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Abstract

We consider the problem of estimating a structured multivariate density, subject
to Markov conditions implied by an undirected graph. In the worst case, without
Markovian assumptions, this problem suffers from the curse of dimensionality.
Our main result shows how the curse of dimensionality can be avoided or greatly
alleviated under the Markov property, and applies to arbitrary graphs. While
existing results along these lines focus on sparsity or manifold assumptions, we
introduce a new graphical quantity called “graph resilience” and show how it
controls the sample complexity. Surprisingly, although one might expect the
sample complexity of this problem to scale with local graph parameters such as the
degree, this turns out not to be the case. Through explicit examples, we compute
uniform deviation bounds and illustrate how the curse of dimensionality in density
estimation can thus be circumvented. Notable examples where the rate improves
substantially include sequential, hierarchical, and spatial data.

1 Introduction

Density estimation is a classical problem in statistical machine learning, and provides the backbone
of modern generative models such as diffusion models, which are now state-of-the-art density
estimators for a variety of applications, as well as normalizing flows, energy-based models, and
implicit generative models. At the same time, density estimation is a notoriously difficult problem
in high-dimensions, known to suffer from the so-called curse of dimensionality. When the density
depends on only a few variables or, more generally, is supported on a low-dimensional manifold, it is
known that the curse of dimensionality can be circumvented by substituting the ambient dimension d
with the effective dimension s (e.g. Lafferty and Wasserman, 2008; Yang and Tokdar, 2015). But
what happens when the distribution is spread over the entire space in a structured manner—is it still
possible to circumvent the curse of dimensionality?

Three representative examples are given in Figure 1, corresponding to sequential, hierarchical, and
spatial (or convolutional) data. In these examples, although both manifold and sparsity assumptions
are violated, there are structured dependencies that one might hope to leverage when estimating the
underlying density. These kinds of structures are pervasive in machine learning applications. For one
example, consider computer vision and imaging. Images have long been modeled as a grid graph
where adjacent pixels correspond to adjacent vertices (see Keener (2010), for example). Such an
assumption is very natural: pixels tend to be strongly dependent on nearby pixels and independent of
far away pixels. See Figure 2 for an example of this.

These examples are particularly appealing in applications, however, we emphasize that our problem
setting is considerably more general, and applies to general dependence structures given by any
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Path (sequential data)
Graph resilience: r = O(log d)

Samples: n ≳ (1/ε)O(log d)

Tree (hierarchical data)
Graph resilience: r = O(1)

Samples: n ≳ (1/ε)O(1)

Grid (spatial data)
Graph resilience: r = o(d)

Samples: n ≳ (1/ε)o(d)

Figure 1: Examples of common structures that yield improvements in density estimation. As
indicated by the path example on the left, which is also a tree, the worst-case resilience of any tree is
r = O(log d), but for bounded-depth trees, r = O(1).

Markov random field. Since real data is expected to (approximately) exhibit these types of structures,
a reasonable question to ask is whether or not the curse of dimensionality persists in such structured
settings.

Structured density estimation To formalize the notion of structured dependencies in a high-
dimensional, multivariate distribution, we adopt the framework of undirected graphical models, also
known as Markov random fields (MRFs). In this setting, we are given samples from an unknown
distribution P , with density p, over the random vector X = (X1, . . . , Xd), and it is assumed that P
is Markov to some undirected graph G (see Section 3.1 for definitions). We treat both cases where G
is a priori known, and where it is unknown but is in some known subset of all graphs. The graph G
encodes the underlying dependence structure between the variables, which we hope simplifies the
estimation problem. For example, when P is a Gaussian, this gives rise to the well-known Gaussian
graphical model (Speed and Kiiveri, 1986), and various extensions of this idea to nonparametric
settings are known, including trees (Liu et al., 2011; Györfi et al., 2022) and nonparanormal models
(Liu et al., 2009). While this line of work also discusses the problem of structure learning, our
focus is on the problem of nonparametric density estimation, which is comparatively understudied in
graphical models. This may come as a surprise given the outsized literature on the general density
estimation problem; see Section 2 for an overview of related work. In contrast to most existing
work on density estimation, in lieu of imposing parametric or functional restrictions on P , the only
assumption we make in addition to the Markov assumption is Lipschitz continuity.

Overview Our main result establishes the sample complexity of estimating such a density—for
arbitrary graphs G—in total variation (TV) distance: It is approximately (1/ε)r+2, where r ≪ d is a
novel graphical parameter we call graph resilience that depends only on G. Roughly, r is a measure
of how connected the graph G is; the easier it is to disconnect G, the smaller r will be. The examples
in Figure 1 illustrate a range of values from constant r = O(1) to sublinear r = O(

√
d) = o(d). In

the former case, this leads to an exponential improvement in the sample complexity over the usual
nonparametric sample complexity of (1/ε)d.

While it is not surprising that graphical structure (i.e. sparsity in the form of conditional independence)
can make estimation easier, what is surprising is the quantity involved: It is not, as one might guess,
one of the “usual” suspects such as sparsity, degree, or width. To capture the effective dimension
of the problem and its resulting sample complexity, we introduce the concept of graph resilience.
In particular, the usual suspects are insufficient to break the curse of dimensionality, whereas graph
resilience does. Moreover, it is easy to construct examples where these are not only insufficient, but
wholly misleading: Graph resilience can be controlled in graphs with unbounded degree, sparsity,
and/or diameter.

Our work also marks a substantial departure from the existing literature that focuses primarily on
functional restrictions (e.g. compositional structure), sparsity (e.g. density regression), or low-
dimensional embeddings (e.g. manifold hypothesis). Instead, we impose no explicit restrictions on
the functional form (although certain restrictions are implicit through the Markov assumption). In
practice, empirical evidence points to a combination of these properties prevailing in real-world data,
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Figure 2: Heatmaps of the magnitude of the correlation between red pixel and every other pixel,
using the CIFAR-10 training set. The left image shows the correlation without conditioning, the right
image shows correlation conditioned on the green pixels. We see that the modeling the image as a
Markov random grid is valid.

and thus our approach hopefully serves to provide another practical assumption under which density
estimation is feasible, and in particular, the curse of dimensionality can be avoided.

Contributions More precisely, we make the following contributions.

1. (Section 3.2) We introduce the graphical property of resilience (Definition 3.2), which
approximately quantifies the connectivity of an undirected graph. Resilience is defined
through the process of disintegration (Definition 3.1), which is described in detail.

2. (Section 3) We prove that the sample complexity of estimating a density p that is Markov to
any undirected graph G scales with the resilience r = r(G), as opposed to the dimension
d (Theorem 3.1). We also provide examples to show that other metrics such as degree,
diameter, and sparsity cannot properly capture the sample complexity (Section 4.3). We also
show that efficient estimation is still possible even if G is unknown (Theorem 3.2).

3. (Section 4) We demonstrate numerous concrete examples where the resilience (and hence
the sample complexity) can either be exactly calculated or bounded. These examples
include familiar graphs such as trees (including paths for sequential data), cliques, and grids
(also known as lattice graphs), and represent a broad continuum of possible complexities
(Section 4.2).

All told, the potential savings implied by our results can be substantial, and are not isolated or
pathological in any way: If there is a single independence relation satisfied by P , the effective
dimension will be strictly less than the ambient dimension d, and in practical applications such as
spatial or imaging data, there is an exponential savings in the sample complexity (see Figure 1).
As we show, the graph resilience reveals a continuum of complexities ranging from dimension-
independent (i.e. r = O(1)), in which case the curse of dimensionality is circumvented completely,
to dimension-dependent with nontrivial savings (e.g. r = o(d)).

2 Related work

We begin by recalling classical rates and results on density estimation. The standard nonparametric
rate for estimating an L-Lipschitz density p in d dimensions in TV distance is n−1/(d+2); see Devroye
and Gyorfi (1985); Tsybakov (2009); Giné and Nickl (2015) for more details. This rate ignores
dimension-dependent constants that affect finite-sample rates, and a more refined bound on the sample
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complexity (ignoring log-factors) is given in McDonald (2017):

n ≳
dd

εd+2
. (1)

See also Ghorbani et al. (2020); Jiao et al. (2023). For comparison, our main result is that only

n ≳
rdr/2+1

εr+2
(2)

samples are needed (again up to log-factors) when p is Markov to an undirected graph G with
resilience r = r(G), and this rate cannot be improved among graphs whose resilience is at most
r. The improvement over (1) is clear: Not only the exponent, which dominates the rate, but also
the constant is improved by replacing d with r, which can be much smaller than d (see examples in
Section 4.2).

Ignoring the dimension-dependent constant factor (as most papers do), the basic idea behind most
results on circumventing the curse of dimensionality is to replace the d-dependence in the exponent
of (1) with some s < d, where s is the effective dimension of the problem. Examples include sparsity,
low-dimensional embeddings (e.g. manifold assumptions), and hierarchical and/or compositional
structure. Viewed from this perspective, our main contribution is to propose a new measure of
effective dimension in structured data, where s = r is the graph resilience.

Recently, there has been a renewed interest in this problem along two broad axes: 1) Generative
models as density estimators, and 2) Breaking the curse of dimensionality. In the remainder of this
section, we review this related work.

2.1 Density estimation

As noted in the introduction, density estimation is a classical problem with a literature dating back
more than 50 years. Notably, Stone (1980, 1982) established minimax rates for nonparametric esti-
mation problems including density estimation and regression. These papers derived the now-classical
nonparametric rate n−β/(2β+d) for β-smooth densities, which implies the curse of dimensionality, i.e.
unless p is very smooth, then the sample complexity of estimating p is exponential in the dimension.
Yet, at the same time, the stark practical success of generative models suggest that high-dimensional
density estimation may not be quite as intractable as this slow rate suggests. Motivated by these
empirical observations, a growing line of work has established minimax optimality for a range of
generative models, including GANs (Liang, 2017; Singh et al., 2018; Singh and Póczos, 2018; Uppal
et al., 2019, 2020), diffusion models (Oko et al., 2023; Zhang et al., 2024; Cole and Lu, 2024; Tang
and Yang, 2024), and variational autoencoders (Tang and Yang, 2021; Kwon and Chae, 2024).

Other theoretical developments have focused on efficient algorithms (Acharya et al., 2021, 2017;
Chan et al., 2014) in the univariate case.

There has also been recent interest in developing density estimators that exploit graphical structure
(Germain et al., 2015; Johnson et al., 2016; Khemakhem et al., 2021; Wehenkel and Louppe, 2021;
Chen et al., 2024). Of course, there is an enormous literature on algorithms and methods for general
density estimation that we cannot cover here.

Most closely related to our work are the papers Liu et al. (2007, 2011); Györfi et al. (2022). Liu et al.
(2007) use the RODEO estimator on a model that satisfies a sparsity assumption, i.e. only s ≪ d
variables are involved in the nonparametric component. Liu et al. (2011) use forests to approximate
the underlying density under certain regularity conditions; Györfi et al. (2022) relax these conditions
and replace forests with trees. Their main result is a pointwise O(n−1/4) rate of convergence for
estimating a tree-structured density, which is notably dimension-independent. The main difference
between our results and these previous results is that our results apply to general graphs G that may
not be trees or forests, in addition to being uniform in p and unimprovable (cf. Remark 1 in Györfi
et al., 2022, in particular). Most importantly, moving beyond tree-based models requires new ideas,
and motivates our introduction of the graph resilience to measure the effective dimension of the
estimation problem.

After the initial posting of our paper, we were made aware of the related work by Bos and Schmidt-
Hieber (2023) which proposes a supervised approach to density estimation that also leverages the
Markov assumption to break the curse of dimensionality in density estimation.
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2.2 Curse of dimensionality

There is a long line of literature on understanding how and when the curse of dimensionality can be
avoided. Common assumptions include the manifold assumption (Pelletier, 2005; Ozakin and Gray,
2009; Jiang, 2017; Schmidt-Hieber, 2019; Nakada and Imaizumi, 2020; Berenfeld et al., 2022; Jiao
et al., 2023), additive structure (Stone, 1985; Raskutti et al., 2012), compositional structure (Horowitz
and Mammen, 2007; Juditsky et al., 2009; Kohler and Krzyżak, 2017; Schmidt-Hieber, 2017; Bauer
and Kohler, 2019; Kohler and Langer, 2021; Shen et al., 2021), low-rank structure (Hall and Zhou,
2003; Hall et al., 2005; Song and Dai, 2013; Amiridi et al., 2022a,b; Vandermeulen and Ledent, 2021;
Vandermeulen, 2023) and sparsity (Liu et al., 2007; Lafferty and Wasserman, 2008; Yang and Tokdar,
2015). Bach (2017) showed that neural networks are adaptive to many of these underlying structures.

This line of work is particularly relevant as it pertains to breaking the curse of dimensionality
via structural assumptions on the unknown parameter. Notably, it seems that the advantages of
(in)dependence via the Markov property have not been thoroughly investigated. Our work aims
to fill this gap for a wide range of structured models that do not fit into any of the classes above.
Indeed, it is easy to construct densities that are non-sparse (i.e. every variable is active), non-additive
and non-compositional (we consider arbitrary continuous densities), and are not supported on any
lower-dimensional manifold, but that are Markov to a given graph G.

3 Main Results

Before presenting the main results of this paper we must present some basic background.

3.1 Background Definitions and Notation

Throughout the paper, we use undirected graphs to model the dependencies in P . We adopt the
usual terminology and conventions from graphical models: G = (V,E) is an undirected graph with
V = X = [d] and d = dim(X). To avoid technical complications, we assume compact support with
X = (X1, . . . , Xd) ∈ [0, 1]d. Two disjoint subsets A,B ⊂ V are said to be separated by C if all
paths connecting A to B intersect C; equivalently, the subgraph over (A ∪B)− C is disconnected.
The distribution P is called Markov with respect to G if

A is separated from B by C =⇒ A ⊥⊥PB |C, (3)

where ⊥⊥P denotes conditional independence in P . In other words, graph separation implies
conditional independence, but not necessarily vice versa. See Lauritzen (1996) for a review of
graphical modeling terminology.

We term a subgraph of G to be a component of G (sometimes called a connected component) if it is a
maximal connected subgraph of G. A path in G is a sequence of vertices (v0, v1, . . . , vk) such that
vi − vi+1 in G (i.e. (i, i+ 1) ∈ E). A simple path is a path without repeated vertices. The length
of a path is the number of edges in the path; e.g. the length of (v0, v1, . . . , vk) is k. A geodesic
path between two vertices is any path of shortest length, and the distance between two vertices is
the length of any geodesic between them. For graphs G,G′ the notation G⊕G′ denotes a disjoint
union of graphs, i.e., the graph whose vertex set is the disjoint union of the vertices in G and G′ and
inherits edges from the edges in G and G′. For a graph G = (V,E), for V ′ ⊂ V , the graph G \ V ′

denotes the graph with vertices V \ V ′ and the edges {i, j} ∈ E where {i, j} ⊆ V \ V ′.

For any d ∈ N and L ≥ 0, let Dd be the set of densities on [0, 1]d and Dd,L ⊂ Dd be those densities
which are L-Lipschitz continuous. For any graph G with d vertices, we define D(G) ⊆ Dd, such
that, for p ∈ D(G) and (X1, . . . , Xd) ∼ p, the entries of the random variable, X1, . . . , Xd, satisfy
the global Markov property with respect to the graph G. Finally let DL(G) ≜ D(G) ∩ Dd,L. When
estimating these densities we will sometimes use the term sample complexity. This refers to the
number of samples necessary to estimate a density to within ε error in total variation distance. For
functions, f on [0, 1]d we define ∥f∥1 =

∫
|f(x)|dx; this is the total variation distance.

3.2 Graph Resilience

The key concept in this work, which characterizes the difficulty of estimating densities in D(G), is
what we term the graph resilience of G. Graph resilience is based on a process we call a disintegration.
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Figure 3: Visual representation of the steps of the 3-disintegration ({1, 6}, {3, 5, 7}, {2, 4}). In each
step of the disintegration, one vertex is removed from every graph component. The total number of
steps to the null graph is 3.

Definition 3.1. For a graph G = (V,E), an r-tuple (V1, . . . , Vr) with Vi ⊆ V is called a disintegra-
tion of G if:

1. {Vi}i is a partition of V ;

2. The elements of V1 all lie in different components of G;

3. |V1| is equal to the number of components in G;

4. For all i ∈ [r − 1] the elements of Vi+1 lie in different components of G \
⋃i

j=1 Vj ;

5. |Vi+1| is equal to the number of components in G \
⋃i

j=1 Vj .

The length of a disintegration is the value r in the above definition. A disintegration of length r will
be called an r-disintegration.

The first disintegration step, V1 above, can be thought of as the process of picking one vertex from
each component in G and removing it. The next step of a disintegration, V2 above, then selects and
removes one vertex from each component of the resultant graph. An r-disintegration is a sequence of
r such steps until one is left with the null graph. It is possible for a graph to admit many different
disintegrations of different lengths. A visual representation of the steps of a graph disintegration can
be found in Figure 3.

The resilience of a graph G describes the length of the shortest possible disintegration of G.

Definition 3.2. For a graph G, the resilience of G, denoted r(G), is the smallest r such that there
exists a r-disintegration of G.

We elaborate more on some properties of graph resilience in Section 4, including upper bounds for
the graph resilience of several graphs corresponding to image or sequence data. First, we need to
establish that graph resilience is the right metric for quantifying the sample complexity of density
estimation.

3.3 Sample complexity

The following theorem characterizes the difficulty of estimating a density which is known to satisfy
the Markov property in terms of its graph. All proofs are deferred the appendix.

Theorem 3.1. Let G be a (known) graph whose number of vertices is d and resilience is r. Let L ≥ 0.
For any 0 < ε < 1, there exists an algorithm that takes n = Ω

(
rdr/2+1Lr

εr+2 log(dLε ) + log(1/δ)
ε2

)
i.i.d.

samples drawn from any p ∈ DL(G) and returns a distribution q such that

∥p− q∥1 ≤ ε with probability at least 1− δ

3
.

This corresponds to a convergence rate of Õ(n−1/(r+2)) and is uniform over DL(G). For comparison,
the rate O(n−1/(d+2)) is known to be optimal for estimating densities in Dd,L in the total variation
norm (e.g. Beirlant and Gyorfi, 1998). Consequently the rate Õ(n−1/(r+2)) indicates that the rate of
convergence when estimating densities in DL(G) is akin to estimating densities in Dr,L. We will see
in Section 4.2 that, for graphs typically used to represent audio or image data, the effective dimension
for estimating densities can be drastically, even exponentially, smaller than the ambient dimension.

6



While it may be reasonable to assume a known graph in some situations, one often encounters the
situation where the graph is unknown. If one assumes that the graph G is unknown, but that G lies in
some subset of graphs whose maximum graph resilience is bounded above by some value r then it is
still possible to achieve a rate of Õ(n−1/(r+2)).
Theorem 3.2. Let G be the set of all graphs whose number of vertices is d and resilience is r. Let L ≥
0. For any 0 < ε < 1, there exists an algorithm that takes n = Ω

(
rdr/2+1Lr

εr+2 log(dLε ) + log(1/δ)
ε2

)
i.i.d. samples drawn from any p ∈

⋃
G∈G DL(G) and returns a distribution q such that

∥p− q∥1 ≤ ε with probability at least 1− δ

3
.

We show in Appendix D that these rates are optimal (up to a polylogarithmic factor) for all dimensions
d and resiliences r. However, it’s worth noting that these rates are not optimal for all graphs G. For
instance, for the special case of trees see Györfi et al. (2022), where better rates can be achieved. The
case of general graphs G is an open problem.

3.4 Proof Outline and Practical Consequences

We will outline our proof techniques and demonstrate their relation to practically implementable
estimators. Our theorem proofs employ disintegrations to construct a class of densities that closely
approximate those with the given MRF. This class contains densities that take the form of histograms,
i.e., piecewise constant densities on a grid. The remainder of the argument is relatively standard: A
finite collection of the aforementioned class is found to cover the space, from which our estimate
is chosen using a method akin to Scheffé tournaments (Scheffe, 1947; Yatracos, 1985; Devroye
and Lugosi, 2001; Ashtiani et al., 2018). Disintegrations are the core novel aspect of this work,
characterizing a class of histograms much smaller than the full set, thereby reducing its metric entropy
and enhancing the sample efficiency of our selection.

X1 X2 X1 null graph

Figure 4: A simple disintegra-
tion example.

At a high level, a disintegration outlines a method to estimate a
density by inductively conditioning out the entries of a random vector.
For instance, consider a random vector [X1, X2]. The disintegration
in Figure 3.4 corresponds to first estimating a histogram for X2, and
then, for each bin b of the X2 histogram, estimating a histogram for
X1|X2 ∈ b. The resilience of a graph simply characterizes the shortest disintegration, i.e. the most
efficient decomposition of a distribution into factors. Removing one vertex from each component of
a graph captures the idea that, after sufficient conditioning, these components become independent.
This allows us to avoid estimating the high-dimensional joint density of all vertices in the graph.
Instead, we can estimate the low-dimensional components individually and take their product, which
is effective due to the following inequality∥∥∥∥∥∥

d∏
i=1

pi −
d∏

j=1

qj

∥∥∥∥∥∥
1

≤
d∑

i=1

∥pi − qi∥1 for any probability densities p1, . . . , pd, q1, . . . , qd.

Thus a disintegration can be thought of as a “meta-algorithm” providing an ordering for estimating
conditional densities. In practice, it would be up to the implementation to determine how to handle
the one-dimensional and conditional density estimation.

4 Graph Resilience Examples

Theorems 3.1 and 3.2 demonstrate that the graph resilience acts as the effective dimension of a
nonparametric estimation problem, however, graph resilience is still somewhat of an opaque property.
In this section we will go over basic properties of graph resilience and describe graph resiliences for
some graphs that reflect real-world settings.

4.1 Graph Resilience Properties

Here we present some basic results regarding graph resilience. We first introduce two very basic
lemmas outlining the most fundamental properties of graph resilience. The first lemma shows how
graph resilience behaves with disjoint graph union.
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Graph G Resilience r = r(G) Sample complexity n

Trees (depth k) ≤ k ε−(k+2)

Trees (general) O(log(d)) ∼ ε−(log(d)+2)

Paths O(log(d)) ∼ ε−(log(d)+2)

Grid O(
√
d) ∼ ε−(

√
d+2)

Complete graph d ε−(d+2)

Table 1: Example graph resiliences and corresponding sample complexities

Lemma 4.1. Let G1, . . . , Gm be graphs, then r(
⊕m

i=1 Gi) = maxi r(Gi).

This lemma encapsulates the notion that estimating joint density for a collection of independent
random vectors, e.g., (Y1, . . . , Ym) ∼

∏m
i=1 µi, from a collection of samples is no more difficult

than estimating each independent vector individually, µ̂i ≈ µi, and taking the product measure,∏m
i=1 µ̂i ≈

∏m
i=1 µi.

The second lemma demonstrates the behavior of graph resilience upon vertex removal.

Lemma 4.2. Let G = (V,E) be a graph and let V ′ ⊂ V , then r(G) ≤ r(G \ V ′) + |V ′|.

This corresponds to conditioning the random variables in V \ V ′ on the |V ′|-dimensional random
vector corresponding to V ′.

Simpler graphs, in terms of number of edges and vertices, tend to have smaller graph resilience. The
following lemma shows that adding edges to a graph will, at most, increase its resilience by the
number of edges added.

Lemma 4.3. Let G = (V,E) be a graph, let E′ be a set of edges for vertices V , and let G′ =
(V,E ∪ E′), then r(G′) ≤ r(G) + |E′|.

For a pair of graphs G,G′, let the relation G′ ≤ G denote that G′ is isomorphic to some subgraph of
G. The following lemma demonstrates that removing random variables and dependencies between
random variables can only reduce graph resilience.

Lemma 4.4. For a pair of graphs G and G′, if G′ ≤ G, then r(G′) ≤ r(G).

The following corollary follows directly from the previous Lemma 4.4 and Lemma 4.6, which we
present later.

Corollary 4.5. Let G be a graph whose largest clique contains k vertices, then r(G) ≥ k.

4.2 Example Graph Resiliences

From these properties of graph resilience we can derive the graph resilience of some example graphs.
Some results from this section are summarized in Table 1. We begin with a couple of simple cases.

The following lemma demonstrates the surprising fact that, if even a single edge is missing from the
graph, then the effective dimension of the estimation problem is strictly smaller than the ambient
dimension d.

Lemma 4.6. For a graph G = (V,E), r(G) = |V | if and only if G is a complete graph.

Analogously, a graph can only have resilience 1 if it is the empty graph.

Lemma 4.7. For a graph G = (V,E), r(G) = 1 if and only if E = ∅.

The star graph is an example of a connected graph whose resilience is very small. Recall that a star
graph Sd is a graph with a single central vertex connected to every other node, i.e. E = {(i, j) : j ̸=
i}. Equivalently, it is (a) a complete bipartite graph with a single vertex in one partition or (b) a tree
of depth one with a single root.

Lemma 4.8. r(Sd) ≤ 2.
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In the remainder of this section, we describe additional examples of graphs whose resilience can
be bounded. We focus on four broad classes of graphs, categorized by the application of interest:
Hierarchical data (e.g. language, biology, phylogeny), sequential data (e.g. audio, video, language),
spatial data (e.g. images, vision, signal processing), and clustered data (e.g. genetics, ecology,
medicine). See Figure 1 for a guide to these classes of graphs.

The following definition will be helpful for analyzing graphs that have a linear or grid shape.

Definition 4.1. For a graph G and n ∈ N, the power graph Gn, is the graph which inherits its vertices
from G and a pair of vertices in Gn are adjacent when their distance in G is at most n.

4.2.1 Hierarchical Data

Hierarchical data arises from distributions that have a tree-like structure, i.e. G is tree. In the
worst-case, the resilience of a tree can scale at most logarithmically with d, however, in practical
applications where the tree has bounded depth the resilience is also bounded.

Lemma 4.9. Let G be a k-ary tree with depth m, then r(G) ≤ m.

Lemma 4.10. Let G be a tree with d vertices, then r(G) ≤ log2(d) + 1.

4.2.2 Sequential Data

A path graph naturally represents sequential data. For a more realistic model one may assume that a
vertex in a path graph is connected to all vertices within a given distance, so that nearby vertices are
highly dependent, but far away indices are less dependent. Even with this assumption we see that,
like tree graphs, the path graph’s resilience only grows at rate O(log d).

Definition 4.2. The path graph of length d, denoted Ld, is the graph (V,E) with V = [d] and
E = {{i, j} | |i− j| = 1}.

Proposition 4.11. Recall that Ld is the path graph of length d as defined in Definition 4.2. For any
s, t ∈ N, we have

r(Lt
t(2s−1)) ≤ st.

Here, Lt
t(2s−1) is the power graph of Lt(2s−1) as defined in Definition 4.1.

This, along with Lemma 4.4, yields the following rate on graph resilience for path graphs.

Corollary 4.12. For any d ∈ N and any constant t ∈ N, we have

r(Lt
d) = O(t log d).

4.2.3 Spatial Data

Image data is naturally represented via a grid graph. The following graph describes a k × k′ grid of
vertices with every vertex connected connected to its vertical, horizontal, and diagonal, neighbors.

Definition 4.3. The grid graph of shape k×k′, denoted Lk×k′ , is the graph (V,E) with V = [k]×[k′]
and E = {{(i, j), (i′, j′)} | (i, j) ̸= (i′, j′), |i− i′| ≤ 1, |j − j′| ≤ 1}.

Proposition 4.13. Recall that Lk×k be the grid graph of shape k × k as defined in Definition 4.3.
For any s, t ∈ N, we have

r(Lt
t(2s−1)×t(2s−1)) ≤ 4t22s.

Here, Lt
t(2s−1)×t(2s−1) is the power graph of Lt(2s−1)×t(2s−1) as defined in Definition 4.1.

Examples of a grid graph and its power can be found in Figure 5 in the appendix. The previous
proposition gives us a general rate of

√
d for grid graphs.

Corollary 4.14. For any k ∈ N and any constant t ∈ N, we have

r(Lt
k×k) = O(t2

√
d) where d = k2.

Note that the graph Lt
k×k has d vertices.
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4.2.4 Clustered Data

Another common type of structured data exhibits clusters: Variables in the same cluster are dependent,
while variables in different clusters are independent. This type of structure can be modeled with
disjoint cliques, where each clique represents a cluster or community. Let Vi ⊂ V denote each cluster,
with Vi ∩ Vj = ∅ and V = V1 ∪ · · · ∪ Vm (i.e. {Vi} is a partition of V ). Let di ≜ |Vi|, Gi ≜ Kdi be
a clique (complete graph) on Vi, and G =

⊕
i Gi. Then it follows from Lemmas 4.6 and 4.1 that

r(G) = maxi di. In particular, if di = O(1), then r(G) = O(1). Of course, this simply recovers
the well-known result that a density that factorizes into a product of densities can be estimated at a
rate that depends only on the largest factor. Using our graph resilience analysis we have that, for a
stochastic block model, the graph resilience is bounded by the size of the blocks times the graph that
encapsulates dependencies between the blocks.

Lemma 4.15. Let G′ = ([k], E′) be a graph. Let G = (V,E) be a graph, such that there is a
partition of V =

⋃k
i=1 Vi, where, if {v, v′} ∈ E it follows that v ∈ Vi and v′ ∈ Vj where i = j or i

and j are adjacent in G′. Then r(G) ≤ r(G′)maxi∈[k] |Vi|.

This has the useful interpretation that the effect of additional dependencies between clusters does
not interact with the clusters themselves. For example, if we allow for noisy interactions between
clusters (e.g. as in a stochastic block model), the complexity scales separately with the noise and the
size of the largest cluster.

4.3 Comparison to other graphical properties

The examples in the previous section can be used to show that the classical graphical properties that
one might expect to govern the sample complexity surprisingly fail to capture the sample complexity.

Degree The first and most obvious is the maximum degree of G. The star graph Sd is an example
where the resilience is O(1), and hence the sample complexity is (1/ε)O(1), but the maximum degree
is Ω(d). Thus, the degree cannot properly capture the sample complexity. Moreover, the path graph
shows the reverse: The maximum degree can be O(1) while the resilience is Ω(log d).

Diameter The diameter diam(G) of a graph G is the length of its longest geodesic path. A clique
Kd thus has diam(Kd) = 1 (since every node is connected to every other node), but r(Kd) = d. It
is clear even from classical results that a clique cannot be estimated any faster than (1/ε)d. Thus, the
diameter also cannot capture the sample complexity.

Sparsity Call a density p on d variables s-sparse if p(x) = q(xS), where S ⊂ [d] with |S| = s.
Now suppose p is s-sparse and q is Markov to a star graph Ss on s vertices. Then Theorem 3.1
implies that p can be estimated with (1/ε)O(1) samples (since r(G) = O(1)). Thus, taking s → ∞,
it follows that the sparsity s cannot properly capture the sample complexity.

In other words, not only does the graph resilience properly capture the sample complexity of structured
density estimation, it is also not simply a proxy for commonly used graphical properties.

5 Conclusion

This work has introduced a new concept, graph resilience, and demonstrated that it controls the
complexity of estimating densities satisfying the Markov property. This characterization has shown
that estimating such densities can be significantly easier than previous works have indicated. This
finding contributes to the broader understanding of graph theoretical properties in statistical estimation
and, more generally, to nonparametric estimation. Although our approach sheds light on the intrinsic
possibilities and barriers to breaking the curse of dimensionality, the development of practical methods
remains an important open problem. For example, can neural networks achieve these rates? Recent
concurrent work has provided insight into the use of neural density estimators, see e.g. Bos and
Schmidt-Hieber (2023); Cole and Lu (2024); Vandermeulen et al. (2024). Finally, the concept of
resilience is a new and unexplored property with significant potential for discovering graphs that
yield good estimation properties.

10



Acknowledgments and Disclosure of Funding

Robert A. Vandermeulen was supported by German Federal Ministry of Education and Research
(BMBF) grants BIFOLD23B and BIFOLD24B. Wai Ming Tai was supported by Singapore AcRF Tier
2 grant MOE-T2EP20122-0001. B.A. was supported by NSF IIS-1956330, NIH R01GM140467, and
the Robert H. Topel Faculty Research Fund at the University of Chicago Booth School of Business.

References
Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-optimal density estima-

tion in nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1278–1289. SIAM, 2017.

Jayadev Acharya, Clement Canonne, Aditya Vikram Singh, and Himanshu Tyagi. Optimal rates
for nonparametric density estimation under communication constraints. Advances in Neural
Information Processing Systems, 34:26754–26766, 2021.

Magda Amiridi, Nikos Kargas, and Nicholas D. Sidiropoulos. Low-rank characteristic tensor density
estimation part I: Foundations. IEEE Transactions on Signal Processing, 70:2654–2668, 2022a.
doi: 10.1109/TSP.2022.3175608.

Magda Amiridi, Nikos Kargas, and Nicholas D. Sidiropoulos. Low-rank characteristic tensor
density estimation part II: Compression and latent density estimation. Trans. Sig. Proc., 70:
2669–2680, January 2022b. ISSN 1053-587X. doi: 10.1109/TSP.2022.3158422. URL https:
//doi.org/10.1109/TSP.2022.3158422.

Hassan Ashtiani, Shai Ben-David, Nicholas Harvey, Christopher Liaw, Abbas Mehrabian, and Yaniv
Plan. Nearly tight sample complexity bounds for learning mixtures of gaussians via sample
compression schemes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 3412–3421.
Curran Associates, Inc., 2018.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18(19):1–53, 2017.

Benedikt Bauer and Michael Kohler. On deep learning as a remedy for the curse of dimensionality in
nonparametric regression. Annals of Statistics, 47(4):2261–2285, 2019.

J. Beirlant and L. Gyorfi. On the L1-error in histogram density estimation: The multidimensional
case. Journal of Nonparametric Statistics, 9(2):197–216, 1998. doi: 10.1080/10485259808832742.
URL https://doi.org/10.1080/10485259808832742.

Clément Berenfeld, Paul Rosa, and Judith Rousseau. Estimating a density near an unknown manifold:
a bayesian nonparametric approach. arXiv preprint arXiv:2205.15717, 2022.

Thijs Bos and Johannes Schmidt-Hieber. A supervised deep learning method for nonparametric
density estimation. arXiv e-prints, art. arXiv:2306.10471, June 2023. doi: 10.48550/arXiv.2306.
10471.

Siu On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Near-optimal density estimation
in near-linear time using variable-width histograms. Advances in neural information processing
systems, 27, 2014.

Asic Chen, Ruian Ian Shi, Xiang Gao, Ricardo Baptista, and Rahul G Krishnan. Structured neural
networks for density estimation and causal inference. Advances in Neural Information Processing
Systems, 36, 2024.

Frank Cole and Yulong Lu. Score-based generative models break the curse of dimensionality in
learning a family of sub-gaussian probability distributions. arXiv preprint arXiv:2402.08082, 2024.

L. Devroye and L. Gyorfi. Nonparametric Density Estimation: The L1 View. Wiley Interscience
Series in Discrete Mathematics. Wiley, 1985. ISBN 9780471816461.

11

https://doi.org/10.1109/TSP.2022.3158422
https://doi.org/10.1109/TSP.2022.3158422
https://doi.org/10.1080/10485259808832742


L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New York,
2001.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pages 881–889. PMLR,
2015.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Discussion of:
“nonparametric regression using deep neural networks with ReLU activation function”. The
Annals of Statistics, 48(4):1898 – 1901, 2020. doi: 10.1214/19-AOS1910. URL https:
//doi.org/10.1214/19-AOS1910.

Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2015.

László Györfi, Aryeh Kontorovich, and Roi Weiss. Tree density estimation. IEEE Transactions on
Information Theory, 69(2):1168–1176, 2022.

Peter Hall and Xiao-Hua Zhou. Nonparametric estimation of component distributions in a multivariate
mixture. Annals of Statistics, pages 201–224, 2003.

Peter Hall, JS Marron, and Amnon Neeman. Geometric representation of high dimension, low sample
size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3):
427–444, 2005.

Joel L Horowitz and Enno Mammen. Rate-optimal estimation for a general class of nonparametric
regression models with unknown link functions. Annals of Statistics, 35(6):2589–2619, 2007.

Heinrich Jiang. Uniform convergence rates for kernel density estimation. In International Conference
on Machine Learning, pages 1694–1703, 2017.

Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression on
approximate manifolds: Nonasymptotic error bounds with polynomial prefactors. The Annals of
Statistics, 51(2):691–716, 2023.

Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 2946–2954. Curran Associates, Inc., 2016.

Anatoli B. Juditsky, Oleg V. Lepski, and Alexandre B. Tsybakov. Nonparametric estimation of
composite functions. The Annals of Statistics, 37(3):1360 – 1404, 2009. doi: 10.1214/08-AOS611.
URL https://doi.org/10.1214/08-AOS611.

Robert W. Keener. Bayesian Inference: Modeling and Computation, pages 301–318. Springer New
York, New York, NY, 2010. ISBN 978-0-387-93839-4. doi: 10.1007/978-0-387-93839-4_15.
URL https://doi.org/10.1007/978-0-387-93839-4_15.

Ilyes Khemakhem, Ricardo Monti, Robert Leech, and Aapo Hyvarinen. Causal autoregressive flows.
In International Conference on Artificial Intelligence and statistics, pages 3520–3528. PMLR,
2021.
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A Grid Figure

Figure 5: Comparison of L3×3 (left) and L2
3×3 (right).

B Proofs on Density Estimation

We begin by introducing some objects and notation that will be essential for proving the main
theorems.

Let N = {1, 2, . . .}. For any m ∈ N, let [m] ≜ {1, 2, . . . ,m}. For any b ∈ N, let ∆b be the simplex
in Rb, i.e.

∆b =

v ∈ Rb :
∑
i∈[b]

vi = 1 and vi ≥ 0 for any i ∈ [b]

 .

For any d, b ∈ N, let Td,b be the set of probability tensors in Rb×d

. This can be thought of as the joint
probability tables over d variables with states in [b]. For any d, b ∈ N and T ∈ Td,b, we say a random
variable X ∼ T if

P (X = A) = TA for all A ∈ [b]d.

For any graph G with d vertices, let Tb(G) ⊆ Td,b, such that, for T ∈ Tb(G) and (X1, . . . , Xd) ∼ T ,
then X1, . . . , Xd satisfies the Markov property with respect to the graph G. We consider the domain
[0, 1)d and split it into b bins per dimension, i.e. there are bd bins in total. For any d, b ∈ N and
multi-index A ∈ [b]d, let Λd,b,A be the bin indexed at A and Λd,b be the set of all bins, i.e.

Λd,b,A =

d∏
i=1

[
Ai − 1

b
,
Ai

b

)
and Λd,b = {Λd,b,A | A ∈ [b]d}.

For any d, b ∈ N, let Hd,b be the set of all histograms with the bins from Λd,b, i.e.

Hd,b =

f : [0, 1)d → R | f =
∑

A∈[b]d

bdTA · χΛd,b,A
where χ is the indicator and T ∈ Td,b

 .

Let Ud,b : Td,b → Hd,b be the natural ℓ1 → L1 linear isometry between the spaces.

For any d ∈ N and L > 0, let Dd be the set of densities on [0, 1)d and Dd,L ⊂ Dd be those densities
which are L-Lipschitz continuous.

Definition B.1. For A, some subset of a ℓ1 Euclidean tensor space or L1 function space, we define

N (A, ε) ≜ min
C⊂A

|C| such that, for all a ∈ A, there exists c ∈ C where ∥a− c∥1 ≤ ε.
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In this work we will use the following version of the Markov property: for I, J ⊂ V , with I and
J not intersecting or adjacent, XI ⊥⊥ XJ | XV \I∪J . Note that this property is satisfied when the
“global” Markov property is satisfied.

Lemma B.1 (Lemma 3.3.7 from Reiss (1989)). For probability measures
∥∥∥∏t

i=1 µi −
∏t

i=1 νi

∥∥∥
1
≤∑t

i=1 ∥µi − νi∥1.

Lemma B.2 (Lemma A.1 from Vandermeulen and Ledent (2021)). For all b and 0 < ε ≤ 1,
N
(
∆b, ε

)
≤ (2b/ε)

b.

Lemma B.3 (Theorem 3.4 page 7 of Ashtiani et al. (2018), Theorem 3.6 page 54 of Devroye and
Lugosi (2001)). There exists a deterministic algorithm that, given a collection of distributions

p1, . . . , pM , a parameter ε > 0 and at least
log(3M2/δ)

2ε2 iid samples from an unknown distribution p,
outputs an index j ∈ [M ] such that

∥pj − p∥1 ≤ 3 min
i∈[M ]

∥pi − p∥1 + 4ε

with probability at least 1− δ
3 .

B.1 Preliminary Technical Results

This section contains intermediate technical results which will aid in proving more core results.

Lemma B.4. For any 0 < ε < 1, any b, t ∈ N and any graph Gi for i ∈ [t], we have

N

(
Tb
( t⊕

i=1

Gi

)
, ε

)
≤

t∏
i=1

N (Tb (Gi) , ε/t) .

Proof of Lemma B.4. Let Ci be any (ε/t)-cover for Tb (Gi) such that N (Tb (Gi) , ε/t) = |Ci| for
all i ∈ [t]. If we manage to argue that the set

C = {T1 × · · · × Tt | Ti ∈ Ci for all i ∈ [t]}

is an ε-cover of Tb
(⊕t

i=1 Gi

)
, then we immediately show the statement since

N

(
Tb

(
t⊕

i=1

Gi

)
, ε

)
≤ |C| =

t∏
i=1

|Ci| =
t∏

i=1

N (Tb (Gi) , ε/t) .

Now, to show that C is an ε-cover, we observe that any T ∈ Tb
(⊕t

i=1 Gi

)
has the form of

T1×· · ·×Tt where Ti ∈ Tb (Gi) for all i ∈ [t] since we recall that
⊕t

i=1 Gi is simply a union of the
graphs with no edges across different connected components which implies the vertices in different
connected components are independent. Since Ci is an (ε/t)-cover of Tb(Gi), there is a T̃i ∈ Ci

such that ∥T̃i − Ti∥1 ≤ ε/t. By taking T̃ = T̃1 × · · · × T̃t ∈ C, there exists a T̃ ∈ C such that, by
Lemma B.1, we have

∥T̃ − T∥1 ≤
t∑

i=1

(ε/t) = ε.

Lemma B.5. For any 0 < α < 1, any 0 < ε < 1, any b ∈ N, any graph G and any vertex v in G,
we have

N (Tb(G), ε) ≤ N (T1,b, αε) ·N (Tb (G \ {v}) , (1− α)ε)
b
.

Proof of Lemma B.5. Without loss of generality, we assume v = 1. Suppose the graph G has d
vertices. Let C0 be any (1−α)ε-cover of Tb(G \ {1}) such that N (Tb (G \ {1}) , (1− α)ε) = |C0|
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and C1 be any αε-cover of T1,b such that N (T1,b, αε) = |C1|. We now construct a set C ∈ Tb(G) as
follows.

C = {T | TA = δA1 · T
(A1)
(A2,...,Ad)

for any A ∈ [b]d where T (1), . . . , T (b) ∈ C0 and δ ∈ C1}.

If we manage to argue that the set C is an ε-cover of Tb(G), then we immediately show the statement
since

N (Tb(G), ε) ≤ |C| = |C1| · |C0|b = N (T1,b, αε) ·N (Tb (G \ {1}) , (1− α)ε)
b
.

Now, to show that C is an ε-cover, we observe that, for any T ∈ Tb(G) and A ∈ [b]d, we can express

TA = δA1 · T
(A1)
(A2,...,Ad)

for some T (1), . . . , T (b) ∈ Tb(G \ {1}) and δ ∈ T1,b.

Since C0 (resp. C1) is an (1 − α)ε-cover of Tb(G \ {1}) (resp. an αε-cover of T1,b), there exist
T̃ (1), . . . , T̃ (b) ∈ C0 and δ̃ ∈ C1 such that

∥T̃ (i) − T (i)∥1 ≤ (1− α)ε for all i ∈ [b] and ∥δ̃ − δ∥1 ≤ αε. (4)

Then, we take T̃ ∈ C where

T̃A = δ̃A1
· T̃ (A1)

(A2,...,Ad)
for any A ∈ [b]d

and we have

∥T̃ − T∥1 =

b∑
A1=1

∥δ̃A1
· T̃ (A1) − δA1

· T (A1)∥1

≤
b∑

A1=1

∥δ̃A1
· T̃ (A1) − δA1

· T̃ (A1)∥1 +
b∑

A1=1

∥δA1
· T̃ (A1) − δA1

· T (A1)∥1.

By using (4), we further bound each term
b∑

A1=1

∥δ̃A1
· T̃ (A1) − δA1

· T̃ (A1)∥1 =

b∑
A1=1

|δ̃A1
− δA1

| · ∥T̃ (A1)∥1 = ∥δ̃ − δ∥1 ≤ αε and

b∑
A1=1

∥δA1 · T̃ (A1) − δA1
· T (A1)∥1 =

b∑
A1=1

δA1
· ∥T̃ (A1) − T (A1)∥1 ≤

b∑
A1=1

δA1
· (1− α)ε = (1− α)ε.

Combining these two inequalities, we conclude that, for any T ∈ Tb(G), there exists a T̃ ∈ C such
that ∥T̃ − T∥1 ≤ αε+ (1− α)ε = ε.

B.2 Controlling Bias and Variance

Like many the analysis of many estimators this proof has two pain parts, analysis of the bias, and the
analysis of the variance.

B.2.1 Variance

To control the variance we will use the follow bound on covering numbers
Proposition B.6. For any b ∈ N, any 0 < ε < 1 and any graph G whose number of vertices is d and
resilience is r, we have

logN (Tb(G), ε) ≤ dbr log

(
2dr+1b

ε

)
.

Proof of Proposition B.6. We first assume that G is a connected graph and prove that

logN (Tb(G), ε) ≤ dbr log

(
2drb

ε

)
. (5)

Note that the exponent in the factor dr is r as opposed to r + 1 in the original statment. We will
prove the statement by induction on r.
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Base case r = 1: Note that the graph G is a graph with only one vertex. By Lemma B.2, we have

logN(Tb(G), ε) ≤ logN(∆b, ε) ≤ b log

(
2b

ε

)
= 1 · b1 log

(
2 · 11 · b

ε

)
,

thereby satisfying (5).

Inductive step r > 1: Let v be the vertex selected in the first disintegration step of the r-
disintegration and G1, . . . , Gt be the connected components after removing v from G. Also, for all
i ∈ [t], let ri = r(Gi) and di be the number of vertices in Gi. By Lemma B.5, we first have

logN (Tb(G), ε) ≤ logN

(
T1,b,

ε

t+ 1

)
+ b · logN

(
Tb(G \ {v}), tε

t+ 1

)
≤ b log

(
2(t+ 1)b

ε

)
︸ ︷︷ ︸

by Lemma B.2

+b · logN
(
Tb(G \ {v}), tε

t+ 1

)
. (6)

By Lemma B.4, we further have

logN

(
Tb(G \ {v}), tε

t+ 1

)
≤

t∑
i=1

logN

(
Tb(Gi),

ε

t+ 1

)
. (7)

Note that the resilience of each Gi is at most r−1 (i.e. ri ≤ r−1) and hence we invoke the inductive
assumption. We have

logN

(
Tb(Gi),

ε

t+ 1

)
≤ di · bri · log

(
2(t+ 1)drii b

ε

)
by the induction assumption

≤ di · br−1 · log
(
2drb

ε

)
since ri ≤ r − 1 and t+ 1, di ≤ d. (8)

By plugging (8) into (7) and (6), we have

logN (Tb(G), ε) ≤ b log

(
2(t+ 1)b

ε

)
+ b ·

t∑
i=1

di · br−1 · log
(
2drb

ε

)

≤ br log

(
2drb

ε

)
·

(
1 +

t∑
i=1

di

)
since t+ 1 ≤ dr

= dbr log

(
2drb

ε

)
since 1 +

t∑
i=1

di = d.

Now, we remove the assumption of G being connected. Suppose G has t connected components,
G1, . . . , Gt whose number of vertices is di and resilience is ri. We have

logN(Tb(G), ε) ≤
t∑

i=1

logN
(
Tb(Gi),

ε

t

)
by Lemma B.4

≤
t∑

i=1

dib
ri log

(
2tdrii b

ε

)
from the case of G being connected

≤ dbr log

(
2dr+1b

ε

)
since di ≤

t∑
i=1

di = d, ri ≤ r and t ≤ d.

B.2.2 Analysis of Bias

Theorem B.7. For any d, b ∈ N, any L > 0, any graph G and any p ∈ DL(G), we have

min
p′∈Ud,b(Tb(G))

∥p− p′∥1 ≤
√
dL/b.
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Proof of Theorem B.7. For any d, b ∈ N and A ∈ [b]d, recall that Λd,b,A =
∏d

i=1

[
Ai−1

b , Ai

b

)
. Let

λA be the centroid of Λd,b,A. We define

p̃′ =
∑

A∈[b]d

p (λA)χΛd,b,A
and p̃ = p̃′/Z if Z ̸= 0 (9)

where χΛd,b,A
is the indicator, i.e. χΛd,b,A

(x) =

{
1 if x ∈ Λd,b,A

0 if x /∈ Λd,b,A
and Z is the normalizing factor,

i.e. Z =
∫
x∈[0,1)d

p̃′(x)dx.

Since the construction requires Z ̸= 0, we now first show that when Z = 0 the statement holds
trivially. When Z = 0, we have

p(λA) = 0 for all A ∈ [b]d

which implies

p(x) ≤ L · ∥x− λA∥2 ≤ L
√
d/(2b) since p ∈ DL(G).

Hence, we further have

1 =

∫
x∈[0,1)d

p(x)dx =
∑

A∈[b]d

∫
x∈Λd,b,A

p(x)dx ≤
∑

A∈[b]d

∫
x∈Λd,b,A

L
√
d/(2b)dx = L

√
d/(2b).

Namely, L
√
d/b ≥ 2 and therefore the statement holds for any p′ ∈ Ud,b (Tb(G)).

Now, we assume that Z ̸= 0. We will prove the statement by arguing 1) p̃ ∈ Ud,b (Tb(G)) and 2)
∥p− p̃∥1 ≤

√
dL/b.

To prove 1) p̃ ∈ Ud,b (Tb(G)): For any partition V0 ∪ V1 ∪ V2 of the vertex set of G such that V0

separates V1 and V2, we would like to show, for any x∗ ∈ [0, 1)d (without loss of generality, we
reorder the indices such that x = (xV1 , xV2 , xV0))

p̃(x∗
V1
, x∗

V2
, x∗

V0
)

p̃( : , : , x∗
V0
)

=
p̃(x∗

V1
, : , x∗

V0
)

p̃( : , : , x∗
V0
)

·
p̃( : , x∗

V2
, x∗

V0
)

p̃( : , : , x∗
V0
)

if p̃( : , : , x∗
V0
) ̸= 0

where we use : to indicate integrating with respect to the corresponding variables, i.e.

p̃( : , : , x∗
V0
) =

∫
(xV1

,xV2
)∈[0,1)d1+d2

p̃(xV1
, xV2

, x∗
V0
)d(xV1

, xV2
)

p̃( : , x∗
V2
, x∗

V0
) =

∫
xV1

∈[0,1)d1
p̃(xV1

, x∗
V2
, x∗

V0
)dxV1

p̃(x∗
V1
, : , x∗

V0
) =

∫
xV2

∈[0,1)d2
p̃(x∗

V1
, xV2

, x∗
V0
)dxV2

and d1 (resp. d2) is the size of V1 (resp. V2). It is equivalent to show

p̃(x∗
V1
, x∗

V2
, x∗

V0
) · p̃( : , : , x∗

V0
) = p̃(x∗

V1
, : , x∗

V0
) · p̃( : , x∗

V2
, x∗

V0
). (10)

We now analyze each of p̃(x∗
V1
, x∗

V2
, x∗

V0
), p̃( : , : , x∗

V0
), p̃(x∗

V1
, : , x∗

V0
), p̃( : , x∗

V2
, x∗

V0
). Let λ (resp.

λ∗) be the closest centroid to x for any x ∈ [0, 1)d (resp. x∗). For p̃′(x∗
V1
, x∗

V2
, x∗

V0
), we have

p̃(x∗
V1
, x∗

V2
, x∗

V0
) =

1

Z
p(λ∗

V1
, λ∗

V2
, λ∗

V0
)

=
p(λ∗

V1
, : , λ∗

V0
) · p( : , λ∗

V2
, λ∗

V0
)

Zp( : , : , λ∗
V0
)

since p ∈ DL(G) and V0 separates V1 and V2.

(11)
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Here, recall that we use : to indicate integrating with respect to the corresponding variables, i.e., for
any centroid λ including λ∗,

p(λV1
, : , λV0

) =

∫
xV2

∈[0,1)d2
p(λV1

, xV2
, λV0

)dxV2

p( : , λV2
, λV0

) =

∫
xV1

∈[0,1)d1
p(xV1

, λV2
, λV0

)dxV1

p( : , : , λV0) =

∫
(xV1

,xV2
)∈[0,1)d1+d2

p(xV1 , xV2 , λV0)d(xV1 , xV2).

For p̃′( : , : , x∗
V0
), we have

p̃( : , : , x∗
V0
) =

∫
(xV1

,xV2
)∈[0,1)d1+d2

p̃(xV1
, xV2

, x∗
V0
)d(xV1

, xV2
)

=
1

Z

∫
(xV1

,xV2
)∈[0,1)d1+d2

p̃′(xV1 , xV2 , x
∗
V0
)d(xV1 , xV2)

Since, for any A ∈ [b]d, p̃′(xV1
, xV2

, x∗
V0
) = p(λV1

, λV2
, λ∗

V0
) for all (xV1

, xV2
, x∗

V0
) ∈ Λd,b,A by

(9), we have∫
(xV1

,xV2
)∈Λd,b,A

p̃′(xV1
, xV2

, x∗
V0
)d(xV1

, xV2
) =

1

bd1+d2
p(λV1

, λV2
, λ∗

V0
).

By plugging it into the equation for p̃( : , : , x∗
V0
), we have

p̃( : , : , x∗
V0
) =

∑
centroid λ : λV0

= λ∗
V0

1

Zbd1+d2
p(λV1

, λV2
, λ∗

V0
)

=
∑

centroid λ : λV0
= λ∗

V0

p(λV1 , : , λ
∗
V0
) · p( : , λV2 , λ

∗
V0
)

Zbd1+d2p( : , : , λ∗
V0
)

. (12)

For p̃′(x∗
V1
, : , x∗

V0
), we have

p̃(x∗
V1
, : , x∗

V0
) =

∑
centroid λ : (λV1

, λV0
) = (λ∗

V1
, λ∗

V0
)

1

Zbd2
p(λ∗

V1
, λV2

, λ∗
V0
)

=
∑

centroid λ : (λV1
, λV0

) = (λ∗
V1

, λ∗
V0

)

p(λ∗
V1
, : , λ∗

V0
) · p( : , λV2 , λ

∗
V0
)

Zbd2p( : , : , λ∗
V0
)

. (13)

Similarly, for p̃′( : , x∗
V2
, x∗

V0
), we have

p̃( : , x∗
V2
, x∗

V0
) =

∑
centroid λ : (λV2

, λV0
) = (λ∗

V2
, λ∗

V0
)

p( : , λ∗
V2
, λ∗

V0
) · p(λV1

, : , λ∗
V0
)

Zbd1p( : , : , λ∗
V0
)

. (14)

By using (11), (12), (13) and (14), we can conclude (10).

To prove 2) ∥p− p̃∥1 ≤
√
dL/b: We first express

∥p− p̃∥1 ≤ ∥p− p̃′∥1 + ∥p̃′ − p̃∥1 by triangle inequality. (15)

Note that p̃′ may not be a probability density.

For the first term ∥p− p̃′∥1, we have

∥p− p̃′∥1 =

∫
x∈[0,1)d

|p(x)− p̃′(x)|dx =
∑

A∈[b]d

∫
x∈Λd,b,A

|p(x)− p̃′(x)|dx. (16)

For any x ∈ Λd,b,A, we have p̃′(x) = p(λA) by the definition of p̃′. Also, since p ∈ DL(G), p
satisfies the L-Lipschitz condition which implies

|p(x)− p̃′(x)| = |p(x)− p(λA)| ≤ L · ∥x− λA∥2 ≤ L
√
d/(2b). (17)
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By plugging (17) into (16), we have

∥p− p̃′∥1 ≤
∑

A∈[b]d

∫
x∈Λd,b,A

L
√
d/(2b)dx = L

√
d/(2b). (18)

For the second term ∥p̃′ − p̃∥1, we observe that p̃ is simply a scaled version of p̃′ by a factor of 1/Z.
Namely, we have

∥p̃′∥1 = Z and ∥p̃′ − p̃∥1 = |Z − 1| since ∥p̃∥1 = 1.
By (18) and the fact of ∥p∥1 = 1, we further have

|Z − 1| = |∥p̃′∥1 − 1| ≤ ∥p− p̃′∥1 ≤ L
√
d/(2b) which implies ∥p̃′ − p̃∥1 ≤ L

√
d/(2b).

(19)
By plugging (18) and (19) into (15), we have

∥p− p̃∥1 ≤ L
√
d/(2b) + L

√
d/(2b) = L

√
d/b.

B.3 Proof of Main Theorems

With the previous results established we can now prove the core sample complexity results of this
work.

Proof of Theorem 3.1. Recall that Lemma B.3 states the following. There is a deterministic algorithm
that, given a collection of M distributions C = {p1, . . . , pM}, any 0 < ε < 1 and at least log(3M2/δ)

2ε2

i.i.d. samples drawn from an unknown distribution p, outputs an index j ∈ [M ] such that

∥pj − p∥1 ≤ 3 min
i∈[M ]

∥pi − p∥1 + 4ε with probability at least 1− δ

3
.

We will use the algorithm from Lemma B.3 by taking the collection C to be the ε-cover for Tb(G).
Here, we determine b ∈ N later. By Proposition B.6, we have

logM = log|C| ≤ dbr log(
2dr+1b

ε
)

and, by Theorem B.7, there exists a p′ ∈ Ud,b(Tb(G)) such that

∥p− p′∥1 ≤
√
dL

b
which implies there exists a p′′ ∈ C such that

∥p− p′′∥1 ≤ ∥p− p′∥1 + ∥p′ − p′′∥1 ≤
√
dL

b
+ ε.

Namely, whenever n ≥ dbr log( 2dr+1b
ε )

ε2 + log(3/δ)
2ε2 i.i.d. samples are drawn from p, the distribution q

returned by the algorithm in Lemma B.3 satisfies

∥q − p∥1 ≤ 3

(√
dL

b
+ ε

)
+ 4ε =

3
√
dL

b
+ 7ε with probability at least 1− δ

3
.

Now, by picking b = Θ(
√
dL
ε ), the desired result follows.

Proof of Theorem 3.2. The proof is the same as in Theorem 3.1 except that we need to another
ε-cover for

⋃
G∈G Tb(G). For any G ∈ G, let CG be the ε-cover for Tb(G). By taking

⋃
G∈G CG to

be the ε-cover for
⋃

G∈G Tb(G), we have

logM = log|C| ≤ log
( ∑
G∈G

|CG|
)
.

By Proposition B.6, each of |CG| is bounded above by ( 2d
r+1b
ε )db

r

and, by considering all possible
graphs, |G| is bounded above by 2d

2

. In particular, when r = 1, we have |G| = 1. Hence, we have

logM ≤

{
dbr log( 2d

r+1b
ε ) + d2 if r > 1

db log( 2d
2b
ε ) if r = 1

and we can conclude the desired result by following the rest of the proof in Theorem 3.1.
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C Proofs on Graph Resilience

For proofs in this section it will be implicit that graphs with a subscript, Gi, are equal to (Vi, Ei).

For proofs in this section we will introduce a useful concept we term a pre-disintegration of a graph.

Definition C.1. For any graph G = (V,E), we define a pre-disintegration of G to be a tuple of
subsets of V which satisfies the properties 1, 2, and, 4 in Definition 3.1 of disintegration, noting that
some entries of a pre-disintegration may be the empty set, including the first entry.

In other words, the only difference between a pre-disintegration and a disintegration is that, in
each step, we do not have to select a vertex in every connected component. The length of a
pre-disintegration, D, is defined to be the largest r such that Dr is nonempty and we call such
pre-disintegration a r-pre-disintegration. We now have the following lemma on pre-disintegrations.

Lemma C.1. For any graph G, if there is a ℓ-pre-disintegration of G, then r(G) ≤ ℓ.

Proof of Lemma C.1. Let D be the set of all pre-disintegration of G. For any D ∈ D and any vertex
v ∈ V where V is the vertex set of G, we define D−1 to be a function from V to N such that D−1(v)
is the index i where v ∈ Di. We will now define a partial order on D. For any D and D′ in D, we
say D ≤ D′ if D−1(v) ≤ D′−1

(v) for all v ∈ V . Namely, every vertex v appears no later in D than
in D′. From the assumption, there exists a ℓ-pre-disintegration of G, D̂. Similarly to the definition of
the length of a pre-disintegration, trailing empty sets are simply ignored to satisfy the antisymmetry
property for a partial order. Hence, the set {D ∈ D | D ≤ D̂} is finite and there must exist a minimal
element, D∗. By removing trailing empty sets from D∗, the length of D∗ is no larger than ℓ.

Now, we need to show D∗ is a disintegration. Since D∗ is a pre-disintegration, it satisfies the
properties 1, 2, and, 4 in Definition 3.1. Namely, we need to check the properties 3 and 5. For 3,
we prove it by contradiction. When D∗ violates 3, there is a connected component G′ of G such
that no v ∈ V ′, where V ′ is the vertex set of G′, is in D∗

1 . Let v′ be argminv∈V ′ D∗−1(v) and i′ be
D∗−1(v′), i.e. the earliest vertex in V ′ appears in D∗. We construct a new pre-disintegration D̂∗ by
setting D̂∗ = D∗ except that D̂∗

1 = D∗
1 ∪ {v′} and D̂∗

i′ = D∗
i′ \ {v′}, i.e. we move v′ to the first step.

Hence, we have D̂∗ ≤ D∗ and D̂∗ ̸= D∗ which contradicts the minimality of D∗. We can perform
the identical argument to show 5.

Equipped with Lemma C.1, we can now commence with the proofs from the main text.

Proof of Lemma 4.1. We will assume V1, . . . , Vm contain distinct elements for convenience. We now
prove the statement by showing the following two inequalities: 1) maxi∈[m] r(Gi) ≥ r(

⊕
i∈[m] Gi)

and 2) maxi∈[m] r(Gi) ≤ r(
⊕

i∈[m] Gi).

For 1) maxi∈[m] r(Gi) ≥ r(
⊕

i∈[m] Gi): Let r be the maximum of the graph resilience of Gi, i.e.
r = maxi∈[m] r(Gi), and D(i) be a r(Gi)-disintegration for i ∈ [m]. We construct a r-tuple D by
setting the j-th step to be Dj =

⋃
i∈[m] D

(i)
j . It is easy to check that D satisfies Definition 3.1 and

hence D is a r-disintegration of
⊕

i∈[m] Gi. By Definition 3.2, the inequality r ≥ r(
⊕

i∈[m] Gi)

follows.

For 2) maxi∈[m] r(Gi) ≤ r(
⊕

i∈[m] Gi): Let r be the graph resilience of
⊕

i∈[m] Gi, i.e. r =

r
(⊕

i∈[m] Gi

)
, and D be a r-disintegration of

⊕
i∈[m] Gi. We construct m tuples D(1), . . . , D(m)

by setting

D
(j)
i =

{
v ∈ V | v ∈ Vj ∩Di

}
for all j ∈ [m] and i ∈ [r].

It is easy to check that, for each j ∈ [m], D(j) satisfies Definition C.1 and hence D(j) is a r-pre-
disintegration of Gj . By Definition 3.2 and Lemma C.1, we have r(Gi) ≤ r for all i ∈ [m] and
hence the inequality maxi∈[m] r(Gi) ≤ r follows.
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Proof of Lemma 4.2. We will prove for the case where |V ′| = 1. Note that the lemma statement
follows from repeated application of this case.

We will proceed by contradiction. Suppose there exists G and v such r(G) ≥ r(G \ {v}) + 2. Let D̃
be a r(G \ {v})-disintegration of G \ {v}. If we define a tuple D with D1 = v and Di+1 = D̃i for
all i, it is clear that D is a (r(G \ {v}) + 1)-pre-disintegration of G. The contradiction follows from
the application of Lemma C.1.

Proof of Lemma 4.3. We will prove for the case where |E′| = 1, the lemma follows from repeated
application of this case. Without loss of generality let E′ = (1, 2). Let D be an r-disintegration of G.
Let D̃ be a (r+1)-tuple with D̃1 = {1} and D̃i = Di−1 \ {1} for i ∈ {2, . . . , r+1}. Then D̃ is an
pre-disintegration of G′ with length r + 1. This case follows from Lemma C.1.

Proof of Lemma 4.4. Let D be a r(G)-disintegration. Let D̃ be the sequence of subsets of V ′ when
one removes the elements of in V \ V ′ from D. Clearly, D̃ is a pre-disintegration of G′, with length
at most r(G). The lemma follows from application of Lemma C.1.

Proof of Lemma 4.6. It is clear that when G with d vertices is a complete graph that r(G) = d. For
the reverse direction, suppose that G is a graph with V = [d] with no edge between d− 1 and d. We
can define a pre-disintegration where Di = {i} for i ∈ [d− 2] and Dd−1 = {d− 1, d}. The lemma
follows from application of Lemma C.1.

Proof of Lemma 4.7. When E = ∅ clearly D1 = V is a disintegration.

If E ̸= ∅ then there must exist two vertices in some component so D1 = V does not satisfy the
component property of a disintegration, thus D2 ̸= ∅ for any disintegration of G.

Proof of Lemma 4.8. One can simply choose the center vertex as the first entry of a disintegration
and the remaining vertices as the rest.

Proof of Lemma 4.9. We construct a r-tuple D as follows. For all i ∈ [r], set Di to be the set of all
tree vertices at the i-th level in G. Here, we define the root node to be at the first level. It is easy to
check that D a r-disintegration. By Definition 3.2, we have r(G) ≤ r.

Proof of Lemma 4.10. Let V be the vertex set. For any vertex v ∈ V , let αv be the maximum
number of vertices in the connected components after removing v. We would like to show that there
exists a vertex v∗ such that αv∗ ≤ ⌊d

2⌋. We prove it by contradiction. Let v′ be argminv∈V αv and
V1, . . . , Vt be the vertex sets of the connected components after removing v′. We have αv′ > ⌊d

2⌋
which means that there is a connected component whose number of vertices is strictly larger than
⌊d
2⌋. Note that there is only one such component since the sum of the number of vertices of other

components is strictly less than d− 1− ⌊d
2⌋. WLOG, let V1 be the vertex set of that component. Let

v′′ be the vertex in V1 sharing an edge with v′. We want to argue that αv′′ < αv′ which contradicts
the definition of v′. To see this, we examine the number of vertices in the connected components after
removing v′′. We use the fact that G is a tree. For the component whose vertex set is ∪t

i=2Vi ∪ {v′},
the size is strictly less than (d− 1− ⌊d

2⌋) + 1 = d− ⌊d
2⌋ ≤ αv′ . For any component inside V1, the

size is less than ⌊d
2⌋ − 1 < αv′ . Namely, we have αv′′ < αv′ . Therefore, there exists a vertex v∗

such that αv∗ ≤ ⌊d
2⌋.
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Now, we remove v∗ in the first step and all the connected components, G1, . . . , Gt, has at most ⌊d
2⌋

vertices. By induction, we have
r(G) ≤ r(G \ {v∗}) + 1 by Lemma 4.2

= r(
⊕
i∈[t]

Gi) + 1

= max
i∈[t]

r(Gi) + 1 by Lemma 4.1

≤
(
log2(⌊

d

2
⌋) + 1

)
+ 1 by the inductive assumption

= log2(d) + 1.

Proof of Proposition 4.11. We will prove the statement by induction on s.

Base case s = 1: When s = 1, we observe that Lt
t(21−1) = Lt

t is a complete graph with t vertices.
By Lemma 4.6, we have r(Lt

t) = t ≤ 1 · t.

Inductive step s > 1: Let V ′ ⊂ V be {t(2s−1 − 1) + i | i ∈ [t]}. Note that |V ′| = t. By Lemma
4.2, we have

r(Lt
t(2s−1)) ≤ r(Lt

t(2s−1) \ V
′) + t.

In other words, we first remove the "middle" t vertices from the graph. By the definition of path graphs
(Definition 4.2), it is easy to check that there is no edge between i and j for i = 1, . . . , t(2s−1 − 1)
and j = t(2s−1 − 1) + t + 1, . . . , t(2s − 1). Therefore, there are two connected components and
clearly each of them is isomorphic to Lt

t(2s−1−1). Let G1 and G2 be the two connected components,
i.e. Lt(2s−1) \ V ′ = G1 ⊕G2. Then, we have

r(Lt
t(2s−1)) ≤ r(G1 ⊕G2) + t

= max{r(G1), r(G2)}+ t by Lemma 4.1
≤ (s− 1)t+ t by the inductive assumption
= st.

Proof of Corollary 4.12. Let s be ⌈log2(dt + 1)⌉. By the definition of path graphs (Definition 4.2),
we have Lt

d ≤ Lt
t(2s−1) (recall that ≤ means being isomorphic to a subgraph). Hence, we have

r(Lt
d) ≤ r(Lt

t(2s−1)) by Lemma 4.4

≤ s · t by Proposition 4.11
= O(t log d).

Proof of Proposition 4.13 . We will prove the statement by induction on s.

Base case s = 1: When s = 1, we observe that Lt
t(21−1)×t(21−1) = Lt

t×t is a complete graph with
t2 vertices. By Lemma 4.6, we have r(Lt

t×t) = t2 ≤ 4t221.

Inductive step s > 1: Let d′ be t(2s−1 − 1). Let V ′ ⊂ V be

V ′ ≜ {(d′ + i, j) | i ∈ [t], j ∈ [t(2s − 1)]} ∪ {(i, d′ + j) | i ∈ [t(2s − 1)], j ∈ [t]}.
Note that |V ′| = t2 + 4t2d′ ≤ 4t22s−1. By Lemma 4.2, we have

r(Lt
t(2s−1)×t(2s−1)) ≤ r(Lt

t(2s−1)×t(2s−1) \ V
′) + 4t22s−1.

In other words, we first remove the vertical and horizontal "middle" stripes from the graph. By the
definition of grid graphs (Definition 4.3), it is easy to check that there is no edge between (i1, j1) and
(i2, j2) if one of the followings happens:
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d′ = t(2s−1 − 1) d′ = t(2s−1 − 1)t

d
′
=

t(
2
s
−
1
−

1)
d
′
=

t(
2
s
−
1
−

1
)

t

G3 G4

G1 G2

V ′V ′ V ′

V ′

V ′

Figure 6: Illustration of V ′, G1, G2, G3, G4 in the proof of Proposition 4.13

• i1 = 1, . . . , t(2s−1 − 1) and i2 = t(2s−1 − 1) + t+ 1, . . . , t(2s − 1)

• j1 = 1, . . . , t(2s−1 − 1) and j2 = t(2s−1 − 1) + t+ 1, . . . , t(2s − 1).

Therefore, there are four connected components and clearly each of them is isomorphic to
Lt
t(2s−1−1)×t(2s−1−1). Let G1, G2, G3, G4 be the four connected components, i.e. Lt

t(2s−1)×t(2s−1)\
V ′ = G1 ⊕G2 ⊕G3 ⊕G4. See figure 6 for the graphical illustration. Then, we have

r(Lt
t(2s−1)×t(2s−1)) ≤ r(G1 ⊕G2 ⊕G3 ⊕G4) + 4t22s−1

≤ max{r(G1), r(G2), r(G3), r(G4)}+ 4t22s−1 by Lemma 4.1

≤ 4t22s−1 + 4t22s−1 by the inductive assumption

= 4t22s.

Proof of Corollary 4.14. Let s be ⌈log2(kt + 1)⌉. By the definition of grid graphs (Definition 4.3),
we have Lt

k×k ≤ Lt
t(2s−1)×t(2s−1) (recall that ≤ means being isomorphic to a subgraph). Hence, we

have

r(Lt
k×k) ≤ r(Lt

t(2s−1)×t(2s−1)) by Lemma 4.4

≤ 4t22s by Proposition 4.13

= O(t2k) = O(t2
√
d).

Proof of Lemma 4.15. We will assume V1, . . . , Vk all contain m vertices and for all i for all v, v′ ∈ Vi,
v is adjacent to v′ (all of the blocks are fully connected). We will prove the lemma for this case, the
lemma statement then follows from application of Lemma 4.4.

We will denote the vertices of Vi as vi,1, . . . , vi,m. Let D′ be a t-disintegration of G′. Let D be a
t×m-tuple, where Di,j = {vi,j | i ∈ Di, j = j}. If one considers D in lexicographical order, then
it is clearly a pre-disintegration of G with length mt. This case then follows from Lemma C.1.
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D Optimality of Rates with Respect to d and r

Consider a fixed dimension d and resilience r. Let G be a graph where vertices 1, . . . , r form a
complete subgraph, and vertices r + 1, . . . , d are isolated (not adjacent to any other vertex). Let
L > 0, and suppose we have an estimator that can estimate densities in DL(G) at rate O(n−1/(2+r−ε))
for some ε > 0. Let p ∈ Dr,L and X1, . . . , Xr ∼ p. We will construct an estimator for p using the
aforementioned estimator. Define X̃1, . . . , X̃d ∼ p̃ as follows:

(X̃1, . . . , X̃r)
d
= (X1, . . . , Xr),

X̃r+1, . . . , X̃d
iid∼ Unif([0, 1]),

where (X̃1, . . . , X̃r) and (X̃r+1, . . . , X̃d) are independent.

Note that p̃ ∈ DL(G). Let p̂ be an estimator for p̃ such that

∥p̃− p̂∥1 ∈ O
(
n−1/(r+2−ε)

)
.

Let L denote the law of a random vector. It is well known that for any function f from one
Euclidean space to another, ∥L(f(X))− L(f(Y ))∥1 ≤ ∥L(X)− L(Y )∥1 (see Devroye and Lugosi
(2001), Section 5.4). We will use f : (x1, . . . , xd) 7→ (x1, . . . , xr). Let Y1, . . . , Yd ∼ p̂. Using
L((Y1, . . . , Yr)) as an estimator for p, we have:

∥L((Y1, . . . , Yr))− p∥1 = ∥L((Y1, . . . , Yr))− L((X1, . . . , Xr))∥1
≤ ∥L((Y1, . . . , Yd))− L((X1, . . . , Xd))∥1
= ∥p̂− p̃∥1
∈ O(n−1/(r+2−ε)).

This shows we can estimate all densities in Dr,L at rate O
(
n−1/(r+2−ε)

)
, while the known optimal

rate is O
(
n−1/(r+2)

)
. Thus, for any r and d, there exists a graph with d vertices and resilience r

such that estimation of densities in DL(G) can be no faster than O
(
n−1/(r+2)

)
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction reflect the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided the full proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: We do not have experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our result is a theoretical result.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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