling and large long–horizon drift.
Indefinite-Metric (metric positivity broken). Keep the signed topology (orientation preserved)
but allow the edge–space weights to be signed, violating G ⪰ 0. Expect nonphysical energy growth,
positive energy injection, and unstable rollouts despite small one–step error. Learned-J (PSD
metric). Here J is learned directly from data—i.e., not assembled from the signed incidences {Dk}
(topology identification dropped)—but is constrained to remain skew–symmetric (J⊤ = −J). The
metric is kept positive (G ⪰ 0). Thus, J no longer reflects mesh topology even though it preserves
the algebraic Hamiltonian symmetry. Expect stable yet biased dynamics under the theory energy:
degraded dispersion/momentum behavior and moderate drift. Learned-J (free metric). As above,
J is learned (not incidence–assembled) and remains skew–symmetric by construction, but we drop
nonnegativity on the learned gains so the induced metric need not be PSD. This preserves the alge-
braic skew property of J while violating metric positivity. Expect stronger bias, larger energy drift,
and more energy injection than in the PSD case.

Results. Table 8 reports results of ablation study. Each number is mean for three seeds.

Discussion. Topology (signed {Dk}) is critical. Breaking incidence assembly (Scrambled-
Topology) or dropping orientations (No-Orientation) yields large energy growth—both drift and
injection—even when one-step MSE remains modest. No-Orientation, which violates (O), also
shows pronounced momentum blow-up due to loss of action–reaction pairing, confirming that ori-
entation is essential for a skew-symmetric J . In addition, Learned-J (PSD metric) is markedly more
stable than Learned-J (free metric), yet both underperform the structured MeshFT-Net. Fixing J
via the mesh incidences {Dk} is essential for stability and fidelity. Violating metric positivity breaks
energy balance. Indefinite-Metric variants can achieve similar one-step MSE to MeshFT-Net yet
inject more energy, underscoring that J⊤ =−J (from signed {Dk}) and a positive energy metric
(G ⪰ 0) must be enforced together.

Takeaway. These ablations empirically support Theorem 1: the conservative interconnection must
be assembled from the signed incidences {Dk} (topology and orientation) and the metric/constitutive
block must be positive-definite; otherwise long-horizon stability, conservation properties, and phys-
ical fidelity deteriorate—even when one-step errors are comparable.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Compute & memory (means only). Lower is better. Grid/Del = regular grid / Delaunay.

Infer (ms) Train (ms) Peak MB (train)
Model Grid Del Grid Del Grid Del
MeshFT-Net 1.36 2.90 3.40 6.17 18.5 24.2
MGN 2.94 3.00 9.46 9.46 151.7 196.4
MGN-HP 2.93 2.98 26.9 26.8 462.3 605.9
HNN 21.6 16.8 51.6 51.5 976.5 1276.3

D.7 Computational Cost Analysis

To assess practical efficiency, we measured per-step inference/training time and peak CUDA memory
in the analytic plane-wave setting (Sec. 5.1) on a single NVIDIA H100 under identical configs. Note:
these wall-clock comparisons are reference only, since compute graphs/kernels differ across methods
and are strongly implementation-dependent. As summarized in Table 9, MeshFT-Net has the best
overall time/memory profile on both meshes: on regular grids it is the fastest and uses about an
order of magnitude less memory than MGN (and far less than MGN-HP). On Delaunay meshes it
remains slightly faster for inference and faster for training, with similarly reduced memory. HNN is
substantially slower and heavier.

Reproducibility Statement We took several steps to ensure reproducibility. Theory: all assump-
tions are stated in the main text, and complete proofs of Theorem 1 in Appendix A. Implementation:
each hyperparameter, training procedures, and evaluation metrics for each experiment are presented
in Appendix D. Execution: we submit, as anonymous supplementary material, an executable pack-
age containing scripts that reproduce every result in the paper. Upon acceptance, we will publicly
release the full source code, and scripts under an open-source license.

LLM Usage Disclosure We used a general-purpose LLM as an assistive tool for (i) code design
(module layout, refactoring), (ii) brainstorming as a discussion partner (sharpening our research
idea), (iii) paper-writing assistance (drafting outlines, rephrasing for clarity, grammar/style edits, and
figure-caption suggestions), and (iv) related-work exploration (flagging potentially missing citations
and drafting brief summaries). The LLM’s role was strictly assistive: we always consulted primary
sources (original papers, datasets, and official documentation) for any factual or bibliographic claims,
and verified all citations. All final technical choices, proofs, claims, and manuscript text were
authored and validated by the authors; no outputs were accepted without manual inspection.
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