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Playing MNIST Sudoku with Image Generators….

Figure 1: We introduce Spatial Reasoning Models (SRMs), a framework to systematically investigate diffusion/flow-based
generative models with respect to their reasoning capabilities over multiple variables. We introduce benchmarks that allow
quantification of higher-level reasoning capabilities and show that manual and automatic schemes for sequentialization can
heavily reduce hallucination. Here, we show the solving process of one of the benchmarks, a Sudoku game consisting of
MNIST images, which is solved correctly by our SRMs, while standard diffusion models fail.

Abstract
We introduce Spatial Reasoning Models (SRMs),
a framework to perform reasoning over sets of
continuous variables via denoising generative
models. SRMs infer continuous representations
on a set of unobserved variables, given observa-
tions on observed variables. Current generative
models on spatial domains, such as diffusion and
flow matching models, often collapse to hallucina-
tion in case of complex distributions. To measure
this, we introduce a set of benchmark tasks that
test the quality of complex reasoning in generative
models and can quantify hallucination. The SRM
framework allows to report key findings about
importance of sequentialization in generation, the
associated order, as well as the sampling strate-
gies during training. It demonstrates, for the first
time, that order of generation can successfully be
predicted by the denoising network itself. Using
these findings, we can increase the accuracy of
specific reasoning tasks from < 1% to > 50%.
Our project website provides additional videos,
code, and the benchmark datasets.
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1. Introduction
Conditional generative models, such as GPTs (Radford et al.,
2018) or denoising models like diffusion/flow-based mod-
els (Ho et al., 2020; Song et al., 2021; Lipman et al., 2023;
Liu et al., 2023), promise significant advances in practical
reasoning. They allow to model highly complex and multi-
modal distributions by learning to sample from them. While
reasoning capabilities of LLMs are extensively explored
in many recent works (Huang & Chang, 2023), similar ef-
forts in continuous, spatial domains are needed to profit
from the semantic structure that can be learned from high-
dimensional, continuous data. Our work approaches this
goal by providing a novel framework to benchmark and ad-
vance the reasoning capabilities of diffusion/flow-based gen-
erative models, which we deem of large importance for the
further development of large image, video, and physically-
grounded world models (Agarwal et al., 2025).

The process of reasoning can be defined as inferring the
states of unobserved variables xi, given a distinct set of
observed variables yj (Kwan et al., 2008), with varying de-
pendencies between all variables, loosely inspired by tradi-
tional fields of probabilistic graphical models and Bayesian
networks. Most reasoning tasks are subject to a high degree
of inherent uncertainty due to incompleteness of informa-
tion given in the observed variables. Thus, it is natural to
tackle reasoning problems with probabilistic inference, i.e.,
modeling p(x1, ..., xn | y1, ..., ym). When reasoning across
higher-dimensional continuous domains, such as images
or image patches, these distributions become complex and
multi-modal, preventing the application of traditional ap-
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(a) Training Data (b) Conditioning image and generation output, standard DDPM

Figure 2: MNIST Sudoku. One of our reasoning benchmarks. (a) A dataset of correct Sudokus, consisting of random
MNIST images. (b) When training a conditional diffusion model on correct examples it fails to conditionally generate
correct solutions for hard Sudokus (almost 0% accuracy). In contrast, SRMs achieve > 50% accuracy for these cases.

proaches that rely on Gaussian assumptions or predefined
families of discrete distributions.

Generative models for spatial domains typically learn to
sample from an approximated data distribution p(x1, .., xn).
To perform reasoning, it is desired that such a model ab-
stracts from the low-level data space and is able to detect
high-level patterns that occur in seen data. To obtain an
insight into the level of such capabilities of existing diffu-
sion/flow models, we introduce a set of benchmarks. One
example based on the well-known Sudoku game, where each
number from 1 to 9 must occur exactly once in each row,
column and 3x3 block, is shown in Fig. 2. A (conditional)
diffusion model is trained to generate or complete correct
Sudokus consisting of varying MNIST digits. While the gen-
erated images look realistic on the first glance, as individual
numbers are high-quality samples from the MNIST dataset,
the generation process fails to sample correct instances. We
identify this effect as an instance of hallucination, where
the model falls back to superficial solutions that satisfy the
pixel-wise MSE loss well enough, in case it fails to capture
the actual, complex patterns in the underlying distribution.

In the space of large language models (LLMs), chain-of-
thought prompting has achieved successes in fighting such
hallucinations by prompting the model to make smaller,
sequential steps towards the solution (Wei et al., 2022). In-
spired by these advances, we develop and investigate strate-
gies in our spatial setting that can lead to similar effects.
The chain-rule of probabilities lets us decompose

p(x1, .., xn) =

n∏
i=1

p(xπ(i)|{xπ(j)}nj=i+1) (1)

for arbitrary permutations π. While all orders π model the
correct distribution in theory, the individual orders lead to
chains of varying complexity in the individual distributions,
determined by hidden dependencies, potentially leading to
varying amounts of hallucination during sampling. We be-
lieve investigating strategies to find (1) the correct amount of
sequentialization and (2) the best order with least amount of
hallucination is a promising venture for further development
of continuous generative models.

To this end, we introduce Spatial Reasoning Models (SRMs),
an architecture-agnostic framework to formulate (soft or
hard) sequentialization strategies that can be used for rea-
soning on sets of continuous variables without canonical
order. Within this framework, we create multiple of such
strategies and perform an exhaustive evaluation on bench-
mark tasks as described above.

In summary, our contributions are

• a general framework for reasoning over sets of contin-
uous variables with denoising generative models,

• a novel algorithm for t-sampling during training, which
adjusts for multiple variables,

• different task-specific and task-agnostic, soft and hard
variants of sequentialization within reasoning models,

• a benchmark to quantitatively measure hallucination in
reasoning over visual domains.

We can summarize the key findings as

• diffusion/flow-based generative models are capable of
simple visual reasoning but fall back to hallucination
when the modeled distribution becomes too complex,

• inducing sequentialization can simplify the task by
decomposing into simpler distributions, reducing hal-
lucination, and improving reasoning,

• greedy orders based on predicted uncertainty can sig-
nificantly improve reasoning quality further,

• the choice of training t-sampling strategies is crucial
when adjusting for sequentialization.

Our framework, code, and benchmarks are available on our
project website for further investigation and development.

2. Related Work
Probabilistic reasoning is currently receiving a lot of at-
tention, mostly driven by recent advancements in large
language models (LLMs) (Huang & Chang, 2023; Plaat
et al., 2024) that allow to generate tokens from a discrete
codebook. To leverage their capabilities, many modalities
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have been mapped to such discrete spaces, using special-
ized tokenizers (van den Oord et al., 2017), allowing to
reason about originally continuous domains to certain de-
grees (Chen et al., 2023). Vision Language Models (VLMs)
have been heavily used to connect spatial domains with
language, to perform reasoning about images in the text
domain (Chen et al., 2024b). In this work, we move in
a different direction and investigate reasoning capabilities
across continuous domains by generative models that have
explicitly been designed to work on these domains, such as
DDPM (Ho et al., 2020), DDIM (Song et al., 2021), recti-
fied flow (Liu et al., 2023), or flow matching (Lipman et al.,
2023). Investigating reasoning capabilities of such models
has remained largely unexplored so far.

Closest to our work are recent methods that introduce differ-
ing levels of noise in sequential generation with diffusion
models (Wu et al., 2023; Zhang et al., 2024; Ruhe et al.,
2024; Chen et al., 2024a). AR-Diffusion (Wu et al., 2023)
performed generation via diffusion on text spaces. Later, the
idea was extended to sequential, continuous spaces, such
as human poses (Zhang et al., 2024), or videos (Ruhe et al.,
2024; Chen et al., 2024a), which also introduced overlap-
ping via different noise levels of variables in purely sequen-
tial settings. Our work extends this direction to arbitrary
spatial settings without canonical orders. Also, we heavily
improve on the training sampling strategy used in Diffusion
Forcing (Chen et al., 2024a). Another recent related work
is MAR (Li et al., 2024), which performs autoregressive
generation of image patches via denoising in random order.

3. Spatial Reasoning Models
In this section, we introduce our spatial reasoning mod-
els. We begin with formulating our general framework in
Sec. 3.1. After training a SRM as outlined in Sec. 3.2, it can
be leveraged with various sampling strategies. We introduce
a selection of those in Sec. 3.3.

3.1. General Framework

Our goal is to learn to reason over sets of continuous ran-
dom variables. Practical examples of such variables can be
patches of images, frames of videos, or even multiple views
of a 3D scene. For our SRM setting, we define reasoning
over a set of continuous random variables as sampling

x̂t1
1 , ..., x̂tn

n ∼ q(xt1
1 , ..., xtn

n | x
t′1
1 , ..., x

t′n
n ), (2)

where xti
i denotes the variable xi with noise level ti during

the denoising process and ti ≤ t′i. Spatiality is (optionally)
encoded via positional encodings on the variables. Choosing
noise levels ti allows explicit control over amount and order
of sequentialization, as discussed further in Sec. 3.1.2.

Belief Propagation The above paradigm is loosely in-
spired by belief propagation through Probabilistic Graphical
Models (Pearl, 1982), propagating information from ob-
served to unobserved variables via sequential probabilistic
inference. However, the set of assumptions is drastically re-
duced. It does not make any assumptions about distributions
of x0

i and does not strictly require the Markov assumption
about conditional independence between variables. Instead,
the network can (but not has to) be conditioned on all other
variables, utilizing compression capabilities of neural net-
works. Due to the nature of generative models, however,
the formulation does not allow for explicit representation of
probabilities but allows only sampling.

3.1.1. SAMPLING IN CONTINUOUS DOMAINS

We first introduce our formulation for sampling a single
continuous random variable. Denoising generative models
are the established state-of-the-art for learning continuous
data distributions (Dhariwal & Nichol, 2021). While there
are multiple different derivations like score matching (Song
& Ermon, 2019), DDPM (Ho et al., 2020), or the recently
more popular (conditional) flow matching (Lipman et al.,
2023), they all share the same idea of learning a step-wise
mapping of scalar or higher-dimensional continuous vari-
ables xt from a simple and known Gaussian distribution
x1 ∼ N (0, I) to the complex and unknown data distribu-
tion x0 ∼ q. With small enough step sizes t′ − t (Ho et al.,
2020), each step itself can be modeled by sampling from a
Gaussian distribution (with possibly zero variance)

xt ∼ N (µθ(x
t′),Σθ(x

t′)), (3)

parameterized by a neural network with weights θ, trained to
denoise noisy versions of samples from the data distribution.
Training examples are constructed by interpolating between
samples x0 ∼ q and Gaussian noise ϵ ∼ N (0, I) as

xt = a(t)x0 + b(t)ϵ, (4)

where t ∈ [0, 1] is a continuous level of noise and
a, b : [0, 1] 7→ [0, 1] define interpolation weights. While
DDPM (Ho et al., 2020) limits itself to a subset of possible
noise schedules, alternatives like rectified flows were re-
cently explored as general Gaussian probability paths in the
context of conditional flow matching (Lipman et al., 2023).

In this work, we construct a specific reverse distribution, i.e.,
mean and variance in Eq. 3 for arbitrary noise schedules a, b
with its marginal distribution satisfying Eq. 4, similar as but
more general than DDIM (Song et al., 2021). We provide
all details and proofs in Appendix A. As a result, our formu-
lation can combine non-diffusion noise schedules such as
from rectified flows (Liu et al., 2023) (a(t) = 1−t, b(t) = t)
with stochastic sampling as in DDPM and follow-ups such
as learning the variances of the reverse distributions (Nichol
& Dhariwal, 2021).
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(a) Amount of Sequentialization (b) Order of Sequentialization

Figure 3: Investigated Degrees of Freedom. (a) The SRM framework allows to define different amounts of sequentialization,
i.e. parallel generation, autoregressive generation or mixtures with varying overlap, modeled by differing levels of noise
on individual variables at the same time. (b) Further, it provides different options to define the order of sequentialization,
allowing random ordering, a greedy heuristic based on predicted uncertainty and manually-defined graphs.

3.1.2. SAMPLING IN SPATIAL DOMAINS

We model our spatial reasoning problems as inferring sets of
continuous random variables, unifying previous denoising
generative approaches and spatially autoregressive methods.

On the one hand, existing diffusion- and flow-based models
like popular image generators (Rombach et al., 2022) reason
only along the noise dimension by assuming single, shared
noise levels for all variables at any point in time during the
denoising process. By setting t1 = ... = tn and t′1 = ... =
t′n in Eq. 2, this special case is subsumed by our framework.
We hypothesize potential limitations of this approach in
the presence of complex dependencies between spatially
distinct variables, as in the case of MNIST Sudoku (Fig.2).

On the other hand, spatially autoregressive approaches like
MAR (Li et al., 2024) learn to sample a next variable xi con-
ditioned on the history of previously sampled variables xj

for j ∈ J and {{i},J ,K} being a partitioning of {1, ..., n}.
Our framework covers this specific way of sampling by set-
ting tj = t′j = 0 for j ∈ J and tk = t′k = 1 for k ∈ K.
Although the application of the chain-rule can decompose
the complex joint distribution of variables into potentially
simpler conditional distributions, we argue that potential
improvements depend on the order, which is usually simply
set to be random or a raster scan.

These two special instances depict the extreme cases of our
framework. Given that both have their own strengths and
weaknesses, we aim to explore the space in between. There-
fore, we train spatial reasoning models to jointly denoise
multiple variables but with individual noise levels.

3.2. Training

We parameterize a SRM as a noise prediction network ϵθ
that is trained to regress the ground truth noise ϵ ∼ N (0, I)

Lµ = Eϵ,t,x∥ϵθ(xt)− ϵ∥2, (5)

where t := (t1, ..., tn), x := (x1, ..., xn), and xt :=
(xt1

1 , ..., xtn
n ). Additionally, we let the network predict the

variance of the reverse process in Eq. 3, optimized for the
variational lower bound (Nichol & Dhariwal, 2021). As
shown in previous works (Esser et al., 2024), the training
of a denoising network is very sensitive to the sampling of
noise levels. This is especially true for our setting of indi-
vidual noise levels for a possibly large number of variables.

3.2.1. NOISE LEVEL SAMPLING

Sampling noise levels during training of diffusion models
allows the model to learn denoising images of all noise
levels t. In SRMs, the image patches also act as conditioning
to other patches, so we need to ensure that the whole t
distribution is similar to what happens during inference.

At the beginning of inference, all patches pi start with
ti = 1, so the mean noise level is initially t̄ = 1. Similarly,
at the end of inference, all patches reach ti = 0, giving
t̄ = 0. For diffusion models with linear time schedules,
or our SRM with a parallel schedule, the mean noise level
decreases by a fixed amount per inference step ∆t̄ = − 1

N ,
where N is the number of inference steps. In the autore-
gressive generation, a similar relation holds ∆t̄ = − 1

M ·P ,
where M is the number of steps per patch, and P is the
number of patches. In both cases, ∆t̄ does not depend on
the noise level, which suggests that with a sufficient num-
ber of inference steps, t̄ should ideally follow a uniform
distribution. See Fig. 9 in appendix for visualization.

Diffusion Forcing (Chen et al., 2024a) suggests to indepen-
dently sample a noise level vector t ∼ U([0, 1]n), ensuring
a uniform marginal distribution, ti ∼ U(0, 1). However, this
leads to the mean t̄ following a Bates distribution, which is
highly concentrated around 0.5 – significantly different from
the distribution encountered during inference (c.f. Fig. 4a).
As a result, a trained model is undertrained for early (and
late) inference steps, where most patches have noise levels
close to 1 (and 0), reducing performance (c.f. Sec. 4.6).
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(a) Uniform t (Diffusion Forcing) (b) Uniform t̄ (ours)

Figure 4: Noise Level Sampling. We visualize the joint
distribution of noise levels ti and mean noise levels t̄ for (a)
Diffusion Forcing training and (b) our Uniform t̄ approach.
In Diffusion Forcing, the distribution of ti is correctly mod-
eled but t̄ is overly concentrated around t̄ = 0.5, which
does not reflect the distribution seen during inference. Our
Uniform t̄ addresses this issue, though it introduces some
bias in the distribution of individual ti which we address by
per-patch loss weighting.

To address this issue, we introduce a two-step sampling
strategy called Uniform t̄. We first sample t̄ ∼ U(0, 1), and
then generate t ∼ p(t | t̄) using our recursive allocation
sampling algorithm (Appendix C.1). The algorithm allows
control of the sharpness of the p(t | t̄) – the spread of
individual ti around t̄. This makes it adaptable to different
inference scenarios flexible for different inference settings.
For example, in the parallel generation, ti should stay close
to t̄ (high sharpness). In contrast, autoregression benefits
from greater cross-patch noise level variance.

Uniform t̄ sampling preserves the uniform mean distribution
but oversamples individual patch noise levels close to ti = 0
and ti = 1 (c.f. Fig. 4b). This occurs because if t̄ ≈ 0 is
sampled, all ti must be close to 0 and similarly for t̄ ≈ 1,
∀iti ≈ 1. On the other hand, for t̄ ≈ 0.5, the ti samples
can take any value within the range. To counteract this bias
towards sampling ti ≈ 0 or ti ≈ 1, we introduce per-patch
loss weights wt =

1
p(t) , where p(t) is empirically estimated.

3.2.2. UNCERTAINTY ESTIMATION

To sample variables in a meaningful order, we propose to
train the denoising network to predict the uncertainty in its
noise prediction. As common in heteroscedastic uncertainty
estimation (Seitzer et al., 2022), we model the uncertainty
as standard deviation σθ(x

t) and minimize the negative
log-likelihood (NLL) of the ground truth noise ϵ

Lσ = Eϵ,t,x − logN (ϵ|ϵθ(xt), σθ(x
t)2I). (6)

To avoid deteriorating the noise prediction, we only train
the uncertainty estimation with this loss and a small weight.

3.3. Sampling

A trained SRM can be used for various sampling techniques
and therefore benchmark them fairly using a single model.
We investigate different amounts and orders of sequential-
ization for the denoising of spatial variables (see Fig. 3).

Regarding the amount of sequentialization, we explore par-
allel generation as usual in denoising generative models, the
other extreme of fully autoregressive sampling, and a mix-
ture achieved by overlapping the denoising step intervals of
the different variables by a variable amount.

Besides the amount of sequentialization, we further com-
pare different orders of variables. Leveraging the estimated
uncertainty in the noise prediction from Sec. 3.2.2, we pro-
pose to adaptively sample the next variable with the lowest
uncertainty. This strategy follows the assumption that more
uncertain variables can benefit from stronger conditioning of
many clean variables later during sampling. For some tasks,
we know the dependency structure between spatial variables
in advance. Considering our Sudoku example, a cell de-
pends directly on the other cells in its row, column, and 3x3
block. Encoding this information in form of an adjacency
matrix, we propose to propagate certainty based on each
variable’s noise level to sample the most certain variable
next. We include a random order as further baseline.

4. Experiments
We evaluate SRMs for reasoning on three new benchmark
datasets that we introduce in Sec. 4.1. We consider images
split into patches as our sets of continuous random variables
and use 2D UNets for denoising as described in Sec. 4.2.
Besides our main findings detailed in Sec. 4.3 to 4.5, we
provide additional ablations in Sec. 4.6.

4.1. Benchmark Datasets

We introduce three different datasets to quantify reasoning
capabilities. They are aimed at different aspects to be tested.
The MNIST Sudoku dataset captures complex (NP-hard)
dependencies that need to be understood. The Even Pixels
dataset is an easier task that can be solved in a greedy fash-
ion. Finally, we introduce the Counting Polygons / Stars
FFHQ dataset, which moves closer to real-world images.

MNIST Sudoku Dataset We create a dataset based on
one million correct Sudoku instances by randomly sam-
pling MNIST representatives for each cell (see Fig. 2a for
examples). The classification of Sudoku images into cor-
rect and incorrect ones is then done via an application of a
pre-trained MNIST digit classifier MLP on each cell and a
check whether all Sudoku rules are fulfilled. To avoid classi-
fication errors distorting our reasoning results, we limit the
set of MNIST digit representatives to the top 1000 training
examples per class of the classifier w.r.t. its confidence.
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(a) Even Pixels dataset (b) Counting Polygons / Stars FFHQ dataset

Figure 5: Two Further Datasets. In addition to MNIST Sudoku, we introduce two further datasets. (a) The Even Pixels
dataset requires the model to generate images with an equal number of pixels per color. (b) Counting Polygons / Stars
FFHQ requires that all images contain two digits: the number of objects and the number of polygon edges or star points,
respectively. We introduce real-world complexity by placing the synthetic objects over FFHQ samples as backgrounds.

For testing, we use a held-out dataset split of valid Sudokus
and apply random masking of cells with the number of
masked ones randomly sampled from the intervals [1, 27],
[28, 54], and [55, 81], resulting in three levels of difficulty
easy, medium, and hard, respectively. As metrics, we con-
sider accuracy as well as the sum of L1-distances of row-,
column-, and block-wise digit histograms to the all ones
vector (zero if correct), averaged over all test examples.

The game Sudoku involves complex spatial dependencies,
whereas the distribution of individual cells being MNIST
numbers is simple to fit by a generative model. Note that
the general task of solving Sudokus for a variable grid size
is NP-complete and that depending on the level of masking,
there can be multiple valid solutions resulting in uncertainty.
We further highlight the difficulty of even a discrete Sudoku
version for state-of-the-art LLMs in Appendix H.

For our graph-based order for sequentialization during sam-
pling, we encode the direct dependencies between each cell
and its neighbors within a row, column, and block as the ad-
jacency matrix. Additionally, we provide results for oracle
algorithms that directly solve discrete Sudokus by randomly
sampling a number for the next cell from all possible digits
avoiding collisions with neighbors if possible. The order
of cells is chosen either randomly or in a greedy fashion,
with the next cell being the one with the largest number of
already sampled neighbors in the constructed graph.

Even Pixels Dataset We construct a dataset of images
where each pixel is assigned one of two opposite colors
(c.f. Fig. 5a). The number of pixels of each color is always
equal. The task requires a model to learn this implicit con-
straint without explicit supervision. We detail our evaluation
procedure in Appendix D.

Counting Polygons / Stars FFHQ Dataset We also in-
troduce two datasets in which each image contains a set of
randomly positioned polygons or stars and numbers (see
Fig. 5b), where: The number of synthetic objects, N , is
randomly sampled from {1, . . . , 9}, each polygon / star has
K ∈ {3, . . . , 7} vertices or K ∈ {2, . . . , 9} points, respec-
tively, and the numbers N and K are explicitly present in
the image. The model’s task is to generate images following
this rule and hence to capture the relationship between the

number of polygons / stars, vertices / points, and the digits.

To introduce real-world complexity, we place these synthetic
objects over backgrounds sampled from the FFHQ dataset.
This forces the model to notice and learn meaningful spatial
dependencies in a setting much closer to the real world. We
train ResNet classifiers to estimate correctness of generated
samples and verify their capability on held-out validation
splits. More details are given in Appendix E.

4.2. Experimental Setup

We compare SRMs in pixel space with standard denoising
diffusion models that are equivalent in architecture and train-
ing up to the sampling of individual spatial variables, which
are chosen to be image patches of task-specific sizes for our
visual reasoning tasks. Since our MNIST Sudoku bench-
mark can be seen as an instance of inpainting, the baseline
diffusion model is additionally conditioned on the incom-
plete Sudoku and its mask via concatenation in the input.
Note that this is not necessary for SRMs, as already given
variables are identified by the noise level zero. If not stated
otherwise, we use stochastic sampling similar to DDPM
with a total of 1000 steps (network evaluations) indepen-
dent of the method of sequentialization during sampling.
Therefore, the computational cost is equal for all sampling
methods resulting in a fair comparison. This also means
that there are fewer denoising steps for individual variables
the higher the degree of sequentialization (lower overlap).
SRMs are agnostic to both noise schedules and denoiser ar-
chitectures. For the main paper, we use rectified flows (Liu
et al., 2023) and lightweight versions of widely established
2D UNets with spatial attention in low-resolution layers to
avoid results being dominated by too extreme overparam-
eterization. We report additional results with the cosine
noise schedule (Nichol & Dhariwal, 2021) and Diffusion
Transformers (DiT) (Peebles & Xie, 2023) in Appendix G,
describe the exact sampling process in Appendix A, and
provide implementation details in Appendix F.

4.3. MNIST Sudoku Results

We provide a quantitative comparison of SRM with different
sampling strategies, a standard diffusion model as baseline,
and the task-specific discrete oracle algorithms in Tab. 1.
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Easy Medium Hard
Model Sampling L1↓ Acc↑ L1↓ Acc↑ L1↓ Acc↑

Diffusion Model Parallel 0.032 0.994 3.924 0.536 14.120 0.008

Parallel 0.012 0.998 3.312 0.590 19.156 0.010
Predicted Order w/o Overlap 0.012 0.998 1.616 0.754 3.212 0.516
Predicted Order + Overlap 0.000 1.000 1.816 0.716 4.340 0.422
Random Order w/o Overlap 0.012 0.998 3.828 0.568 12.612 0.024
Random Order + Overlap 0.000 1.000 4.172 0.542 13.896 0.020
Graph-based Order w/o Overlap 0.020 0.996 2.544 0.662 5.816 0.266

SRM (Ours)

Graph-based Order + Overlap 0.000 1.000 3.240 0.576 6.036 0.238

Random - 0.751 - 0.059 - 0.000Oracle Greedy - 1.000 - 0.987 - 0.672

Table 1: MNIST Sudoku Quantitative Results. While standard DDPM diffusion models fail to solve the hard Sudoku
cases (accuracy near 0%, SRMs achieve an accuracy of > 50%). Interestingly, the Sudoku task particularly profits from
predicted uncertainty, which heavily outperforms random sequentialization order and also the graph-based ordering. We
provide the accuracy of a combinatorial Sudoku solver using a greedy strategy (without backtracking) as reference (Oracle).

While the (inpainting) diffusion model that does fully paral-
lel denoising of all patches is able to solve easy examples
with a large number of given cells, its performance dete-
riorates drastically with weaker conditioning. SRM with
parallel sampling behaves similar, indicating that this sam-
pling strategy is inappropriate for the Sudoku task with
complex dependencies, independent of the network training.
For all spatially autoregressive sampling methods, having an
overlap between denoising intervals of patches sampled one
after the other, decreases the performance compared to the
full autoregressive extreme. This highlights the importance
of spatial sequentialization for reasoning.

Furthermore, our results clearly show that the order of se-
quentialization matters. SRM with a random order achieves
mediocre performance. As the model always sees the entire
(noisy) Sudoku, the network learns that the distribution of
the currently denoised patch does not only depend on all pre-
viously denoised cells but also on the possible solutions for
all future ones, explaining the advantage over the random
oracle (which fails completely). Using task-specific knowl-
edge about spatial dependencies in form of a general graph
helps to significantly improve the order of sequentialization
and as a result sampling from the correct distribution.

However, we achieve the best performance by a large margin
with the task-agnostic order based on the predicted uncer-
tainty as described in Sec. 3.2.2. An example for such a
sampling process is visualized in Fig. 7. We depict three
pairs of close steps at the start, middle, and end of sampling.
By following an exclusion procedure for the digit one in
the middle right block using clean conditionings only, we
understand why the model correctly predicted the lowest
uncertainty for that patch at the start. Moving to the middle
case, the chosen cell is also completely determined by the
conditioning, which only becomes visible if one takes into

Masked Input Sample 1 Sample 2 Sample 3

Figure 6: Sample Diversity. SRMs can sample multiple
different, correct solutions given an incomplete observation.

account other cells that are not yet denoised but already
determined by applying the rules of Sudoku. We encourage
the reader to verify this for themselves. In the end, we have
a case of multiple valid solutions, from which SRMs, being
generative models, are able to sample. We further demon-
strate the sample diversity for multiple incomplete Sudokus
in Fig. 6. We provide videos on our project website that
visualize the full sampling process for multiple examples.

Overall, we improve the correctness of samples in the hard
setting from 0.8% to 51.6% (cf. Tab. 1) using the same
trained model, only varying the sampling strategy.

4.4. Even Pixels Results

Tab. 2 shows the quantitative comparison of our best settings
for all sampling methods. We can see a clear gap between
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Sample 𝐱𝐭 Noise level 𝐭 Uncertainty 𝝈𝜽(𝐱
𝐭) Single Step ො𝐱𝟎

Sa
m
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…

…

Figure 7: Sequentialization With Predicted Order. We
visualize the sampling process with the current sample xt,
noise level t, estimated uncertainty (darker = lower) σθ(x

t),
and the single step to t = 0 result x̂0. SRMs are able to
reason over spatial variables by capturing complex depen-
dencies (first two blocks) and handle uncertainty, e.g., in the
case of multiple valid solutions as in the last block.

Samling #E↓ Acc↑

Diffusion Model 1.270 0.250

Ours, Parallel 5.184 0.054
Ours, Predicted Order + Overlap 0.534 0.518
Ours, Random Order + Overlap 0.584 0.476

Table 2: Even Pixels Experiments. SRMs clearly outper-
form a standard diffusion model in this task. Random order
and predicted order perform similar, with a slight advantage
for the predicted one. See Fig. 8 for overlap analysis.

the diffusion baseline and SRM. While the diffusion model
must learn to balance pixel colors evenly on a global level,
sequentially eliminating differences in pixel counts can sim-

Figure 8: Even Pixel Accuracy for Different Overlap.
Larger overlap is better for generating an even number of
pixels. However, when approaching the parallel setting at
1.0, the performance heavily drops.

plify the task. This behavior can be further encouraged
by lowering the sharpness of our noise level sampling dur-
ing training (cf. Sec. 3.2.1), i.e., slightly biasing the SRM
training towards spatially autoregressive generation.

Unlike for the MNIST Sudoku experiment, we find over-
lapping denoising of variables to be beneficial and further
visualize this relationship in Fig. 8. For both predicted and
random order, the accuracy gradually increases with a higher
overlap until a sweet spot at 0.95, after which it falls quickly.
This shows that depending on the data distribution, mixtures
of parallel and sequential generation enabled by SRMs can
be advantageous. We can see a small, consistent advantage
of the predicted uncertainty order over the random one.

4.5. Counting Polygons / Stars Results

For the final Counting Polygons / Stars on FFHQ datasets,
we provide the quantitative results for sample accuracy (ful-
fillment of dataset rule) and consistency of objects (same
number of polygon vertices / star points) in Tab. 3. SRM
outperforms the diffusion model for almost all sampling
methods. This indicates potential of our training with indi-
vidual noise levels, as this form of spatial disentanglement
might be generally beneficial for certain data distributions.

For the Counting Polygons dataset variant, there is no clearly
winning sampling strategy, unlike for the other two bench-
marks. We attribute this to two main differences of the
dataset. First, using real images for backgrounds makes the
task significantly more complex, as the denoising objective
becomes less sensitive to the dependencies between num-
bers and polygons and capacity of the denoising network is
spent for fitting the distribution of FFHQ faces. Secondly,
the simultaneous generation of matching numbers and poly-
gons can be approached in a coarse-to-fine manner with the
numbers being more high-frequency details compared to
larger low-frequency polygons. For MNIST Sudoku, all
numbers have the same sizes such that, during sampling
with a parallel denoising strategy, the commitment to indi-
vidual digits has to happen at similar points in time. Due to
the spatial dependencies of Sudoku, this is suboptimal and a
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Dataset Polygons Stars
Sampling Acc↑ Con↑ Acc↑ Con↑

Diffusion Model 0.132 0.990 0.070 0.544

Ours, Parallel 0.166 0.956 0.034 0.576
Ours, Predicted Order w/o Overlap 0.144 0.994 0.076 0.844
Ours, Predicted Order + Overlap 0.142 0.986 0.150 0.888
Ours, Random Order w/o Overlap 0.164 0.998 0.080 0.872
Ours, Random Order + Overlap 0.186 0.964 0.104 0.938

Table 3: Counting Polygons / Stars FFHQ Experiments.
Although this task is generally hard and not solved well,
sequentialization is beneficial, especially for consistency.

spatially autoregressive strategy together with a good order
can commit to the digits in a cell-by-cell fashion. For the
Counting Polygons dataset, the numbers are high-frequency
details compared to larger polygons. As a result, a coarse-to-
fine generation with the diffusion baseline can first commit
to a number of polygons of a certain vertex count and then
generate matching digits.

We further validate this hypothesis by replacing the low-
frequency polygons with stars that are composed of higher-
frequencies, moving the “point of commitment” to numbers
and stars closer together in time. For this dataset variant,
we observe that the accuracy of the diffusion baseline de-
creases significantly compared to the version with polygons
(7% vs 13.2%), while sequential sampling with overlap and
predicted order maintains the same performance. More
interestingly, for parallel generation, we noticed hallucina-
tions of samples with stars having inconsistent numbers of
points (cf. consistency column). For sequential sampling,
the model can replicate stars after the first one has been
generated, whereas in parallel sampling, the decisions over
the number of points for all stars are again closer in time.
We hypothesize that this behavior is not visible for poly-
gons because of differences in terms of frequencies, with
the diffusion model having more “time to correct itself” for
low-frequency polygons, as their generation starts earlier
than for the high-frequency stars.

4.6. Ablations

In Tab. 4, we provide the results of an ablation of the noise
level sampling from Sec. 3.2.1 on the hard difficulty of the
MNIST Sudoku dataset. Enforcing a uniformly distributed
mean during training is essential for all sampling methods.
While independent uniform sampling of noise levels might
be good enough for a very small number of variables as in
Diffusion Forcing (Chen et al., 2024a), high and low mean
noise levels quickly become severely undersampled when
we increase it. As these two cases represent start and end
points at test time, the input to the network is immediately
out of the training distribution during sampling. We pro-
vide additional ablations w.r.t. stochasticity of inference,

Sampling / t-Sampling Uniform t Ours

Parallel 0.000 0.008
Predicted Order w/o Overlap 0.018 0.516
Predicted Order + Overlap 0.008 0.422
Random Order w/o Overlap 0.000 0.024
Random Order + Overlap 0.000 0.020
Graph-based Order w/o Overlap 0.012 0.266
Graph-based Order + Overlap 0.010 0.238

Table 4: Noise Level Sampling Ablation. Ablation per-
formed on MNIST Sudoku hard. Our strategy for sampling
t’s during training is crucial for all strategies to work.

denoiser architecture, noise schedule, and the sharpness
hyperparameter (cf. Sec. 3.2.1) in Appendix G.

5. Conclusion
We introduced Spatial Reasoning Models (SRMs), a frame-
work that allows to reason over sets of continuous, spatial
variables. Our framework allows parameterization for sev-
eral different strategies of sequentialization and generation
order. Of particular interest is an automatic order prediction
based on uncertainty. The SRM framework also is agnostic
to the employed denoising formulation and parameteriza-
tion, and allows to use a wide variety of different denoising
architectures. We introduced three benchmark tasks, which
demonstrate that SRMs significantly outperform standard
diffusion models in higher level reasoning tasks.

Future Directions While we made significant steps for-
ward, our models are still far away from solving the given
tasks in an optimal fashion. However, we believe that the
presented paradigm is able to achieve even better results. A
particular topic for future research can be more advanced
strategies for automatic prediction of generation order. It is
an interesting venture to further investigate what makes a
distribution difficult to generate for a diffusion model. A po-
tential difficulty metric could help optimizing for an optimal
order. Also, we speculate that backtracking-like strategies
that allow to increase noise levels again hold much potential.

Impact Statement
This paper presents fundamental research with the goal
of advancing reasoning capabilities of generative models.
There are many potential societal consequences of advances
in this direction further down the road, however, none are
immediate enough to be specifically highlighted here.
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The appendix is structured as follows. First, the detailed unified denoising framework is given in Sec. A. Then, graph-based
sampling strategies are given in Sec. B. It follows a detailed description of the Uniform t̄ sampling in Sec. C and dataset
descriptions in Sec. D and Sec. E. The appendix concludes with further details about experimental setup in Sec. F. Please
also take a look at our project website with, among other things, videos showing Sudoku reasoning over time.

A. Generation Process
Notation Given a noise schedule a, b : [0, 1] 7→ [0, 1] for continuous levels of noise t ∈ [0, 1], we define at := a(t), bt :=
b(t) for short notation. Furthermore, as we consider a single (possibly higher-dimensional) continuous random variable for
simplicity, we write xt for the variable at noise level t instead of using superscript as in the main paper.

Reverse Distribution Similarly to DDIM (Song et al., 2021), we define a family of inference distributions indexed by the
function σ : {(t∗, t) ∈ [0, 1]2 | t∗ < t} 7→ R≥0 with σt∗,t := σ(t∗, t) ≤ bt∗ for a fixed-sized schedule of continuous noise
levels ti ∈ [0, 1] with 1 ≤ i ≤ N , N ∈ N≥2, t1 = 0, tN = 1, and ti−1 < ti:

qσ(x0:1|x0) := qσ(x1|x0)

N∏
i=2

qσ(xti−1
|xti , x0), (7)

where qσ(x1|x0) = N (a1x0, b
2
1I) and for all 0 ≤ ti−1 < ti ≤ 1:

qσ(xti−1 |xti , x0) = N
(
ati−1x0 +

xti − atix0

bti

√
b2ti−1

− σ2
ti−1,ti , σ

2
ti−1,tiI

)
. (8)

We show that the choice of the mean ensures the desired marginal distribution qσ(xt|x0) = N (atx0, b
2
t I).

Proof. By construction, the statement holds for t = 1. Let 0 ≤ t∗ < 1, then we have

qσ(xt|x0) = N (atx0, b
2
t I) (9)

qσ(xt∗ |xt, x0) = N
(
at∗x0 +

xt − atx0

bt

√
b2t∗ − σ2

t∗,t, σ
2
t∗,tI

)
. (10)

From (Bishop & Nasrabadi, 2006) (2.115), we have that qσ(xt∗ |x0) is a normal distribution N (µ,Σ) with:

µ = at∗x0 +
atx0 − atx0

bt

√
b2t∗ − σ2

t∗,t = at∗x0 (11)

Σ = σ2
t∗,tI +

b2t∗ − σ2
t∗,t

b2t
b2t I = b2t∗I (12)

Therefore, qσ(xt|x0) = N (atx0, b
2
t I) holds for all t ∈ [0, 1].

Via simple variable substitution ϵ = zt−atx0

bt
and x0 = zt−btϵ

at
, we obtain the corresponding distributions for alternative

conditionings:

qσ(xt∗ |ϵ, x0) = N
(
at∗x0 + ϵ

√
b2t∗ − σ2

t∗,t, σ
2
t∗,tI

)
(13)

qσ(xt∗ |ϵ, xt) = N
(
at∗xt

at
+ (

√
b2t∗ − σ2

t∗,t −
at∗bt
at

)ϵ, σ2
t∗,tI

)
, (14)

where we use Eq. 13 as the posterior distribution approximated by minimizing the variational lower bound and Eq. 14 for
the following definition of our generative process by replacing the ground truth epsilon with the prediction of the denoising
neural network

qθ,σ(xt∗ |, xt) = N
(
at∗xt

at
+ (

√
b2t∗ − σ2

t∗,t −
at∗bt
at

)ϵθ(xt),Σt∗,t

)
, (15)

where Σt∗,t can be either fixed as in DDPM (Ho et al., 2020), e.g., to equivalent upper Σt∗,t =
bt
bt∗

σ2
t∗,tI and lower bounds

Σt∗,t = σ2
t∗,tI depending on q(x0) being isotropic noise or a delta function, or learned by the network as an interpolation

between these two optimized for the VLB, as proposed by (Nichol & Dhariwal, 2021) for DDPM. In all experiments of the
paper, we choose the last option.

12

https://geometric-rl.mpi-inf.mpg.de/srm/


Spatial Reasoning with Denoising Models

Choice of σ For the choice of the posterior standard deviation σt∗,t, we follow DDIM (Song et al., 2021) and consider
the following special case. If and only if σ(t∗, t) = bt∗

√
1− (atbt∗/(at∗bt))2 for 0 ≤ t∗ < t ≤ 1, the forward process

becomes Markovian, i.e., qσ(xt|xt∗ ,x0) = qσ(xt|xt∗).

Proof. Using the abbreviation σ for σ(t∗, t), we have

qσ(xt|x0) = N (atx0, bt) (16)

qσ(xt∗ |xt, x0) = N
(
at∗x0 +

xt − atx0

bt

√
b2t∗ − σ2, σ2I

)
(17)

From (Bishop & Nasrabadi, 2006) (2.116), we have qσ(xt|xt∗ , x0) = N (µ,Σ) with:

Σ =

(
1

b2t
+

b2t∗ − σ(t∗, t)2

b2t

1

σ(t∗, t)2

)−1

I =
b2tσ(t

∗, t)2

b2t∗
I (18)

µ =
b2tσ

2

b2t∗

[√
b2t∗ − σ2

btσ2

(
xt +

(
at
bt

√
b2t∗ − σ2 − at∗

)
x0

)
+

atx0

b2t

]
(19)

We can see that µ becomes independent of x0 for the case:√
b2t∗ − σ2

btσ2

(
at
bt

√
b2t∗ − σ2 − at∗

)
+

at
b2t

= 0 (20)

⇐⇒ at
btσ2

(b2t∗ − σ2)− at∗

σ2

√
b2t∗ − σ2 +

at
bt

= 0 (21)

⇐⇒ at(b
2
t∗ − σ2)− at∗bt

√
b2t∗ − σ2 + atσ

2 = 0 (22)

⇐⇒ atb
2
t∗ = at∗bt

√
b2t∗ − σ2 (23)

⇐⇒ σ = bt∗

√
1−

(
atbt∗

at∗bt

)2

(24)

We define ση(t
∗, t) := η · bt∗

√
1− (atbt∗/(at∗bt))2 for η ∈ [0, 1] as the variance of the posterior distribution. By setting

η = 0 we obtain deterministic sampling equivalent to DDIM with discrete diffusion noise schedules and equivalent to
flow-based methods (Lipman et al., 2023) when solving the generative ODE with the Euler method. However, by setting
η = 1 we enable stochastic sampling with general noise schedules (Gaussian probability paths in the context of flow
matching), which has not yet been explored up to our best knowledge.

B. Graph-Sequential sampling
The graph-based sampling order is motivated by the idea that the dependency structure between patches can be exploited to
estimate the level of knowledge about a given patch i based on the noise levels of patches connected to it. By leveraging
these dependencies, the sampling process can be guided in a structured and efficient manner, ensuring that patches with
stronger conditioning from their neighbours are prioritized during denoising.

The adjacency matrix is defined as A ∈ R(N ·M)×(N ·M), where (N,M) are the dimensions of the image patch grid. In the
case of Sudoku, this grid is of size (9, 9). The adjacency matrix is a binary mask where all elements of the same row, column,
or 3× 3 subgrid are connected. Other elements are not connected (represented by a value of 0 in the adjacency matrix).

When selecting the next patch to evaluate, we take argmaxpatch((1− t) ·A)⊙K, where t ∈ [0, 1]M ·N is the current noise
level vector, and K ∈ {0, 1} is a mask with 1 for all patches that didn’t start denoising process and 0 otherwise. So we
propagate 1− t (denoising level) through the graph, and select a patch that has the noise level ti = 1, but has the strongest
conditioning from its predecessors.
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B.1. Drawbacks

The certainty obtained using this algorithm is solely noise-level based. It cannot distinguish whether a patch is being
conditioned by the same number across its row, column, and subgrid (weak conditioning) or by three different numbers
(strong conditioning). As a result, the model with predicted uncertainty (as described in Sec. 3.2.2) can surpass the
performance of the graph-based approach (Tab. 1).

C. Uniform t̄ sampling
For better intuition of why Uniform t̄ should be one of our goals, we show the distributions of individual ti and t̄ in Fig. 9.

(a) Parallel (b) Autoregressive

Figure 9: The distributions of individual patch noise level ti and mean over the image t̄ in parallel sampling (left) and
autoregressive generation (right). In a parallel generation, all patches have the same noise level throughout inference, so
both ti and t̄ marginal distributions are uniform. Autoregressive generation’s ti distribution is very dense around 0 and 1, as
during inference only one patch can have value other than 0 or 1 – the one currently generated. It’s important, that regardless
of which inference strategy we choose, the distribution of t̄ remains uniform.

C.1. Recursive allocation sampling t ∼ p(t | t̄)

To sample t ∼ p(t | t̄), where t ∈ [0, 1]d, we generate a vector with a specified mean t̄ by a recursive sum allocation
algorithm. The key idea is to define the total sum of the sampled vector as s = d · t̄, then recursively partition s into two
sum contributions from the first and second halves of the vector. This process is illustrated in Algorithm 1.

Algorithm 1 Recursive Sampling of a sum constrained Vector

Require: s (total sum), d (vector dimension)
Ensure: A vector x ∈ [0, 1]d such that

∑
xi = s

1: Function GetSumConstrainedVector(S, d)
2: if d = 1 then
3: output [S] {End of recursion for 1 element}
4: end if
5: d1 ← ⌊d/2⌋ {Get Split dimension}
6: d2 ← d− d1
7: smax

1 ← min(s, d1) {Define upper bounds of the contributions}
8: smax

2 ← min(s, d2)
9: smin

1 ← max(0, s− smax
2 ) {Define lower bound}

10: Sample r ∼ psplit(r|d), where r ∈ [0, 1] {Sample a split point}
11: s1 ← smin

1 + (smax
1 − smin

1 ) · r
12: s2 ← s− s1
13: output GetSumConstrainedVector(s1, d1) ∪ GetSumConstrainedVector(s2, d2)

The algorithm first determines the range of possible contributions from the first half of the vector, (smin
1 , smax

1 ). Then it
samples a split point from a distribution psplit(r|d), which has support on [0, 1]. The sampled value is then scaled to the
appropriate range of split points.
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The split distribution psplit(d) is modelled as a symmetrical case of a Beta distribution, empirically tuned to match the
natural mid-point splitting behaviour of independently sampled uniform noise vectors. Explicitly,

psplit(r|d) = Beta(r|α, β), (25)

where

α = β = (d− 1− (d mod 2))1.05 · sharpness. (26)

In a uniformly sampled vector t ∼ U([0, 1]n) as the number of patches d increases, extreme split points become less likely.
For example with 100 patches and t̄ = 0.5 s1 could be between 0 and 50 but it is highly unlikely that all patches in the
first half of the vector will be ones and all in the second half will be zeros. Instead, s1 is most likely to be close to 25.
That is why the split point distribution gets more center-heavy with higher vector dimensionality d – we model this by
increasing the α and β parameters for higher d as in Eq. 26. For sharpness = 1 and t̄ = 0.5 the distribution of t ∈ [0, 1]n

closely resembles U([0, 1]n) regardless of n. Higher sharpness results in distributions more tightly centred around t̄, while
sharpness ∈ (0, 1) leads to oversampling values closer to 0 and 1. The effect of the sharpness parameter on the distribution
is illustrated in Fig. 10. Its influence on the Even Pixels dataset is presented in Tab. 7.

Figure 10: Distributions of ti noise level values given different sharpness (x-axis) and mean noise level t̄.

The advantage of this algorithm over, for example, iterative perturbation methods is that it can be easily parallelized across
the batch dimension, ensuring efficient utilization of computational resources. Additionally, it exhibits stable execution time,
a crucial property for maintaining predictable and consistent performance in the training pipeline.
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D. Even Pixels Evaluation
For evaluation, we generate a hue histogram from the model’s output and identify the peak hue hmax. We then count the
number of pixels closer to hmax than to its complementary hue h∗

max = (hmax + 180◦) mod 360◦. The error is computed
as the absolute difference between this count and half the total number of pixels

error =

∣∣∣∣#(pixels closer to hmax than h∗
max)−

width · height
2

∣∣∣∣
The accuracy indicates in which fraction of samples where the pixel hue counts equal (error = 0).

E. Counting Polygons/Stars Dataset
E.1. objects color selection

The color of the numbers and polygons/stars is chosen in HSV space hsv(c, 1.0, 0.9), where

c = argmin
h
{(histogram(Himg) ∗Gσ) (h)}

and Gσ is a Gaussian kernel with a small σ. In other words, we search for the hue with the lowest count in the smoothed hue
histogram of an image. We found this method as an intuitive approach to increase the visibility of the objects on the FFHQ
background.

E.2. Evaluation

To assess the generative model’s ability to learn the implicit counting constraint, for each of the object types (polygons or
stars) we employ a ResNet-50-based classifier with three prediction heads:

• Predicting the set of two numbers (N,K) present in the image.

• Predicting the number of polygons/stars.

• Predicting the number of object vertices.

For star objects, we only count the convex, outward-facing vertices. The classifiers are trained on a dataset with similar
image compositions, but the consistency constraint between the numbers and the actual object counts is dropped in 50% of
cases. For all the prediction tasks mentioned above, both classifiers have achieved over 99.9% accuracy in the validation set.

For evaluation, the classifier detects the numbers present in the generated image and compares them to the true object and
vertex/spikes counts. A generated image is classified as correct if the set of extracted numbers is the same as the set of actual
polygon/star objects and vertex counts (regardless of order): correct⇔ {num1, num2} = {#objects,#vertices}.

The evaluation metric of the generative model, accuracy, is computed as the fraction of images for which the number-to-
object-count correspondence is correct.

F. Implementation Details
For reasoning in the spatial visual domain, we divide images into patches of a fixed size. While we use the size of a cell, i.e.,
MNIST example 28× 28 as the patch size for the MNIST Sudoku dataset with image resolution 252× 252, we choose patch
sizes of 4× 4 and 8× 8 for the even pixel and counting polygons/stars datasets with resolutions 32× 32 and 128× 128,
respectively.

Although SRMs are agnostic w.r.t. the architecture choice, we choose simple 2D UNets for all experiments, as they are
widely established for image generation. We provide all architecture and training hyperparameters in Tab. 5.

For training the SRMs with individual noise levels per patch and the estimation of its uncertainty in the noise prediction,
we additionally apply to simple architecture modifications. Instead of conditioning the UNet on a single encoding of the
noise level t, we compute a map with per-pixel noise levels, where all pixels within a patch share the same t. This map is
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MNIST Sudoku Even Pixels Counting Polygons/Stars FFHQ

Channels 128 64 128
Depth 2 2 2
Channel multipliers 1, 1, 2, 2, 4, 4 1, 2, 2, 4 1, 1, 2, 2, 4
Head channels 64 64 64
Attention resolution 16, 8 8, 4 16, 8
Parameters 118M 19.7M 76.8M
Effective batch size 56 2048 56
Iterations 250k 100k 250k
Learning Rate 1e-4 8e-4 1e-4

Table 5: Hyperparameters used for all experiments.

Deterministic Stochastic
Sampling L1↓ Acc↑ L1↓ Acc↑

Parallel 26.288 0.004 19.156 0.010
Predicted Order w/o Overlap 3.652 0.500 3.212 0.516
Predicted Order + Overlap 4.192 0.420 4.340 0.422
Graph-based Order w/o Overlap 6.212 0.240 5.816 0.266
Graph-based Order + Overlap 6.652 0.188 6.036 0.238

Table 6: Ablation over Deterministic vs. Stochastic Sampling on MNIST Sudoku hard. Stochastic sampling almost
consistently outperforms deterministic sampling, highlighting the benefits of our generative process combining arbitrary
(non-diffusion) noise schedules with stochastic sampling.

Sharpness 0.50 0.75 1.00
Sampling #E↓ Acc↑ #E↓ Acc↑ #E↓ Acc↑

Parallel 3.580 0.096 5.184 0.054 4.076 0.074
Predicted Order + Overlap 0.840 0.368 0.534 0.518 0.590 0.484
Random Order + Overlap 0.776 0.342 0.584 0.476 0.656 0.430

Table 7: Sharpness Ablation on Even Pixels. By lowering the sharpness hyperparameter of our noise level sampling
algorithm, we can train SRMs to be more tailored towards sequential sampling methods.

bilinearly interpolated to the spatial resolution of the feature maps in each layer, encoded using a shared MLP, and finally
used to compute scale and shift maps applied pixel-wise to the features. While this modification is specific to UNets, similar
adjustments can be made for other architectures like transformers, which already consider patches as tokens in the vision
domain. In order to predict a single uncertainty per patch, our denoising network outputs an additional one-dimensional
feature map, on which we apply 2D average pooling with the kernel size and stride corresponding to the patch size of our
spatial variables. The result is interpreted as log-variance of the predicted noise.

G. Additional Ablations
We provide additional ablation studies considering hyperparameter choices for our experiments. Tab. 6 compares the

performance of deterministic and stochastic sampling on the hard difficulty of the MNIST Sudoku dataset by setting either
η = 0 or η = 1 in the generation process described in Sec. A. We can see that stochastic sampling is favorable for spatial
reasoning, which we enable in combination with arbitrary noise schedules.

In Tab. 7, we ablate the choice of the sharpness hyperparameter in our noise level sampling algorithm for training SRMs. On
the Even Pixels dataset, we can oversample noise level combinations for spatial variables that are more likely in sequential
sampling strategies by lowering the sharpness. This results in higher performance depending on the data distribution.
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Easy Medium Hard
Metric Sampling UNet DiT UNet DiT UNet DiT

Accuracy ↑

Parallel 0.998 0.992 0.590 0.328 0.010 0.000
Predicted Order w/o Overlap 0.998 0.988 0.754 0.618 0.516 0.248
Predicted Order + Overlap 1.000 0.992 0.716 0.598 0.422 0.166
Random Order w/o Overlap 0.998 0.992 0.568 0.346 0.024 0.004
Random Order + Overlap 1.000 0.974 0.542 0.330 0.020 0.004
Graph-based Order w/o Overlap 0.996 0.978 0.662 0.470 0.266 0.086
Graph-based Order + Overlap 1.000 0.992 0.576 0.430 0.238 0.056

L1 Error ↓

Parallel 0.012 0.044 3.312 10.940 19.156 39.048
Predicted Order w/o Overlap 0.012 0.068 1.616 3.960 3.212 8.620
Predicted Order + Overlap 0.000 0.060 1.816 4.216 4.340 11.244
Random Order w/o Overlap 0.012 0.052 3.828 9.184 12.612 23.792
Random Order + Overlap 0.000 0.172 4.172 10.324 13.896 25.368
Graph-based Order w/o Overlap 0.020 0.180 2.544 5.864 5.816 12.752
Graph-based Order + Overlap 0.000 0.072 3.240 7.100 6.036 14.912

Table 8: Denoising Architecture Ablation on MNIST Sudoku. We compare SRM variantes using UNet and DiT denoising
backbones. For each metric, model, and difficulty, the best-performing configuration is highlighted in bold. Sequential
generation with predicted order yields the strongest performance across both metrics independent of the used architecture.

Easy Medium Hard
Metric Sampling Linear Cosine Linear Cosine Linear Cosine

Accuracy ↑

Parallel 0.998 1.000 0.590 0.622 0.010 0.018
Predicted Order w/o Overlap 0.998 1.000 0.754 0.748 0.516 0.378
Predicted Order + Overlap 1.000 0.998 0.716 0.706 0.422 0.298
Random Order w/o Overlap 0.998 1.000 0.568 0.502 0.024 0.036
Random Order + Overlap 1.000 0.994 0.542 0.510 0.020 0.024
Graph-based Order w/o Overlap 0.996 1.000 0.662 0.630 0.266 0.220
Graph-based Order + Overlap 1.000 0.996 0.576 0.620 0.238 0.210

L1 Error ↓

Parallel 0.012 0.000 3.312 3.048 19.156 17.140
Predicted Order w/o Overlap 0.012 0.000 1.616 1.812 3.212 5.140
Predicted Order + Overlap 0.000 0.012 1.816 2.056 4.340 5.920
Random Order w/o Overlap 0.012 0.000 3.828 4.812 12.612 13.232
Random Order + Overlap 0.000 0.032 4.172 5.020 13.896 14.200
Graph-based Order w/o Overlap 0.020 0.000 2.544 2.752 5.816 6.592
Graph-based Order + Overlap 0.000 0.032 3.240 2.924 6.036 6.848

Table 9: Noise Level Schedule Ablation on MNIST Sudoku. We compare SRM variants using Linear (Liu et al., 2023) and
Cosine (Nichol & Dhariwal, 2021) noise level schedules. The winning schedule is highlighted in bold for each row. While
the linear schedule clearly outperforms the cosine one for our setting, the benefits of sequentialization with a meaningful
order remain independent of the choice of the noise level schedule.

To further demonstrate the architecture-agnostic nature of the SRM framework, we also trained a Diffusion Transformer
(DiT B) (Peebles & Xie, 2023) with a patch size of 7 and 130M parameters on our MNIST Sudoku benchmark. The results,
compared to those of a 2D UNet are presented in Tab. 8. Notably, in this highly structured domain, sequential generation
with predicted variable order yields the best performance ndependent of the used architecture.

As an alternative to the linear schedule used in Rectified Flows (Liu et al., 2023), we also explored the cosine noise
level schedule (Nichol & Dhariwal, 2021). The results are presented in Tab. 9. Independent of the noise level schedule,
sequentialization with predicted order consistenly outperforms all other sampling strategies. Interestingly, the linear schedule
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seems to be more suitable than the cosine one for the dataset at hand. We suspect that this is because the cosine schedule
allocates more time steps to low-noise regions, effectively focusing the denoising process on the high-frequency details,
which are not relevant for the digit identity and thus not captured by our metrics.

H. Sudoku Completion with LLMs
To evaluate the difficulty of generation-based Sudoku solving, we examined the performance of general-purpose large

language models (LLMs). Specifically, we tested GPT-4o, GPT-4o-mini, and open-source Phi-4 on a text-based Sudoku
completion task. Each model was given a textual representation of a Sudoku grid with missing elements and was tasked
with filling in the blanks to complete the puzzle. The prompts included the full context of the Sudoku task: a description of
the rules, output format, and three few-shot examples. An example is shown below:

[Example 1]
Input:
<sudoku>
34_|179|258
187|523|964
529|648|371
---+---+---
965|832|417
472|_16|835
_13|754|629
---+---+---
798|261|_43
631|485|792
_54|397|18_
</sudoku>

Output:
<sudoku>
346|179|258
187|523|964
529|648|371
---+---+---
965|832|417
472|916|835
813|754|629
---+---+---
798|261|543
631|485|792
254|397|186
</sudoku>

If a model’s output deviated from the required format, we resampled until a well-formed 9×9 grid of digits — suitable for
evaluation — was produced. The model was then asked to provide only the full solution, with no ”inner thoughts”. This
yielded an autoregressive generation variant similar to our image-based generation approach, but in the text domain.

Table 10 compares the performance of the image-based Diffusion and SRM models with the few-shot LLMs across different
difficulty levels. Although this comparison is not fair – our models are trained specifically for the task, in image space,
whereas LLMs are few-shot prompted via text – it highlights the difficulty of solving Sudoku via generative models.

Figure 11 further breaks down model performance into validity, consistency, and overall accuracy as the number of masked
cells increases. Validity measures whether the output follows the Sudoku rules, consistency ensures that the solution matches
the initial grid, and accuracy requires both. Interestingly, while performance drops with increasing difficulty, accuracy
improves when most of the board is masked, possibly due to resemblance with the few-shot examples in the prompt.
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Sudoku Difficulty
Method Modality Setup Easy Medium Hard

Diffusion Image Trained 0.994 0.536 0.008
SRM (Ours) 0.998 0.754 0.516

Phi-4
Text Few-shot

0.038 0.000 0.000
GPT-4o-mini 0.205 0.000 0.000
GPT-4o 0.556 0.001 0.011

Table 10: SRM vs LLM. To highlight the complexity of our MNIST Sudoku benchmark, we compare Sudoku solving
capabilities of image generators with general-purpose LLMs used in a few-shot setting. Note that this is not a fair comparison,
as SRM and Diffusion are trained directly for the task. Despite tackling a discrete and therefore simpler version of Sudoku,
LLMs perform poorly in this task compared to SRM.

(a) Validity: proportion of outputs that are
proper Sudoku grids (no duplicate digits).

(b) Consistency: solutions that match the
initially masked grid entries.

(c) Accuracy: solutions that are both valid
and consistent.

Figure 11: LLM Performance in Discrete Sudoku Completion. As the number of masked cells increases corresponding to
an increasing difficulty level of the Sudoku completion task, both validity and consistency drop. Surprisingly, when almost
all elements are masked, the accuracy improves – possibly due to similarity to some example grids in the prompt.

We additionally experimented with a chain-of-thought setup, where the model was prompted to iteratively fill one cell at a
time, selecting its generation order. However, consistency with the input grid was insufficient for a reliable evaluation. We
also tested the Deepseek-R1 reasoning model, allowing unconstrained internal reasoning before producing a final output.
Although the model attempted to verify its own solutions, it frequently entered loops of self-correction or made mistakes
while evaluating the constraints, resulting in unfinished rollouts or invalid Sudokus. Overall, the results suggest that solving
Sudoku, even in simplified textual form, remains a challenging task for general-purpose generative models.
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