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Abstract

Self-supervised training of language models (LMs) has seen great success for protein sequences
in learning meaningful representations and for generative drug design. Most protein LMs
are based on the Transformer architecture trained on individual proteins with short context
lengths. Such protein LMs cannot extrapolate to longer proteins and protein complexes
well. They also fail to account for the underlying biological mechanisms carried out by
biomolecular interactions and dynamics i.e., proteins often interact with other proteins,
molecules, and pathways in complex biological systems. In this work, we propose LC-PLM
based on an alternative protein LM architecture, BiMamba-S, built upon selective structured
state-space models, to learn high-quality universal protein representations at the amino acid
token level using masked language modeling. We also introduce its graph-contextual variant,
LC-PLM-G, which contextualizes protein-protein interaction (PPI) graphs for a second stage
of training. LC-PLM demonstrates favorable neural scaling laws, better length extrapolation
capability, and up to 30% and 16% improvements on protein downstream tasks compared to
Transformer-based ESM-2 when trained with 100B and 1T tokens, respectively. LC-PLM-G
further trained within the context of PPI graphs shows promising results on protein structure
and function prediction tasks. Our study demonstrates the benefit of increasing the context
size with computationally efficient LM architecture (e.g., structured state space models) in
learning universal protein representations and incorporating molecular interaction contexts
contained in biological graphs. Model is available at github.com/amazon-science/LC-PLM.

1 Introduction

Most biological sequences are derived from genomes, which are long DNA sequences: human chromosomes
range from 50 to 300 million base pairs. The protein-coding regions, which can be considered as the translated
substrings of the genome, are relatively shorter (the majority are < 3,000 amino acids), albeit with a few
exceptions, such as Titin, composed of 34K amino acids. The prevalent protein language models (pLMs), e.g.
ESM-2 (Lin et al., 2023), choose 1024 as the context length as it fits 97.4% of proteins. However, it does not
natively support tasks that require long-range context windows to reason over multiple related sequences,
such as genomic interactions, protein-protein interactions (PPI), protein function prediction, and 3D structure
prediction of long proteins and protein complexes. Another challenge for modeling long-range biological
contexts lies in their non-sequential nature. For instance, the useful context for genomic interactions and
PPIs often span across regions from different chromosomes, and capturing information within an LM of such
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interactions usually requires biomedical knowledge graphs for good performance on these tasks (Kovács et al.,
2019; Sousa et al., 2024).

Large LMs including those trained on protein sequences, are predominantly based on the Transformer
(Vaswani et al., 2017) with multi-head attention. Despite its state-of-the-art performance on virtually all
types of data modalities (texts, vision, audio, etc.), it suffers from quadratic time and space complexity
due to the lengths of the input sequences. Additionally, transformer models are known to have poor length
extrapolation quality and do not achieve the same level of performance when evaluated on sequences longer
than seen during pretraining. Recent work in alternative architectures such as convolutional (e.g. Hyena
(Poli et al., 2023)) and selective structured state space models (SSMs) (e.g. Mamba (Gu & Dao, 2024))
have demonstrated competitive performance and preferable scaling properties on long context compared to
Transformers and extensions including linear attention approximation variants (Katharopoulos et al., 2020;
Zhai et al., 2021; Peng et al., 2023). Although recent studies have leveraged these novel architectures to
train LMs for DNA sequences (Nguyen et al., 2024b;a; Schiff et al., 2024), studies examining their feasibility
as protein LMs are limited. There is also a research gap on how to effectively leverage the long-context
capability of these architectures to model graphs of sequences i.e., how to leverage PPI graphs to improve
LM’s ability to reason across interacting (related) proteins.
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Figure 1: Our model enables long-context capability, length extrapolation
ability, better neural scaling law, and interaction context-aware inference.

In this work, we explore al-
ternative architectures based
on Mamba to improve the
long-context capability of pLMs.
We train a long-context pLM
(LC-PLM) using bidirectional
Mamba with shared projection
layers (BiMamba-S) on protein
sequences from UniRef50 with
masked language modeling
(MLM) objective. Results show
favorable neural scaling laws,
length extrapolation proper-
ties on UniRef90, and better
downstream task performance
on TAPE (Rao et al., 2019) and
ProteinGym (Notin et al., 2024) than its Transformer counterpart, namely ESM-2. Such long-context and
length extrapolation properties facilitate and improve structure prediction of long proteins and protein
complexes from CASP14, CASP15-multimers, and Benchmark2. Next, we train a graph-contextualized variant
LC-PLM-G, which uses a proposed novel second-stage training strategy to leverage the long-context capabilities
of BiMamba-S to encode useful information from interaction graphs (e.g., PPI). Trained on sampled random
walks that are composed of sequences of proteins, LC-PLM-G improves performance on remote homology
prediction, node-level protein function prediction (ogbn-proteins), and link-level PPI prediction (ogbl-ppa)
(Hu et al., 2020). Our contributions can be summarized into three folds as follows:

• We develop a long-context pLM (LC-PLM) with an alternative architecture based on a more sample
& compute-efficient bidirectional Mamba architecture with shared projection layers (BiMamba-S)
pretrained on UniRef50 with MLM objective.

• We demonstrate that LC-PLM has improved length extrapolation capabilities and favorable scaling
laws, and outperforms ESM-2 by up to 30% and 16% on various downstream tasks (e.g. protein
structure prediction (CASP15-multimers, CASP14, Benchmark2), tasks in TAPE and ProteinGym)
when trained with 100B and 1T tokens, respectively.

• To encode biological interaction information, we propose a novel second-stage training based on
random walks on graphs to extend the long-context capabilities of LC-PLM that leverages the PPI
graph context. We demonstrate its effectiveness in capturing graph-contextual information on
predicting remote homology (TAPE), protein functions (ogbn-proteins), and PPI links (ogbl-ppa).
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2 Related Works

2.1 Long-context LMs and State Space Models

Since their introduction, Transformers (Vaswani et al., 2017) with multi-head attention have been successfully
applied in many different applications in natural language and computer vision. However, while being relatively
straightforward to scale the number of parameters, Transformer models have a quadratic dependence on
the context length during training and are linear at inference time, making them expensive to scale to long
context. Alternative to Transformers, Recurrent Neural Networks (RNNs) (Hochreiter, 1991; Bengio et al.,
1994; Hochreiter & Schmidhuber, 1997) scale more favorably with context length and have linear dependency
at training time and constant at inference time. However, generic non-linear RNNs cannot be parallelized on
modern hardware due to the sequential nature of their gradient update rule (Bengio et al., 1994).

To improve RNNs scalability on modern hardware, recent works on SSMs (Gu et al., 2021; Fu et al., 2022;
Gu & Dao, 2024) propose to linearize RNNs dynamics and use efficient hardware-aware algorithms. A
notable example is Mamba (Gu & Dao, 2024), which leverages the associative scan to efficiently process
arbitrarily long sequences in linear time, and Mamba-2 (Dao & Gu, 2024) that greatly improves over Mamba
by implementing SSM layers using structured matrix multiplications to better leverage modern Tensor cores.

To further harvest the benefits of SSM and Transformer primitives, hybrid models have been proposed in
Zancato et al. (2024); Lieber et al. (2024); Arora et al. (2024); De et al. (2024); Botev et al. (2024); Waleffe
et al. (2024). There are also efforts trying to extend Mamba models to graph data (Wang et al., 2024; Behrouz
& Hashemi, 2024). However, unlike our LC-PLM-G, which learns token-level protein representations within
graph context from the graph of sequences, they focus on learning node/graph-level representations that only
work for generic graph tasks where nodes do not contain sequences (see Table 1)1.

Method Universality Fine
granularity

Long-context capability
Handleability & Performance

Graph
context

Large-scale
model

ProtGPT (2022) ✓ ✓ ✗ ✗ ✗ ✗
ESM-2 (2023) ✓ ✓ ✗ ✗ ✗ ✓
CARP (2024) ✓ ✓ ✓ ✗ ✗ ✓
ProtHyena (2024) ✓ ✓ ✓ ✗ ✗ ✗
PoET (2024) ✗ ✓ ✗ ✗ ✗ ✗
ProtMamba (2024) ✗ ✓ ✗2 ✗ ✗ ✗
PTM-Mamba (2024) ✗ ✓ ✓ – ✗ ✓

Graph-Mamba (2024) ✗ ✗ ✓ – ✓ ✗
GMN (2024) ✗ ✗ ✓ – ✓ ✗

LC-PLM ✓ ✓ ✓ ✓ ✗ ✓
LC-PLM-G ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of LC-PLM and LC-PLM-G to other protein LMs and graph SSMs in terms of enabling
universal representations, AA token-level fine granularity, long-context capability, graph contextual informa-
tion, large model size, and a large number of pretrained tokens.

2.2 Long-context LMs for biological sequences

To model the long-range interactions without sacrificing single nucleotide level resolution, long-context capable
LM architectures have been developed for DNA sequences, including HyenaDNA (Nguyen et al., 2024b),
Evo (Nguyen et al., 2024a), and Caduceus (Schiff et al., 2024). These studies have shown that alternative
architectures based on SSMs exhibit better scaling laws than Transformers on genomic data and DNA-specific
tasks. Protein sequence LMs with alternative architectures have also been explored to improve computational

1We provide the concrete definitions in Appendix A for all criterions used in Table 1.
2ProtMamba used an unextrapolatable learnable positional encoding that sacrificed the long-context capability of Mamba.

We discuss more in Appendix A.
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efficiency and enable the modeling of longer protein sequences. For instance, CARP (Yang et al., 2024) is a
protein LM with dilated convolution layers. Pretrained with MLM objective, CARP achieved comparable
pretraining scaling properties with its Transformer counterpart ESM-1b (Rives et al., 2021) and scales better
on long sequences. ProtHyena (Zhang, 2024) is a small 1.6M parameter decoder-only LM based on the Hyena
operator pretrained on protein sequences and has demonstrated some improvement over ProtGPT (Ferruz
et al., 2022) with comparable model sizes.

Some works exploit the long-context capability of LMs to model sets of homologous protein sequences such
as those in multiple sequence alignment (MSA), which further organize a set of protein sequences by aligning
evolutionary conserved amino acids across the set of sequences. PoET (Truong Jr & Bepler, 2024) proposed
a tiered variant of Transformer to model the invariant relationships between multiple protein sequences from
MSAs, whereas ProtMamba (Sgarbossa et al., 2024) trains a Mamba-based protein LM using concatenated
sequences from MSAs with causal language modeling and infilling objective to mainly perform protein
sequence generation. PTM-Mamba (Peng et al., 2024) addresses post-translational modifications (PTM)
of protein sequences introducing PTM tokens to amino acid tokens and subsequently trains a bidirectional
Mamba model with these PTM tokens. We provide additional discussion on other pLMs and related variants
in Appendix B.

Instead of training protein sequences from very specific types of data like MSAs or PTMs, we emphasize that
our work focuses on building protein foundation models with long-context modeling of individual protein
sequences and related protein sequences within biomedical graphs, which learns universal AA token-level
protein representations that are more generalizable and can encode information from biological interactions
(see Table 1 for a detailed comparison).

2.3 Protein LMs trained on graphs

Graphs are ubiquitous in biomedical domains as they are suitable for organizing and representing complex
biological systems, such as gene regulatory networks and PPI graphs (Wang et al., 2022). The relationships
among proteins embedded in biomedical graphs have also been used to train pLMs. The common strategies
for incorporating graph information include pretraining LMs with graph-specific objectives in addition to
self-supervised LM objectives. The graph-specific objective can be link-prediction on homogeneous graphs
(Yasunaga et al., 2022; McDermott et al., 2023), knowledge graph embedding (KGE) objectives (Zhang et al.,
2022) or contrastive loss (Wang et al., 2023) on heterogeneous graphs. One limitation of such approaches
is the inability to jointly model the implicit token-wise interactions beyond a pair of sequences. After all,
link-prediction and KGE only take two sequences as input. In our work, we use homogeneous PPI graphs
and exploit the long-context capability of SSM-based LM to model token-wise interactions and extend its
reasoning beyond two sequences through random walks.

3 Preliminaries

Structured State Space Models Modern Structured SSMs are derived from first-order differential
equations that map the input sequence x(t) to the output sequence y(t) through hidden state h(t):

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t) (1)

where A ∈ RN×N , B ∈ RN×D and C ∈ RD×N . The variables N and D refer to the state dimension and the
(expanded) input dimension respectively. The continuous dynamical system characterized by A, B can be
discretized to Ā, B̄ by zero-order holding and time sampling at intervals of ∆, defined as follows:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B. (2)

The formula of a discretized SSM can then be written as:

hk = Āhk−1 + B̄xk, yk = Chk (3)

The main benefit of discretized SSMs (Gu et al., 2021) over their continuous counterpart is that they can be
trained efficiently using their parallel convolutional representation and can be efficiently deployed at inference

4



Published in Transactions on Machine Learning Research (06/2025)

time with their recurrent form. However, the ability to model long-range interactions of SSMs is limited by
the impulse response of the discrete dynamical system they implement, the S4 model (Gu et al., 2020; 2021)
mitigates such limitation by introducing the HIPPO Matrix to the initialization of A.

Selection Mechanism and Mamba The main limitation of the SSMs described so far is that they
cannot model complex input-varying interactions across the sequence dimension. Thus, Mamba (Gu & Dao,
2024) parameterizes the matrices B, C and ∆ in an input-dependent (data-driven) manner, introducing a
selection mechanism into the S4 model. However, introducing such data dependency makes the parallelizable
convolutional representation unfeasible, hence, Mamba uses a novel hardware-aware parallel computing
algorithm (based on the associative scan) to ensure the efficient training of the model and leading to linear
computational complexity and outstanding capabilities in modeling long-term dependencies. A Mamba model
(selective SSM) that enables dependence of the parameters B, C and ∆ on the input xt can be formulated as:

Bt = LinearB(xt) Ct = LinearC(xt) (4)
∆t = softplus(Linear∆(xt)), (5)

where Linear(·) represents a linear projection and softplus(·) = log(1 + exp(·)).

4 LC-PLM: Long Context Protein Language Model

In this section, we first introduce the design choice of using bidirectional Mamba (BiMamba) with shared
projection layers (BiMamba-S) for building up the model architecture of LC-PLM, and then we discuss how we
develop the two-stage training recipe to obtain high-quality universal protein representations using MLM and
encode biologically meaningful interaction information with a novel graph context-aware training approach.

4.1 BiMamba-S: Bidirectional Mamba with Shared Projection Layers

BiMamba is an extension from standard Mamba block and has been applied in various domains, e.g. time-series
forecasting (Liang et al., 2024), audio representation learning (Erol et al., 2024), visual representation learning
(Zhu et al., 2024), DNA modeling (Schiff et al., 2024), and graph learning (Behrouz & Hashemi, 2024).
The following reasons suggest we consider BiMamba as the design choice: (i) Mamba is good at capturing
long-range dependencies and extrapolating on longer sequences, which benefit a lot of downstream tasks on
protein complexes and PPI graphs. (ii) standard Mamba only does unidirectional (associative) scans for
causal sequence modeling. To perform MLM to learn high-quality universal protein representations, we
introduce a modified bidirectional scan to capture information from both ends.

In general, the l-th BiMamba block takes in an input sequence of tokens Tl−1 ∈ RB×S×D and output
Tl ∈ RB×S×D where B,S,D represent the batch size, the input dimension, and the hidden state dimension.
Then a residual connection adds the input and output together to get Tl. After going through L× BiMamba
blocks, the output TL will be normalized first and then fed into a prediction head to get final scores. This
procedure can be formulated as follows:

Tl = BiMamba (Tl−1) + Tl−1 (6)
p̂ = PredictionHead (Norm (TL)) (7)

Specifically, in one BiMamba block, the input sequence Tl−1 and the flipped T̂l−1 will be first normalized
and then linearly projected to Xl−1 ∈ RB×S×E and Zl−1 ∈ RB×S×E . Xl−1 and the flipped X̂l−1 will be fed
into the forward and inverse Mamba block respectively for a bidirectional scan. In each Mamba block, Xl−1
and X̂l−1 will be first passed through a 1-D convolution layer and a SiLU activation (Nwankpa et al., 2018),
and then linearly projected to Bl−1 ∈ RB×S×N ,Cl−1 ∈ RB×S×N ,∆l−1 ∈ RB×S×E and B̂l−1, Ĉl−1, ∆̂l−1,
where ∆l−1 and ∆̂l−1 transform Al−1,Bl−1 and Âl−1, B̂l−1 to Āl−1 ∈ RB×S×E×N , B̄l−1 ∈ RB×S×E×N and
ˆ̄Al−1,

ˆ̄Bl−1. A standard SSM block will be then applied to obtain Yl−1 ∈ RB×S×E and Ŷl−1, which later
will be gated by Zl−1 and added together to get the candidate output. Lastly, a residual connection will be
applied on a linear projection of the candidate output and input sequence Tl−1 to get the final output Tl. We
provide an algorithmic block and a detailed breakdown to describe this computation process in Appendix K.
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Linear
Projection

Figure 2: BiMamba-S block. The forward
and reverse modules share the linear pro-
jection layers. The normalized input will
be reversed along the sequence dimension
before being fed in. The output of the re-
versed will be flipped back and then added
to the forward’s output.

Shared Projection Layers To explore a more efficient im-
plementation of BiMamba, we propose to use the shared linear
projection layers for the forward input Tl−1 and the flipped T̂l−1.
This design choice helps make the entire model 2× deeper with
almost the same parameter counts (Schiff et al., 2024). We re-
fer to this building block as BiMamba-S (illustrated in Figure 2).
Note that this is different from the inner BiMamba block used in
Zhang et al. (2024a); Zhu et al. (2024), where they just flipped the
linearly projected hidden states. We also find that, empirically,
the deeper model using BiMamba-S shows superiority in terms of
sample & compute efficiency (4.5% improvement on evaluation
loss) and performance gain on downstream tasks (an average of
4.1% improvement on TM score of structure prediction) as we
expected. More results and details are shown in Section 5.3.

Untied Input & Output Embeddings Notably, we opt to
use untied input and output embeddings for the BiMamba-S en-
coder. Empirically we find that untied embeddings yield better
evaluation loss during MLM training compared to tied embed-
dings, despite the latter being the standard practice. This finding
aligns with previous research (Gao et al., 2019; Ethayarajh, 2019),
which highlights that tying input and output embeddings leads to
anisotropic word embeddings in contextualized pretrained models,
significantly constraining their expressiveness.

4.2 Two-stage Training Recipe

Our training procedure can be decomposed into two stages: (i)
long-context protein language modeling and (ii) protein language
modeling within graph contexts. The first stage will enforce
LC-PLM to learn the universal token-level representations of indi-
vidual proteins and the second stage will put the protein sequences
into the related graph contexts and LC-PLM-G will learn to capture
biologically meaningful interaction information.

Long-context Protein Language Modeling LC-PLM is trained with BiMamba-S on individual protein
sequences where it can leverage the power of SSM modules to effectively capture long-range dependencies
within sequences. Specifically, treating the protein sequences as a collection of amino acid (AA) tokens, the
model learns fine granular and universal token-level representations using MLM, which can be generalized
across different types of protein sequences. For the masking strategy, we follow BERT (Devlin, 2018) in which
15% of AA tokens in a protein sequence will be "masked". Of the ‘masked’ tokens, 80% are replaced with
[MASK], 10% are replaced with a random token from the vocabulary, and 10% are left unchanged.

Graph-contextual Protein Language Modeling To encode biologically meaningful interaction infor-
mation into protein representations, we propose the second-stage training within a graph context where
a node represents an individual protein sequence and an edge indicates the existence of PPI. We refer to
this graph-contextually trained model variant as LC-PLM-G. Wang et al. (2022) and Behrouz & Hashemi
(2024) propose to tokenize the graph into either flattened node sequences with prioritization strategy (e.g.,
node degree) or induced subgraphs. However, the former discards the graph topology information and the
latter provides only 2-D tokens that cannot be used as the input of language models. Therefore, we propose
to construct the graph-contextual input via random walks (Perozzi et al., 2014; Grover & Leskovec, 2016),
which can both effectively capture the graph topology and provide 1-D sequences. Consider an undirected,
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Figure 3: The illustration of graph-contextual protein language modeling (LC-PLM-G). The positive paths
are sampled with random walks on the graph and the same number of negative paths are sampled from
disconnected node pairs randomly. The sampled paths will be transformed into multi-protein sequences
composed of AA tokens and special graph identifier tokens. The BiMamba-S encoder is trained using MLM,
the same as in the first-stage training.

unweighted, PPI graph G = (V,E). Formally, a random walk of length l can be simulated by

P (ni = v | ni−1 = u) =
{

πuv

Z if (v, u) ∈ E
0 otherwise

(8)

where ni denotes the ith node in the walk, πuv is the unnormalized transition probability between nodes
(u, v), and Z is the normalizing constant. We also set two parameters p and q as in Grover & Leskovec (2016)
to interpolate the behavior of random walker in between breath-first and depth-first search (see Appendix L).
Then, the nodes in each random walk will be expanded as a sequence of proteins composed of AA tokens.
We also sample a sequence of disconnected nodes of the same length l as the negative paths.

Although this gives us a principled way to form input multi-protein sequences for language models within
graph context, the input still needs special identifiers to let the language model precept the graph topological
information and be aware of which protein each AA token belongs to. Thus, we design four new tokens
([BON], [EON], [EDGE], [NO_EDGE]) to help encode such graph context information, where the first two
indicate the begin and end of a node and the last two represent if there exists an edge. We provide a visual
illustration of this graph-contextual training regime in Figure 3.

Figure 4: Evaluation loss across different model sizes
for LC-PLM and ESM-2, showing that LC-PLM has a
better scaling behavior when increasing the number
of model parameters.

Figure 5: Evaluation loss comparison between
BiMamba and BiMamba-S over training steps.
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5 Experiments

We conduct experiments to evaluate the effectiveness of LC-PLM and LC-PLM-G and their building block
BiMamba-S. We will address the following research questions. (RQ1) What is the scaling behavior of LC-PLM?
How does it compare with its Transformer-based counterpart ESM-2? (RQ2) Does LC-PLM show stronger
length extrapolation capability than ESM-2? (RQ3) Will BiMamba-S architecture be more effective in
long-context protein language modeling? (RQ4) Does long-range dependencies help with protein structure
prediction? (RQ5) Does LC-PLM-G learn graph-contextual (relational) information? (RQ6) Does LC-PLM-G
with biological interaction information learned in the second-stage training help with common downstream
tasks? (RQ7) Does LC-PLM-G improve protein function prediction and link prediction on the PPI graph?
We provide the experimental setup, dataset description, and task definition in Appendices C and D.

5.1 (RQ1) Exploring the Scaling Law

We train LC-PLM on 20B UniRef90 sequences and evaluate it on a held-out set of 250K UniRef90 sequences.
We test four different model sizes for both LC-PLM and ESM-2. The model sizes for LC-PLM are 100M, 340M,
740M, and 1.3B parameters to accommodate BiMamba-S architecture, while for ESM-2, they are 150M, 300M,
650M, and 1B. The results demonstrated that LC-PLM not only achieved better evaluation loss (average
cross-entropy across all tokens) with a similar model size (with an average of 13.5% improvement) compared to
ESM-2 but also exhibited superior scaling behavior (sharper slope) when increasing the model size, as shown
in Figure 4. This aligns with the discovery in Gu & Dao (2024) that Mamba has better neural scaling law
compared to Transformers in language modeling. This may also be due to the useful long-range dependencies
in protein sequences captured by LC-PLM and the deeper architecture achieved with BiMamba-S.

5.2 (RQ2) Length Extrapolation Evaluation

Figure 6: Length extrapolation results comparing LC-PLM
versus ESM-2 on evaluation loss across different sequence
lengths. LC-PLM can achieve consistent performance when
extrapolating on longer sequences.

We split the UniRef90 sequences into 7 bins w.r.t.
the sequence length (i.e. 0-128, 128-256, 256-
512, 512-1024, 1024-2048, 2048-4096, and 4096-
8192). We train three sizes of LC-PLM (100M,
340M, 740M) and ESM-2 (150M, 300M, 650M)
on the bin of 128-256 and then evaluate them
on all bins (including a held-out set of 128-256).
Our findings show that LC-PLM maintains low
evaluation loss across sequence lengths, while
ESM-2 struggles with both shorter and longer
sequences, especially when the lengths are under-
represented in the training set. This concludes
that LC-PLM can extrapolate better with length
due to the stronger length extrapolation capabil-
ity of BiMamba-S (Gu & Dao, 2024) compared
to ESM-2, which uses RoPE (Su et al., 2024) to
extend context beyond pretraining. The results
are shown in Figure 6.

5.3 (RQ3) The Effectiveness of BiMamba-S

Using shared linear projection layers in BiMamba-S allows for 2× deeper models with similar parameter
counts. In our analysis, we compare the evaluation loss of our 740M model with BiMamba-S and its BiMamba
counterpart that halves the depth. The training set is UniRef50 and the evaluation set is a held-out set of
250K UniRef90 sequences, the same as in the scaling law experiments. Our results show that this parameter-
efficient approach to increasing the model depth effectively improves evaluation loss by 4.5%, as shown in
Figure 5. We also verify the effectiveness of BiMamba-S on structure prediction in Table 2, where the deeper
model improves by 6.7% on CASP15-multimers, 4.6% on CASP14, and 1.5% on Benchmark2. This empirical
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evidence matches the theory that more hidden layers in deep neural networks can be benefited from more
representation power gain, proposed in (Telgarsky, 2016). This also suggests a potentially better scaling
strategy for training pLMs with the fixed parameter count, i.e. stacking more layers instead of having more
hidden units.

5.4 (RQ4) Protein Structure Prediction with LMFold

We also evaluate LC-PLM ’s ability to predict protein’s 3-D structures. It has been shown that protein LMs
capture various levels of protein structure information (Rives et al., 2021; Rao et al., 2020; Lin et al., 2023),
despite being trained on primary sequences alone. Inspired by the ESMFold (Lin et al., 2023) architecture,
which uses the residue-level embeddings and, optionally, attention maps as features to predict the 3-D
structures directly without MSA3, we developed a protein folding model named LMFold, which generalizes
ESMFold’s Folding Trunk and Structure Module to work with protein LMs with decoder-only and encoder-
decoder architectures. Briefly, LMFold takes the residue-level embeddings for a given protein sequence as
features to predict the all-atom coordinates of the protein structure. To further simplify LMFold, we only use
1 folding block of the structure module. Note that the goal of this task is not to develop the state-of-the-art
protein folding model, but rather to quantify the potential of pretrained protein LMs for their learned
structural information. To train LMFold, we use the Frame Aligned Point Error (FAPE) and distogram losses
introduced in AlphaFold2 (Jumper et al., 2021), as well as heads for predicting LDDT and the pTM score.
We weigh these 4 loss terms using the default constants proposed in OpenFold (Ahdritz et al., 2024).

Model (#Tokens trained) CASP15-multimers CASP14 Benchmark2
ESM-2-650M (100B) 0.3992± 0.0418 0.3403± 0.0527 0.4724± 0.0407
LC-PLM-740M w/ BiMamba (100B) 0.4538± 0.0151 0.3827± 0.0124 0.6012± 0.0101
LC-PLM-740M w/ BiMamba-S (100B) 0.5012± 0.01870 0.4014± 0.0190 0.6128± 0.0117
ProtMamba-public4 0.3561± 0.0250 0.3176± 0.0219 0.4431± 0.0224
ESM-2-650M-public (1T)5 0.4750± 0.0120 0.4300± 0.0179 0.6491± 0.0162
LC-PLM-740M (1T) 0.5515± 0.0254 0.4650± 0.0215 0.7075± 0.0248

Table 2: Structure prediction performance (TM score) on CASP15-multimers, CASP14, and Benchmark2. We
perform 3 runs using different seeds and report the mean and standard deviation.

For the training set, we down-sample 1.5% of protein chains used in OpenFold (Ahdritz et al., 2024), leading
to 7,872 chains, with at most 1 protein chain from each cluster. The aggressive down-sampling is supported
by the fact that training a protein folding model with as few as 1,000 protein chains achieved a decent
performance (Ahdritz et al., 2024). The down-sampled protein chains have lower than 40% sequence identity
to each other. We use 95% and 5% as data splitting for training and validation sets. For held-out test
sets, we use CASP15-multimers (52 protein complexes), CASP14 (37 protein structures), and Benchmark2 (17
heterodimers structures) (Ghani et al., 2021). We compare our 740M LC-PLM (with BiMamba or BiMamba-S)
against 650M ESM-2, all pretrained on 100B tokens from UniRef50. LC-PLM outperforms ESM-2 across all
test sets by a large margin (20.8% on CASP15-multimers, 17.6% on CASP14, and 29.5% on Benchmark2).
LC-PLM also achieves comparable performance to 650M public ESM-2 model trained on 10× more tokens
(1T), with 1.6% improvement on CASP15-multimers. These results demonstrate the powerful long-context
capability of BiMamba-S on modeling longer proteins and protein complexes. This also suggests that, even
for average-length protein sequences, long-range dependencies would be useful information and an important
feature for protein structure prediction.

3We disable attention maps in our experiments since (i) there is no attention map in BiMamba-S and (ii) ESMFold (Lin et al.,
2023) also demonstrate that attention maps provide no performance gain during training.

4ProtMamba is hard to extrapolate on sequence > 2048 since they train with fixed-length positional encodings.
5The public ESM-2 model is provided for reference only. We highlight the best results for models trained with the same

number of tokens and similar sizes. The tables below follow the same approach.
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5.5 (RQ5) LC-PLM-G Encodes Graph Relational Information

To evaluate if LC-PLM-G encodes graph relational information, we first conduct the graph-contextual protein
language modeling on the PPI graph provided by ogbn-proteins dataset Hu et al. (2020), which contains
proteins from 8 species, to get a well-trained LC-PLM-G. After training, we sample the same number of proteins
from each species and obtain their representations using both LC-PLM and LC-PLM-G. Since we sampled a
subset of proteins (nodes) from the dataset, we can use them to construct a subgraph as well. We then use
the Louvain algorithm (De Meo et al., 2011) to detect 8 communities (corresponding to 8 species) in this
subgraph. Next, we use t-SNE (Van der Maaten & Hinton, 2008) to reduce the dimensionality of both sets
of protein embeddings obtained from LC-PLM and LC-PLM-G and label each data point using its community
membership. As shown in Figure 7, the embeddings from LC-PLM-G captures the graph topology much better
than LC-PLM, which aligns with the community detection results. This suggests that our proposed graph
context-aware second-stage training captures the topological information in PPI graphs as expected.

Model
(#Tokens trained)

PPI
graph

Contact
Map

Remote
Homology

Secondary
Structure Stability

ESM-2-650M (100B) None 44.05 26.57± 0.49 79.86± 0.09 0.763± 0.01
ESM-2-G-650M (100B) ogbn-proteins 32.35 25.60± 0.77 79.76± 0.24 0.750± 0.02
ESM-2-G-650M (100B) ogbl-ppa 26.66 27.18± 0.63 79.91± 0.24 0.753± 0.01
LC-PLM-740M (100B) None 47.10 35.14± 1.69 85.07± 0.03 0.794± 0.01
LC-PLM-G-740M (100B) ogbn-proteins 47.15 35.74± 0.93 85.02± 0.11 0.801± 0.01
LC-PLM-G-740M (100B) ogbl-ppa 47.23 35.60± 1.45 85.01± 0.03 0.801± 0.01
ProtMamba-public None 10.96 17.82± 1.85 68.43± 0.06 0.726± 0.01
CARP-640M-public None 25.83 28.0± 0.8 83.0± 0.1 0.720± 0.01
ESM-2-650M-public (1T) None 66.85 33.43± 0.35 84.30± 0.15 0.804± 0.01
LC-PLM-740M (1T) None 61.93 33.24± 0.21 88.19± 0.03 0.840± 0.02

Table 3: Evaluation on TAPE tasks in zero-shot (contact map) and supervised fine-tuning (remote homology
and secondary structure) settings. We report the Precision@2/L for Contact Map prediction, top-1 accuracy
for the Remote Homology fold-level test set, accuracy for the 3-class secondary structure prediction on the
CB513 test set, and spearman’s rho for stability prediction, respectively. Values for CARP are taken from
Yang et al. (2024). We perform 3 runs using different seeds to report the mean and standard deviation.

5.6 (RQ6) Interaction Information Helps Downstream Tasks

(a) LC-PLM (b) LC-PLM-G

Figure 7: Comparison of t-SNE visualizations on protein-level repre-
sentations obtained from LC-PLM and LC-PLM-G with the correspond-
ing community labels detected by the Louvain algorithm on the
PPI graph. Embeddings from LC-PLM-G recapitulate the topological
information.

TAPE Here we ask whether the
graph relational information is helpful
for common downstream tasks. We first
use the remote homology detection and
secondary structure prediction tasks
from TAPE (Rao et al., 2019), which
represent protein-level and residue-level
tasks, respectively. Our results in Ta-
ble 3 show that LC-PLM achieves signifi-
cantly better performance in both tasks
compared to ESM-2 pretrained with
the same number of tokens. Remark-
ably, LC-PLM and LC-PLM-G even out-
performed the public ESM-2 pretrained
with 1T tokens, underscoring that the
sample efficiency of BiMamba-S-based
model architecture can translate to
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downstream tasks in a supervised fine-tuning setting. The marginal improvement of LC-PLM-G over LC-PLM
in remote homology tasks also suggests the information from the PPI graph helps determine protein’s remote
homologs, while not helpful in predicting their secondary structures at the AA level.

ProteinGym Next, we evaluate the predicted fitness landscape on zero-shot mutation effect prediction.
It has been shown that pretrained pLMs can capture the fitness landscape of proteins without any further
training (Meier et al., 2021). We use 217 deep mutational scan (DMS) datasets collected in ProteinGym
(Notin et al., 2024), which collectively measure the effects of 2.5 million substitution mutations to parent
protein sequences. In Table 4, we demonstrate LC-PLM achieved significantly better alignment with protein
fitness compared to ESM-2 pretrained with the same number of tokens. Interestingly, we note that the
graph-contextual training hurts the fitness landscapes of ESM-2 models, while LC-PLM-G retained their
zero-shot capabilities for protein fitness prediction. We hypothesize that the long graph context degrades
the representation space of ESM-2, not for LC-PLM-G. This highlights BiMamba-S as a superior architectural
design choice, demonstrating robustness in maintaining performance across various tasks while excelling in
those that benefit from interaction information learned through graph-contextualized training, possibly due
to its preferable context-length extrapolation property.

Model (#Tokens trained) PPI graph Spearman NDCG
ESM-2-650M (100B) None 0.295± 0.013 0.695± 0.008
ESM-2-G-650M (100B) ogbn-proteins 0.109± 0.013 0.642± 0.008
ESM-2-G-650M (100B) ogbl-ppa 0.131± 0.014 0.644± 0.007
LC-PLM-740M (100B) None 0.378± 0.008 0.735± 0.005
LC-PLM-G-740M (100B) ogbn-proteins 0.380± 0.008 0.734± 0.006
LC-PLM-G-740M (100B) ogbl-ppa 0.380± 0.008 0.734± 0.006

Table 4: Evaluation on ProteinGym DMS substitutions benchmark. We report Spearman’s correlation coeffi-
cient and normalized discounted cumulative gain (NDCG) between the log odds ratio and the experimentally
measured protein fitness scores for each DMS assay.

5.7 (RQ7) Protein Function Prediction and Link Prediction on PPI Graph

We evaluate LC-PLM-G on two tasks: protein function prediction (ogbn-proteins) and PPI link prediction
(ogbl-ppa). On ogbn-proteins, LC-PLM-G achieves an accuracy of 0.8925 ± 0.001, outperforming the
state-of-the-art by 2.6%. For ogbl-ppa, we leverage the learned embeddings from both LC-PLM and LC-PLM-G
to initialize the node attributes for GCN and GraphSAGE, evaluating these model variants. The results
confirm that the embeddings improve performance. We conduct similar experiments on ogbn-proteins,
further validating the effectiveness of capturing graph-contextual information. Additional details are provided
in Appendix H.

6 Conclusion, Discussion, and Future Work

In this work, we explored LC-PLM and LC-PLM-G based on BiMamba-S. We demonstrate LC-PLM’s favorable
neural scaling laws and length extrapolation property than Transformer-based ESM-2. We found that the
length extrapolation property can facilitate the 3-D structure prediction of longer proteins and protein
complexes. Specifically, LC-PLM outperformed ESM-2 by up to 30% and 16% on various downstream tasks
when trained with 100B and 1T tokens, respectively. We also found that after training within graph
context using random walk sampling, LC-PLM-G can capture relational structure encoded in protein-protein
interactions and improve remote homology prediction by more than 35% compared to ESM-2.

LC-PLM not only demonstrates superior performance on longer protein sequences but also outperforms ESM-2
on shorter protein sequences, highlighting a significant performance gap between SSMs and Transformers in
protein language modeling. We hypothesize that this advantage may be attributed to the relatively small
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vocabulary size of protein sequences (∼ 20 tokens), which allows SSMs to more effectively learn compressed
state representations compared to natural languages, where the vocabulary size typically exceeds 50k tokens.

It is also possible that ESM-2 could incorporate more advanced architectural designs within its Transformer-
based framework to narrow the performance gap, given the rapid advancements in text modeling and
Transformer architectures. There are also emerging techniques that may further assist ESM-2 in bridging the
gap in long-context modeling capability compared to LC-PLM.

In future work, we aim to (i) explore hybrid architectures that integrate multi-head attention with SSMs, (ii)
investigate more advanced self-supervised training strategies to enhance the incorporation of graph-contextual
information during the later stages of pre-training, e.g., contrastive learning using (positive, negative) pairs
of random walk paths to reinforce locality relationships, and (iii) develop more principled approaches for
negative sampling to better contrast with positive random walk paths. Some other directions include (i)
approximate permutation-invariant graph context learning for pLMs, e.g. using permutation group (Huang
et al., 2022), (ii) explore other graph context extraction methods instead of random walk, e.g. graph skeleton
tree (Huang et al., 2023).

Additionally, we have expanded our discussion to include observations from the ProteinGym experiments. At
larger scales (e.g., 1T training tokens), LC-PLM is outperformed by ESM-2 and other structure-specialized
models. This suggests that LC-PLM’s general-purpose inductive bias may not be sufficient to capture detailed
structural signals at scale. A promising mitigation strategy is to incorporate structure-aware signals directly
into the sequence modeling process, e.g., by adding structure tokens (Hayes et al., 2025; Su et al., 2023).

We also think it deserves to expand the application scope of LC-PLM across several key areas: (i) understanding
viral protein sequences, which are characterized by extended sequence lengths; (ii) enhancement of protein
co-regulation and functional prediction capabilities (Hwang et al., 2024); and (iii) advanced protein design
tasks requiring expanded contextual understanding, such as protein inpainting. We anticipate that LC-PLM’s
capabilities will enable novel applications beyond these identified domains, presenting significant opportunities
for further exploration in the field of protein modeling and design.
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Appendices
Appendix A Definitions of Criterions Used in Table 1

Here, we provide clear definitions for all criteria listed in Table 1 and explain the rationale for whether each
method possesses the corresponding feature.

• Universality: We define this criteria and justify whether a method possesses this feature (1) if it
is learning universal, cross-family representations of protein space as defined in previous works of
protein representation learning (Alley et al., 2019b; Detlefsen et al., 2022); and (2) if it is pretrained
on universal protein dataset, e.g. the Universal Protein Reference Clusters (UniRef) dataset which
contains universal protein sequence resources; (3) if the learned expressive protein/AA embeddings
can achieve decent performance across a variety of downstream tasks, which demonstrates the
universality of such representations.

• Fine granularity: given that the protein sequence is composed of high-resolution AA tokens,
we define this criteria according to whether the model can take in AA token as input. Note that

21



Published in Transactions on Machine Learning Research (06/2025)

Graph-Mamba (Wang et al., 2024) and GMN (Behrouz & Hashemi, 2024) can only handle inputs
like PPI graphs where each node corresponds to an individual protein.

• Long-context capability (Handleability): we define this criteria according to whether the model
can take in extremely long (e.g. > 16K sequence length) input sequence. Note that Transformers
naturally lack this feature and ProtMamba (Sgarbossa et al., 2024) discards this capability by
improperly using positional encodings (PEs)6 which makes it unable to extrapolate to sequences
> 2048 on any downstream tasks that need fine-tuning on longer sequences as we discussed in
the main text. ProtMamba used learnable PE as an improper design choice that will do harm
to the length extrapolation capability of the model since such PE has been demonstrated as an
un-extrapolatable PE in many works (Zhao et al., 2023; Sun et al., 2022).

• Long-context capability (Performance): we define this criteria according to whether the model
can perform well across a variety of downstream tasks that need long-context dependencies (e.g.
structure prediction on protein complex, remote homology prediction).

• Graph context: we define this criteria according to whether the model can take into account the
protein interaction graph contexts. All models purely based on protein sequence fail.

• Large-scale model: we define this criteria according to whether the model has been scaled up to a
fairly large size (e.g. the number of trainable model parameters closer to 1B).

Appendix B More Discussion on General pLMs

As noted earlier, protein sequences, represented as strings of amino acid letters, are well-suited to LMs
that can capture complex dependencies among amino acids (Ofer et al., 2021a). pLMs (Hu et al., 2022)
have emerged as promising tools for learning protein sequences. This section introduces LSTM-based pLMs,
followed by Transformer-based pLMs, detailing their implementation strategies and applications, particularly
for protein structure prediction.

Klausen et al. (2018) developed a combination of convolutional and LSTM neural networks to predict various
protein structural features, such as solvent accessibility, secondary structure, structural disorder, and torsion
angles (φ, ψ) for each residue. Models like SPIDER3-Single (Heffernan et al., 2018) focus on single sequences
rather than relying on multiple sequence alignments (MSAs). Similarly, models such as DeepPrime2Sec (Asgari
et al., 2019) and SPOT-1D-Single (Singh et al., 2021a) share comparable training objectives and architectures.
Furthermore, models like DeepBLAST (Morton et al., 2020), SPOT-1D-LM (Singh et al., 2021c), and
SPOT-Contact-Single (Singh et al., 2021b) utilize embeddings from pre-trained pLMs for downstream tasks
such as contact map and function prediction.

However, the TAPE benchmark (Rao et al., 2019) highlighted opportunities for innovative design and
training methods beyond traditional LSTMs and Transformers. UniRep (Alley et al., 2019a), for example,
employs a multiplicative LSTM (mLSTM)(Krause et al., 2016) to condense arbitrary protein sequences
into fixed-length vectors, capturing long-range dependencies. Similarly, UDSMProt(Strodthoff et al., 2020)
and SeqVec (Heinzinger et al., 2019) utilize LSTM variants to develop rich, transferable representations.
ProSE (Bepler & Berger, 2021) enhances these representations with structural supervision through residue-
residue contact loss and structural similarity prediction, while CPCProt (Lu et al., 2020) leverages InfoNCE
loss to maximize mutual information in protein embeddings.

ProtTrans (Elnaggar et al., 2021) trained extensive models (including T5, ELECTRA, ALBERT, XLNet,
BERT, and Transformer-XL) on sequences comprising 393 billion amino acids across 5616 GPUs and one TPU
Pod. ESM-1b (Rives et al., 2019) demonstrates how deep Transformers, coupled with a masking strategy,
can build intricate context-aware representations. The results from ProtTrans and ESM-1b suggest that
large-scale pLMs can effectively learn the grammar of proteins, even without evolutionary data. Furthermore,
PMLM (He et al., 2022) enhances model performance on the TAPE contact benchmark by accounting for
dependencies among masked tokens, indicative of inter-residue coevolution.

6https://github.com/Bitbol-Lab/ProtMamba-ssm/blob/8befff756b2db7b6dc56d0a07163eb02e27b2731/ProtMamba_ssm/
modules.py
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Incorporating additional data such as MSAs, functions, structures, and biological priors can enrich protein
embeddings. For instance, the MSA Transformer (Rao et al., 2021) adapts Transformer LMs to handle
sets of sequences, utilizing alternating attention mechanisms. ProteinBERT (Ofer et al., 2021b) integrates
sequence information with Gene Ontology (GO) annotations to predict diverse protein functions, while
OntoProtein (Zhang et al., 2022) leverages GO as a factual knowledge graph. The PEER benchmarks (Xu
et al., 2022) demonstrate the importance of selecting suitable auxiliary tasks to enhance model performance
across a variety of protein-related tasks.

Protein Structure Prediction Early pLMs (Klausen et al., 2018; Heffernan et al., 2018; Asgari et al., 2019)
primarily predicted structural features, which are essential for constructing 3D protein structures. Recent
models aim to predict protein structures end-to-end. Evoformer, a core module in the AF2 network (Jumper
et al., 2021), exemplifies this with its sophisticated design that includes axial attention and updates to pair
representations ensuring consistency principles like the triangle inequality.

Other Applications ProGen (Madani et al., 2020) exemplifies models trained on sequences condi-
tioned on specific protein properties. In contrast, newer models like ProGen2 (Nijkamp et al., 2022)
and AminoBERT (Chowdhury et al., 2022) illustrate the expansion of pLM applications to include tasks
like antibody structure prediction, demonstrating the versatile utility of pLMs across a range of biological
research and clinical applications.

Appendix C Datasets, Tasks, and Metrics

C.1 Protein Sequence Datasets

We first describe the Unified Reference Protein (UniRef) dataset(Suzek et al., 2015), which provides
clustered sets of protein sequences from the UniProt Knowledgebase (UniProtKB) (Boutet et al., 2016) and
selected UniParc records. It’s designed to speed up protein sequence analysis by reducing the redundancy of
sequences at different levels without losing the coverage of sequence space. Here are the key features of the
UniRef dataset:

• UniRef100: This dataset includes all the protein sequences from UniProtKB and selected UniParc
records, clustered by exact sequence matches. It provides comprehensive coverage and serves as the
basis for the other two datasets.

• UniRef90: This set clusters sequences that have at least 90% sequence identity and 80% overlap in
alignment, compressing the dataset while still preserving most of the sequence diversity. It is used
for high-throughput and large-scale analysis where a balance between speed and coverage is needed.

• UniRef50: This dataset clusters sequences with at least 50% sequence identity and 80% overlap in
alignment, further reducing the dataset size and redundancy. It’s intended for rapid scans and for
exploring broad phylogenetic relationships.

Each entry in a UniRef dataset represents a cluster and contains the sequence of the representative protein
(the longest sequence or the one with the most annotations), along with a list of all the cluster members.
These datasets are useful for various bioinformatics tasks such as sequence alignment, phylogenetic analysis,
and functional annotation, as they allow researchers to handle large volumes of sequence data more efficiently.

We use the 2024-01 release of UniRef7, and preprocessed by removing de-novo designed proteins by filtering out
protein sequences annotated by Tax=synthetic construct. Next, we randomly sample 250,000 sequences
from UniRef90 as the validation set to report evaluation losses for pretraining protein language models
(pLMs). To remove sequences from training sets (UniRef50 and UniRef90) that are highly similar to
the validation set, we use the training sets as query databases and validation set as a target database
by mmseqs2 (Steinegger & Söding, 2017) with the following command: mmseqs search –min-seq-id 0.5
–alignment-mode 3 –max-seqs 300 -s 7 -c 0.8 –cov-mode 0.

7https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2024_01/uniref/
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Figure 8: The sequence length distribution of UniRef90.

For the first-stage training of LC-PLM and ESM-2 models, we use the UniRef50 training set; and for the
scaling law and length extrapolation experiments, we use the UniRef90 set. We also provide the histogram of
UniRef90 in terms of sequence length in Figure 8. The training and evaluation sets are randomly sampled
from the entire set, which should follow the same distribution. The average lengths of UniRef90 and UniRef50
are shown in Table 5

Database Tokens Num sequences Average length
UniParc 221.7B 577.8M 383.6bp
UniRef100 144.3B 376.6M 383.2bp
UniRef90 61.2B 179.5M 341.2bp
UniRef50 17.8B 62.8M 284.4bp

Table 5: Average length of UniRef.

C.2 Structure Prediction Datasets

CASP15-multimers is a subset derived from the 15th edition of Critical Assessment of Protein Structure
Prediction (CASP) challenge (Kryshtafovych et al., 2023), specifically focusing on predicting the structures
of protein complexes or multimers. In CASP15, the multimer track evaluates the ability of protein structure
prediction methods to accurately model the quaternary structures of protein assemblies. CASP15-multimers
includes 52 protein complexes.

CASP14 is a dataset from the 14th edition of the CASP challenge (Kryshtafovych et al., 2021). CASP is a
biennial experiment that assesses the state-of-the-art methods for protein structure prediction. CASP14 covers
a wide range of protein structure prediction tasks, including free modeling (FM), template-based modeling
(TBM), and the prediction of protein domains with challenging folds. CASP14 includes 37 protein structures.
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Benchmark2 (Ghani et al., 2021) is a dataset commonly used in the field of protein-protein docking and
structure prediction. It is a curated collection of protein complexes that have been used extensively to evaluate
the performance of computational methods in predicting the binding orientation of protein complexes. The
dataset includes both bound and unbound forms of protein structures, providing a challenging testbed for
docking algorithms. Benchmark2 includes 17 heterodimers structures.

Metrics (i) Frame Aligned Point Error (FAPE) measures the error in aligning one set of points (pre-
dicted) to another (target), considering both translational and rotational components. The error is calculated
on a per-point basis between corresponding points in the two sets, after aligning them using a frame of
reference. The error is normalized by the size of the objects involved, which allows it to be invariant to
the absolute size of the objects, making it suitable for tasks involving objects of varying scales. The loss
is usually computed as an L1 or L2 norm of the differences in the aligned coordinates, which provides a
straightforward gradient for optimization. (ii) Distogram Loss aims to improve the separability of feature
distributions for different classes. It works by encouraging the histograms (or distributions) of distances
within classes (positive pairs) to be distinct from histograms of distances between classes (negative pairs).
The loss function is designed to increase the overlap between histograms of positive pairs while decreasing the
overlap for negative pairs. This is achieved by calculating the probability of a randomly chosen positive pair
having a smaller distance than a randomly chosen negative pair. Typically, a differentiable approximation
of the histogram is used, and the optimization focuses on adjusting the model parameters to achieve the
desired separation in the histograms’ distributions. (iii) pTM score is used to assess the structural similarity
between two proteins, normalized for protein size. TM scores range from 0 to 1, where a score higher than 0.5
generally indicates a model of correct topology and a score below 0.17 suggests random similarities. TM-score
is more sensitive to the global fold of a protein than to the specific atomic positions, making it particularly
useful in assessing larger, domain-level accuracies. (iv) LDDT is a local superposition-free score that evaluates
the local accuracy of a protein model by comparing distances between all atom pairs within defined cutoffs in
both the predicted and reference models. It can provide a more detailed view of the quality of a pLM at the
residue level.

C.3 TAPE and ProteinGym

Tasks Assessing Protein Embeddings (TAPE) TAPE (Rao et al., 2019) is a set of five biologically
relevant semi-supervised learning tasks spread across different domains of protein biology. We adopted four
tasks: 1) Secondary Structure prediction, and 2) Remote Homology Detection, 3) Stability prediction, 4)
Fluorescence prediction. Secondary structure prediction is a sequence-to-sequence task where each input
amino acid is mapped to one of the three labels from {Helix,Strand,Other}. It probes the model’s ability
to learn local structure. Remote Homology Detection is a sequence classification task where each input
protein is mapped to a label {1, · · · , 1195}, representing different possible protein folds. This task measures
models’ capability to detect structural similarity across distantly related proteins. Stability and Fluorescence
predictions are sequence-level regression tasks that probe the model’s ability to predict the mutant sequences’
properties, which are the thermostability and the flurescent intensity, respectively.

ProteinGym ProteinGym (Notin et al., 2024) is collection of benchmarks aiming at comparing the ability
of models to predict the effects of protein mutations. We use the DMS Substitution subset from ProteinGym,
which covers 2.5 million mutants from across 217 assays.

C.4 Datasets for Protein Function Prediction and Link Prediction on PPI Graph

ogbn-proteins The ogbn-proteins dataset is structured as an undirected, weighted graph with nodes
and edges categorized by species. Nodes in this graph represent proteins, while the edges denote various
biologically significant associations such as physical interactions, co-expression, or homology (Szklarczyk et al.,
2019). Each edge is associated with an 8-dimensional feature vector, where each dimension quantifies the
confidence level of a particular association type on a scale from 0 to 1—with higher values indicating greater
confidence. The dataset includes proteins from eight different species. The objective is to predict protein
functions using a multi-label binary classification approach, where there are 112 different functions to predict.
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The performance metric used is the average ROC-AUC score across these 112 prediction tasks. The dataset
is divided into training, validation, and test sets based on the species of the proteins. This split strategy
is designed to assess how well models can generalize across different species. Notably, the ogbn-proteins
dataset lacks specific input features for nodes but includes features for over 30 million edges. In baseline
experiments, a simple approach is taken where the node features are derived by averaging the features of
incoming edges to each node.

ogbl-ppa The ogbl-ppa dataset is an undirected, unweighted graph where nodes represent proteins from
58 different species, and edges illustrate biologically significant relationships between proteins, including
physical interactions, co-expression, homology, or genomic neighborhood (Szklarczyk et al., 2019). Each node
is described by a 58-dimensional one-hot vector indicating the species of the protein. The objective is to
predict potential new association edges based on the provided training edges. The model’s performance is
evaluated on its ability to prioritize positive test edges over negative ones. Each positive edge in the validation
or test set is ranked against 3,000,000 randomly selected negative edges. The effectiveness of the model
is measured using the Hits@K metric, where K = 100 is determined to be an effective threshold in initial
experiments. This metric, which requires the model to consistently rank positive edges above a vast majority
of negative edges, poses a greater challenge than the ROC-AUC metric. The dataset divides edges into
training, validation, and test sets based on the method used to determine the associations. Training edges
consist of associations identified either through high-throughput methods (such as automated, large-scale
experiments) or computationally (e.g., through text mining). Conversely, validation and test edges are derived
from protein associations verified through low-throughput, labor-intensive experiments in the lab (Macarron
et al., 2011; Bajorath, 2002; Younger et al., 2017). The primary challenge is to predict specific types of
protein associations, like physical protein-protein interactions, based on other more readily measurable types
of associations that are correlated with the target interactions.

Name #Nodes #Edges Split Task Metric
ogbn-proteins 132,534 39,561,252 Species Binary classification ROC-AUC

ogbl-ppa 576,289 30,326,273 Throughput Link prediction Hits@100

Table 6: Summary of OGB datasets.

Appendix D Experimental Setup

D.1 Hardware and Software

All experiments are run on NVIDIA A100 Tensor Core GPU except ogbn-proteins and ogbl-ppa, which
are run on NVIDIA A10G Tensor Core GPUs. For core software packages in main experiments, we use
Python 3.10, PyTorch 2.1.0, Transformers 4.41.2, DeepSpeed 0.14.4, Accelerate 0.27.2, mamba-ssm 2.2.0,
datasets 2.20.0, Triton 2.0.0, and CUDA Toolkit 12.1. For some downstream tasks, the dependencies and
package version will be adjusted accordingly. For ogbn-proteins and ogbl-ppa, we add several new packages:
PyTorch Geometric 2.5.3, torch-cluster 1.6.3, torch-scatter 2.1.2, torch-sparse 0.6.18, torch-spline-conv 1.2.2,
and OGB 1.3.6.

D.2 Masked Language Modeling

The input to the model consists of raw protein sequences, which are tokenized into individual amino acids. A
subset of these amino acids is randomly selected and masked during training. Typically, 15% of the amino
acids in a sequence are selected for masking. Of these selected tokens, 80% are replaced with a special [MASK]
token, 10% are replaced with a random amino acid, and the remaining 10% are left unchanged. The model is
trained to predict the identity of these masked amino acids using a cross-entropy loss.

The training process is conducted using the AdamW optimizer with a learning rate that is linearly warmed
up for a small percentage of the total training steps, followed by a cosine decay schedule. The batch size and
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learning rate are chosen based on the model size and computational resources, with a total number of tokens
approximately equal to 0.5M8 and learning rates are set as 2× 10−4. Gradient clipping is often applied to
stabilize the training. Additionally, a 0.1 weight decay is applied.

For second-phase training with graph context, we sample random walks with the context length l = 5 on
the given PPI graph (ogbn-proteins or ogbl-ppa) and retrieve the corresponding protein sequence for each
node from String database (Szklarczyk et al., 2019). We then add 4 special tokens to indicate the begin and
end of the node, the edge and non-edge in the random walk path. We continue MLM training the 740M
LC-PLM on 20B more tokens on random walks to get LC-PLM-G, during which we freeze the parameters in
SSMs and linear projection layers except the input & output embeddings and normalization layers. We
summarize the key hyperparameters in table 7.

D.3 Structure Prediction with LMFold

To train LMFold, we use the FAPE and distogram losses introduced in AlphaFold2 (Jumper et al., 2021),
as well as heads for predicting LDDT and the pTM score. We weigh these 4 loss terms using the default
constants proposed in OpenFold (Ahdritz et al., 2024). We used Adam with β1 = 0.9, β2 = 0.99, and ϵ = 1−6

as optimizers, and warmed up the learning rate linearly over the first 1,000 iterations from 0 to 1−3. We use
a per-GPU batch size of 1 training on 32 NVIDIA A100 GPUs, leading to a global batch size of 32.

Hyperparameters 100M 340M 740M 1.3B
Peak learning rate 2× 10−4

Global batch size 0.5M tokens
Block size 1024
Warm-up steps 2000
Adam betas β1 = 0.9, β2 = 0.95
Maximum gradient norm 0.5
Precision BF16
Optimizer AdamW
Learning rate scheduler cosine
Weight decay 0.1
Length of random walks 5
Number of walks 3
Return parameter p 4× 10−1

In-out parameter q 4× 10−1

Hidden size 768 1024 1536 2048
Number of BiMamba-S blocks 24 48 48 48

Table 7: Summary of MLM training hyperparameters for LC-PLM and LC-PLM-G.

D.4 Evaluation on TAPE tasks

To evaluate pretrained pLMs on TAPE Remote Homology prediction and Secondary Structure prediction, we
followed the evaluation setting from Rao et al. (2019). For the Remote Homology task, we add a two-layered
MLP (with 512 as the intermediate dimension) on top of the protein-level embeddings from a pLM. The
protein-level embeddings are calculated as the average of token-level embeddings. For the Secondary Structure
prediction task, we used a single-layered MLP taking the token-level embeddings from the LM directly to
make a token-level 3-class classification.

Then, we fine-tune the parameters of the LM and the MLP prediction head end-to-end on the training set
and perform early stopping on the validation set. We report the top-1 accuracy on the fold-level hold-out

8For 100M, 340M, 740M, and 1.3B of LC-PLM, we train on 16, 32, 64, 128 A100s, respectively. The local batch size and the
gradient accumulation steps are dynamically adjusted to ensure the model fits in.
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Hyperparameters 150M 300M 650M 1.0B
Peak learning rate 2× 10−4

Global batch size 0.5M tokens
Warm-up steps 2000
Adam betas β1 = 0.9, β2 = 0.98
Maximum gradient norm 1.0
Precision BF16
Optimizer AdamW
Learning rate scheduler cosine
Weight decay 0.01
Length of random walks 5
Hidden size 640 960 1280 1280
Intermediate size 2560 3840 5120 7680
Number of hidden layers 30 30 33 33

Table 8: Summary of MLM training hyperparameters for ESM-2.

test set for Remote Homology task, accuracy on the CB513 test set for the Secondary Structure prediction
task, and spearman’s rho on Stability prediction task, respectively. The detailed hyperparameters we used
are listed in Table 9.

Hyperparameters Remote Homology Secondary Structure Stability
Batch size 16 512
Number of warm-up steps 5000
Early stopping patience 25 epochs
Max number of epochs 100
Learning rate decay schedule cosine
Optimizer AdamW
Adam betas β1 = 0.9, β2 = 0.98
Peak learning rate 10−5 5× 10−5 10−4

Prediction head 2-layered MLP 1-layered MLP 2-layered MLP

Table 9: Hyperparameters used for fine-tuning protein language models for TAPE tasks.

D.5 Evaluating on ProteinGym

To evaluate pretrained pLMs on the ProteinGym DMS Substitution benchmarks, we adopt the masked-
marginals heuristic (Meier et al., 2021) to predict protein fitness in a zero-shot setting. The masked-marginals
method scores mutations (mt) using the log odds ratio at the mutated position over wild-type (wt), assuming
an additive model when multiple mutations T exist in the same protein sequence:∑

t∈T

log p(xt = xmt
t |x\T )− log p(xt = xwt

t |x\T )

We then compute Spearman’s correlation coefficient and normalized discounted cumulative gain (NDCG)
between the log odds ratio and the experimentally measured protein fitness scores for each DMS assay. The
Spearman’s correlation coefficients are aggregated across 217 DMS assays using the provided code.

D.6 Protein Function Prediction and PPI Link Prediction

For protein function prediction on ogbn-proteins, we use GIPA (Li et al., 2023) as the graph neural network
(GNN) backbone with our learned protein sequence embeddings as the node attributes initialization. We
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report the hyperparameters (HPs) we use to train the model in Table 10. Furthermore, we conduct more
ablation studies on the GNN backbone to test if the contribution of learned protein embeddings is independent
of the architecture design choice. We choose two popular GNNs, i.e. GCN (Kipf & Welling, 2017) and
GraphSAGE (Hamilton et al., 2017) to evaluate the embeddings. The HPs are shown in Table 11.

For PPI link prediction on ogbl-ppa, we use a combined backbone of NGNN (Song et al., 2021) and SEAL
(Zhang & Chen, 2018) with labeling tricks (Zhang et al., 2021). We summarize the HPs used in this backbone
in Table 12. Note that there is a ratio k used in SortPooling (Zhang et al., 2018). We also perform similar
ablation studies on this task using GCN and GraphSAGE with the same set of HPs reported in Table 11.

Hyperparameters Value
# of epochs 1500
# of heads 20
Learning rate 0.01
# of layers 6
# of hidden units 50
Dropout rate 0.4

Table 10: HPs of GIPA backbone.

Hyperparameters Value
# of epochs 1000
# of heads 20
Learning rate 0.01
# of layers 3
# of hidden units 256
Dropout rate 0.3

Table 11: HPs of GCN/SAGE.

Hyperparameters Value
# of epochs 50
k of SortPooling 0.6
Learning rate 0.00015
# of layers 3
# of hidden units 48
Dropout rate 0.0

Table 12: HPs of NGNN/SEAL.

Appendix E More results and details on TAPE

For the Jacobian contact map prediction task we reported in the main paper, we adopted the methods from
Zhang et al. (2024b) to use categorical Jacobian matrices computed from protein language models as the
zero-shot prediction for protein contact maps and report the precision@2/L (L is the length of a protein
sequence) on the validation set of ProteinNet dataset (AlQuraishi, 2019).

Model (#Tokens trained) PPI graph Fluorescence
ESM-2-650M (100B) None 0.695± 0.002
ESM-2-G-650M (100B) ogbn-proteins 0.694± 0.002
ESM-2-G-650M (100B) ogbl-ppa 0.693± 0.001
LC-PLM-740M (100B) None 0.692± 0.002
LC-PLM-G-740M (100B) ogbn-proteins 0.709± 0.003
LC-PLM-G-740M (100B) ogbl-ppa 0.693± 0.002
ProtMamba-public None 0.688± 0.005
CARP-640M-public None 0.680± 0.002
ESM-2-650M-public (1T) None 0.688± 0.001
LC-PLM-740M (1T) None 0.691± 0.003

Table 13: Evaluation on TAPE tasks in supervised fine-tuning setting. We report the Spearman’s correlation
coefficients for the test sets for Fluorescence prediction tasks. We perform 3 runs using different seeds to
report the mean and standard deviation.

Appendix F More results on ProteinGym

We report more results and comparisons on ProteinGym with some other baselines, i.e. PoET (Truong Jr
& Bepler, 2023), TranceptEVE-L (Notin et al., 2022), and SaProt (Su et al., 2023), which use additional
information like structural tokens.

The results demonstrate that LC-PLM performs better with less training tokens, as shown in Table 4; however,
with sufficient training tokens, ESM2 can achieve comparable or even better performance on this task, as
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shown in Table 14. The sequence-only methods like ESM2 and LC-PLM have lower numbers than the other
baselines, showing that structure information is useful for ProteinGym DMS substitutions.

Model (#Tokens trained) PPI graph Spearman NDCG
ESM-2-650M-public (1T) None 0.414± 0.011 0.747± 0.005
ESM-2-3B-public (1T) None 0.406± 0.011 0.755± 0.004
LC-PLM-740M (1T) None 0.388± 0.009 0.751± 0.004
PoET (Truong Jr & Bepler, 2023) None 0.479 N/A
TranceptEVE-L (Notin et al., 2022) None 0.454 0.786
SaProt (Su et al., 2023) None 0.457 0.768

Table 14: Evaluation on ProteinGym DMS substitutions benchmark. We report Spearman’s correlation coeffi-
cient and normalized discounted cumulative gain (NDCG) between the log odds ratio and the experimentally
measured protein fitness scores for each DMS assay.

Appendix G Robustness of downsampling for structure prediction training set

We perform three 1.5% downsampling using three random seeds and retrain both our LC-PLM and ESM-2.
We find that the downsampling is very robust to the performance with a small standard deviation that is
close to (even smaller than) the standard deviation of using the same train set but training with different
random seeds as we reported in Table 15.

Model (#Tokens trained) CASP15-multimers CASP14 Benchmark2
ESM-2-650M (100B) 0.4132± 0.0065 0.3437± 0.0039 0.4773± 0.0092
LC-PLM-740M (100B) 0.5004± 0.0139 0.4244± 0.0053 0.6290± 0.0121
ESM-2-650M-public (1T) 0.5128± 0.0003 0.4421± 0.0023 0.6844± 0.0059

Table 15: Structure prediction performance (TM score) on CASP15-multimers, CASP14, and Benchmark2.
We perform 3 downsamplings using different seeds and report the mean and standard deviation.

Appendix H More Details for Protein Function Prediction and PPI Link Prediction

We evaluate LC-PLM-G’s performance on two graph-related downstream tasks, protein structure prediction
and PPI link prediction on OGB (Hu et al., 2020), i.e. ogbn-proteins and ogbl-ppa. Both datasets provide
a PPI graph but with different scales (i.e. the numbers of nodes and edges) and predict different tasks
(i.e. node property prediction and link prediction). Given the benefit of our graph-contextual training, we
have a more principled way to obtain the protein representations from LC-PLM-G or ESM-2-G by averaging
the embeddings of [BON] and [EON] (Note that to impose the inductive bias of the learned distribution of
positive random walk paths to the embedding, we concat an [EDGE] token right after [EON] such that the
output embeddings will be pulled towards the positive, i.e. existing graph context). In contrast, we can
only obtain the protein embeddings from ESM-2 or LC-PLM by averaging the AA token embeddings, which
are not very informative. We show the evaluation results on ogbn-proteins in Table 16 against a set of
popular baselines. Our model achieves the best demonstration of the benefits of having graph context-aware
protein embeddings learned in LC-PLM-G. We also provide ablation studies in Tables 17 and 18 where we
choose two GNN backbones GCN and GraphSAGE to evaluate if the learned embeddings from LC-PLM and
LC-PLM-G are beneficial to this task. The evidence shows that the learned embeddings consistently improve
the performance and the graph context provides another boost.

As discussed in Section 6, we can also perform more graph-specific self-supervised learning (Wang et al.,
2021b;c;a; Zhao et al., 2022) within the given graph context before supervised fine-tuning. By using this,
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we may obtain better initialization for node embeddings which would potentially encode the graph context
better and improve the final prediction performance.

Model Accuracy
Node2vec (Grover & Leskovec, 2016) 0.6881 ± 0.0065
GCN (Kipf & Welling, 2017) 0.7251 ± 0.0035
GraphSAGE (Hamilton et al., 2017) 0.7443 ± 0.0064
DeepGCN (Li et al., 2019) 0.8496 ± 0.0028
GAT (Veličković et al., 2017) 0.8501 ± 0.0046
DeeperGCN (Li et al., 2020) 0.8580 ± 0.0017
UniMP (Shi et al., 2020) 0.8642 ± 0.0008
GIPA (Li et al., 2023) 0.8700 ± 0.0010
ESM-2-G 0.8920 ± 0.0008
LC-PLM-G 0.8925 ± 0.0010

Table 16: Performance on ogbn-proteins.

Model Accuracy
GCN 0.7251 ± 0.0035
GCN+LC-PLM 0.7643 ± 0.0042
GCN+LC-PLM-G 0.7668 ± 0.0056
GraphSAGE 0.7443 ± 0.0064
GraphSAGE + LC-PLM 0.7662 ± 0.0021
GraphSAGE + LC-PLM-G 0.7679 ± 0.0029

Table 17: Ablations on ogbn-proteins.

Model Hits@100
GCN 0.1867 ± 0.0132
GCN+LC-PLM 0.1946 ± 0.0142
GCN+LC-PLM-G 0.1988 ± 0.0156
GraphSAGE 0.1655 ± 0.0240
GraphSAGE + LC-PLM 0.1847 ± 0.0193
GraphSAGE + LC-PLM-G 0.1876 ± 0.0164

Table 18: Ablations on ogbl-ppa.

Appendix I On the Absence of Massive Activations

Recent studies (Sun et al., 2024) have highlighted the phenomenon of massive activations in Transformer-based
models, particularly large language models (LLMs) such as LLaMA2 and GPT-2. These massive activations
refer to a small number of hidden units exhibiting values that are several orders of magnitude larger than
the median activation—often input-agnostic and acting as implicit bias terms throughout the model. This
behavior, while seemingly innocuous, introduces challenges in quantization and numerical stability, and can
negatively affect interpretability and robustness.

To examine whether this issue extends to protein language models, we analyzed internal activations in
ESM2 (650M) and LC-PLM (740M). Unlike ESM2, which clearly exhibits massive activations in intermediate
layers (with magnitudes exceeding 400 in some layers), LC-PLM do not exhibit any such spikes in activation
magnitude across layers (Figure 9). Across all layers, the largest BiMamba activations remain within a
modest range, closely tracking the median.

This absence of massive activations in LC-PLM has some implications: (1) Improved numerical stability: Lower
variance in activation magnitudes reduces the risk of gradient explosion or instability during fine-tuning or
continued pretraining; (2) Quantization-friendly: Models without large outlier activations are significantly
easier to quantize using standard techniques, potentially allowing for more aggressive compression without
accuracy loss. While the exact architectural mechanisms underlying the absence of massive activations in
LC-PLM remain to be fully understood, we hypothesize that the recurrent state-space structure of Mamba
layers inherently mitigates the formation of such activations.
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Figure 9: Activation magnitude of intermediate layers in ESM2 and LC-PLM.

Figure 10: Empirical inference time of ESM2 and LC-PLM.

Appendix J Empirical Inference Time

We conducted an empirical inference time comparison between LC-PLM (740M) and ESM-2 (650M) on an
NVIDIA L40S GPU. We benchmarked the inference time across a range of input sequence lengths (from 23

to 214) using 3 warmup runs and 10 execution runs, repeated 3 times. We report the average runtime from
these repetitions. Figure 10 shows the inference time comparison.

Our results indicate that LC-PLM’s inference speed is slightly slower than ESM-2 on short sequences (< 1024
tokens), but significantly outperforms ESM-2 on longer sequences (> 2048 tokens). Importantly, ESM-2
encounters GPU out-of-memory (OOM) issues beyond 8192 tokens, while LC-PLM continues to run reliably
thanks to its more favorable memory scaling. These findings highlight LC-PLM’s suitability for modeling
long protein sequences and suggest practical advantages in long-context scenarios.

Appendix K Pseudocode

We provide a detailed breakdown of our algorithm in this section and then we summarize this computation
procedure into a pseudocode algorithmic block as shown in Algorithm 1. The algorithm procedure can be
stated as follows:
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Input Tl−1 : (B,S,D) tensor, where B is batch size, S is sequence length, and D is hidden state dimension.

Output Tl : (B,S,D) tensor.

Process 1. Normalization T′
l−1 : (B,S,D)← Norm(Tl−1)

2. Reversal T̂′
l−1 : (B,S,D)← Reverse

(
T′

l−1
)

3. Parallel Processing For both T′
l−1 and T̂′

l−1, denoted as T′
∗,l−1:

a. Linear Transformations

X∗,l−1 : (B,S,E)← LinearX∗,l−1(T′
∗,l−1)

Z∗,l−1 : (B,S,E)← LinearZ∗,l−1(T′
∗,l−1)

b. Convolution and Activation X′
∗,l−1 : (B,S,E)← SiLU(Conv1d(X∗,l−1))

c. Parameter Initialization A∗,l−1 : (E,N)← ParameterA
∗,l−1

d. Additional Linear Transformations

B∗,l−1 : (B,S,N)← LinearB
∗,l−1(X′

∗,l−1)
C∗,l−1 : (B,S,N)← LinearC

∗,l−1(X′
∗,l−1)

e. Delta Computation

∆∗,l−1 : (B,S,E)← log(1 + exp(Linear∆
∗,l−1(X′

∗,l−1) + Parameter∆
∗,l−1))

f. Parameter Scaling Ā∗,l−1 : (B,S,E,N)← ∆∗,l−1 ⊗ ParameterA
∗,l−1

g. B Update B̄∗,l−1 : (B,S,E,N)← ∆∗,l−1 ⊗B∗,l−1
h. State Space Model Application

Y∗,l−1 : (B,S,E)← SSM(Ā∗,l−1, B̄∗,l−1,C∗,l−1)(X′
∗,l−1)

i. Final Computation Y′
∗,l−1 : (B,S,E)← Y∗,l−1 ⊙ SiLU(Z∗,l−1)

4. Combination and Output Tl : (B,S,D)← LinearT (Y′
l−1 + Ŷ′

l−1) + Tl−1

Key Operations Norm Normalization operation
Linear Linear transformation
Conv1d 1D Convolution
SiLU Sigmoid Linear Unit activation function
SSM State Space Model
⊗ Element-wise multiplication
⊙ Element-wise multiplication

Appendix L Sampling Bias in Random Walk

For random walk sampling, there are two parameters p and q we can use to control the direction of exploration
(a balance between the depth-first search (DFS) and breath-first search (BFS)).

Return Parameter p Parameter p controls the likelihood of immediately revisiting a node. A high value
(p > max(q, 1)) reduces the chance of sampling an already-visited node, encouraging moderate exploration
and avoiding 2-hop redundancy.

In-out Parameter q Parameter q allows the search to differentiate between "inward" and "outward" nodes:

• If q > 1, the walk is biased towards nodes close to node t, approximating BFS behavior.

• If q < 1, the walk tends to visit nodes further from node t, encouraging outward exploration similar
to DFS.
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Algorithm 1 BiMamba-S Block
Input: Tl−1 : (B,S,D)
Output: Tl : (B,S,D)

1: T′
l−1 : (B,S,D)← Norm(Tl−1)

2: T̂′
l−1 : (B,S,D)← Reverse

(
T′

l−1
)

3: for T′
∗,l−1 ∈ {T′

l−1, T̂′
l−1} do

4: X∗,l−1 : (B,S,E)← LinearX∗,l−1(T′
∗,l−1)

5: Z∗,l−1 : (B,S,E)← LinearZ∗,l−1(T′
∗,l−1)

6: X′
∗,l−1 : (B,S,E)← SiLU(Conv1d(X∗,l−1))

7: A∗,l−1 : (E,N)← ParameterA
∗,l−1

8: B∗,l−1 : (B,S,N)← LinearB
∗,l−1(X′

∗,l−1)
9: C∗,l−1 : (B,S,N)← LinearC

∗,l−1(X′
∗,l−1)

10: ∆∗,l−1 : (B,S,E)← log(1 + exp(Linear∆
∗,l−1(X′

∗,l−1) + Parameter∆
∗,l−1))

11: Ā∗,l−1 : (B,S,E,N)← ∆∗,l−1 ⊗ ParameterA
∗,l−1

12: B̄∗,l−1 : (B,S,E,N)← ∆∗,l−1 ⊗B∗,l−1
13: Y∗,l−1 : (B,S,E)← SSM(Ā∗,l−1, B̄∗,l−1,C∗,l−1)(X′

∗,l−1)
14: Y′

∗,l−1 : (B,S,E)← Y∗,l−1 ⊙ SiLU(Z∗,l−1)
15: end for
16: Tl : (B,S,D)← LinearT (Y′

l−1 + Ŷ′
l−1) + Tl−1

17: return Tl

Benefits over Pure BFS/DFS Random walks offer several advantages over traditional BFS/DFS
approaches:

1. Computational Efficiency: They are efficient in terms of both space and time requirements.

2. Scalability: The space complexity to explore the immediate neighbors of every node is O(|E|) for a
graph with edge set E.

3. Flexibility: For 2nd order random walks, the space complexity becomes O(a2|V |), where a is the
average degree of the graph and V is the vertex set.

4. Effective Sampling: Random walks provide a convenient mechanism to increase the effective
sampling rate by reusing samples across different source nodes.

5. Parallel Sampling: Due to the Markovian nature of the random walk, k samples for l − k nodes
can be generated at once, resulting in an effective complexity of O( l

k(l−k) ) per sample.

This approach combines the benefits of BFS and DFS, allowing for a more nuanced exploration of network
structures that exhibit both structural equivalence and homophily.

Appendix M Training and Evaluation Curves

M.1 The First-stage Pretraining

We show the training and evaluation loss curves in Figure 11 for our first-stage pretraining of LC-PLM on
100B UniRef50. This pretrained model is used in all downstream task evaluations reported in the paper.

M.2 The Scaling Law Experiments

We show the training and evaluation loss curves in Figure 12, Figure 13, Figure 14, and Figure 15 for our
scaling law training of 100M, 340M, 740M, and 1.3B LC-PLM on 20B UniRef90. The evaluation set is the
held-out 250K UniRef90.
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(a) Training curve. (b) Evaluation curve.

Figure 11: The first-stage pretraining of 740M LC-PLM on 100B UniRef50. The evaluation set is 250K
UniRef90.

(a) Training curve. (b) Evaluation curve.

Figure 12: The scaling law training of 100M LC-PLM on 20B UniRef90. The evaluation set is 250K UniRef90.

(a) Training curve. (b) Evaluation curve.

Figure 13: The scaling law training of 340M LC-PLM on 20B UniRef90. The evaluation set is 250K UniRef90.

M.3 The Length Extrapolation Experiments

We show the training and evaluation loss curves in Figure 16, Figure 17, and Figure 18 for our scaling law
training of 100M, 340M, and 740M LC-PLM on the 128-256 bin of UniRef90. The evaluation set is the held-out
250K UniRef90.
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(a) Training curve. (b) Evaluation curve.

Figure 14: The scaling law training of 740M LC-PLM on 20B UniRef90. The evaluation set is 250K UniRef90.

(a) Training curve. (b) Evaluation curve.

Figure 15: The scaling law training of 1.3B LC-PLM on 20B UniRef90. The evaluation set is 250K UniRef90.

(a) Training curve. (b) Evaluation curve.

Figure 16: The length extrapolation training of 100M LC-PLM on the 128-256 bin of UniRef90. The evaluation
set is 250K UniRef90.

M.4 The Second-stage Graph Contextual Training

We show the training loss curves in Figure 19a, and Figure 19b for our second-stage graph contextual training
of 740M LC-PLM-G on protein sequences included in ogbn-proteins and ogbl-ppa. The evaluation set is
the held-out 250K UniRef90.
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(a) Training curve. (b) Evaluation curve.

Figure 17: The length extrapolation training of 340M LC-PLM on the 128-256 bin of UniRef90. The evaluation
set is 250K UniRef90.

(a) Training curve. (b) Evaluation curve.

Figure 18: The length extrapolation training of 740M LC-PLM on the 128-256 bin of UniRef90. The evaluation
set is 250K UniRef90.

(a) Training curve on ogbn-proteins. (b) Training curve on ogbl-ppa.

Figure 19: The second-stage training of 740M LC-PLM-G on ogbn-proteins and ogbl-ppa. The evaluation
set is 250K UniRef90.
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