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ABSTRACT

Achieving both strong Differential Privacy (DP) and efficient optimization is crit-
ical for Federated Learning (FL), where client data must remain confidential with-
out compromising model performance. However, existing methods typically sac-
rifice one for the other: they either provide robust DP guarantees at the cost of as-
suming bounded gradients/data heterogeneity, or they achieve strong optimization
rates without any privacy protection. In this paper, we bridge this gap by intro-
ducing Clip21-SGD2M, a novel method that integrates gradient clipping, heavy-
ball momentum, and error feedback to deliver state-of-the-art optimization and
strong privacy guarantees. Specifically, we establish optimal convergence rates
for non-convex smooth distributed problems, even in the challenging setting of
heterogeneous client data, without requiring restrictive boundedness assumptions.
Additionally, we demonstrate that Clip21-SGD2M achieves competitive (local)
DP guarantees, comparable to the best-known results. Numerical experiments on
non-convex logistic regression and neural network training confirm the superior
optimization performance of our approach across a wide range of DP noise levels,
underscoring its practical value in real-world FL applications.

1 INTRODUCTION

Federated Learning (FL) (Konečný et al., 2016; McMahan et al., 2017a) is a modern training
paradigm where multiple (possibly heterogeneous) clients aim to collaboratively train a shared
model without exposing their private data. This paradigm brings a host of design challenges, in-
cluding communication efficiency, partial participation of clients, data heterogeneity, security, and
privacy (Kairouz et al., 2021; Wang et al., 2021), which have spurred the development of numer-
ous optimization methods for FL. Yet despite this progress, it remains difficult to design FL algo-
rithms that achieve both fast optimization convergence and strong differential privacy (DP) guaran-
tees (Dwork et al., 2014) due to the conflicting nature of these objectives. Indeed, most of the results
in the field of DP are obtained by injecting noise (e.g. Gaussian noise) into the method’s update
(Abadi et al., 2016; Chen et al., 2020) to protect the client’s data and prevent data reconstruction.
This inevitably reduces update accuracy and slows convergence. Furthermore, to control sensitivity
and ensure DP, updates must be bounded—typically by applying gradient clipping (Pascanu et al.,
2013)—before noise injection.

In FL, data heterogeneity is ubiquitous and critically affects algorithmic behavior. Indeed, naı̈ve
distributed Clipped Gradient Descent (Clip-GD) can fail to converge under heterogeneous client
data—even without any DP-noise (Khirirat et al., 2023). To tackle this issue, Khirirat et al. (2023)
embeds the EF21mechanism—originally proposed by Richtárik et al. (2021) to enhance standard Er-
ror Feedback (Seide et al., 2014) for contractive compressors—into Clip-GD, resulting in a method
known as Clip21-GD. They prove that, unlike Clip-GD, Clip21-GD attains an O(1/T) rate on
smooth non-convex objectives for arbitrary heterogeneous data on clients. However, their guaran-
tees rely on full-batch gradients and break down in the presence of DP noise. This leads us to the
natural question:

Is it possible to design a method that achieves both fast convergence and strong DP guarantees
while accommodating arbitrary data heterogeneity?
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Our contribution. We answer this affirmatively by introducing Clip21-SGD2M, a novel algo-
rithm that integrates gradient clipping, error-feedback, and Heavy-Ball momentum (Polyak, 1964).
For smooth non-convex distributed objectives under arbitrary data heterogeneity, we prove that
Clip21-SGD2M (i) attains the optimal O(1/T) in the full-batch regime, (ii) achieves the optimal
high-probability convergence rate Õ(1/

√
nT) when using sub-Gaussian stochastic gradients, and

(iii) achieves competitive local DP-error when DP-noise is added to the clients’ updates. We fur-
ther show that Clip21-SGD can fail to converge with stochastic gradients, underscoring the critical
role of our momentum extension. Our experiments on logistic regression and neural networks high-
light the robustness of Clip21-SGD2M across clipping thresholds and its competitive privacy-utility
trade-off compared to several baselines at fixed DP budgets.

1.1 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the optimization problem of the form

min
x∈Rd

[
f(x) := 1

n

∑n
i=1 fi(x)

]
, (1)

where x are the model parameters, fi is the loss associated with the local dataset Di of worker
i ∈ [n], and f is the overall average loss across all n clients.

We work under two standard assumptions. First, we assume smoothness and a finite optimum (Car-
mon et al., 2020; Danilova et al., 2022).
Assumption 1.1. Each individual loss function fi is L-smooth, i.e., for any x, y ∈ Rd and i ∈ [n]
we have

∥∇fi(x)−∇fi(y)∥≤ L∥x− y∥. (2)
Moreover, we assume that f∗ := infx∈Rd f(x) > −∞.

Our analysis can be straightforwardly generalized to allow each fi to have its own smoothness
constant Li. Second, since full gradients are often impractical, we model stochastic gradients with
sub-Gaussian noise.
Assumption 1.2. Each worker i has access to a σ-sub-Gaussian unbiased estimator ∇fi(x, ξ) of a
local gradient ∇fi(x), i.e., for some1 σ ≥ 0 and any x ∈ Rd and ∀i ∈ [n] we have

E [∇fi(x, ξ)] = ∇fi(x),E
[
exp

(
∥θi∥2

/σ2
)]

≤ exp(1), (3)

where ξ denotes the source of the stochasticity and θi := ∇fi(x, ξ)−∇fi(x).

Although this assumption is stronger than bounded variance, it is standard for the high-probability2

analysis of SGD-type methods with polylogarithmic dependence on the confidence level (Nemirovski
et al., 2009; Ghadimi & Lan, 2012). Equivalently, the second part of (3) implies the tail bound
Pr (∥θti∥≥ b) ≤ 2 exp

(
−b2/(2σ2)

)
(up to constant factors in σ2) (Vershynin, 2018). Our results can

be extended to heavier sub-Weibull tails (Madden et al., 2024)—still with only polylogarithmic de-
pendence on the confidence level—at the cost of worse logarithmic factors in the final rates (Madden
et al., 2024).

Finally, we introduce two key definitions. The first one is the clipping operator, a nonlinear map
from Rd to Rd parameterized by the clipping threshold/level τ > 0 and defined as

clipτ (x) :=

{
τ

∥x∥x, if ∥x∥> τ,

x, if ∥x∥≤ τ.
(4)

Second, we recall the standard definition of (ε, δ)-Differential Privacy, which introduces plausible
deniability into the output of a learning algorithm.
Definition 1.3 ((ε, δ)-Differential Privacy (Dwork et al., 2014)). A randomized method M : D →
R satisfies (ε, δ)-Differential Privacy ((ε, δ)-DP) if for any adjacent datasets D,D′ ∈ D (e.g., if D
and D′ differ in 1 sample) and for any S ⊆ R

Pr (M(D) ∈ S) ≤ eε Pr (M(D′) ∈ S) + δ. (5)
1For simplicity, we define 0/0 := 0. Then, (3) with σ = 0 implies ∇fi(x, ξ) = ∇fi(x) almost surely.
2We elaborate on the reasons why we focus on high-probability analysis in Section 3.2.
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In this definition, the smaller ε, δ are, the more private the method is. Intuitively, if inequality (5)
holds with small values of ε and δ, it becomes difficult to infer the specific data point that differs
between two similar datasets based solely on the output of M.

1.2 RELATED WORK

Differential Privacy. The standard recipe for differential privacy in federated learning is to first
clip each client’s update to a fixed ℓ2-norm bound and then add Gaussian noise—either to each
individual update or to their aggregated average—so as to mask the influence of any single partic-
ipant (McMahan et al., 2017b). There are two prevailing privacy models. In the central model, a
trusted server gathers updates from clients and injects noise only when forming the global update;
this protects client data from external observers but still requires trusting the server. In the local
model, each client clips and perturbs its own update before transmission, thus safeguarding privacy
even against the server and other clients (Kasiviswanathan et al., 2011; Allouah et al., 2024). While
local privacy offers stronger protection, it typically degrades learning accuracy, since heavier noise
is needed to obscure individual updates (Chan et al., 2012; Duchi et al., 2018). This trade-off can
be mitigated by using secure shuffling, which randomly permutes client updates before aggregation
(Erlingsson et al., 2019; Balle et al., 2019), or a secure aggregator (Bonawitz et al., 2017), which
sums updates before sending them to the server. These methods anonymize updates and enhance
privacy while maintaining reasonable learning performance, even without a fully trusted server. Fi-
nally, (Chaudhuri et al., 2022; Hegazy et al., 2024) show that when DP is required, one can also
achieve compression of updates for free.

In this work, we adopt the local DP model by injecting Gaussian noise into each client’s update.
However, the average noise can also be viewed as noise added to the average update. Therefore,
Clip21-SGD2M is compatible with all the aforementioned techniques and can also be applied to the
central DP model with a smaller amount of noise. However, it is worth mentioning that our analysis
is not directly compatible with the privacy amplification by sub-sampling (Balle et al., 2018; Li
et al., 2012; Dong et al., 2025; Bonawitz et al., 2017), which is another important tool for achieving
improved DP guarantees.

Error Feedback. Error Feedback (EF) (Seide et al., 2014) is widely used to incorporate commu-
nication compression into distributed and federated learning, but its convergence theory for smooth
non-convex objectives has remained limited. Existing analyses either focus on the single-node set-
ting or impose stringent conditions—such as bounded gradient/compression error, or under data
heterogeneity (gradient dissimilarity)—to prove convergence (Stich et al., 2018; Stich & Karim-
ireddy, 2019; Karimireddy et al., 2019; Koloskova et al., 2019; Beznosikov et al., 2023; Tang et al.,
2019; Xie et al., 2020; Sahu et al., 2021). Moreover, the known EF convergence rates degrade in
the presence of client heterogeneity, and this dependence is not merely an artifact of the proofs—it
shows up empirically in solving strongly convex problems (Gorbunov et al., 2020b). To overcome
these drawbacks, Richtárik et al. (2021) introduced EF21, a variant whose convergence guarantees
no longer rely on heterogeneity bounds; however, EF21-SGD still requires increasingly large batch
sizes to reach any fixed accuracy (Fatkhullin et al., 2021). Fortunately, this drawback is not fun-
damental: recent work demonstrates that adding Heavy-Ball momentum removes the large-batch
requirement (Fatkhullin et al., 2024), and momentum likewise enhances EF’s performance in decen-
tralized setting (Yau & Wai, 2022; Huang et al., 2023; Islamov et al., 2024a).

Distributed methods with clipping. In the single-node setting, Clip-SGD has been rigorously
studied under a range of assumptions (Zhang et al., 2020b;c;a; Gorbunov et al., 2020a; Cutkosky
& Mehta, 2021; Sadiev et al., 2023; Liu et al., 2023). These analyses extend to multi-client train-
ing when clipping is applied to the aggregate (e.g., the averaged update), although mini-batching
requires a refined analysis when the noise is heavy-tailed (Kornilov et al., 2024). However, en-
suring DP requires clipping each client’s communicated update before aggregation; in this regime
Clip-SGD can fail to converge even with deterministic gradients (Chen et al., 2020; Khirirat et al.,
2023). To recover convergence, prior work imposes additional restrictive heterogeneity bounds.
For instance, Liu et al. (2022) prove convergence of a clipped FedAvg/Local-SGD variant under
homogeneous clients with gradients symmetric around their mean, and Wei et al. (2020) analyze
clipped Local-SGD assuming bounded heterogeneity. Other approaches assume bounded gradients
(thereby implicitly bounding heterogeneity): Zhang et al. (2022) study FedAvg with clipping of
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model differences (see also the empirical study in (Geyer et al., 2017)); Noble et al. (2022) propose
and analyze DP-SCAFFOLD; Li & Chi (2023) develop PORTER (a clipped BEER) under bounded-
gradient/heterogeneity assumptions; Allouah et al. (2023) give convex lower bounds and new upper
bounds for distributed SGD with momentum and clipped stochastic gradients; and Allouah et al.
(2024) study clipped Gossip-SGD (DECOR). While these methods come with formal DP guarantees,
none prove convergence without some bounded heterogeneity condition. Moreover, several works
require the clipping threshold to exceed the norm of the communicated vector (Zhang et al., 2022;
Noble et al., 2022; Allouah et al., 2023; 2024), rely on symmetric gradient noise (Liu et al., 2022),
or assume full-gradient computation at clients (Wei et al., 2020). In this work, we remove these limi-
tations: Clip21-SGD2M achieves fast optimization and strong (local-)DP guarantees under arbitrary
data heterogeneity.

Challenges of Coupling Error Feedback and Clipping. Various prior works have combined er-
ror feedback with clipping. In particular, Khirirat et al. (2023) introduced Clip21-GD by embedding
the EF21 mechanism into the gradient-clipping operator, while Gorbunov et al. (2024) developed al-
gorithms that clip the difference between stochastic gradients and learnable shifts – an idea originally
proposed by Mishchenko et al. (2019) to address data heterogeneity under unbiased communication
compression. Viewing clipping as a contractive compressor, as suggested by Khirirat et al. (2023),
highlights a key limitation: standard contractive compressors admit a uniform contraction factor
across all inputs, whereas the contractive behavior of clipping is inherently input-dependent. To
address this limitation, Khirirat et al. (2023) analyzed Clip21-GD only in a full-batch, noise-free
regime and without a valid DP guarantee.3 More recently, Shulgin et al. (2025a;b) partially closed
this DP gap by replacing clipping with a smoothed normalization operator. However, their guaran-
tees still depend on full-batch gradients and careful initialization. Thus, it remains an open problem
whether error feedback and clipping can be combined in a way that avoids such restrictive theoretical
assumptions.

2 NON-CONVERGENCE OF CLIP-SGD AND CLIP21-SGD

We start with a discussion of the key limitation of Clip-SGD (Algortihm 1) and Clip21-SGD
(Alg. 2) – their potential non-convergence.

Algorithm 1 Clip-SGD (Abadi et al., 2016)

Require: x0 ∈ Rd, stepsize γ > 0, clipping pa-
rameter τ > 0

1:
2: for t = 0, . . . , T − 1 do
3:
4: for i = 1, . . . , n in parallel do
5:
6: gti = clipτ (∇fi(x

t, ξti))
7: end for
8: gt = 1

n

∑n
i=1 g

t
i

9: xt+1 = xt − γgt

10: end for

Algorithm 2 Clip21-SGD (Khirirat et al., 2023)

Require: x0, g0 ∈ Rd, stepsize γ > 0, clipping
parameter τ > 0

1: Initialize g0i = g0 for all i ∈ [n]
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − γgt

4: for i = 1, . . . , n in parallel do
5: ct+1

i = clipτ (∇fi(x
t+1, ξt+1

i )− gti)

6: gt+1
i = gti + ct+1

i
7: end for
8: gt+1 = gt + 1

n

∑n
i=1 c

t+1
i

9:
10: end for

We start by restating the example from (Chen et al., 2020) illustrating the potential non-convergence
of Clip-SGD even when full gradients are computed on clients (Clip-GD).

Example 2.1 (Non-Convergence of Clip-GD (Chen et al., 2020)). Let n = 2, d = 1, and f1(x) =
1
2 (x− 3)2, f2(x) = 1

2 (x+ 3)2 in problem (1) having a unique solution x∗ = 0. Consider Clip-GD
with τ = 1 applied to this problem. If for some t0 we have xt0 ∈ [−2, 2] in Clip-GD, then gt = 0
and xt = xt0 for any t ≥ t0, which can be seen via direct calculations. In particular, for any
x0 ∈ [−2, 2], the method does not move away from x0.

3The DP guarantee in Khirirat et al. (2023) relies on the condition that for some C > 1 and ν, σω ≥ 0, one
has min{ν2, σ2

ω} ≥ Cmax{ν2, σ2
ω}. This holds if and only if ν = σω = 0, implying that no DP noise is

added, since σ2
ω denotes the variance of the DP noise.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Iterations

10¡5

10¡4

10¡3

10¡2

10¡1

100

101

Tr
ai

n 
Lo

ss

Clip21-SGD ¿=1
Clip21-SGD ¿=0:1
Clip21-SGD ¿=0:01

Clip21-SGD2M ¿=1
Clip21-SGD2M ¿=0:1
Clip21-SGD2M ¿=0:01

0 2000 4000 6000 8000 10000
Iterations

10¡3

10¡2

10¡1

100

Tr
ai

n 
Lo

ss

n=5; ¿=1

n=5; ¿=0:1

n=5; ¿=0:01

n=10; ¿=1

n=10; ¿=0:1

n=10; ¿=0:01

n=50; ¿=1

n=50; ¿=0:1

n=50; ¿=0:01

n=100; ¿=1

n=100; ¿=0:1

n=100; ¿=0:01

Figure 1: Left: behavior of stochastic Clip21-SGD and Clip21-SGD2M without DP noise (see
Alg. 3) initialized at x0 = (0,−0.07)⊤, with stepsize γ = 1/

√
T where T = 104, i.e., close to

the solution and small stepsize. We observe that Clip21-SGD escapes the good neighborhood of
the solution for the problem from Theorem 2.2 with n = 1, L = 2, σ = 5, and varying τ ∈
{1, 0.1, 0.01}. In contrast, Clip21-SGD2M remains stable around the solution. Right: convergence
of Clip21-SGD does not improve with the increase of n for the same problem.

To address Clip-GD’s non-convergence, Khirirat et al. (2023) introduce Clip21-GD, which applies
clipping not to raw gradients but to their “shifted” differences: ∇fi(x

t+1) − gti , where gti tracks
the previous gradient. In the deterministic setting, this guarantees that after enough iterations, every
client’s difference falls below the threshold τ in norm, so clipping effectively turns off and the
algorithm converges.

However, even if we replace the exact shift gti with the stochastic gradient itself, i.e., we use

xt+1 = xt − γgt, gt = 1
n

∑n
i=1 g

t
i ,

gt+1
i = ∇fi(x

t+1) + clipτ (∇fi(x
t+1, ξt+1

i )−∇fi(x
t+1)), (6)

this “idealized” stochastic version of Clip21-SGD can diverge. The following theorem demonstrates
non-convergence on a simple quadratic under sub-Gaussian noise.

Theorem 2.2. Let L, σ > 0, 0 < γ ≤ 1/L, n = 1. There exists a convex, L-smooth problem,
clipping parameter τ < 3σ

√
3/10, and an unbiased stochastic gradient satisfying Assumption 1.2

such that the method (6) is run with a stepsize γ and clipping parameter τ , then for all x0 ∈
{(0, x0

(2)) ∈ R2 | x0
(2) < 0} we have

E
[
∥∇f(xT )∥2

]
≥ 1

2 min
{
∥∇f(x0)∥2, τ2

45

}
. (7)

Moreover, fix 0 < ε < L/
√
2 and x0 = (0,−1)⊤. Let the sub-Gaussian variance of stochastic

gradients is bounded by σ2
/B where B is a batch size. If B < 27σ2

/(60ε2) and τ ≥ ε/(3
√
10), then we

have E
[
∥∇f(xT )∥2

]
> ε2 for all T > 0.

We also illustrate the above result with simple numerical experiments reported in Figure 1. The
left figure shows that Clip21-SGD diverges from the initial function sub-optimality level while the
right one demonstrates non-improvement with the number of workers n — one of the desired prop-
erties of algorithms for FL. We note that analogous reasoning applies to α-NormEC-SGD (Shulgin
et al., 2025a): While it enjoys similar convergence guarantees in the full-batch setting, it can fail to
converge once stochastic gradient noise is used.

3 CLIP21-SGD2M: NEW METHOD AND THEORETICAL RESULTS

We now introduce Clip21-SGD2M (Alg. 3) for private distributed training and outline its key com-
ponents. First, we employ client momentum with parameter β, which averages out stochastic gra-
dient noise by exploiting momentum’s variance–reduction effect (Ma & Yarats, 2018; Cutkosky &
Orabona, 2019). This removes the need for the full-batch updates assumed in prior work. A central
challenge in combining client-side momentum with DP, however, is that DP noise accumulates in the
momentum vector; to mitigate this, we incorporate a server-side momentum that damps and smooths
the noisy aggregated update. While similar double-momentum schemes have appeared in the op-
timization literature (Fatkhullin et al., 2024; Xu & Huang, 2022; Wang et al., 2023), to the best of
our knowledge, this is the first application in a DP setting analyzed under a standard smoothness as-
sumption. Finally, we adopt EF21-style error feedback on the client side to correct clipping-induced
client drift. Since clipping acts as a contractive compressor but with input-dependent contractivity,
standard EF analyses fail to apply. To overcome this, we first develop an induction-based analysis in

5
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Algorithm 3 Clip21-SGD2M

Require: x0, g0, v0 ∈ Rd (by default g0 = v0 = 0), momentum parameters β, β̂ ∈ (0, 1], stepsize
γ > 0, clipping parameter τ > 0, DP-variance parameter σ2

ω ≥ 0
1: Set g0i = g0 and v0i = v0 for all i ∈ [n]
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − γgt

4: for i = 1, . . . , n do
5: vt+1

i = (1− β)vti + β∇fi(x
t+1, ξt+1

i )

6: ωt+1
i ∼ N (0, σ2

ωI) only for DP version
7: ct+1

i = clipτ (v
t+1
i − gti)+ ωt+1

i

8: gt+1
i = gti + β̂ clipτ (v

t+1
i − gti)

9: end for
10: gt+1 = gt + β̂

n

∑n
i=1 c

t+1
i

11: end for

the deterministic regime by explicitly bounding the magnitude of the clipping input, and then extend
the result to the stochastic setting using a high-probability argument that guarantees steady progress
despite DP noise.

3.1 ANALYSIS IN THE DETERMINISTIC CASE

The next result derives a convergence rate for Clip21-SGD2M when ∇fi(x
t+1, ξt+1

i ) ≡ ∇fi(x
t)

almost surely, i.e., Assumption 1.2 holds with σ = 0.

Theorem 3.1 (Simplified). Let Assumptions 1.1 and 1.2 with σ = 0 hold. Let B :=

maxi∥∇fi(x
0)∥> 3τ and ∆ ≥ f(x0) − f∗. Then, for any constant β̂ ∈ (0, 1], there exists a

stepsize γ ≤ min{1/12L, τ/12BL} and momentum parameter β = 4Lγ such that the iterates of
Clip21-SGD2M (Algorithm 3) converge with the rate

1
T

∑T−1
t=0 ∥∇f(xt)∥2≤ O

(
L∆(1+B/τ)

T

)
. (8)

Moreover, after at most 2B
β̂τ

iterations, the clipping will eventually be turned off for all workers.

Proof sketch The proof of Theorem 3.1 (and all subsequent theorems) relies on a carefully con-
structed Lyapunov function:

Φt := δt + 2γ

β̂ηn

∑n
i=1∥gti − vti∥2+

8γβ

β̂2η2n

∑n
i=1∥vti −∇fi(x

t)∥2+ 2γ
β ∥vt −∇f(xt)∥2, (9)

where δt := f(xt) − f∗. The coefficients are calibrated so that all terms contribute on a compara-
ble scale to Φt. Once we establish a descent of Φt, it follows that both the learning shift variables
{gti}ni=1 and the momentum buffers {vti}ni=1 track the true gradients {∇fi(x

t)}ni=1, thereby justify-
ing their role in the method. The only new constant introduced is η, which captures the key technical
difficulty in the proof. Through an induction argument, and with a careful choice of η ∼ τ , we estab-
lish a uniform gap bound ∥vt+1

i − gti∥≤ τ/η. This result allows us to regard clipping as a contractive
operation on the increments vt+1

i −gti , thereby enabling a standard error-feedback analysis. The full
proof is provided in Appendix E.

This theorem guarantees an O(1/T) convergence rate, which is known to be optimal for smooth non-
convex first-order methods (Carmon et al., 2020; 2021). Notably, like Clip21-SGD, Clip21-SGD2M
also turns off clipping after finitely many iterations—once ∥vt+1

i − gti∥≤ τ . Crucially, our result
holds without any bounded-heterogeneity or bounded-gradient assumptions. By contrast, even un-
der such restrictive conditions, many prior nonconvex analyses (Liu et al., 2022; Zhang et al., 2022;
Li & Chi, 2023; Allouah et al., 2024) fail to achieve an O(1/T) rate in the noise-free setting.

3.2 ANALYSIS IN THE STOCHASTIC CASE WITHOUT DP-NOISE

Next, we turn to the stochastic setting where each worker has access to local gradient estimators
satisfying Assumption 1.2. First, we consider the case without DP noise, i.e., non-private training.

6
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Theorem 3.2 (Simplified). Let Assumptions 1.1 and 1.2 hold and α ∈ (0, 1). Let B̃ :=

maxi∥∇fi(x
0)∥> 3τ and ∆ ≥ Φ0. Then, for any constant β̂ ∈ (0, 1], there exists a stepsize γ

and momentum parameter β such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
at least 1− α are such that 1

T

∑T−1
t=0 ∥∇f(xt)∥2 is bounded by

Õ
(

L∆(1+B̃/τ)
T + σ(

√
L∆+B̃+σ)√

Tn

)
(10)

where Õ hides constant and polylogarithmic factors, and higher order terms that decrease in T .

Proof sketch. The proof follows the same overall structure as Theorem 3.1, but with the key compli-
cation that the increments vt+1

i −gti are now random and can, in principle, grow without bound under
Assumption 1.2. To handle this, we switch to a high-probability argument: by inductively showing
that, with a large probability, each vt+1

i − gti stays below a fixed threshold, we recover a contrac-
tive property of the clipping operator on these random vectors. The remainder of the proof then
mirrors the deterministic case, augmented by careful martingale-difference concentration bounds;
see Appendix H for full details. This result demonstrates that Clip21-SGD2M achieves an optimal
O(1/

√
nT) (Arjevani et al., 2023) rate in the stochastic setting. In contrast to the previous works

establishing similar rates (Liu et al., 2022; Noble et al., 2022; Allouah et al., 2024), our result does
not rely on the boundedness of the gradients or data heterogeneity. Moreover, when σ = 0 (no
stochastic noise), the rate from (10) becomes O(1/T), recovering the one given by Theorem 3.1.

3.3 ANALYSIS IN THE STOCHASTIC CASE WITH DP-NOISE

Finally, we provide the convergence result for Clip21-SGD2M with DP-noise.
Theorem 3.3. Let Assumptions 1.1 and 1.2 hold and α ∈ (0, 1). Let ∆ ≥ Φ0. Then, there exists
a stepsize γ and momentum parameters β, β̂ such that the iterates of Clip21-SGD2M (Algorithm 3)
with the DP-noise variance σ2

ω with probability at least 1− α are such that 1
T

∑T−1
t=0 ∥∇f(xt)∥2 is

bounded by

Õ
((

L∆σdσ2
ωB̃2

(nT )3/2τ2

(√
L∆+ B̃ + σ

))1/3
+
(√

L∆dσω

τ
√
nT

+
√
L∆d1/3σ2/3

ω

τ2/3(Tn)1/3

)(√
L∆+ B̃ + σ

))
, (11)

where Õ hides constant and polylogarithmic factors, and higher order terms decreasing in T .

In the special case of local Differential Privacy, the noise level has to be chosen in a specific way. In
this setting, we obtain the following privacy-utility trade-off.
Corollary 3.4. Let Assumptions 1.1 and 1.2 hold and α ∈ (0, 1). Let ∆ ≥ Φ0 and σω be chosen

as σω = Θ
(

τ
ε

√
T log

(
T
δ

)
log
(
1
δ

))
for some ε, δ ∈ (0, 1). Then there exists a stepsize γ and

momentum parameters β, β̂ such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
at least 1− α satisfy local (ε, δ)-DP and

1
T

∑T−1
t=0 ∥∇f(xt)∥2≤ Õ

(√
L∆

( √
d√
nε

+
( √

d√
nε

)2/3)
(
√
L∆+ B̃ + σ)

)
, (12)

where Õ hides constant and polylogarithmic factors, and terms decreasing in T .

The proof of the above result is provided in Appendix G. Disregarding dependencies on polylogarith-
mic factors, L∆, B̃, and σ, the derived utility bound simplifies to Õ

(√
d/(

√
nε) +

(√
d/(

√
nε)
)2/3)

.

When
√
d/

√
nε > 1— which is common in modern models where d is at least hundreds of millions

and far exceeds the number of clients n (Charles et al., 2024; Chua et al., 2024)—the first term
in (12) dominates, yielding a rate that matches the best-known non-convex utility bounds (Allouah
et al., 2023). However, when

√
d/(

√
nε) < 1, our bound is less favorable. The tightness of this bound

under the general assumptions considered in this work remains an open question.

A key limitation of our DP guarantee is its incompatibility with privacy amplification by sub-
sampling. This arises from the client-side computation of vectors vt+1

i and gt+1
i , which accumulate

private information over multiple iterations. These components are essential for our method to han-
dle data heterogeneity (through gt+1

i ) and to reduce stochastic noise (through vt+1
i ). In contrast,

7
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Figure 2: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M on logistic regression with
non-convex regularization for various clipping radii τ with mini-batch (two left) and Gaussian-
added (two right) stochastic gradients. The final gradient norm is averaged over the last 100 itera-
tions. The gradient norm dynamics are reported in Figure I.1.

many existing methods benefit from this amplification, as illustrated by Clip-SGD (Abadi et al.,
2016), which achieves a smaller DP-noise parameter σω = Θ

(
(qτ/ε)

√
T log (1/δ)

)
, where q is

the sampling probability for each individual data point. However, these methods typically rely on
restrictive assumptions such as bounded data heterogeneity, as discussed in Section 1.2. Achiev-
ing both privacy amplification by sub-sampling and provable convergence without such limiting
assumptions remains an open challenge. Despite these limitations, our experimental results indicate
that Clip21-SGD2M achieves a privacy-utility trade-off comparable to Clip21-SGD.

4 EXPERIMENTS

In this section, we provide an empirical evaluation of the proposed algorithm against baselines
such as Clip21-SGD (Khirirat et al., 2023), α-NormEC-SGD (Shulgin et al., 2025a), and Clip-SGD,
where the latter is considered as the method of choice in private training.

First, we test the convergence of Clip-SGD, Clip21-SGD, and the proposed Clip21-SGD2M algo-
rithms with stochastic gradients for various clipping radii τ on several workloads. These results
demonstrate the significance of using the momentum technique to achieve better performance.

Non-convex Logistic Regression. In this experiment, we assess each algorithm using only
stochastic gradients—either by adding Gaussian noise to the full local gradient ∇fi(x) or by sam-
pling mini-batches—without any additional DP noise. We focus on logistic regression with a non-
convex regularize, fi(x) = 1

m

∑m
j=1 log(1 + exp(−bija

⊤
ijx)) + λ

∑d
l=1

x2
l

1+x2
l

, on the Duke and
Leukemia datasets (Chang & Lin, 2011), a setup used in prior work (Khirirat et al., 2023; Li &
Chi, 2023). We fix β̂ (no DP noise), and full tuning details appear in Appendix I.1. Figure 2 plots
the average gradient norm over the final 100 iterations, aggregated across three runs, for a range of
clipping radii τ Clip21-SGD2M consistently matches or outperforms the other methods—especially
at small τ—demonstrating its robustness to the choice of clipping threshold and aligning with our
theoretical guarantees. Furthermore, the convergence curves in Figure I.1 show that Clip21-SGD2M
reaches optimality faster than its competitors.

Training Resnet20 and VGG16. We next evaluate our methods on training ResNet-20 (He et al.,
2016) and VGG-16 (Simonyan & Zisserman, 2014) models on CIFAR-10 (Krizhevsky et al., 2009)4.
Results, averaged over three random seeds, appear in Figure 3 (global clipping across all weights)
and Figure I.2 (layer-wise clipping). As before, we set β̂ = 1 for Clip21-SGD2M due to the absence
of DP noise. The detailed experiment description is provided in Appendix I.2.1.

We report both test accuracy and training loss at the end of training. Clip-SGD’s performance
degrades steadily as the clipping radius τ shrinks, whereas both Clip21-SGD and Clip21-SGD2M
remain much more stable. In particular, for small τ , Clip21-SGD2M outperforms Clip21-SGD,
achieving lower training loss and higher test accuracy—empirical findings that further validate our
theoretical predictions. Full training curves are given in Figures I.3–I.4 for VGG-16 and Figures
I.5–I.6 for ResNet-20.

Adding Gaussian Noise for DP. In our second experimental suite, we evaluate Gaussian-DP vari-
ants of the optimizers on MLP and CNN architectures using the MNIST dataset (Deng, 2012).

4Our implementation is based on the open-source code of (Horváth & Richtárik, 2020) with minor adjust-
ments.
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Figure 3: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training Resnet20
(two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied glob-
ally. The train loss and test accuracy dynamics are reported in Figure I.3 and Figure I.5.
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Figure 4: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training CNN (two
left) and MLP (two right) models on MNIST dataset, varying the privacy budget ε where the clip-
ping is applied globally. The training loss and test accuracy dynamics are presented in Figures I.7
to I.10.
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Figure 5: Comparison of Clip-SGD and Clip21-SGD2M when training CNN (two left) and MLP
(two right) models on MNIST dataset, varying the privacy budget ε and number of sampled clients
|St|, where the clipping is applied globally.

We compare Clip-SGD, Clip21-SGD, α-NormEC, and Clip21-SGD2M across privacy budgets
ε ∈ {3, 5.2, 9, 15.6, 27} (with δ = 10−3). The data are split into n = 25 equal shards, and each
method is run for T = 150 epochs with batch size 64 and 3 random seeds. Full experimental de-
tails are reported in Appendix I.2.2. As shown in Figure 4, Clip21-SGD2M achieves competitive
performance: it slightly outperforms Clip-SGD on the MLP and matches it on the CNN, further
corroborating our theoretical results. We report the training dynamics in Figures I.7 to I.10. To
remain consistent with our analysis (where we assume σ-sub-Gaussian gradient noise), we do not
consider amplification by client sub-sampling in the experiments.

Partial Client Participation. Although our current theory does not cover partial client participa-
tion, our experiments in Figure 5 indicate that Clip21-SGD2M benefits from privacy amplification
via client sub-sampling. In this variant, the server updates gt (line 10) using only {ct+1

i }i∈St from
the sampled set St (see Appendix A for more details). We train CNN and MLP models on MNIST
dataset following the previous setup, varying the number of sampled clients |St|∈ {6, 12, 18} with
n = 24. We observe that the performance of Clip21-SGD2M is competitive with that of Clip-SGD.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced Clip21-SGD2M, a method achieving optimal convergence rates and
strong privacy-utility trade-offs without assuming bounded gradients or data heterogeneity. Several
promising extensions remain open, including: (i) improving the DP neighborhood and enabling
privacy amplification by sub-ampling (see Section 3.3); (ii) generalizing the analysis to handle
heavy-tailed noise; (iii) developing AdaGrad/Adam-type variants for improved deep learning per-
formance (Streeter & McMahan, 2010; Duchi et al., 2011; Kingma & Ba, 2014); and (iv) extending
the analysis to settings with generalized smoothness (Zhang et al., 2020b).
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sion for distributed learning. Journal of Machine Learning Research, 2023. (Cited on page 3)

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017. (Cited on page 3)

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 2020. (Cited on pages 2 and 6)

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points ii: first-order methods. Mathematical Programming, 2021. (Cited on page 6)

TH Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially private multi-
party aggregation. In European Symposium on Algorithms, 2012. (Cited on page 3)

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2011. (Cited on pages 8 and 55)

Zachary Charles, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Nicole Mitchell, Krishna
Pillutla, and Keith Rush. Fine-tuning large language models with user-level differential privacy.
arXiv preprint arXiv:2407.07737, 2024. (Cited on page 7)

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kamalika Chaudhuri, Chuan Guo, and Mike Rabbat. Privacy-aware compression for federated data
analysis. In Uncertainty in Artificial Intelligence, 2022. (Cited on page 3)

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd:
A geometric perspective. Advances in Neural Information Processing Systems, 2020. (Cited on
pages 1, 3, and 4)

Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Daogao Liu, Pasin Manu-
rangsi, Amer Sinha, and Chiyuan Zhang. Mind the privacy unit! user-level differential privacy
for language model fine-tuning. arXiv preprint arXiv:2406.14322, 2024. (Cited on page 7)

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
with heavy tails. Advances in Neural Information Processing Systems, 2021. (Cited on page 3)

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019. (Cited on page 5)

Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov,
Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in non-convex optimiza-
tion. In High-Dimensional Optimization and Probability: With a View Towards Data Science, pp.
79–163. Springer, 2022. (Cited on page 2)

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 2012. (Cited on page 8)

Andy Dong, Wei-Ning Chen, and Ayfer Ozgur. Leveraging randomness in model and data partition-
ing for privacy amplification. arXiv preprint arXiv:2503.03043, 2025. (Cited on page 3)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 2011. (Cited on page 9)

John C Duchi, Michael I Jordan, and Martin J Wainwright. Minimax optimal procedures for locally
private estimation. Journal of the American Statistical Association, 2018. (Cited on page 3)

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 2014. (Cited on pages 1, 2, and 54)
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posite and distributed stochastic minimization and variational inequalities with heavy-tailed noise.
In Proceedings of the 41st International Conference on Machine Learning, 2024. (Cited on pages 4
and 61)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
(Cited on page 8)
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A EXTENSION TO PARTIAL PARTICIPATION SETTING

In this section, we provide a more detailed discussion of the extension of Clip21-SGD2M when the
server samples only a subset St of clients at each communication round.

The algorithm design in this case is outlined in Alg. 4. There are two main changes in the algorithm
design.

1. Only clients sampled in St execute steps in lines 6–9; unsampled clients remain idle.

2. The server uses the updates {ct+1
i }i∈St

from the sampled clients only.

This variation of Clip21-SGD2M benefits from amplification by sub-sampling similar to Clip-SGD.
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Algorithm 4 Clip21-SGD2M with partial participation

Require: x0, g0, v0 ∈ Rd (by default g0 = v0 = 0), momentum parameters β, β̂ ∈ (0, 1], stepsize
γ > 0, clipping parameter τ > 0, number of sampled clients s, DP-variance parameter σ2

ω ≥ 0
1: Set g0i = g0 and v0i = v0 for all i ∈ [n]
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − γgt

4: sample St ⊆ [n] such that |St|= s
5: for i ∈ St do
6: vt+1

i = (1− β)vti + β∇fi(x
t+1, ξt+1

i )

7: ωt+1
i ∼ N (0, σ2

ωI) only for DP version
8: ct+1

i = clipτ (v
t+1
i − gti)+ ωt+1

i

9: gt+1
i = gti + β̂ clipτ (v

t+1
i − gti)

10: end for
11: for i /∈ St do
12: vt+1

i = vti
13: gt+1

i = gti
14: end for
15: gt+1 = gt + β̂

s

∑n
i∈St

ct+1
i

16: end for

B NOTATION

For brevity, in all proofs, we use the following notation

δt := f(xt)− f∗, Ṽ t :=
1

n

n∑
i=1

∥gti − vti∥2,

P̃ t :=
1

n

n∑
i=1

∥vti −∇fi(x
t)∥2, P t := ∥vt −∇f(xt)∥2,

Rt := ∥xt+1 − xt∥2.

We additionally denote ηti := τ
∥vt

i−gt−1
i ∥ and η := τ

B where B is defined in each section (it is

different in deterministic and stochastic settings). Besides, we define It := {i ∈ [n] | ∥vti − gt−1
i ∥>

τ}.
We denote θti := ∇fi(x

t, ξti) − ∇fi(x
t). From Assumption 1.2, we have that θti is zero-centered

σ-sub-Gaussian random vector conditioned at xt, namely

E
[
θti | xt

]
= 0, E

[
exp

(
∥θti∥2

σ2

)
| xt

]
≤ exp(1), (13)

which is equivalent to

Pr(∥θti∥> b) ≤ 2 exp

(
− b2

2σ2

)
∀b > 0 (14)

up to the numerical factor in σ (Vershynin, 2018). Moreover, we define an average of θti as θt :=
1
n

∑n
i=1 θ

t
i , an average of ωt

i as Ωt = 1
n

∑t
l=1

∑n
i=1 ω

l
i, and an average of gti as gt = 1

n

∑n
i=1 g

t
i .

Thus, we have the following relation between gt and gt :

gt = gt + β̂Ωt. (15)

Indeed, it is true at iteration 0 by the initialization. Let us assume that it holds at iteration t, then we
have

gt+1 = gt+
β̂

n

n∑
i=1

(clipτ (v
t+1
i −gti)+ωt+1

i ) = gt+β̂Ωt+
β̂

n

n∑
i=1

(clipτ (v
t+1
i −gti)+ωt+1

i ) = gt+1+β̂Ωt+1,

i.e., it holds at iteration t+ 1 as well.
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C USEFUL LEMMAS

Lemma C.1 (Lemma C.3 in (Gorbunov et al., 2019)). Let {ξk}Nk=1 be the sequence of random
vectors with values in Rn such that

E [ξk | ξk−1, . . . , ξ1] = 0 almost surely, ∀k ∈ {1, . . . , N},
and set SN :=

∑N
k=1 ξk. Assume that the sequence {ξk}Nk=1 are sub-Gaussian, i.e.

E
[
exp

(
∥ξk∥2

/σ2
k | ξk−1, . . . , ξ1

)]
≤ exp(1) almost surely, ∀k ∈ {1, . . . , N},

where σ2, . . . , σN are some positive numbers. Then for all γ ≥ 0

Pr

∥SN∥≥ (
√
2 + 2γ)

√√√√ N∑
k=1

σ2
k

 ≤ exp(−γ2
/3). (16)

Lemma C.2. Let f be L-smooth, δt = f(xt) − f∗, {xt} be generated by Algorithm 3, and the
stepsize γ ≤ 1

2L . Then

δt+1 ≤ δt − γ

2
∥∇f(xt)∥2− 1

4γ
∥xt − xt+1∥2+2γ∥∇f(xt)− vt∥2

+
2γ

n

n∑
i=1

∥gti − vti∥2+γβ̂2∥Ωt∥2.
(17)

Proof. Using L-smoothness of f we have

f(xt+1)
(i)

≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2

(ii)
= f(xt)− γ⟨∇f(xt), gt⟩+ Lγ2

2
∥gt∥2

(iii)
= f(xt)− γ

2

(
∥∇f(xt)∥2+∥gt∥2−∥∇f(xt)− gt∥2

)
+

Lγ2

2
∥gt∥2

= f(xt)− γ

2
∥∇f(xt)∥2−γ

2
∥gt∥2(1− Lγ) +

γ

2
∥∇f(xt)− gt∥2

(iv)

≤ f(xt)− γ

2
∥∇f(xt)∥2−γ

4
∥gt∥2+γ

2
∥∇f(xt)− gt∥2. (18)

where (i) follows from smoothness; (ii) from the update rule (iii) from ∥a − b∥2=
∥a∥2+∥b∥2−2⟨a, b⟩; (iv) from the stepsize restriction γ ≤ 1

2L . Using (15) we continue as fol-
lows
f(xt+1) ≤ f(xt)− γ

2
∥∇f(xt)∥2−γ

4
∥gt∥2+γ∥∇f(xt)− gt∥2+γβ̂2∥Ωt∥2

(i)

≤ f(xt)− γ

2
∥∇f(xt)∥2−γ

4
∥gt∥2+2γ∥∇f(xt)− vt∥2+2γ∥gt − vt∥2+γβ̂2∥Ωt∥2

(ii)

≤ f(xt)− γ

2
∥∇f(xt)∥2−γ

4
∥gt∥2+2γ∥∇f(xt)− vt∥2+2γ

n

n∑
i=1

∥gti − vti∥2+γβ̂2∥Ωt∥2,

(19)
where (i-ii) follow from Young’s inequality. It remains to subtract f∗ from both sides. It remains to
replace gt by 1

γ (x
t − xt+1)

Lemma C.3 (Lemma 4.1 in (Khirirat et al., 2023)). The clipping operator satisfies for any x ∈ Rd

∥clipτ (x)− x∥≤ max {∥x∥−τ, 0} . (20)
Lemma C.4 (Property of smooth functions). Let ϕ:Rd → R be L-smooth and lower bounded by
ϕ∗ ∈ R, i.e. ϕ(x) ≥ ϕ∗ for any x ∈ Rd. Then we have

∥∇ϕ(x)∥2≤ 2L(ϕ(x)− ϕ∗). (21)

Proof. It is a standard property of smooth functions. We refer to Theorem 4.23 of (Orabona, 2019).
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D PROOF OF THEOREM 2.2 (NON-CONVERGENCE OF Clip21-SGD)

Proof. The case n = 1. Let us consider the problem f(x) = L
2 ∥x∥

2. Let vectors {zj}3j=1 be
defined as

z1 =

(
3
0

)√
3σ2

100
, z2 =

(
0
4

)√
3σ2

100
, z1 =

(
−3
−4

)√
3σ2

100
.

Note that we have

∥z1∥2=
27σ2

100
, ∥z2∥2=

24σ2

50
, ∥z3∥2=

3σ2

4
,

meaning that τ < ∥zi∥ for all i ∈ [3]. We define the stochastic gradient as ∇f(xt, ξt) = ∇f(xt) +
ξt = Lxt+ ξt where ξt is picked uniformly at random from {z1, z2, z3}. Simple calculations verify
that Assumption 1.2 holds for such noise. Next, the update rule of the method (6) in the case n = 1
is

xt+1 = xt − γgt = xt − γ(∇f(xt) + clipτ (∇f(xt, ξt)−∇f(xt))) = xt − Lγxt − γ clipτ (ξ
t).

Since τ < ∥zi∥ for any i ∈ {1, 2, 3} clipping is always active and we have

E
[
clipτ (ξ

t)
]
=

1

3
clipτ (z1) +

1

3
clipτ (z2) +

1

3
clipτ (z3)

=
1

3

τ

∥z1∥
z1 +

1

3

τ

∥z2∥
z2 +

1

3

τ

∥z3∥
z3

=
1

3

τ
3
√
3σ

10

σ
√
3

10

(
3
0

)
+

1

3

τ
4
√
3σ

10

σ
√
3

10

(
0
4

)
+

1

3

τ
5
√
3σ

10

σ
√
3

10

(
−3
−4

)
=

τ

9

(
3
0

)
+

τ

12

(
0
4

)
+

τ

15

(
−3
−4

)
=

τ

15

(
2
1

)
︸ ︷︷ ︸

:=h

.

Thus, we obtain

E
[
xT
]
= (1− Lγ)E

[
xT−1

]
− γE

[
clipτ (ξ

t)
]

= (1− Lγ)E
[
xT−1

]
− γh

= (1− Lγ)Tx0 − γh

T−1∑
t=0

(1− Lγ)T−1−t

= (1− Lγ)T
(

0
x0
(2)

)
− τγ

15

(
2
1

)
1− (1− Lγ)T

1− (1− Lγ)

= (1− Lγ)T
(

0
x0
(2)

)
− τ

15L

(
2
1

)
(1− (1− Lγ)T ).

Therefore, since x0
(2) < 0 we have

E
[
∥∇f(xT )∥2

]
= E

[
∥LxT ∥2

]
=
∥∥E
[
LxT

]∥∥2 + E
[∥∥LxT − E

[
LxT

]∥∥2]
≥
∥∥E
[
LxT

]∥∥2
=

4τ2

165

(
1− (1− Lγ)

T
)2

+ L2
(
(1− Lγ)Tx0

(2) −
τ

15L

(
1− (1− Lγ)

T
))2

≥ 4τ2

165

(
1− (1− Lγ)

T
)2

+ (1− Lγ)2T ∥Lx0∥2+ τ2

165
(1− (1− Lγ)T )2

=
τ2

45

(
1− (1− Lγ)

T
)2

+ (1− Lγ)2T ∥∇f(x0)∥2.
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Note that the function a(1 − x)2 + x2b ≥ ab
a+b . Applying this result for a = τ2

45 , b = ∥∇f(x0)∥2,
and x = (1− Lγ)T we get

E
[
∥∇f(xT )∥2

]
≥

τ2

45∥∇f(x0)∥2
τ2

45 + ∥∇f(x0)∥2
≥ 1

2
min

{
∥∇f(x0)∥2, τ

2

45

}
.

The case n > 1. If n > 1 then we can consider a similar example where each client is quadratic
L
2 ∥x∥

2 and the stochastic gradient is constructed as ∇fi(x
t, ξti) = ∇fi(x

t) + ξti = Lxt + ξti where
ξti is sampled uniformly at random from vectors {z1, z2, z3} such that

z1 =

(
3
0

)√
3σ2

100B
, z2 =

(
0
4

)√
3σ2

100B
, z1 =

(
−3
−4

)√
3σ2

100B
.

Then, Assumption 1.2 is satisfied with σ2
/B. Therefore, if x0

(2) = −1, ε < L√
2
, and τ ≥ ε

3
√
10

, this

implies that B ≤ 243σ2

5ε2 < 27σ2

50τ2 , and

E
[
∥∇f(xT )∥2

]
≥ 1

2
min

{
∥∇f(x0)∥2, τ

2

45

}
≥ ε2.

E PROOF OF THEOREM 3.1 (CONVERGENCE OF Clip21-SGD2M IN
FULL-BATCH SETTING)

As we mention in the main part of the paper, the proofs are induction-based: by induction, we
show that several quantities remain bounded throughout the work of the method. That is, in Lem-
mas E.1-E.7, we establish several useful bounds and recurrences. These lemmas allow us to use the
contraction-like property (Lemma C.3) of the clipping operator and finish the proof of Theorem 3.1
applying similar techniques used in the analysis of EF21.
Lemma E.1. Let each fi be L-smooth. Then, the iterates generated by Clip21-SGD2M with
∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full gradients) and σω = 0 (no DP-noise) satisfy the following
inequality

∥vt+1
i − gti∥ ≤ (1− β̂)∥vti − gt−1

i ∥+β̂max{0, ∥vti − gt−1
i ∥−τ}+ Lγβ∥gt∥

+ β∥∇fi(x
t)− vti∥.

(22)

Proof. We have

∥vt+1
i − gti∥

(i)
= ∥(1− β)vti + β∇fi(x

t+1)− gti∥
(ii)

≤ ∥vti − gti∥+β∥∇fi(x
t+1)− vti∥

(iii)
= ∥vti − gt−1

i − β̂ clipτ (v
t
i − gt−1

i )∥+β∥∇fi(x
t+1)−∇fi(x

t)∥+β∥∇fi(x
t)− vti∥

(iv)

≤ (1− β̂)∥vti − gt−1
i ∥+β̂∥vti − gt−1

i − clipτ (v
t
i − gt−1

i )∥+Lγβ∥gt∥+β∥∇fi(x
t)− vti∥

(v)

≤ (1− β̂)∥vti − gt−1
i ∥+β̂max{0, ∥vti − gt−1

i ∥−τ}+ Lγβ∥gt∥+β∥∇fi(x
t)− vti∥.

where (i) follows from the update rule of vti in deterministic case, (ii) from triangle inequality, (iii)
from the update rule of gti , (iv) from triangle inequality, update rule of xt, and L-smoothness, (v)
properties of clipping from Lemma C.3.

Lemma E.2. Let each fi be L-smooth, ∆ ≥ Φ0, and B > τ . Assume that the following inequal-
ities hold for the iterates generated by Clip21-SGD2M with ∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full
gradients) and σω = 0 (no DP-noise)

1. ∥gt−1∥≤
√
64L∆+ 3(B − τ);
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2. ∥∇fi(x
t−1)− vt−1

i ∥≤
√
4L∆+ 3

2 (B − τ);

3. ∥vti − gt−1
i ∥≤ B ∀i ∈ [n];

4. γ ≤ 1
12L ;

5. β̂, β ∈ [0, 1];

6. Φt ≤ ∆.

Then we have
∥gt∥≤

√
64L∆+ 3(B − τ). (23)

Proof. We have

∥gt∥

(i)
=

∥∥∥∥∥gt−1 +
β̂

n

n∑
i=1

clipτ (v
t
i − gt−1

i )

∥∥∥∥∥
=

∥∥∥∥∥gt−1 + β̂(vt − gt−1) +
β̂

n

n∑
i=1

(
clipτ (v

t
i − gt−1

i )− (vti − gt−1
i )

)∥∥∥∥∥
=

∥∥∥∥∥(1− β̂)gt−1 + β̂∇f(xt) + β̂(vt −∇f(xt)) +
β̂

n

n∑
i=1

(
clipτ (v

t
i − gt−1

i )− (vti − gt−1
i )

)∥∥∥∥∥
(ii)

≤ (1− β̂)∥gt−1∥+β̂∥∇f(xt)∥+ β̂

n

n∑
i=1

∥vti −∇fi(x
t)∥+ β̂

n

n∑
i=1

max
{
0, ∥vti − gt−1

i ∥−τ
}
,

where (i) follows from the update rule gti , (ii) from triangle inequality and clipping properties from
Lemma C.3. We continue the derivation of the bound for ∥gt∥ as follows

∥gt∥
(i)

≤ (1− β̂)∥gt−1∥+β̂∥∇f(xt−1)∥+β̂∥∇f(xt)−∇f(xt−1)∥

+
β̂

n

n∑
i=1

∥(1− β)vt−1
i + β∇fi(x

t)−∇fi(x
t)∥+β̂(B − τ)

(ii)

≤ (1− β̂)∥gt−1∥+β̂
√

2L(f(xt)− f∗) + Lγβ̂∥gt−1∥+ β̂

n
(1− β)

n∑
i=1

∥∇fi(x
t)− vt−1

i ∥

+ β̂(B − τ)

(iii)

≤ (1− β̂ + Lγβ̂)∥gt−1∥+β̂
√
2LΦt +

β̂

n
(1− β)

n∑
i=1

∥∇fi(x
t)−∇fi(x

t−1)∥

+
β̂

n
(1− β)

n∑
i=1

∥∇fi(x
t−1)− vt−1

i ∥+β̂(B − τ)

(iv)

≤ (1− β̂ + Lγβ̂(2− β))∥gt−1∥+β̂
√
2L∆+ β̂(1− β)(

√
4L∆+

3

2
(B − τ)) + β̂(B − τ)

(v)

≤ (1− β̂ + Lγβ̂(2− β))(
√
64L∆+ 3(B − τ)) + β̂

√
2L∆+ β̂(1− β)(

√
4L∆+

3

2
(B − τ))

+ β̂(B − τ),

where (i) follows from triangle inequality and update of vti , (ii) from L-smoothness and update rule
of xt, (iii) from the definition of Φt and triangle inequality, (iv) from the assumptions 2 and 6, (v)
from the assumption 1. The above is satisfied if we have simultaneously

8(1− β̂ + 2Lγβ̂) +
√
2β̂ + 2β̂ ≤ 8

3(1− β̂ + 2Lγβ̂) +
3

2
β̂ + β̂ ≤ 3.
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Both inequalities hold when Lγ ≤ 1
12 .

Lemma E.3. Let each fi be L-smooth, ∆ ≥ Φ0, and B > τ . Assume that the following inequal-
ities hold for the iterates generated by Clip21-SGD2M with ∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full
gradients) and σω = 0 (no DP-noise)

1. 4Lγ ≤ β and γ ≤ 1
4L ;

2. ∥∇fi(x
t−1)− vt−1

i ∥≤
√
4L∆+ 3

2 (B − τ);

3. ∥gt−1∥≤
√
64L∆+ 3(B − τ).

Then we have

∥∇fi(x
t)− vti∥≤

√
4L∆+

3

2
(B − τ) ∀i ∈ [n]. (24)

Proof. We have

∥∇fi(x
t)− vti∥

(i)
= ∥∇fi(x

t)− (1− β)vt−1
i − β∇fi(x

t)∥
= (1− β)∥∇fi(x

t)− vt−1
i ∥

(ii)

≤ (1− β)Lγ∥gt−1∥+(1− β)∥∇fi(x
t−1)− vt−1

i ∥
(iii)

≤ Lγ
(√

64L∆+ 3(B − τ)
)
+ (1− β)

(√
4L∆+

3

2
(B − τ)

)
= (8Lγ + 2(1− β))

√
L∆+

(
3Lγ +

3(1− β)

2

)
(B − τ),

where (i) follows from the update rule of vti , (ii) from triangle inequality, smoothness, and update
of xt, (iii) from conditions 2-3 in the statement of the lemma. We need to satisfy

8Lγ + 2(1− β) ≤ 2 ⇔ 4Lγ ≤ β.

3Lγ +
3

2
(1− β) ≤ 3

2
⇔ 2Lγ ≤ β.

Since 4Lγ ≤ β, both inequalities are satisfied.

Lemma E.4. Let each fi be L-smooth, ∆ ≥ Φ0, B > τ , and i ∈ It := {i ∈ [n] | ∥vti − gt−1
i ∥>

τ}. Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M with
∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full gradients) and σω = 0 (no DP-noise)

1. 4Lγ ≤ β;

2. Lγ ≤ 1
12 ;

3. 8
3β

√
L∆ ≤ β̂τ

4 ;

4. 7
4β(B − τ) ≤ β̂τ

4 ;

5. ∥gt∥≤
√
64L∆+ 3(B − τ);

6. ∥∇fi(x
t)− vti∥≤

√
4L∆+ 3

2 (B − τ).

Then

∥vt+1
i − gti∥≤ ∥vti − gt−1

i ∥− β̂τ

2
. (25)
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Proof. Since i ∈ It, then ∥vti − gt−1
i ∥> τ , thus from Lemma E.1 we have

∥vt+1
i − gti∥ ≤ (1− β̂)∥vti − gt−1

i ∥+β̂(∥vti − gt−1
i ∥−τ) + βLγ∥gt∥+β∥∇fi(x

t)− vti∥
(i)

≤ ∥vti − gt−1
i ∥−β̂τ + βLγ

(√
64L∆+ 3(B − τ)

)
+ β

(√
4L∆+

3

2
(B − τ)

)
= ∥vti − gt−1

i ∥−β̂τ + (8βLγ + 2β)
√
L∆+ (3βLγ + 3β/2)(B − τ),

where (i) follows from assumptions 5-6 of the statement of the lemma. Since Lγ ≤ 1
12 , we have

∥vt+1
i − gti∥ ≤ ∥vti − gt−1

i ∥−β̂τ +
8

3
β
√
L∆+

7

4
β(B − τ).

Due to assumptions 2-3 of the lemma, we have

∥vt+1
i − gti∥ ≤ ∥vti − gt−1

i ∥− β̂τ

2
,

which concludes the proof.

Lemma E.5. Let each fi be L-smooth. Then, for the iterates generated by Clip21-SGD2M with
∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full gradients) and σω = 0 (no DP-noise) the quantity
P̃ t := 1

n

∑n
i=1∥vti −∇fi(x

t)∥2 decreases as

P̃ t+1 ≤ (1− β)P̃ t +
3L2

β
Rt. (26)

Proof. We have

∥vt+1
i −∇fi(x

t+1)∥2 (i)
= ∥(1− β)vti + β∇fi(x

t+1)−∇fi(x
t+1)∥2

= (1− β)2∥∇fi(x
t+1)− vti∥2

(ii)

≤ (1− β)2(1 + β/2)∥vti −∇fi(x
t)∥2

+ (1− β)2(1 + 2/β)∥∇fi(x
t)−∇fi(x

t+1)∥2

(iii)

≤ (1− β)∥vti −∇fi(x
t)∥2+3L2

β
∥xt − xt+1∥2,

where (i) follows from the update rule of vti , (ii) – from the inequality ∥a + b∥2≤ (1 +
β/2)∥a∥2+(1+2/β)∥b∥2 that holds for any a, b ∈ Rd and β > 0, and (iii) – from (1−β)(1+β/2) ≤
1, which holds for any β ∈ [0, 1], and smoothness. Averaging the inequalities above across i ∈ [n],
we get the statement of the lemma.

Similarly, we can get the recursion for P t := ∥vt −∇f(xt)∥2.

Lemma E.6. Let each fi be L-smooth. Then, for the iterates generated by Clip21-SGD2M with
∇fi(x

t+1, ξt+1
i ) = ∇fi(x

t+1) (full gradients) and σω = 0 (no DP-noise) the quantity
P t := ∥vt −∇f(xt)∥2 decreases as

P t+1 ≤ (1− β)P t +
3L2

β
Rt. (27)

Next, we establish the recursion for Ṽ t := 1
n

∑n
i=1∥gti − vti∥2.

Lemma E.7. Let each fi be L-smooth. Consider Clip21-SGD2M with ∇fi(x
t+1, ξt+1

i ) =

∇fi(x
t+1) (full gradients) and σω = 0 (no DP-noise). Let ∥vti − gt−1

i ∥≤ B, for all i ∈ [n]

and some B ≥ τ , and β̂ ≤ 1
2η . Then

∥gti − vti∥2≤ (1− β̂η)∥gt−1
i − vt−1

i ∥2+4β2

β̂η
∥vt−1

i −∇fi(x
t−1)∥2+4L2β2

β̂
Rt−1.
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and, in particular,

Ṽ t ≤ (1− η)Ṽ t−1 +
4β2

β̂η
P̃ t−1 +

4β2L2

β̂η
Rt−1,

where η := τ
B , Rt := ∥xt+1 − xt∥2, and Ṽ t := 1

n

n∑
i=1

∥gti − vti∥2.

Proof. Since ∥vti − gt−1
i ∥≤ B, for ηti :=

τ
∥vt

i−gt−1
i ∥ we have ηti ≥ η. This implies

∥gti − vti∥2
(i)
= ∥gt−1

i + β̂ clipτ (v
t
i − gt−1

i )− vti∥2

= ∥β̂(gt−1
i − vti + clipτ (v

t
i − gt−1

i )) + (1− β̂)(gt−1
i − vti)∥2

(ii)

≤ (1− η)2β̂∥gt−1
i − vti∥2+(1− β̂)∥gt−1

i − vti∥2,

where (i) follows from the update rule of gti and (ii) from the convexity of ∥·∥2 and the fact that
∥vti − gt−1

i ∥≤ B. We continue the derivations as follows

∥gti − vti∥2 = (1− β̂ + β̂(1− 2η + η2))∥gt−1
i − vti∥2

= (1− β̂η(2− η))∥gt−1
i − vti∥2.

Let ρ = 2β̂η (note that η ≤ 1). Then we have

∥gti − vti∥2 ≤ (1− ρ)∥gt−1
i − vti∥2

(i)
= (1− ρ)∥gt−1

i − (1− β)vt−1
i − β∇fi(x

t)∥2

(ii)

≤ (1− ρ)(1 + ρ/2)∥gt−1
i − vt−1

i ∥2+(1− ρ)(1 + 2/ρ)β2∥vt−1
i −∇fi(x

t)∥2

(iii)

≤ (1− ρ/2)∥gt−1
i − vt−1

i ∥2+4β2

ρ
∥vt−1

i −∇fi(x
t−1)∥2+4L2β2

ρ
Rt−1,

where (i) follows from the update rule of gti , (ii) from the inequality ∥a+b∥2≤ (1+r/2)∥a∥2+(1+
2/r)∥b∥2, which holds for any positive r (i.e., for r = ρ for some ρ > 0) and a, b ∈ Rd, (iii) from
the fact that ρ ≤ 1 by assumption, the inequality ∥a + b∥2≤ 2∥a∥2+2∥b∥2, which holds for any
a, b ∈ Rd, and smoothness. Finally, since 2β̂η ≤ 1, we ensure that ρ ≤ 1, and derive the final bound

∥gti − vti∥2 ≤ (1− β̂η)∥gt−1
i − vt−1

i ∥2+4β2

β̂η
∥vt−1

i −∇fi(x
t−1)∥2+4L2β2

β̂
Rt−1.

Theorem E.8 (Full statement of Theorem 3.1). Let Assumption 1.1 hold. Let
B := max{3τ,maxi∥∇fi(x

0)∥} and Φ0 defined in (9) satisfies ∆ ≥ Φ0 for some ∆ > 0. Assume
the following inequalities hold

1. stepsize restrictions: γ ≤ 1
12L , 4Lγ = β, and

5

8
− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 ≥ 0;

2. momentum restrictions: 8
3β

√
L∆ ≤ β̂τ

4 , 7
4β(B − τ) ≤ β̂τ

4 , β̂ ≤ 1
2η

5.

Then, the Lyapunov function from (9) for Clip21-SGD2M with ∇fi(x
t+1, ξt+1

i ) = ∇fi(x
t+1) (full

gradients) and σω = 0 (no DP-noise) decreases as

Φt+1 ≤ Φt − γ

2
∥∇f(xt)∥2,

5Note that η = τ
B

≤ 1
3

by the choice of B, therefore β̂ ≤ 1
2η

does not impose any additional assumption

on β̂ and it can be chosen from [0, 1].
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and we have
1

T

T−1∑
t=0

∥∇f(xt)∥2≤ 2∆

γT
= O

(
1

T

)
. (28)

Moreover, after at most 2B
β̂τ

iterations, the clipping operator will be turned off for all workers.

Proof. For convenience, we define
∇fi(x

−1) = v−1
i = g−1

i = 0, Φ−1 = +∞.

Then, we will derive the result by induction, i.e., using the induction w.r.t. t, we will show that

1. the Lyapunov function decreases as Φt ≤ Φt−1 − γ
2 ∥∇f(xt−1)∥2;

2. ∥gt∥≤
√
64L∆+ 3(B − τ);

3. ∥vti −∇fi(x
t)∥≤

√
4L∆+ 3

2 (B − τ);

4. ∥vti − gt−1
i ∥≤ max

{
0, B − tβ̂τ

2

}
.

First, we prove that the base of induction holds.

Base of induction.

1. ∥v0i − g−1
i ∥= ∥v0i ∥= β∥∇fi(x

0)∥≤ 1
2B ≤ B holds;

2. g0 = 1
n

∑n
i=1(g

−1
i + β̂ clipτ (v

0
i − g−1

i ) = β̂
n

∑n
i=1 clipτ (β∇fi(x

0)). Therefore, we have

∥g0∥ ≤

∥∥∥∥∥ β̂n
n∑

i=1

β∇fi(x
0) + (clipτ (β∇fi(x

0))− β∇fi(x
0))

∥∥∥∥∥
≤ β̂β∥∇f(x0)∥+ β̂

n

n∑
i=1

max
{
0, β∥∇fi(x

0)∥−τ
}

≤ β̂β
√

2L(f(x0)− f∗) + β̂(B − τ)

≤
√
64L∆+ 3(B − τ).

3. We have
∥v0i −∇fi(x

0)∥ = ∥β∇fi(x
0)−∇fi(x

0)∥
≤ (1− β)B

≤
√
4L∆+

3

2
(B − τ)

4. Φ0 ≤ Φ−1 − γ
2 ∥∇f(x−1)∥2= Φ−1 holds.

Transition of induction. Assume that for K we have that for all t ∈ {0, 1, . . . ,K}

1. Φt ≤ Φt−1 − γ
2 ∥∇f(xt−1)∥2 (implying Φt ≤ ∆);

2. ∥gt∥≤
√
64L∆+ 3(B − τ);

3. ∥vti −∇fi(x
t)∥≤

√
4L∆+ 3

2 (B − τ);

4. ∥vti − gt−1
i ∥≤ max

{
β̂τ, B − tβ̂τ

2

}
.

We proceed via analyzing two possible situations for IK+1 := {i ∈ [n] | ∥vK+1
i − gKi ∥> τ}: either

|IK+1|> 0 (there are workers with turned on gradient clipping) or |IK+1|= 0 (for all workers the
clipping is turned off).
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CASE |IK+1|> 0. Since all requirements of Lemma E.4 are satisfied at iteration K we get for all
i ∈ IK+1

∥vK+1
i −gKi ∥≤ ∥vKi −gK−1

i ∥− β̂τ

2

(i)

≤ max

{
τ,B − Kβ̂τ

2

}
− β̂τ

2
≤ max

{
τ,B − (K + 1)β̂τ

2

}
,

where (i) follows from the condition 4 of the induction assumption. Similarly due to the assumption
of induction, from Lemma E.2 we get that

∥gK+1∥≤
√
64L∆+ 3(B − τ),

and from Lemma E.3

∥∇fi(x
K+1)− vK+1

i ∥≤
√
4L∆+

3

2
(B − τ).

This means that conditions 2-4 in the assumption of the induction are also verified for step K + 1.
The remaining part is the descent of the Lyapunov function. For estimating

Ṽ K+1 := 1
n

n∑
i=1

∥gK+1
i − vK+1

i ∥2 we have Lemma E.7 since ∥vK+1
i − gKi ∥≤ B − τ

2

Ṽ K+1 ≤ (1− β̂η)Ṽ K +
4β2

β̂η
P̃K +

4β2L2

β̂η
RK .

Combining this result with the claims of Lemmas C.2, E.5 and E.6 we get

ΦK+1 = δK+1 +
2γ

β̂η
Ṽ K+1 +

8γβ

β̂2η2
P̃K+1 +

2γ

β
PK+1

≤ δK − γ

2
∥∇f(xK)∥2− 1

4γ
RK + 2γṼ K + 2γPK

+
2γ

β̂η

(
(1− β̂η)Ṽ K +

4β2

β̂η
P̃K +

4β2L2

β̂η
RK

)
+

8γβ

β̂2η2

(
(1− β)P̃K +

3L2

β
RK

)
+

2γ

β

(
(1− β)PK +

3L2

β
RK

)
= δK − γ

2
∥∇f(xK)∥2+2γ

β̂η
Ṽ K

(
1− β̂η + β̂η

)
+

8γβ

β̂2η2
P̃K (1− β + β)

+
2γ

β
PK (1− β + β)− 1

4γ

(
1− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 − 24L2

β2
γ2

)
RK

= ΦK − γ

2
∥∇f(xK)∥2− 1

4γ

(
1− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 − 24L2

β2
γ2

)
RK .

Since we choose β2 = 64L2γ2, then − 1
β2 = − 1

64L2γ2 and − 24L2

β2 γ2 = − 24L2

642L2γ2 γ
2 ≥ − 3

8

Therefore,

1− 32β2L2

η2
γ2 − 96L2

β̂2η2
γ2 − 24L2

β2
γ2 ≥ 5

8
− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 ≥ 0,

by the choice of γ. Thus, we get

ΦK+1 ≤ ΦK − γ

2
∥∇f(xK)∥2.

In particular, this implies ΦK+1 ≤ ΦK ≤ ∆.
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CASE |IK+1|= 0. In this case, ηK+1
i = 1 for all i ∈ [n], i.e., clipτ (v

K+1
i − gKi ) = vK+1

i − gKi
that leads to gK+1

i = vK+1
i . Thus, Ṽ K+1 = 0. Moreover, |IK+1|= 0 implies that condition 4

from the induction assumption holds for t = K + 1 and using this and induction assumption we get
∥gK+1∥≤

√
64L∆+3(B− τ) from Lemma E.2 and ∥∇fi(x

K+1)− vK+1
i ∥≤

√
4L∆+ 3

2 (B− τ)

from Lemma E.3. Next, taking into account that Ṽ K+1 = 0, we can perform similar steps as before
for ΦK+1 and get less restrictive inequality

ΦK+1 ≤ ΦK − γ

2
∥∇f(xK)∥2− 1

4γ

(
1− 96L2

β̂2η2
γ2 − 24L2

β2
γ2

)
RK .

Again, 1− 96L2

β̂2η2
γ2 − 24L2

β2 γ2 ≥ 5
8 − 96L2

β̂2η2
γ2 ≥ 0 which is satisfied by the choice of γ.

We conclude that in both cases the Lyapunov function decreases as ΦK+1 ≤ ΦK − γ
2 ∥∇f(xK)∥2,

and consequently, ΦK+1 ≤ ∆. This finalizes the induction step. Therefore, we can guarantee that
for all iterations t ∈ {0, 1, . . . , T − 1} we have

Φt+1 ≤ Φt − γ

2
∥∇f(xt)∥2⇒ 1

T

T−1∑
t=0

∥∇f(xt)∥2≤ 2∆

γT
.

Moreover, the proof shows that the clipping operator will be eventually turned off after at most 2B
β̂τ

iterations since ∥vti − gt−1
i ∥≤ max

{
τ,B − tβ̂τ

2

}
.
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F PROOF OF THEOREM 3.3 (CONVERGENCE OF Clip21-SGD2M IN THE
STOCHASTIC SETTING WITH DP NOISE)

We define constants a, b, and c, which will be used later in the proofs, as follows:

a :=

(
√
2 + 2

√
3 log

6(T + 1)

α

)
√
dσω

√
T

n
,

b2 := 2σ2 log

(
12(T + 1)n

α

)
, (29)

c2 :=

(
√
2 + 2

√
3 log

6(T + 1)

α

)2

σ2,

where T is the number of iterations, n is the number of workers, d is the dimension of the problem,
σ is from Assumption 1.2, α ∈ (0, 1) is a constant, and σω is the variance of DP noise.
Lemma F.1. Let each fi be L-smooth. Then, for the iterates of Clip21-SGD2M we have the follow-
ing inequality with probability 1

∥vt+1
i − gti∥ ≤ (1− β̂)∥vti − gt−1

i ∥+β̂max
{
0, ∥vti − gt−1

i ∥−τ
}
+ βLγ∥gt∥

+ β∥∇fi(x
t)− vti∥+β∥θt+1

i ∥,
(30)

where θti := ∇fi(x
t, ξti)−∇fi(x

t).

Proof. We have

∥vt+1
i − gti∥

(i)
= ∥(1− β)vti + β∇fi(x

t+1, ξt+1
i )− gti∥

(ii)

≤ ∥vti − gti∥+β∥∇fi(x
t+1, ξt+1

i )− vti∥
(iii)
= ∥vti − β̂ clipτ (v

t
i − gt−1

i )− gt−1
i ∥+β∥∇fi(x

t+1, ξt+1
i )− vti∥

(iv)

≤ (1− β̂)∥vti − gt−1
i ∥+β̂max

{
0, ∥vti − gt−1

i ∥−τ
}
+ β∥∇fi(x

t+1, ξt+1
i )−∇fi(x

t+1)∥
+ β∥∇fi(x

t+1)−∇fi(x
t)∥+β∥∇fi(x

t)− vti∥
(v)

≤ (1− β̂)∥vti − gt−1
i ∥+β̂max

{
0, ∥vti − gt−1

i ∥−τ
}
+ βL∥xt+1 − xt∥

+ β∥∇fi(x
t)− vti∥+β∥θt+1

i ∥
(vi)
= (1− β̂)∥vti − gt−1

i ∥+β̂max
{
0, ∥vti − gt−1

i ∥−τ
}
+ βLγ∥gt∥

+ β∥∇fi(x
t)− vti∥+β∥θt+1

i ∥,

where (i) follows from the update rule of vti , (ii) from triangle inequality, (iii) from the update rule
of gti , (iv) from the properties of the clipping operator from Lemma C.3 and triangle inequality, (v)
from smoothness, (vi) from the update rule of xt.

Lemma F.2. Let each fi be L-smooth, ∆ ≥ Φ0. Assume that the following inequalities hold for the
iterates generated by Clip21-SGD2M

1. g0 = 1
n

∑n
i=1 g

0
i ;

2. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b+ 3β̂a;

3. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b;

4. ∥∇fi(x
t−1)− vt−1

i ∥≤
√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a for all i ∈ [n];

5. ∥vti − gt−1
i ∥≤ B for all i ∈ [n];

6. γ ≤ 1
12L ;
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7. ∥θti∥≤ b for all i ∈ [n];

8.
∥∥∥ 1
n

∑t
l=1

∑n
i=1 ω

l
i

∥∥∥ ≤ a;

9. β, β̂ ∈ [0, 1];

10. Φt−1 ≤ 2∆.

Then we have

∥gt∥≤
√
64L∆+ 3(B − τ) + 3b+ 3β̂a. (31)

Proof. We start as follows

∥gt∥ (i)
=

∥∥∥∥∥gt−1 +
β̂

n

n∑
i=1

clipτ (v
t
i − gt−1

i ) +
β̂

n

n∑
i=1

ωt
i

∥∥∥∥∥
=

∥∥∥∥∥gt−1 +
β̂

n

n∑
i=1

[
∇fi(x

t) + (vti −∇fi(x
t)) + clipτ (v

t
i − gt−1

i )− (vti − gt−1
i )

]
− gt−1 + (1− β̂)gt−1 +

β̂

n

n∑
i=1

ωt
i

∥∥∥∥∥
(ii)

≤

∥∥∥∥∥gt−1 − gt−1 +
β̂

n

n∑
i=1

ωt
i

∥∥∥∥∥+ β̂∥∇f(xt)∥+ β̂

n

n∑
i=1

∥clipτ (vti − gt−1
i )− vti + gt−1

i ∥

+ (1− β̂)∥gt−1∥+ β̂

n

n∑
i=1

∥vti −∇fi(x
t)∥

(iii)

≤

∥∥∥∥∥gt−1 + β̂Ωt−1 − gt−1 +
β̂

n

n∑
i=1

ωt
i

∥∥∥∥∥+ β̂∥∇f(xt−1)∥+β̂∥∇f(xt)−∇f(xt−1)∥

+
β̂

n

n∑
i=1

∥clipτ (vti − gt−1
i )− vti + gt−1

i ∥+(1− β̂)∥gt−1∥

+
β̂

n

n∑
i=1

∥(1− β)vt−1
i + β∇fi(x

t, ξti)−∇fi(x
t)∥,

where (i) follows from the update rule of gt, (ii) – from the triangle inequality, (iii) – from the
update rule of vti , equality (15), and triangle inequality. Using the definition of Ωt, we continue as
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follows

∥gt∥
(iv)

≤ β̂∥Ωt∥+β̂∥∇f(xt−1)∥+β̂Lγ∥gt−1∥+ β̂

n

n∑
i=1

max{0, ∥vti − gt−1
i ∥−τ}+ (1− β̂)∥gt−1∥

+
β̂

n

n∑
i=1

∥(1− β)vt−1
i + β∇fi(x

t, ξti)−∇fi(x
t)∥

(v)

≤ β̂
√

2L(f(xt−1)− f∗) + β̂Lγ∥gt−1∥+(1− β̂)∥gt−1∥+β̂(B − τ) + β̂∥Ωt∥

+
β̂

n

n∑
i=1

(
(1− β)∥vt−1

i −∇fi(x
t)∥+β∥∇fi(x

t, ξti)−∇fi(x
t)∥
)

(vi)

≤ β̂
√

2L(f(xt−1)− f∗) + β̂Lγ∥gt−1∥+(1− β̂)∥gt−1∥+β̂(B − τ) + β̂∥Ωt∥

+
β̂β

n

n∑
i=1

∥θti∥+
β̂

n
(1− β)

n∑
i=1

(
∥vt−1

i −∇fi(x
t−1)∥+∥∇fi(x

t)−∇fi(x
t−1)∥

)
(vii)

≤ β̂
√
2L(f(xt−1)− f∗) + β̂Lγ(2− β)∥gt−1∥+(1− β̂)∥gt−1∥+β̂(B − τ) + β̂∥Ωt∥

+
β̂β

n

n∑
i=1

∥θti∥+
β̂

n
(1− β)

n∑
i=1

∥vt−1
i −∇fi(x

t−1)∥.

(iv) – from the properties of the clipping operator from Lemma C.3, L-smoothness and update rule
of xt, (v) – from L-smoothness and triagnle inequality, (vi) – from triangle inequality, (vii) – from
L-smoothness. Now we use the assumptions 2-5, 7-8, and 10 to bound the terms

∥gt∥ ≤ β̂
√
4L∆+ 2Lγβ̂

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)
+ (1− β̂)

(√
64L∆+ 3(B − τ) + 3b

)
+ β̂(B − τ) + β̂a+ β̂βb+ β̂(1− β)

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
.

Regrouping the terms we obtain

∥gt∥ ≤
√
L∆[2β̂ + 16Lγβ̂ + 8(1− β̂) + 2β̂(1− β)] + b[6Lγβ̂ + 3(1− β̂) + β̂β + 3/2β̂(1− β)]

+ (B − τ)[6Lγβ̂ + 3(1− β̂) + β̂ + 3/2β̂(1− β)] + a[6Lγβ̂2 + β̂ + β̂2(1− β)].

For the first coefficient, we have

2β̂ + 16Lγβ̂ + 8(1− β̂) + 2β̂(1− β) ≤ 8 ⇐ 4β̂ + 16Lγβ̂ ≤ 8β̂ ⇐ 4Lγ ≤ 1,

where the last inequality is satisfied by the choice of the stepsize Lγ ≤ 1
12 . For the second coeffi-

cient, we have

6Lγβ̂ + 3(1− β̂) + β̂β +
3

2
β̂(1− β) ≤ 3 ⇐ 6Lγβ̂ + β̂β +

3

2
β̂(1− β) ≤ 3β̂

⇐ 6Lγ + 1 +
3

2
(1− β) ≤ 3,

where the last inequality is satisfied by the choice of the stepsize 6Lγ ≤ 1
2 and momentum parameter

β ≤ 1. For the third coefficient, we have

6Lγβ̂ + 3(1− β̂) + β̂ +
3

2
β̂(1− β) ≤ 3 ⇐ 6Lγβ̂ + β̂ +

3

2
β̂(1− β) ≤ 3β̂ ⇐ 6Lγ + 1 +

3

2
≤ 3,

where the last inequality is satisfied by the choice of the stepsize 6Lγ ≤ 1
2 . For the fourth coefficient,

we have

6Lγβ̂2 + β̂ + β̂2(1− β) ≤ 3β̂ ⇐ 6Lγβ̂2 + β̂2 ≤ 2β̂ ⇐ 6Lγβ̂ + β̂ ≤ 2,

where the last inequality is satisfied by the choice of the stepsize 6Lγ ≤ 1
2 and momentum parameter

β̂ ≤ 1. Thus, the statement of the lemma holds.
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Lemma F.3. Let each fi be L-smooth, ∆ ≥ Φ0, B > τ . Assume that the following inequalities
hold for the iterates generated by Clip21-SGD2M

1. γ ≤ 1
12L ;

2. 6Lγ ≤ β;

3. ∥∇fi(x
t−1)− vt−1

i ∥≤
√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a for all i ∈ [n];

4. ∥θti∥≤ b for all i ∈ [n];

5. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b+ 3β̂a;

6. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b.

Then we have

∥∇fi(x
t)− vti∥≤

√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a. (32)

Proof. We have

∥∇fi(x
t)− vti∥

(i)
= ∥∇fi(x

t)− (1− β)vt−1
i − β∇fi(x

t, ξti)∥
(ii)

≤ (1− β)∥∇fi(x
t)− vt−1

i ∥+β∥∇fi(x
t)−∇fi(x

t, ξti)∥
(iii)

≤ (1− β)Lγ∥gt−1∥+(1− β)∥∇fi(x
t−1)− vt−1

i ∥+β∥θti∥
(iv)

≤ (1− β)Lγ
(√

64L∆+ 3(B − τ) + 3b+ 3β̂a
)

+ (1− β)

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
+ βb

= (8Lγ + 2(1− β))
√
L∆+ (3Lγ + 3(1−β)/2)(B − τ)

+ (3Lγ(1− β) + 3/2(1− β) + β)b+ (3Lγβ̂ + (1− β)β̂)a,

where (i) follows from the update rule of vti , (ii) from the triangle inequality, (iii) from triangle
inequality, smoothness, and the update rule of xt, (iv) from assumptions 2-4 of the lemma. We
notice that

8Lγ + 2(1− β) ≤ 2 ⇐ 4Lγ ≤ β,

3Lγ +
3

2
(1− β) ≤ 3

2
⇐ 2Lγ ≤ β,

3Lγ +
3

2
(1− β) + β ≤ 3

2
⇐ 6Lγ ≤ β,

3Lγβ̂ + (1− β)β̂ ≤ β̂ ⇐ 3Lγ ≤ β,

where the last inequalities in each line are satisfied for β, satisfying the conditions of the lemma.

Lemma F.4. Let each fi be L-smooth, ∆ ≥ Φ0, B > τ. Assume that the following inequalities hold
for the iterates generated by Clip21-SGD2M

1. γ ≤ 1
12L ;

2. β̂ ≤ min{
√
L∆
a , 1};

3. ∥vti − gt−1
i ∥≤ B for all i ∈ [n];

4. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b+ β̂a;

5. ∥gt−1∥≤
√
64L∆+ 3(B − τ) + 3b);
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6. ∥∇fi(x
t−1)− vt−1

i ∥≤
√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a for all i ∈ [n];

7. Φt−1 ≤ 2∆;

8. ∥θti∥≤ b for all i ∈ [n].

Then we have

∥gt∥≤
√
64L∆+ 3(B − τ) + 3b.

Proof. We have

∥gt∥ (i)
=

∥∥∥∥∥gt−1 +
β̂

n

n∑
i=1

clipτ (v
t
i − gt−1

i )

∥∥∥∥∥
=

∥∥∥∥∥β̂∇f(xt) + β̂(vt −∇f(xt)) + (1− β̂)gt−1 +
β̂

n

n∑
i=1

[clipτ (v
t
i − gt−1

i )− (vti − gt−1
i )]

∥∥∥∥∥
(ii)

≤ β̂∥∇f(xt)∥+ β̂

n

n∑
i=1

∥vti −∇fi(x
t)∥+(1− β̂)∥gt−1∥

+
β̂

n

n∑
i=1

∥clipτ (vti − gt−1
i )− (vti − gt−1

i )∥

(iii)

≤ β̂∥∇f(xt−1)∥+β̂Lγ∥gt−1∥+ β̂

n

n∑
i=1

∥(1− β)vt−1
i + β∇fi(x

t, ξti)−∇fi(x
t)∥

+ (1− β̂)∥gt−1∥+ β̂

n

n∑
i=1

max{0, ∥vti − gt−1
i ∥−τ}

(iv)

≤ β̂
√
2L(f(xt−1)− f∗) + β̂Lγ∥gt−1∥+(1− β̂)∥gt−1∥+β̂(B − τ)

+
β̂

n

n∑
i=1

(
(1− β)[∥vt−1

i −∇fi(x
t−1)∥+∥∇fi(x

t−1)−∇fi(x
t)∥] + β∥∇fi(x

t)−∇fi(x
t, ξti)∥

)
,

where (i) follows from the update rule of each gti , (ii) – from the triangle inequality, (iii) – from
the update of vti and properties of clipping from Lemma C.3, (iv) – from L-smoothness, assumption
3 of the lemma, and triangle inequality. Now we use assumptions 4-7 to derive

∥gt∥ ≤ β̂
√
4L∆+ β̂Lγ(2− β)

(√
64L∆+ 3(B − τ) + 3b+ β̂a

)
+ β̂(B − τ)

+ (1− β̂)
(√

64L∆+ 3(B − τ) + 3b
)
+ β̂(1− β)

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
+ β̂βb

=
√
L∆

(
2β̂ + 8Lγ(2− β)β̂ + 8(1− β̂) + 2β̂(1− β)

)
+ a(Lγβ̂2(2− β) + β̂2)

+ (B − τ)

(
3Lγβ̂(2− β) + β̂ + 3(1− β̂) +

3

2
β̂(1− β)

)
+ b(3Lγβ̂(2− β) + 3(1− β̂) + 3/2β̂(1− β)).

For the second term, we have

2Lγβ̂2a+ β̂2a ≤ 2Lγβ̂
√
L∆+ β̂

√
L∆ = (2Lγβ̂ + β̂)

√
L∆,

where we use β̂ ≤
√
L∆
a . Therefore, the second term should be added to the first term. Thus, we

have for the term with
√
L∆

2Lγβ̂ + β̂ + 2β̂ + 8Lγβ̂(2− β) + 8(1− β̂) + 2β̂(1− β) ≤ 8

⇐ 2Lγ + 1 + 2 + 8Lγ(2− β) + 2(1− β) ≤ 8

⇐ 18Lγ ≤ 3,
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where the last inequality is satisfied by the choice of the stepsize Lγ ≤ 1
12 . For the third coefficient,

we have

3Lγβ̂(2− β) + β̂ + 3(1− β̂) +
3

2
β̂(1− β) ≤ 3 ⇐ 3Lγ(2− β) + 1 +

3

2
(1− β) ≤ 3 ⇐ 6Lγ ≤ 1

2
,

where the last inequality is satisfied by the choice of the stepsize Lγ ≤ 1
12 . For the fourth coefficient,

we have the same derivations as for the third one. This implies that

∥gt∥≤ 8
√
L∆+ 3(B − τ) + 3b,

which concludes the proof.

Lemma F.5. Let each fi be L-smooth, ∆ ≥ Φ0, B > τ , and i ∈ It := {i ∈ [n] | ∥vti − gt−1
i ∥> τ}.

Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M

1. 12Lγ ≤ 1;

2. 6Lγ ≤ β;

3. β ≤ min{ 3β̂τ

64
√
L∆

, 1};

4. β ≤ min{ β̂τ
14(B−τ) , 1};

5. β ≤ min{ β̂τ
22b , 1};

6. β̂ ≤ min{
√
L∆
a , 1};

7. ∥gt∥≤
√
64L∆+ 3(B − τ) + 3b+ 3a;

8. ∥θt+1
i ∥≤ b;

9. ∥∇fi(x
t)− vti∥≤

√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a.

Then

∥vt+1
i − gti∥≤ ∥vti − gt−1

i ∥− β̂τ

2
. (33)

Proof. Since i ∈ It, then ∥vti − gt−1
i ∥> τ and from Lemma F.1 we have

∥vt+1
i − gti∥ ≤ (1− β̂)∥vti − gt−1

i ∥+β̂∥vti − gt−1
i ∥−β̂τ + βLγ∥gt∥+β∥∇fi(x

t)− vti∥+β∥θt+1
i ∥

(i)

≤ ∥vti − gt−1
i ∥−β̂τ + βLγ

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)
+ β

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
+ βb

= ∥vti − gt−1
i ∥−β̂τ + (8βLγ + 2β)

√
L∆+ (3Lγβ + 3β/2)(B − τ)

+ (3Lγβ + 3β/2 + β)b+ (3Lγβ + β)β̂a,

where (i) follows from assumptions 6-8 of the lemma. Since 12Lγ ≤ 1 we have

(8βLγ + 2β)
√
L∆ ≤ (2β/3 + 2β)

√
L∆ =

8

3
β
√
L∆ ≤ β̂τ

8
,

where we used β ≤ 3β̂τ

64
√
L∆

. Since 12Lγ ≤ 1 we have(
3Lγβ +

3β

2

)
(B − τ) ≤ (β/4 +

3β

2
)(B − τ) =

7

4
β(B − τ) ≤ β̂τ

8
,
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where we used β ≤ β̂τ
14(B−τ) . Since 12Lγ ≤ 1 we have

(3Lγβ + 5β/2)b ≤ (β/4 + 5β/2) b =
11

4
βb ≤ β̂τ

8
,

where we used β ≤ β̂τ
22b . Since 12Lγ ≤ 1 and β̂ ≤

√
L∆
a we have

(3Lγβ + β) β̂a ≤ (β/4 + β)
√
L∆ =

5

4
β
√
L∆ ≤ β̂τ

8
,

where we used β ≤ β̂τ
22b . Thus we have

∥vt+1
i − gti∥ ≤ ∥vti − gt−1

i ∥−β̂τ + 4 · β̂τ
8

= ∥vti − gt−1
i ∥− β̂τ

2
,

which concludes the proof.

Lemma F.6. Let ∥θt+1
i ∥≤ b for all i ∈ [n]. Let each fi be L-smooth. Then, for the iterates

generated by Clip21-SGD2M the quantity P̃ t := 1
n

∑n
i=1∥vti −∇fi(x

t)∥2 decreases as

P̃ t+1 ≤ (1− β)P̃ t +
3L2

β
Rt + β2b2 +

2

n
β(1− β)

n∑
i=1

⟨vti −∇fi(x
t+1), θt+1

i ⟩, (34)

where Rt := ∥xt+1 − xt∥ and θti := ∇fi(x
t, ξti)−∇fi(x

t).

Proof. We have

∥vt+1
i −∇fi(x

t+1)∥2 (i)
= ∥(1− β)vti + β∇fi(x

t+1, ξt+1
i )−∇fi(x

t+1)∥2

= ∥(1− β)(vti −∇fi(x
t+1)) + β(∇fi(x

t+1, ξt+1
i )−∇fi(x

t+1))∥2

= (1− β)2∥vti −∇fi(x
t+1)∥2+β2∥θt+1

i ∥2

+ 2β(1− β)⟨vti −∇fi(x
t+1), θt+1

i ⟩
(ii)

≤ (1− β)2(1 + β/2)∥vti −∇fi(x
t)∥2

+ (1− β)2(1 + 2/β)∥∇fi(x
t)−∇fi(x

t+1)∥2+β2b2

+ 2β(1− β)⟨vti −∇fi(x
t+1), θt+1

i ⟩
(iii)

≤ (1− β)∥vti −∇fi(x
t)∥2+3L2

β
∥xt − xt+1∥2+β2b2

+ 2β(1− β)⟨vti −∇fi(x
t+1), θt+1

i ⟩,

where (i) follows from the update rule of vti , (ii) from ∥x+ y∥2≤ (1 + r)∥x∥2+(1+ r−1)∥y∥2 for
any x, y ∈ Rd and r > 0, (iii) from the smoothness and inequalities (1 − β)2(1 + β/2) ≤ (1 − β)
and (1−β)2(1+ 2/β) ≤ 3/β. Averaging the inequalities above across all i ∈ [n], we get the lemma’s
statement.

Similarly, we can get the recursion for P t := ∥vt −∇f(xt)∥2.

Lemma F.7. Let ∥θt+1∥≤ c√
n

for all i ∈ [n]. Let each fi be L-smooth. Then, for the iterates
generated by Clip21-SGD2M the quantity P t := ∥vt −∇f(xt)∥2 decreases as

P t+1 ≤ (1− β)P t +
3L2

β
Rt + β2 c

2

n
+ 2β(1− β)⟨vt −∇f(xt+1), θt+1⟩,

where Rt := ∥xt+1 − xt∥ and θt := 1
n

∑n
i=1 θ

t
i =

1
n

∑n
i=1(∇fi(x

t, ξt)−∇fi(x
t)).

34
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Proof. For shortness, we denote ∇f(xt, ξt) := 1
n

∑n
i=1 ∇fi(x

t, ξti) and θt :=
1
n

∑n
i=1(∇fi(x

t, ξt)−∇fi(x
t)). Then, we have

∥vt+1 −∇f(xt+1)∥2 (i)
= ∥(1− β)vt + β∇f(xt+1, ξt+1)−∇f(xt+1)∥2

= ∥(1− β)(vt −∇f(xt+1)) + β(∇f(xt+1, ξt+1)−∇f(xt+1))∥2

= (1− β)2∥vt −∇f(xt+1)∥2+β2∥θt+1∥2

+ 2β(1− β)⟨vt −∇f(xt+1), θt+1⟩
(ii)

≤ (1− β)2(1 + β/2)∥vt −∇f(xt)∥2

+ (1− β)2(1 + 2/β)∥∇f(xt)−∇f(xt+1)∥2+β2 c
2

n

+ 2β(1− β)⟨vt −∇f(xt+1), θt+1
i ⟩

(iii)

≤ (1− β)∥vt −∇f(xt)∥2+3L2

β
∥xt − xt+1∥2+β2 c

2

n

+ 2β(1− β)⟨vt −∇f(xt+1), θt+1⟩,

where (i) follows from the update rule of vti , (ii) from ∥x+ y∥2≤ (1 + r)∥x∥2+(1+ r−1)∥y∥2 for
any x, y ∈ Rd and r > 0, (iii) from the smoothness and inequalities (1 − β)2(1 + β/2) ≤ (1 − β)
and (1− β)2(1 + 2/β) ≤ 3/β.

Next, we establish the recursion for Ṽ t := 1
n

∑n
i=1∥gti − vti∥2.

Lemma F.8. Let ∥θti∥≤ b for all i ∈ [n], each fi be L-smooth, and ∥vti − gt−1
i ∥≤ B for all i ∈ [n]

and some B > τ, and β̂ ≤ 1
2η

6. Then, for the iterates generated by Clip21-SGD2M we have

∥gti − vti∥2 ≤ (1− β̂η)∥gt−1
i − vt−1

i ∥2+4β2

β̂η
∥vt−1

i −∇fi(x
t−1)∥2+4β2L2

β̂η
Rt−1 + β2b2 (35)

+ 2(1− β̂η)2β⟨(gt−1
i − vt−1

i ) + β(vt−1
i −∇fi(x

t−1)), θti⟩
+ 2(1− β̂η)2β⟨β(∇fi(x

t−1)−∇fi(x
t)), θti⟩,

where Rt := ∥xt+1 − xt∥2 and η := τ
B . Moreover, averaging the inequalities across all i ∈ [n], we

get

Ṽ t ≤ (1− β̂η)Ṽ t−1 +
4β2

β̂η
P̃ t−1 +

4β2L2

β̂η
Rt−1 + β2b2 (36)

+
2

n
(1− β̂η)2β

n∑
i=1

⟨(gt−1
i − vt−1

i ) + β(vt−1
i −∇fi(x

t−1)) + β(∇fi(x
t−1)−∇fi(x

t)), θti⟩,

where Ṽ t := 1
n

∑n
i=1∥gti − vti∥2 and P̃ t := 1

n

∑n
i=1∥vti −∇fi(x

t)∥2.

Proof. Since ∥vti − gt−1
i ∥≤ B and B > τ , we have ηti :=

τ
∥vt

i−gt−1
i ∥ ≥ τ

B =: η ∈ (0, 1). Thus, we
have

∥gti − vti∥2
(i)
= ∥gt−1

i + β̂ clipτ (v
t
i − gt−1

i )− vti∥2

= ∥β̂(clipτ (vti − gt−1
i )− (vti − gt−1

i )) + (1− β̂)(gt−1
i − vti))∥2

(ii)

≤ (1− β̂)∥gt−1
i − vti∥2+β̂∥clipτ (vti − gt−1

i )− (vti − gt−1
i )∥2

(iii)

≤ (1− β̂)∥gt−1
i − vti∥2+β̂(1− η)2∥gt−1

i − vti∥2

= (1− β̂η(2− η))∥gt−1
i − vti∥2,

6Since η ∈ (0, 1), then this restriction is not necessary because the momentum parameter β̂ ≤ 1 by default.
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where (i) follows from the update rule of vti , (ii) – from the convexity of ∥·∥2, (iii) – from the
properties of the clipping operator in Lemma C.3. Let ρ = 2β̂η ≤ 1. Then we have

∥gti − vti∥2 ≤ (1− ρ)∥gt−1
i − vti∥2

(i)
= (1− ρ)∥gt−1

i − (1− β)vt−1
i − β∇fi(x

t, ξti)∥2

= (1− ρ)∥gt−1
i − (1− β)vt−1

i − βθti − β∇fi(x
t)∥2

= (1− ρ)∥gt−1
i − (1− β)vt−1

i − β∇fi(x
t)∥2+(1− ρ)β2∥θti∥2

− 2(1− ρ)β⟨gt−1
i − (1− β)vt−1

i − β∇fi(x
t), θti⟩

(ii)

≤ (1− ρ)(1 + ρ/2)∥gt−1
i − vt−1

i ∥2+(1− ρ)(1 + 2/ρ)β2∥vt−1
i −∇fi(x

t)∥2+β2b2

− 2(1− ρ)β⟨gt−1
i − (1− β)vt−1

i − β∇fi(x
t), θti⟩

(iii)

≤ (1− ρ/2)∥gt−1
i − vt−1

i ∥2+4β2

ρ
∥vt−1

i −∇fi(x
t−1)∥2+4β2L2

ρ
Rt−1 + β2b2

− 2(1− ρ)β⟨gt−1
i − (1− β)vt−1

i − β∇fi(x
t), θti⟩,

where (i) follows from the update rule of vti , (ii) – from the inequality ∥a+b∥2≤ (1+r)∥a∥2+(1+
r−1)∥b∥2 which holds for any a, b ∈ Rd and r > 0, and assumption of the lemma, (iii) – from L-
smoothness, Young’s inequality ∥a+ b∥2≤ 2∥a∥2+2∥b∥2.

Theorem F.9 (Proof of Theorem 3.3). Let B := max{3τ,maxi{∥∇fi(x
0)∥}+b}, Assumptions 1.1

and 1.2 hold, probability confidence level α ∈ (0, 1), constants a, b, and c be defined as in (29), and
∆ ≥ Φ0 for Φ0 defined in (9). Consider the run of Clip21-SGD2M (Algorithm 3) for T iterations
with DP noise variance σω . Assume the following inequalities hold

1. stepsize restrictions:

i) 12Lγ ≤ 1;

ii)
1

3
− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 ≥ 0; (37)

2. momentum restrictions:

i) 6Lγ = β;

ii) β ≤ min{ 3β̂τ

64
√
L∆

, 1};

iii) β ≤ min{ β̂τ
14(B−τ) , 1};

iv) β ≤ min{ β̂τ
22b , 1};

v) β̂ ≤ min{
√
L∆
a ,

√
L∆

(
4

τa2T

)1/3
, 1};

vi) β, β̂ ∈ (0, 1];

vii) and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47);

Then, with probability 1− α, we have 1
T

∑T−1
t=0 ∥∇f(xt)∥2 is bounded by

Õ
((

L∆σdσ2
ωB2

(nT )3/2τ2

(√
L∆+B + σ

))1/3
+
√
L∆

(√
dσω

τ
√
nT

+
( √

d
τ
√
Tn

)2/3)(√
L∆+B + σ

))
,

where Õ hides constant and polylogarithmic factors and higher order terms decreasing in T .

Proof. For convenience, we define ∇fi(x
−1, ξ−1

i ) = v−1
i = g−1

i = 0,Φ−1 = Φ0. Next, let
us define an event Et for each t ∈ {0, . . . , T} such that the following inequalities hold for all
k ∈ {0, . . . , t}

1. ∥vki − gk−1
i ∥≤ B for i ∈ Ik;
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2. ∥gk∥≤
√
64L∆+ 3(B − τ) + 3b+ 3β̂a;

3. ∥vki −∇fi(x
k)∥≤

√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a;

4. ∥gk∥≤
√
64L∆+ 3(B − τ) + 3b;

5. ∥θki ∥≤ b for all i ∈ [n] and ∥θk∥≤ c√
n
;

6.
∥∥∥ 1
n

∑k+1
l=1

∑n
i=1 ω

l
i

∥∥∥ ≤ a;

7. Φk ≤ 2∆;

8.

7

8
∆ ≥ 4γβ

nβ̂η
(1− η)2

k−1∑
l=0

n∑
i=1

⟨(gli − vli) + β(vli −∇fi(x
l)) + β(∇fi(x

l)−∇fi(x
l+1)), θti⟩

+
16γβ2

nβ̂2η2
(1− β)

k−1∑
l=0

n∑
i=1

⟨vli −∇fi(x
l), θl+1

i ⟩+ 4γ(1− β)
k−1∑
l=0

⟨vl −∇f(xl), θl+1⟩

+
15γβ2

nβ̂2η2
(1− β)

k−1∑
l=0

n∑
i=1

⟨∇fi(x
l)−∇fi(x

l+1), θl+1
i ⟩

+ 4γ(1− β)

k−1∑
l=0

⟨∇f(xl)−∇f(xl+1), θl+1⟩.

Then, we will derive the result by induction, i.e., using the induction w.r.t. t, we will show that
Pr(Et) ≥ 1− α(t+1)

T+1 for all t ∈ {0, . . . , T − 1}.

Before we move on to the induction part of the proof, we need to establish several useful bounds.
Denote the events Θt

i,Θ
t and N t+1 as

Θt
i := {∥θti∥≥ b}, Θt :=

{
∥θt∥≥ c√

n

}
, and N t+1 :=

{∥∥∥∥∥ 1n
t∑

l=1

n∑
i=1

ωl
i

∥∥∥∥∥ ≥ a

}
(38)

respectively. From Assumption 1.2 we have (see (14))

Pr(Θt
i) ≤ 2 exp

(
− b2

2σ2

)
=

α

6(T + 1)n

where the last equality is by definition of b2. Therefore, Pr(Θ
t

i) ≥ 1− α
6(T+1)n . Besides, notice that

the constant c in (29) can be viewed as

c = (
√
2 + 2b3)σ where b23 = 3 log

6(T + 1)

α
.

Now, we can use Lemma C.1 to bound Pr(Θt). Since all θti are independent σ-sub-Gaussian random
vectors, then we have

Pr

(∥∥∥∥∥
n∑

i=1

θti

∥∥∥∥∥ ≥ c
√
n

)
= Pr

(
∥θt∥≥ c√

n

)
≤ exp(−b23/3) =

α

6(T + 1)
.

We also use Lemma C.1 to bound Pr(N t). Indeed, since all ωl
i are independent Gaussian random

vectors, then we have

Pr

∥∥∥∥∥
t∑

l=1

n∑
i=1

ωl
i

∥∥∥∥∥ ≥ (
√
2 + 2b2)

√√√√ t∑
l=1

n∑
i=1

σ2
ωd

 ≤ exp(−b22/3) =
α

6(T + 1)
.
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with b22 = 3 log
(

6(T+1)
α

)
. This implies that

Pr

(∥∥∥∥∥ 1n
t∑

l=1

n∑
i=1

ωl
i

∥∥∥∥∥ ≥ a

)
≤ α

6(T + 1)

due to the choice of a from (29):

a = (
√
2 + 2b2)σω

√
d

√
T

n
, where b22 = 3 log

6(T + 1)

α
.

Note that with this choice of a we have that the above is true for any t ∈ {1, . . . , T}, i.e., Pr(N t) ≥
1− α

6(T+1) for all t ∈ {1, . . . , T}.

Now, we are ready to prove that Pr(Et) ≥ 1 − α(t+1)
T+1 for all t ∈ {0, . . . , T − 1}. First, we show

that the base of induction holds.

Base of induction.

1. ∥v0i −g−1
i ∥= ∥v0i ∥= β∥∇fi(x

0, ξ0i )∥= β∥θ0i ∥+β∥∇fi(x
0)∥≤ 1

2b+
1
2B ≤ 1

2B+ 1
2B = B

holds with probability 1− α
6(T+1) . Indeed, we have

Pr(Θ0
i ) ≤ 2 exp

(
− b2

2σ2

)
=

α

6(T + 1)n
.

Therefore, we have

Pr
(
∩n
i=1Θ

0

i

)
= 1−Pr

(
∪n
i=1Θ

0
i

)
≥ 1−

n∑
i=1

Pr(Θ0
i ) = 1−n

α

6(T + 1)n
= 1− α

6(T + 1)
.

Moreover, we have
Pr(Θ0) ≤ α

6(T + 1)
.

This means that the probability of the event that each
∥∥∥ 1
n

∑0
l=1

∑n
i=1 ω

l
i

∥∥∥ ≤ a, ∥θ0i ∥≤ b,

and ∥θ0∥≤ c√
n
, and is at least

1− α

6(T + 1)
− n

α

6n(T + 1)
− α

6(T + 1)
= 1− α

2(T + 1)
.

2. We have already shown that

Pr

(∥∥∥∥∥ 1n
n∑

i=1

ω1
i

∥∥∥∥∥ ≥ a

)
≤ α

6(T + 1)
,

implying that
∥∥ 1
n

∑n
i=1 ω

1
i

∥∥ ≤ a with probability at least 1− α
6(T+1) .

3. g0 = 1
n

∑n
i=1(g

−1
i + β̂ clipτ (v

0
i − g−1

i ) = 1
n

∑n
i=1 β̂ clipτ (β∇fi(x

0, ξ0i )). Therefore, we
have

∥g0∥ ≤

∥∥∥∥∥ 1n
n∑

i=1

β̂β∇fi(x
0) + β̂βθ0i + (β̂ clipτ (β∇fi(x

0, ξ0i ))− β̂β∇fi(x
0, ξ0i ))

∥∥∥∥∥
≤ β̂β∥∇f(x0)∥+ β̂β

n

n∑
i=1

∥θ0i ∥+
1

n

n∑
i=1

max
{
0, β∥∇fi(x

0, ξ0i )∥−τ
}

≤ β̂β
√

2L(f(x0)− f(x∗)) +
β̂β

n

n∑
i=1

∥θ0i ∥+
β̂

n

n∑
i=1

max
{
0, β∥∇fi(x

0)∥+β∥θ0i ∥−τ
}

≤ 1

2

√
2LΦ0 +

2β̂β

n

n∑
i=1

∥θ0i ∥+
β̂β

n

n∑
i=1

∥∇fi(x
0)∥−β̂τ

≤
√
64L∆+ 2β̂βb+ β̂βB − β̂τ

≤
√
64L∆+

3

2
B − τ + b ≤

√
64L∆+ 3(B − τ) +

3

2
b+ β̂a.
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The inequalities above again hold in ∩n
i=1Θ

0

i , i.e., with probability at least 1− α
6(T+1) . Note

that for the base of induction we have g0 = g, therefore, the condition 4 holds as well.

4. We have

∥v0i −∇fi(x
0)∥ = ∥∇βfi(x

0, ξ0i )−∇fi(x
0)∥

≤ β∥∇fi(x
0, ξ0i )−∇fi(x

0)∥+(1− β)∥∇fi(x
0)∥

≤ βb+ (1− β)B

This bound holds with probability at least 1− α
6(T+1) because it holds in ∩n

i=1Θ
0

i .

5. Condition 7 of the induction assumption also hold, as Φ0 ≤ 2Φ0 ≤ 2∆ by the choice of ∆.

6. Finally, condition 8 of the induction assumption holds since the RHS equals 0.

Therefore, we conclude that the conditions 1-8 hold with a probability of at least

Pr
(
Θ0 ∩

(
∩n
i=1Θ

0

i

)
∩N

t
)
≥ 1− Pr(Θ0)−

n∑
i=1

Pr(Θ0
i )− Pr(N0)

≥ 1− α

6(T + 1)
− n · α

6n(T + 1)
− α

6(T + 1)

= 1− α

2(T + 1)
> 1− α

T + 1
,

i.e., Pr(E0) ≥ 1− α
T+1 holds. This is the base of the induction.

Transition step of induction. Case |IK+1|> 0. Assume that all events Θ
K+1

,Θ
K+1

i and N
K+1

take place, i.e., ∥θK+1
i ∥≤ b, ∥θK+1∥≤ c√

n
for all i ∈ [n] and

∥∥∥ 1
n

∑K
l=1

∑n
i=1 ω

l
i

∥∥∥ ≤ a. That is, we

assume that event Θ
K+1 ∩

(
∩n
i=1Θ

K+1

i

)
∩ N

K+1 ∩ EK holds. Then, by the assumptions of the
induction, from Lemma F.5 we get for all i ∈ IK+1

∥vK+1
i − gKi ∥≤ ∥vKi − gK−1

i ∥− β̂τ

2
≤ B − β̂τ

2
.

Therefore, from Lemma F.2 we get that

∥gK+1∥≤
√
64L∆+ 3(B − τ) + 3b+ 3β̂a,

from Lemma F.4 we get that

∥gK+1∥≤
√
64L∆+ 3(B − τ) + 3b,

and from Lemma F.3

∥∇fi(x
K+1)− vK+1

i ∥≤
√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a.

This means that conditions 1-6 in the induction assumption are also verified for the step K + 1.
Since for all t ∈ {0, . . . ,K + 1} inequalities 1-6 are verified, we can write for each t ∈ {0, . . . ,K}
by Lemmas C.2 and F.6 to F.8 the following
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Φt+1 = δt+1 +
2γ

β̂η
Ṽ t+1 +

8γβ

β̂2η2
P̃ t+1 +

2γ

β
P t+1

≤ δt − γ

2
∥∇f(xt)∥2− 1

4γ
Rt+2γṼ t+2γP t + γβ̂2∥Ωt∥2

+
2γ

β̂η

(
(1− β̂η)Ṽ t+

4β2

β̂η
P̃ t+

4β2L2

β̂η
Rt + β2b2

+
2

n
β(1− β̂η)2

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

)

+
8γβ

β̂2η2

(
(1− β)P̃ t+

3L2

β
Rt + β2b2 +

2

n
β(1− β)

n∑
i=1

⟨vti −∇fi(x
t+1), θt+1

i ⟩

)

+
2γ

β

(
(1− β)P t+

3L2

β
Rt + β2 c

2

n
+ 2β(1− β)⟨vt −∇f(xt+1), θt+1⟩

)

Rearranging terms, we get

Φt+1 ≤ δt − γ

2
∥∇f(xt)∥2+2γ

β̂η
Ṽ t
(
β̂η + 1− β̂η

)
+

8γβ

β̂2η2
P̃ t (β + 1− β) +

2γ

β
P t (β + 1− β)

− 1

4γ
Rt

(
1− 32L2β2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 − 24L2

β2
γ2

)
+ b2

(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+ c2

2γβ

n

+
4γβ

nβ̂η
(1− β̂η)2

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

+
16γβ2

nβ̂2η2
(1− β)

n∑
i=1

⟨vti −∇fi(x
t), θt+1

i ⟩+ 4γ(1− β)⟨vt −∇f(xt), θt+1⟩

+
16γβ2

nβ̂2η2
(1− β)

n∑
i=1

⟨∇fi(x
t)−∇fi(x

t+1), θt+1
i ⟩

+ 4γ(1− β)⟨∇f(xt)−∇f(xt+1), θt+1⟩+ γβ̂2∥Ωt∥2.

Using momentum restriction (i), stepsize restriction, momentum restriction (i), (ii) and assumption
of the induction that ∥Ωt∥≤ a, we get rid of the term with Rt and obtain

Φt+1 ≤ Φt − γ

2
∥∇f(xt)∥2+b2

(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+ c2

2γβ

n
+

β

6L
β̂2a2

+
4γβ

nβ̂η
(1− β̂η)2

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

+
16γβ2

nβ̂2η2
(1− β)

n∑
i=1

⟨vti −∇fi(x
t), θt+1

i ⟩+ 4γ(1− β)⟨vt −∇f(xt), θt+1⟩

+
16γβ2

nβ̂2η2
(1− β)

n∑
i=1

⟨∇fi(x
t)−∇fi(x

t+1), θt+1
i ⟩

+ 4γ(1− β)⟨∇f(xt)−∇f(xt+1), θt+1⟩.
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Now we sum all the inequalities above using momentum restriction (ii) for t ∈ {0, . . . ,K} and get

ΦK+1 ≤ Φ0 − γ

2

K∑
t=0

∥∇f(xt)∥2+Kb2
(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+Kc2

2γβ

n
+K

τ

128L
√
L∆

β̂3a2

+
4γβ

nβ̂η
(1− β̂η)2

K∑
t=0

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨vti −∇fi(x
t), θt+1

i ⟩+ 4γ(1− β)

K∑
t=0

⟨vt −∇f(xt), θt+1⟩

+
16γβ2

nη2
(1− β)

K∑
t=0

n∑
i=1

⟨∇fi(x
t)−∇fi(x

t+1), θt+1
i ⟩

+ 4γ(1− β)

K∑
t=0

⟨∇f(xt)−∇f(xt+1), θt+1⟩. (39)

Rearranging terms, we get

γ

2

K∑
t=0

∥∇f(xt)∥2≤ Φ0 − ΦK+1 +Kb2
(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+Kc2

2γβ

n
+

Kτ

128L
√
L∆

β̂3a2

+
4γβ

nβ̂η
(1− β̂η)2

K∑
t=0

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨vti −∇fi(x
t), θt+1

i ⟩+ 4γ(1− β)

K∑
t=0

⟨vt −∇f(xt), θt+1⟩

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨∇fi(x
t)−∇fi(x

t+1), θt+1
i ⟩

+ 4γ(1− β)

K∑
t=0

⟨∇f(xt)−∇f(xt+1), θt+1⟩.

Taking into account that γ
2

∑K
t=0∥∇f(xt)∥2≥ 0, we get that the event EK ∩

(
∩n
i=1Θ

K+1

i

)
∩N

t ∩

Θ
K+1

implies

ΦK+1 ≤ Φ0 +Kb2
(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+Kc2

2γβ

n
+

Kτ

128L
√
L∆

β̂3a2

+
4γβ

nβ̂η
(1− β̂η)2

K∑
t=0

n∑
i=1

⟨(gti − vti) + β(vti −∇fi(x
t)) + β(∇fi(x

t)−∇fi(x
t+1)), θt+1

i ⟩

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨vti −∇fi(x
t), θt+1

i ⟩+ 4γ(1− β)

n

K∑
t=0

n∑
i=1

⟨vt −∇f(xt), θt+1
i ⟩

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨∇fi(x
t)−∇fi(x

t+1), θt+1
i ⟩

+
4γ(1− β)

n

K∑
t=0

n∑
i=1

⟨∇f(xt)−∇f(xt+1), θt+1
i ⟩.
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Next, we define the following random vectors:

ζt1,i :=

{
gti − vti , if ∥gti − vti∥≤ B

0, otherwise
,

ζt2,i :=

{
vti −∇fi(x

t), if ∥vti −∇fi(x
t)∥≤

√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a

0, otherwise
,

ζt3,i :=

{
∇fi(x

t)−∇fi(x
t+1), if ∥∇fi(x

t)−∇fi(x
t+1)∥≤ Lγ

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)
0, otherwise

,

ζt4 :=

{
vt −∇f(xt), if ∥vt −∇f(xt)∥≤

√
4L∆+ 3

2 (B − τ) + 3
2b+ β̂a

0, otherwise
,

ζt5 :=

{
∇f(xt)−∇f(xt+1), if ∥∇f(xt)−∇f(xt+1)∥≤ Lγ

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)
0, otherwise

.

By definition, all introduced random vectors ζtl,i, l ∈ [3], i ∈ [n], ζt4,5 are bounded with probability

1. Moreover, by the definition of Et we get that the event EK ∩ Θ
K+1 ∩

(
∩n
i=1Θ

K+1

i

)
∩ N

K+1

implies
ζt1,i = gti − vti , ζt2,i = vti −∇fi(x

t), ζt3,i = ∇fi(x
t)−∇fi(x

t+1),

ζt4 = vt −∇f(xt), ζt5 = ∇f(xt)−∇f(xt+1).

Therefore, the event EK ∩Θ
K+1 ∩

(
∩n
i=1Θ

K+1

i

)
∩N

K+1
implies

ΦK+1 ≤ Φ0 +Kb2
(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+Kc2

2γβ

n
+KγL∆1a>0︸ ︷︷ ︸

①

+
4γβ

nβ̂η
(1− η)2

K∑
t=0

n∑
i=1

⟨ζt1,i, θt+1
i ⟩︸ ︷︷ ︸

②

+
4γβ2

nβ̂η
(1− β̂η)2

K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩︸ ︷︷ ︸

③

+
4γβ2

nβ̂η
(1− β̂η)2

K∑
t=0

n∑
i=1

⟨ζt3,i, θt+1
i ⟩︸ ︷︷ ︸

④

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩︸ ︷︷ ︸

⑤

+
4γ(1− β)

n

K∑
t=0

n∑
i=1

⟨ζt4, θt+1
i ⟩︸ ︷︷ ︸

⑥

+
16γβ2

nβ̂2η2
(1− β)

K∑
t=0

n∑
i=1

⟨ζt3,i, θt+1
i ⟩︸ ︷︷ ︸

⑦

+
4γ(1− β)

n

K∑
t=0

n∑
i=1

⟨ζt5, θt+1
i ⟩︸ ︷︷ ︸

⑧

.

BOUND OF THE TERM ①. Since 6Lγ ≤ β, for the term ① we have

Kb2
(
2β2γ

β̂η
+

8γβ3

β̂η2

)
+Kc2

2γβ

n
+

Kτ

128L
√
L∆

β̂3a2 ≤ Kb2
(

β3

3Lβ̂η
+

4β4

3Lβ̂2η2

)
+Kc2

β2

3Ln

+
Kτ

128L
√
L∆

β̂3a2.

By choosing β such that

β ≤ min


(
3L∆β̂η

32Tb2

)1/3

,

(
3L∆β̂2η2

128Tb2

)1/4

,

(
3L∆n

32Tc2

)1/2
 , (40)

and β̂ satisfying momentum restriction (v) we get that

Kb2
(
2β2γ

β̂η
+

8γβ3

β̂2η2

)
+Kc2

2γβ

n
+

Kτ

128L
√
L∆

β̂3a2 ≤ 4 · ∆
32

=
∆

8
.
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Note that the worst dependency in the restriction on β in T is O(1/T) but it is present only in the
case a > 0. The second worst on β is O(1/T 3/4) since β̂ ∼ 1

a ∼ 1
T that comes from the second term

in (40).

BOUND OF THE TERM ②. For term ②, let us enumerate random variables as

⟨ζ01,1, θ11⟩, . . . , ⟨ζ01,n, θ1n⟩, ⟨ζ11,1, θ21⟩, . . . , ⟨ζ11,n, θ2n⟩, . . . ⟨ζK1,1, θK+1
1 ⟩, . . . , ⟨ζK1,n, θK+1

n ⟩,

i.e., first by index i, then by index t. Then we have that the event EK ∩
(
∩n
i=1Θ

K+1

i

)
implies

E

[
4γβ

nβ̂η
(1− η)2⟨ζl1,i, θl+1

i ⟩ | ⟨ζl1,i−1, θ
l+1
i−1⟩, . . . , ⟨ζ

l
1,1, θ

l+1
1 ⟩, . . . , ⟨ζ01,1, θ11⟩

]
= 0,

because {θl+1
i }ni=1 are independent. Let

σ2
2 :=

16γ2β2

n2β̂2η2
·B2 · σ2.

Since θl+1
i is σ-sub-Gaussian random vector, for

E [· | l, i− 1] := E
[
· | ⟨ζl1,i−1, θ

l+1
i−1⟩, . . . , ⟨ζ

l
1,1, θ

l+1
1 ⟩, . . . , ⟨ζ01,1, θ11⟩

]
we have

E

[
exp

(∣∣∣∣ 1σ2
2

16γ2β2

n2β̂2η2
(1− η)4⟨ζl1,i, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
1

16γ2β2

n2β̂2η2
∥ζl1,i∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
1

σ2
2

16γ2β2

n2β̂2η2
·B2∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
n2β̂2η2

16γ2β2 ·B2 · σ2

16γ2β2

n2β̂2η2
·B2∥θl+1

i ∥2
)

| l, i− 1

]

= E

[
exp

(
∥θl+1

i ∥2

σ2
| l, i− 1

)]
≤ exp(1).

Therefore, we have by Lemma C.1 with σ2
k ≡ σ2

2 that

Pr

4γβ

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt1,i, θt+1
i ⟩

∥∥∥∥∥ ≥ (
√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16B2γ2β2σ2

n2β̂2η2


≤ exp(−b21/3)

=
α

14(T + 1)

with b21 = 3 log
(

14(T+1)
α

)
. Note that since 6Lγ ≤ β

(
√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16B2γ2β2σ2

n2β̂2η2
≤ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

4B2β4σ2

9L2n2β̂2η2

= (
√
2 +

√
2b1)

2Bβ2σ

3Lnβ̂η

√
(K + 1)n

≤ ∆

8
,

because we choose β such that

β ≤

(
3L∆

√
nβ̂η

16
√
2(1 + b1)Bσ

√
T

)1/2

, and K + 1 ≤ T. (41)
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This implies that

Pr

(
4γβ

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt1,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)

with this choice of momentum parameter. The dependency of (41) on T is Õ(1/T 3/4) since β̂ ∼ 1
T .

BOUND OF THE TERM ③. The bound in this case is similar to the previous one. Let

σ2
3 :=

16γ2β4

n2β̂2η2
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· σ2.

Then,

E

[
exp

(∣∣∣∣ 1σ2
3

16γ2β4

n2β̂2η2
(1− β̂η)4⟨ζl2,i, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
3

16γ2β4

n2β̂2η2
∥ζl2,i∥2·∥θl+1

i ∥2
)]

≤ E

[
exp

(
1

σ3
2

16γ2β4

n2β̂2η2
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

≤ E

exp
[16γ2β4

n2β̂2η2
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· σ2

]−1

·

16γ2β4

n2β̂2η2
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

= E

[
exp

(
∥θl+1

i ∥2

σ2

)
| l, i− 1

]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

[
4γβ2

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩

∥∥∥∥∥
≥ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16γ2β4σ2

n2β̂2η2
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2


≤ exp(−b21/3) =
α

14(T + 1)
.

Note that by using the restrictions β̂ ≤
√
L∆
a and 6Lγ ≤ β we get

(
√
2 +

√
2b1)

√
(K + 1)n

4γβ2σ

β̂ηn

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
≤(

√
2 +

√
2b1)

√
(K + 1)n

2β3σ

3Lβ̂ηn

(√
4L∆+

3

2
(B − τ) +

3

2
b+

√
L∆

)
≤∆

8

holds because we choose

β ≤

 3L∆β̂η
√
n

16
√
2(1 + b1)σ

√
T
(√

9L∆+ 3
2 (B − τ) + 3

2b
)
1/3

, and K + 1 ≤ T. (42)
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This implies

Pr

(
4γβ2

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
.

Note that the worst dependency in the choice of β w.r.t. T is Õ(1/T 1/2) since β̂ ∼ 1
T .

BOUND OF THE TERM ④. The bound in this case is similar to the previous one. Let

σ2
4 :=

16L2γ4β4

n2β̂2η2

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)2
· σ2.

Then we have

E

[
exp

(∣∣∣∣ 1σ2
4

16γ2β4

n2β̂2η2
(1− β̂η)4⟨ζl3,i, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
4

16γ2β4

n2β̂2η2
∥ζl3,i∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
1

σ2
4

16γ2β4

n2β̂2η2
· L2γ2

(√
64L∆+ 3(B − τ) + 3b+ 3a

)2
· ∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

([
16L2γ4β4

n2β̂2η2

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)2
· σ2

]−1

16L2γ4β4

n2β̂2η2

(√
64L∆+ 3(B − τ) + 3b+ 3β̂a

)2
· ∥θl+1

i ∥2
)

| l, i− 1

]
= E

[
exp

(
∥θl+1

i ∥2

σ2

)]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

(
4γβ2

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt3,i, θt+1
i ⟩

∥∥∥∥∥
≥ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16L2γ4β4σ2

n2β̂2η2
·
(√

64L∆+ 3(B − τ + b) + 3β̂a
)2

≤ exp(−b21/3) =
α

14(T + 1)
.

Using the restrictions β̂ ≤
√
L∆
a and 6Lγ ≤ β we get

(
√
2 +

√
2b1)

√
(K + 1)n

4Lγ2β2σ

β̂ηn

(√
64L∆+ 3(B − τ + b) + 3β̂a

)
≤
√
2(1 + b1)

√
(K + 1)n

β4σ

9Lβ̂ηn

(√
64L∆+ 3(B − τ + b) + 3

√
L∆
)

≤∆

8
,

because we choose β such that

β ≤

 9L∆β̂η
√
n

8
√
2(1 + b1)σ

√
T
(
11
√
L∆+ 3(B − τ + b)

)
1/4

, and K + 1 ≤ T. (43)

This implies

Pr

(
4γβ2

nβ̂η
(1− β̂η)2

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
,

Note that the worst dependency in the choice of β w.r.t. T is Õ(1/T 3/8) since β̂ ∼ 1
T .
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BOUND OF THE TERM ⑤. The bound in this case is similar to the previous one. Let

σ2
5 :=

256γ2β4

n2β̂4η4
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· σ2.

Then we have

E

[
exp

(∣∣∣∣ 1σ2
5

256γ2β4

n2β̂4η4
(1− β)2⟨ζl2,i, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
5

256γ2β4

n2β̂4η4
∥ζl2,i∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
1

σ2
5

256γ2β4

n2β̂4η4
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

= E

exp
[ 256γ2β4

L2n2β̂4η4
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· σ2

]−1

256γ2β4

n2β̂4η4
·
(√

4L∆+
3

2
(B − τ) +

3

2
b+ β̂a

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

= E

[
exp

(
∥θl+1

i ∥2

σ2

)
| l, i− 1

]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

[
16γβ2

nβ̂2η2
(1− β)

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩

∥∥∥∥∥
≥ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

256γ2β4σ2

n2β̂4η4

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)2


≤ exp(−b21/3) =
α

14(T + 1)
.

Using the restrictions 6Lγ ≤ β and β̂ ≤
√
L∆
a we get

(
√
2 +

√
2b1)

√
(K + 1)n

16γβ2σ

nβ̂2η2

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
≤(

√
2 +

√
2b1)

√
(K + 1)n

8β3σ

3Lnβ̂2η2

(√
4L∆+

3

2
(B − τ) +

3

2
b+

√
L∆

)
≤∆

8

because we choose β such that

β ≤

 3L∆β̂2η2
√
n

64
√
2(1 + b1)σ

√
T
(
3
√
L∆+ 3

2 (B − τ) + 3
2b
)
1/3

, and K + 1 ≤ T. (44)

This implies

Pr

(
16γβ2

nβ̂2η2
(1− β̂β)

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt2,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
.

Note that the worst dependency in the choice of β w.r.t. T is Õ(1/T5/6) since β̂ ∼ 1
T .
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BOUND OF THE TERM ⑦. The bound in this case is similar to the previous one. Let

σ2
7 :=

256L2γ4β4

n2β̂4η4

(√
64L∆+ 3(B − τ + b) + 3β̂a

)2
· σ2.

Then we have

E

[
exp

(∣∣∣∣ 1σ2
7

256L2γ4β4

n2β̂4η4
(1− β)2⟨ζl3,i, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
7

256γ2β4

n2β̂4η4
∥ζl3,i∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
256γ2β4

n2β̂4η4
· L2γ2

(√
64L∆+ 3(B − τ + b) + 3β̂a

)2
· ∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

([
256L2γ4β4

n2β̂4η4

(√
64L∆+ 3(B − τ + b) + 3β̂a

)2
· σ2

]−1

256L2γ4β4

n2β̂4η4

(√
64L∆+ 3(B − τ + b) + 3β̂a

)2
· ∥θl+1

i ∥2
)

| l, i− 1

]
= E

[
exp

(
∥θl+1

i ∥2

σ2

)
| l, i− 1

]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

[
16γβ2

nβ̂2η2
(1− β)

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt3,i, θt+1
i ⟩

∥∥∥∥∥ ≥

(
√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

256L2γ4β4σ2

n2β̂4η4
·
(√

64L∆+ 3(B − τ + b) + 3β̂a
)2

≤ exp(−b21/3) =
α

14(T + 1)
.

Using the restrictions 6Lγ ≤ β and β̂ ≤
√
L∆
a we get

(
√
2 +

√
2b1)

√
(K + 1)n

16Lγ2β2σ

β̂2η2n

(√
64L∆+ 3(B − τ + b) + 3β̂a

)
≤(

√
2 +

√
2b1)

√
(K + 1)n

4β4σ

9Lβ̂2η2n

(
8
√
L∆+ 3(B − τ + b) + 3

√
L∆
)

≤∆

8

because we choose

β ≤

 9L∆β̂2η2
√
n

32
√
2(1 + b1)σ

√
T
(
11
√
L∆+ 3(B − τ +B)

)
1/4

, and K + 1 ≤ T. (45)

This implies

Pr

(
8γβ2

nη2
(1− β)

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt3,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
.

Note that the worst dependency in the choice of β w.r.t. T is Õ(1/T 5/8) since β̂ ∼ 1
T .

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

BOUND OF THE TERM ⑥. The bound in this case is similar to the previous one. Let

σ2
6 :=

16γ2

n2

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)2

· σ2.

Then we have

E

[
exp

(∣∣∣∣ 1σ2
6

16γ2

n2
(1− β)2⟨ζl4, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
6

16γ2

n2
∥ζl4∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
1

σ2
6

16γ2

n2

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a)

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

≤ E

exp
[16γ2

n2

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a)

)2

· σ2

]−1

16γ2

n2

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a)

)2

· ∥θl+1
i ∥2

)
| l, i− 1

]

= E

[
exp

(
∥θt+1

i ∥2

σ2

)
| l, i− 1

]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

[
γ(1− β)

n

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt4,i, θt+1
i ⟩

∥∥∥∥∥
≥ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16γ2

n2
σ2 ·

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a)

)2


≤ exp(−b21/3) =
α

14(T + 1)
,

Using the restrictions 6Lγ ≤ β and β̂ ≤
√
L∆
a we get

(
√
2 +

√
2b1)

√
(K + 1)n · 4γ

n
σ

(√
4L∆+

3

2
(B − τ) +

3

2
b+ β̂a

)
≤(

√
2 +

√
2b1)

√
(K + 1)n · 2β

3Ln
σ

(√
4L∆+

3

2
(B − τ) +

3

2
b+

√
L∆

)
≤∆

8

because we choose β such that

β ≤

 3L∆
√
n

16
√
2(1 + b1)σ

√
T
(
3
√
L∆+ 3

2 (B − τ) + 3
2b
)
 , and K + 1 ≤ T. (46)

This implies

Pr

(
4γ(1− β)

n

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt4,i, θt+1
i ⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
.

Note that the worst dependency in the choice of β w.r.t. T is Õ(1/T 1/2).
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BOUND OF THE TERM ⑧. The bound in this case is similar to the previous one. Let

σ2
8 :=

16L2γ4

n2
·
(√

64L∆+ 3(B − τ + b) + 3β̂a
)2

· σ2.

Then we have

E

[
exp

(∣∣∣∣ 1σ2
8

16γ2

n2
(1− β)2⟨ζl5, θl+1

i ⟩2
∣∣∣∣) | l, i− 1

]
≤ E

[
exp

(
1

σ2
8

16γ2

n2
∥ζl5∥2·∥θl+1

i ∥2
)

| l, i− 1

]
≤ E

[
exp

(
1

σ2
8

16γ2

n2
L2γ2

(√
64L∆+ 3(B − τ + b) + 3β̂a

)
· ∥θl+1

i ∥2
)2

| l, i− 1

]
.

Since θl+1
i is sub-Gaussian with parameter σ2, then we can continue the chain of inequalities above

using the definition of σ2
8

E

[
exp

([
16L2γ4

n2
·
(√

64L∆+ 3(B − τ + b) + 3β̂a
)2

· σ2

]−1

4L2γ4

n2
·
(√

64L∆+ 3(B − τ + b) + 3β̂a
)2

· ∥θl+1
i ∥2

)
| l, i− 1

]
= E

[
exp

(
∥θl+1

i ∥2

σ2

)]
≤ exp(1).

Therefore, we have by Lemma C.1 that

Pr

[
4γ(1− β)

n

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt5,i, θt+1⟩

∥∥∥∥∥
≥ (

√
2 +

√
2b1)

√√√√ K∑
t=0

n∑
i=1

16L2γ4

n2
σ2 ·

(√
64L∆+ 3(B − τ + b) + 3β̂a

)2
≤ exp(−b21/3) =

α

14(T + 1)
.

Using the restrictions 6Lγ ≤ β and β̂ ≤
√
L∆
a we get

(
√
2 +

√
2b1)

√
(K + 1)n · 4Lγ

2

n
σ
(√

64L∆+ 3(B − τ + b) + 3β̂a
)

≤(
√
2 +

√
2b1)

√
(K + 1)n · β

2σ

9Ln

(
8
√
L∆+ 3(B − τ) + 3b+ 3

√
L∆
)

≤∆

8

because we choose β such that

β ≤

 9L∆
√
n

√
2(1 + b1)σ

√
T
(
11
√
L∆+ 3(B − τ + b)

)
1/2

and K + 1 ≤ T. (47)

This implies

Pr

(
4γ(1− β)

∥∥∥∥∥
K∑
t=0

n∑
i=1

⟨ζt5,i, θt+1⟩

∥∥∥∥∥ ≥ ∆

8

)
≤ α

14(T + 1)
.

Note that the worst dependency w.r.t T is Õ(1/T 1/4).
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Final probability. Therefore, the probability event

Ω := EK ∩Θ
K+1 ∩

(
∩n
i=1Θ

K+1

i

)
∩N

K+1 ∩ E① ∩ E② ∩ E③ ∩ E④ ∩ E⑤ ∩ E⑥ ∩ E⑦ ∩ E⑧,

where each E①-E⑧ denotes that each of 1-8-th terms is smaller than ∆
8 , implies that

① + ② + ③ + ④ + ⑤ + ⑥ + ⑦ + ⑧ ≤ 8 · ∆
8

= ∆,

i.e., condition 7 in the induction assumption holds. Moreover, this also implies that

ΦK+1 ≤ Φ0 +∆ ≤ ∆+∆ = 2∆,

i.e., condition 6 in the induction assumption holds. The probability Pr(EK+1) can be lower bounded
as follows

Pr(EK+1) ≥ Pr(Ω)

= Pr
(
EK ∩Θ

K+1 ∩
(
∩n
i=1Θ

K+1

i

)
∩N

K+1 ∩ E① ∩ E② ∩ E③ ∩ E④ ∩ E⑤ ∩ E⑥

∩E⑦ ∩ E⑧)

= 1− Pr
(
EK ∪ΘK+1 ∪

(
∪n
i=1Θ

K+1
i

)
∪NK+1 ∪ E① ∪ E② ∪ E③ ∪ E④ ∪ E⑤ ∪ E⑥

∪E⑦ ∪ E⑧

)
≥ 1− Pr(EK)− Pr(ΘK+1)−

n∑
i=1

Pr(ΘK+1
i )− Pr(NK+1)− Pr(E①)− Pr(E②)

− Pr(E③)− Pr(E④)− Pr(E⑤)− Pr(E⑥)− Pr(E⑦)− Pr(E⑧)

≥ 1− α(K + 1)

T + 1
− α

6(T + 1)
−

n∑
i=1

α

6n(T + 1)
− α

6(T + 1)
− 0− 7 · α

14(T + 1)

= 1− α(K + 2)

T + 1
.

This finalizes the transition step of induction. The result of the theorem follows by setting K =
T − 1. Indeed, from (39) we obtain

γ

2

K∑
t=0

∥∇f(xt)∥2≤ Φ0 − ΦK+1 +∆ ≤ 2∆ ⇒ 1

T

T−1∑
t=0

∥∇f(xt)∥2≤ 4∆

γT
. (48)

Final rate. Translating momentum restrictions (40), (41), (42), (43), (44), (46), (45), and (47) to
the stepsize restriction using 6Lγ = β equality we get that the stepsize should satisfy

γ ≤ 1

L
Õ

min


(
L∆n

Tσ2

)1/2

,

(
L∆β̂2η2

Tσ2

)1/4

︸ ︷︷ ︸
from term 1

,

(
L∆

√
nβ̂η

Bσ
√
T

)1/2

︸ ︷︷ ︸
from term 2

,

(
L∆

√
nβ̂η

σ(
√
L∆+B + σ)

√
T

) 1
3

︸ ︷︷ ︸
from term 3

,

(
L∆β̂η

√
n

σ(
√
L∆+B + σ)

√
T

)1/4

︸ ︷︷ ︸
from term 4

,

(
L∆β̂2η2

√
n

σ(
√
L∆+B + σ)

√
T

)1/3

︸ ︷︷ ︸
from term 5

,

(
L∆β̂2η2

√
n

σ(
√
L∆+B + σ)

√
T

)1/4

︸ ︷︷ ︸
from term 7

,

(
L∆

√
n

σ(
√
L∆+B + σ)

√
T

)
︸ ︷︷ ︸

from term 6

,

(
L∆

√
n

σ(
√
L∆+B + σ)

√
T

) 1
2

︸ ︷︷ ︸
from term 8


 . (49)
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The worst power of T comes from the term ⑤ and equals 1
T 5/6 . The second worst comes from terms

①, ②, and ④, and equals to γ ≤ 1
T 3/4 in the case β̂ ∼ 1

T . These terms give the rate of the form

Õ

L∆

T

(
Tσ2

L∆β̂2η2

)1/4

+
L∆

T

(
σ(
√
L∆+B + σ)

√
T

L∆β̂η
√
n

)1/3

+
L∆

T

(
σ(
√
L∆+B + σ)

√
T

L∆β̂2η2
√
n

)1/3

+
L∆

T

(
Bσ

√
T

L∆
√
nβ̂η

)1/2
 . (50)

In the case, when β̂ = 1 the worst dependency in (49) w.r.t. T comes from the terms ① and ⑥. We
also have restriction γ ≤ O(1/L). All of those restrictions give the rate of the form

L∆

T
Õ

(
1 +

T 1/2σ

L1/2∆1/2n1/2
+

σ(
√
L∆+B + σ)

√
T

L∆
√
n

)

= Õ

(
L∆

T
+

√
L∆σ√
nT

+
σ(
√
L∆+B + σ)√

nT

)

= Õ

(
L∆

T
+

σ(
√
L∆+B + σ)√

nT

)
. (51)

Choosing β̂ ≤
√
L∆/a in (50), where a is defined in (29), and setting η = τ

B we get

L∆

T
· Õ

(Tσ2B2a2

L2∆2τ2

)1/4

+

(
σaB(

√
L∆+B + σ)

√
T

L3/2∆3/2τ
√
n

)1/3

+

(
σa2(

√
L∆+B + σ)B2

√
T

L2∆2τ2
√
n

)1/3

+

(
aB2σ

√
T

L3/2∆3/2
√
nτ

)1/2


=
L∆

T
· Õ

(Tσ2B2a2

L2∆2τ2

)1/4

+

(
σaB

√
T

L∆τ
√
n

)1/3

+

(
σaB2

√
T

L3/2∆3/2τ
√
n

)1/3

+

(
σ2aB

√
T

L3/2∆3/2τ
√
n

)1/3

+

(
σa2B2

√
T

L3/2∆3/2τ2
√
n

)1/3

+

(
σa2B3

√
T

L2∆2τ2
√
n

)1/3

+

(
σ2a2B2

√
T

L2∆2τ2
√
n

)1/3

+

(
aB2σ

√
T

L3/2∆3/2
√
nτ

)1/2
 .
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Now we use the exact value for a to derive

Õ

(L4∆4Tσ2B2dσ2
ω
T
n

T 4L2∆2τ2

)1/4

+

(
L3∆3σd1/2σω

T 1/2

n1/2 B
√
T

T 3L∆τ
√
n

)1/3

+

(
L3∆3σd1/2σω

T 1/2

n1/2 B
2
√
T

T 3L3/2∆3/2τ
√
n

)1/3

+

(
L3∆3σ2d1/2σω

T 1/2

n1/2 B
√
T

T 3L3/2∆3/2τ
√
n

)1/3

+

(
L3∆3σdσ2

ω
T
nB

2
√
T

T 3L3/2∆3/2τ2
√
n

)1/3

+

(
L3∆3σdσ2

ω
T
nB

3
√
T

T 3L2∆2τ2
√
n

)1/3

+

(
L3∆3σ2dσ2

ω
T
nB

2
√
T

T 3L2∆2τ2
√
n

)1/3

+

(
L2∆2d1/2σω

T 1/2

n1/2 B
2σ

√
T

T 2L3/2∆3/2
√
nτ

)1/2


= Õ

((
L2∆2σ2B2dσ2

ω

T 2nτ2

)1/4

+

(
L2∆2σd1/2σωB

nT 2τ

)1/3

+

(
L3/2∆3/2σd1/2σωB

2

nT 2τ

)1/3

+

(
L3/2∆3/2σ2d1/2σωB

nT 2τ

)1/3

+

(
L3/2∆3/2σdσ2

ωB
2

T 3/2n3/2τ2

)1/3

+

(
L∆σdσ2

ωB
3

n3/2T 3/2τ2

)1/3

+

(
L∆σ2dσ2

ωB
2

T 3/2n3/2τ2

)1/3

+

(
L1/2∆1/2d1/2σωB

2σ

Tnτ

)1/2
)
. (52)

As we can see, the worst dependency on T and σω comes from terms 5− 7. Therefore, we omit the
rest of the terms. Hence, the worst term w.r.t. T in the presence of DP noise gives the rate

Õ

((
L3/2∆3/2σdσ2

ωB
2

T 3/2n3/2τ2

)1/3

+

(
L∆σdσ2

ωB
3

n3/2T 3/2τ2

)1/3

+

(
L∆σ2dσ2

ωB
2

T 3/2n3/2τ2

)1/3
)

= Õ

(
L1/2∆1/2σ1/3d1/3σ

2/3
ω B2/3

T 1/2n1/2τ2/3
+

L1/3∆1/3σ1/3d1/3σ
2/3
ω B

n1/2T 1/2τ2/3
+

L1/3∆1/3σ2/3d1/3σ
2/3
ω B2/3

T 3/2n3/2τ2

)

= Õ

(
L1/3∆1/3σ1/3d1/3σ

2/3
ω B2/3

T 1/2n1/2τ2/3

(
(L∆)1/6 +B1/3 + σ1/3

))

= Õ

((
L∆σdσ2

ωB
2

(nT )3/2τ2

(√
L∆+B + σ

))1/3
)
. (53)

Besides, the momentum restrictions β̂ ≤
√
L∆
a and 6Lγ = β give us the following restrictions on

the stepsize

γ ≤ 1

L
Õ

(
min

{
τ

a
,
τ
√
L∆

BaT
,

√
L∆τ

σa

})
that translate to the following rate

L∆

T
Õ
(
a

τ
+

Ba

τ
√
L∆

+
σa

τ
√
L∆

)
= Õ

(
L∆

T

d1/2σω
T 1/2

n1/2

τ
+

√
L∆

T

Bd1/2σω
T 1/2

n1/2

τ
+

L∆

T

σd1/2σω
T 1/2

n1/2

τ
√
L∆

)

= Õ

(√
L∆dσω

τ
√
nT

(√
L∆+B + σ

))
. (54)

Besides, the momentum restrictions β̂ ≤
√
L∆

(
4

a2τT

)1/3
and 6Lγ = β give us the following

restrictions on the stepsize

γ ≤ 1

L
Õ

(
min

{
τ2/3

a2/3T 1/3
,
τ2/3

√
L∆

Ba2/3T 1/3
,

√
L∆τ2/3

σa2/3T 1/3

})
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that translate to the following rate

L∆

T
Õ
(
a2/3T 1/3

τ2/3
+

Ba2/3T 1/3

τ2/3
√
L∆

+
σa2/3T 1/3

τ2/3
√
L∆

)
= Õ

(
L∆

T 2/3

d1/3σ
2/3
ω

T 1/3

n1/3

τ2/3
+

√
L∆

T 2/3

Bd1/3σ
2/3
ω

T 1/3

n1/3

τ2/3
+

√
L∆

T 2/3

σd1/3σ
2/3
ω

T 1/3

n1/3

τ2/3
√
L∆

)

= Õ

(
L∆

T 1/3

d1/3σ
2/3
ω

τ2/3n1/3
+

√
L∆

T 1/3

Bd1/3σ
2/3
ω

τ2/3n1/3
+

√
L∆

T 1/3

σd1/3σ
2/3
ω

τ2/3n1/3

)

= Õ

(√
L∆d1/3σ

2/3
ω

τ2/3(Tn)1/3

(√
L∆+B + σ

))
. (55)

The restriction in (37) translates to

γ ≤ Õ

min

 β̂η

L
,

√
β̂η

L


 ,

that translates to the following rate of convergence

L∆

T
Õ

(
Bd1/2σω

T 1/2

n1/2

τ
√
L∆

+
B1/2d1/4σ

1/2
ω

T 1/4

n1/4

τ1/2

)

= Õ

(√
L∆Bd1/2σω√

Tnτ
+

L3/4∆3/4B1/2d1/4σ
1/2
ω

T 3/4n1/4τ1/2

)
. (56)

Combining (53), (54), (55), and (56), we derive the final bound

Õ

((
L∆σdσ2

ωB
2

(nT )3/2τ2

(√
L∆+B + σ

))1/3

+

√
L∆dσω

τ
√
nT

(√
L∆+B + σ

)
(57)

+

√
L∆d1/3σ

2/3
ω

τ2/3(Tn)1/3

(√
L∆+B + σ

))
, (58)

where we hide the terms that decrease faster in T than the two in (57).

CASE IK+1 = 0. This case is even easier. The only change will be with the term next to Rt. We
will get

1− 96L2

β̂2η2
γ2 − 24L2

β2
γ2 ≥ 1

3
− 96L2

β̂2η2
γ2 ≥ 0

instead of

1− 32β2L2

β̂2η2
γ2 − 96L2

β̂2η2
γ2 − 24L2

β2
γ2 ≥ 0

as in the previous case. This difference comes from Lemma F.8 because Ṽ K+1 = 0. The rest is a
repetition of the previous derivations.

G PROOF OF COROLLARY 3.4 (PRIVACY ANALYSIS OF Clip21-SGD2M)

Corollary 3.4. Let Assumptions 1.1 and 1.2 hold and α ∈ (0, 1). Let ∆ ≥ Φ0 and σω be chosen

as σω = Θ
(

τ
ε

√
T log

(
T
δ

)
log
(
1
δ

))
for some ε, δ ∈ (0, 1). Then there exists a stepsize γ and

momentum parameters β, β̂ such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
at least 1− α satisfy local (ε, δ)-DP and

1
T

∑T−1
t=0 ∥∇f(xt)∥2≤ Õ

(√
L∆

( √
d√
nε

+
( √

d√
nε

)2/3)
(
√
L∆+ B̃ + σ)

)
, (12)
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where Õ hides constant and polylogarithmic factors, and terms decreasing in T .

Proof. We need to plug in the value of σω inside (11). Indeed, we have that

Õ

((√
L∆d

√
T τ

ε√
nTτ

+

√
L∆d1/3 τ2/3

ε2/3
T 1/3

τ2/3(Tn)1/3

)
(
√
L∆+B + σ)

+

(
L∆σB2 τ2

ε2 T

(nT )3/2τ2
(
√
L∆+B + σ)

)1/3


= Õ

√
L∆

 √
d√
nε

+

( √
d√
nε

)2/3
 (

√
L∆+B + σ) +

(
L∆σB2

n3/2T 1/2ε2
(
√
L∆+B + σ)

)1/3


Leaving only the terms that do not improve with T we get the result, i.e., the utility bound.

It remains to formally show that for chosen σω , Clip21-SGD2M satisfies local (ε, δ)-DP. First, we no-

tice that for σω = 8τ
ε

√
T log

(
5T
4δ

)
log
(
1
δ

)
each step of Clip21-SGD2M satisfies (ε̃, δ̃)-DP (Dwork

et al., 2014, Theorem 3.22) with

ε̃ =
ε

2
√
2T log( 1δ )

and δ̃ =
δ

T
.

Then, applying advanced composition theorem (Dwork et al., 2014, Theorem 3.20 and Corollary
3.21 with δ′ = δ), we get that T steps of Clip21-SGD2M satisfy (ε, δ)-DP, which concludes the
proof.

H PROOF OF THEOREM 3.2 (CONVERGENCE OF Clip21-SGD2M IN THE
STOCHASTIC SETTING WITHOUT DP NOISE

We highlight that the proof of Theorem 3.2 mainly follows that of Theorem 3.3. The main difference
comes from the fact that stepsize and momentum restrictions become less demanding as in a purely
stochastic setting (without DP noise) a = 0. This, in particularly, means that the restriction β̂ ≤√

L∆
a disappears and we can set β̂ = 1.

Theorem H.1 (Full statement of Theorem 3.2). Let Assumptions 1.1 and 1.2 hold,

B := max{3τ,max
i

{∥∇fi(x
0)∥}+ b} > τ,

probability confidence level α ∈ (0, 1), constants b and c be defined as in (29), and ∆ ≥ Φ0 for Φ0

defined in (9). Let us run Algorithm 3 for T iterations with DP noise variance σω = 0. Assume the
following inequalities hold

1. stepsize restrictions:

i) 12Lγ ≤ 1;

ii)
1

3
− 32β2L2

η2
γ2 − 96L2

η2
γ2 ≥ 0;

2. momentum restrictions:

i) 6Lγ = β;
ii) β ≤ 3τ

64
√
L∆

;

iii) β ≤ τ
14(B−τ) ;

iv) β ≤ τ
22b ;

v) and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47),
where β̂ = 1.
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Then with probability 1− α we have

1

T

T−1∑
t=0

∥∇f(xt)∥2≤ Õ

(
σ(
√
L∆+B + σ)√

Tn

)
,

where Õ hides constant and polylogarithmic factors, and higher order terms decrease in T .

Proof. The proof mainly follows that of Theorem 3.3. Since in this case, we can set β̂ = 1 and
a = 0, the worst stepsize restrictions that we have in this case lead to the rate (51), which concludes
the proof.

I EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS

I.1 EXPERIMENTS WITH LOGISTIC REGRESSION

We evaluate our methods on non-convex logistic regression with regularization λ = 10−3 over 104
iterations—a setup standard in recent studies (Gao et al., 2024; Islamov et al., 2024b; Makarenko
et al., 2022). Using the Duke and Leukemia datasets from LIBSVM (Chang & Lin, 2011), we split
each into n = 4 equal shards and normalize each feature vector. To emulate stochastic gradients, we
either add zero-mean Gaussian noise (variance σ = 0.05 for Duke, σ = 0.1 for Leukemia) or sample
mini-batches of size 1/3 of each local dataset for Duke and 1/4 for Leukemia. For Clip-SGD and
Clip21-SGD, we sweep the stepsize γ ∈ {2−5, . . . , 25} and select the value minimizing the final
gradient norm (averaged over three random seeds). Clip21-SGD2M is tuned over the same γ grid
plus momentum β ∈ {0.1, 0.5, 0.9}, choosing the best (γ, β) pair similarly. Figure I.1 shows the
resulting convergence curves. We observe that Clip21-SGD2M remains stable across a wide range of
clipping thresholds τ , whereas Clip-SGD requires sufficiently large τ to converge, and Clip21-SGD
often fails altogether—consistent with our theoretical non-convergence result in Theorem 2.2.

I.2 EXPERIMENTS WITH NEURAL NETWORKS

The experiments of this section are conducted on a single Nvidia GTX 3090 GPU with 24 Gb RAM.

I.2.1 VARYING CLIPPING RADIUS τ

We then turn to training ResNet-20 and VGG-16 on CIFAR-10, deliberately avoiding any learning-
rate schedules, warm-up schemes, or weight-decay regularization across all methods. For Clip-SGD
and Clip21-SGD, we sweep the stepsize γ ∈ {10−3, . . . , 100} and select the value that maxi-
mizes test accuracy. For Clip21-SGD2M, we search over the same γ grid and momentum β ∈
{0.1, 0.5, 0.9} (with β̂ = 1), picking the (γ, β) pair that yields the highest test performance. All
experiments use a batch size of 32, and we evaluate both global and layer-wise clipping.

Figure I.2 reports that Clip21-SGD2M enjoys more robustness to the choice of the clipping parameter
τ when clipping is applied layer-wise. As shown in Figures I.5–I.4, Clip-SGD’s accuracy and loss
deteriorate sharply once the clipping radius τ becomes small. In contrast, Clip21-SGD2M remains
robust to the choice of τ , consistently achieving lower training loss and higher test accuracy even
under aggressive clipping.

I.2.2 RESULTS WITH ADDITIVE DP NOISE

We evaluate private training on MNIST using two architectures—a one-hidden-layer MLP (256
units, Tanh activation) and a CNN with two convolutional layers (16 filters, kernel size 5), one
max-pooling layer, and Tanh activations—under privacy budgets ε ∈ {3, 5.2, 9, 15.6, 27} (with
δ = 10−3). For each ε, we conduct a thorough grid search over the stepsize γ ∈ {10−3, . . . , 100},
clipping thresholds τ ∈ {10−5, 10−4, 10−3, . . . , 10−2} for Clip21-SGD2M and Clip21-SGD
and τ ∈ {10−4, 10−3, 10−2, . . . , 100} for Clip-SGD, and algorithm-specific parameters: α ∈
{10−2, . . . , 101} for α-NormEC-SGD, β ∈ {0.1, 0.5, 0.9} for Clip21-SGD2M client momentum, and
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Figure I.1: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M (β̂ = 1) on logistic regres-
sion with non-convex regularization for various the clipping radii τ with mini-batch and Gaussian-
added stochastic gradients on Duke (two first rows) and Leukemia (two last rows).
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Figure I.2: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training Resnet20
(two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied layer-
wise. The training loss and test accuracy dynamics are presented in Figure I.4 and Figure I.6.
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Figure I.3: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M (β̂ = 1) on training
VGG16 model on CIFAR10 dataset where the clipping is applied globally.

β̂ ∈ {0.01, 0.1, 0.5, 0.9} for both Clip21-SGD2M and α-NormEC-SGD. No learning-rate schedules
or weight decay are used, and all methods train with batch size 64.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

0 30 60 90 120 150
Epochs

101

100

10¡1

10¡2

10¡3

Tr
ai

n 
Lo

ss

Clip-SGD
Clip21-SGD
Clip21-SGD2M

0 40 80 120 160 200
Epochs

101

100

10¡1

10¡2

10¡3

Tr
ai

n 
Lo

ss

Clip-SGD
Clip21-SGD
Clip21-SGD2M

0 90 180 270 360 450
Epochs

101

100

10¡1

10¡2

10¡3

Tr
ai

n 
Lo

ss

Clip-SGD
Clip21-SGD
Clip21-SGD2M

0 90 180 270 360 450
Epochs

101

100

10¡1

10¡2

10¡3

Tr
ai

n 
Lo

ss

Clip-SGD
Clip21-SGD
Clip21-SGD2M

0 30 60 90 120 150
Epochs

0
10
20
30
40
50
60

70
80

Te
st

 A
cc

ur
ac

y

Clip-SGD
Clip21-SGD
Clip21-SGD2M

140 150
81
83
85

0 40 80 120 160 200
Epochs

0
10
20
30
40
50
60

70
80

Te
st

 A
cc

ur
ac

y

Clip-SGD
Clip21-SGD
Clip21-SGD2M

190 200
83
85

0 90 180 270 360 450
Epochs

0
10
20
30
40
50
60

70
80

Te
st

 A
cc

ur
ac

y

Clip-SGD
Clip21-SGD
Clip21-SGD2M

430 450

83
85

0 90 180 270 360 450
Epochs

0
10
20
30
40
50
60

70
80

Te
st

 A
cc

ur
ac

y

Clip-SGD
Clip21-SGD
Clip21-SGD2M

τ = 10−1 τ = 10−2 τ = 10−3 τ = 10−4

Figure I.4: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M (β̂ = 1) on training
VGG16 model on CIFAR10 dataset the clipping is applied layer-wise.
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Figure I.5: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M (β̂ = 1) on training
Resnet20 model on CIFAR10 dataset where the clipping is applied globally.
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Figure I.6: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M (β̂ = 1) on training
Resnet20 model on CIFAR10 dataset where the clipping is applied layer-wise.

As shown in Figures I.7–I.10, both Clip-SGD and Clip21-SGD2M consistently surpass Clip21-SGD
and α-NormEC-SGD across privacy budgets. Clip-SGD achieves marginally higher accuracy on
the CNN, while Clip21-SGD2M leads on the MLP. These results demonstrate that Clip21-SGD2M
matches the state-of-the-art performance of Clip-SGD under differential privacy, but does so with
stronger theoretical optimization guarantees and without assuming bounded data heterogeneity or
gradient norms. Final test accuracy is reported in Table 1.
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Table 1: Test accuracy when training MLP and CNN models with additive Gaussian noise for (ε, δ)-
DP. We vary the privacy budget ε and fix δ = 10−3. These results demonstrate that Clip21-SGD2M
achieves competitive performance to the state-of-the-art Clip-SGD method without relying on the
bounded heterogeneity assumptions.

Model Dataset Method Hyperparameters Final Test Accuracy
ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

MLP MNIST

Clip-SGD
batch size 64,
# epochs 150,

n = 25

59.5±2.6 74.5±1.3 79.5±0.4 81.2±0.3 88.5±0.1

Clip21-SGD 49.2±4.0 68.1±1.9 79.0±0.7 77.9±0.6 86.7±0.5

α-NormEC 9.0±2.0 28.7±6.7 42.2±5.6 53.4±3.8 64.1±3.5

Clip21-SGD2M 62.6±2.8 75.9±0.9 83.0±0.9 87.7±0.6 89.2±0.3

CNN MNIST

Clip-SGD
batch size 64,
# epochs 150,

n = 25

58.9±2.4 78.7±1.4 82.8±1.6 83.9±1.4 91.0±0.4

Clip21-SGD 46.1±2.4 67.9±1.4 76.4±1.6 79.3±1.4 86.7±0.4

α-NormEC 10.4±2.4 23.0±1.4 56.4±1.6 56.4±1.4 57.1±0.4

Clip21-SGD2M 61.2±2.4 76.0±1.4 80.9±1.6 87.6±1.4 89.6±0.4
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Figure I.7: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training the CNN
model on the MNIST dataset, varying the privacy budget ε.
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Figure I.8: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training the CNN
model on the MNIST dataset, varying the privacy budget ε.

I.3 LEARNING RATE TUNING FOR CNN

In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training
the CNN model on the MNIST dataset. We select the best hyperparameters based on a single run.
Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to
the results in Figure 4.

The results are presented in Tables 2, 3, 4, 5, 6, 7. We observe that in most cases, the optimal
learning rate lies strictly inside the tested range.
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Figure I.9: Comparison of Clip-SGD, Clip21-SGD, α-NormEC, and Clip21-SGD2M when training
the MLP model on the MNIST dataset, varying the privacy budget ε.
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Figure I.10: Comparison of Clip-SGD, Clip21-SGD, α-NormEC, and Clip21-SGD2Mwhen training
the MLP model on the MNIST dataset, varying the noise-clipping ratio.

Table 2: Performance (test accuracy) of Clip21-SGD2M when training the CNN model on the
MNIST dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us 1e-5 18.4 38.0 63.4 29.8 16.2 21.0 56.8 78.7 16.2 20.7 63.6 82.9 18.0 47.6 78.6 88.0 18.0 47.9 79.0 89.2

1e-4 37.9 63.5 29.8 13.4 21.0 56.8 78.8 53.0 20.7 63.5 82.9 75.7 47.4 78.9 87.9 75.8 47.8 79.4 89.3 84.8

1e-3 58.4 27.6 13.2 7.3 56.6 78.9 52.33 28.0 63.3 83.2 74.8 49.8 81.6 85.5 73.0 45.6 82.1 89.6 83.1 70.0

1e-2 22.4 14.5 6.2 5.3 75.0 44.6 25.8 8.1 82.8 66.6 46.3 16.7 69.9 58.6 36.6 14.4 81.1 68.4 55 26.5

I.4 LEARNING RATE TUNING FOR MLP

In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training
the MLP model on the MNIST dataset. We select the best hyperparameters based on a single run.
Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to
the results in Figure 4. We refer to Tables 2 to 7 for the results of the sweeps. We observe that in
most cases, the optimal learning rate lies strictly inside the tested range.
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Table 3: Performance (test accuracy) of Clip21-SGD when training the CNN model on the MNIST
dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us

1e-5 19.6 34.5 46.1 16.9 16.4 45.1 71.6 30.7 19.3 53.8 79.4 60.6 19.3 57.7 81.8 79.0 19.2 59.2 82.8 87.0

1e-4 33.2 45.3 16.9 8.2 43.5 71.2 30.4 9.0 52.4 79.2 60.0 23.9 56.1 81.9 78.6 44.9 57.6 82.9 86.8 68.3

1e-3 32.2 15.9 7.8 7.0 61.5 29.4 10.6 7.4 74.2 52.4 21.6 7.7 79.5 71.3 41.5 14.5 80.8 83.4 65.1 24.4

1e-2 12.1 8.1 7.0 6.6 20.5 7.1 6.8 6.7 31.7 17.1 7.6 7.3 48.8 31.8 14.1 5.6 63.8 49.3 26.0 7.0

1e-1 7.0 6.9 6.6 6.8 9.7 7.4 6.5 6.9 11.1 6.6 7.2 7.2 13.0 8.0 5.9 7.1 20.2 17.0 6.8 5.5

1e0 6.9 7.1 6.7 6.6 6.5 6.6 6.7 6.6 6.9 6.7 6.5 6.7 8.5 6.9 6.6 6.7 9.4 7.9 7.3 7.1

Table 4: Performance (test accuracy) of Clip-SGD when training the CNN model on the MNIST
dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us

1e-5 15.8 15.8 16.0 18.4 15.8 15.8 16.0 18.4 15.8 15.8 15.9 18.2 15.8 15.8 15.9 18.1 15.8 15.8 15.9 18.0

1e-4 15.8 16.0 18.4 37.1 15.8 16.0 18.4 42.9 15.8 15.9 18.2 46.4 15.8 15.9 18.1 47.6 15.8 15.9 18.0 47.9

1e-3 16.0 18.4 37.1 57.4 16.0 18.4 42.9 79.9 15.9 18.2 46.4 84.3 15.9 18.1 47.6 85.2 15.9 18.0 47.9 85.5

1e-2 18.4 37.1 57.4 13.5 18.4 42.9 79.9 9.2 18.2 46.4 84.3 59.3 18.1 47.6 85.2 82.0 18.0 47.9 85.5 91.4

1e-1 37.1 57.4 13.5 7.8 42.9 79.9 9.2 15.7 46.7 84.3 59.3 17.7 47.6 85.2 82.0 10.6 47.9 85.5 91.4 62.0

1e0 57.4 13.5 7.6 6.1 79.9 9.2 15.6 6.4 84.3 59.3 17.5 7.7 85.2 82.1 10.6 14.1 85.4 91.4 68.2 11.0

Table 5: Performance (test accuracy) of Clip21-SGD2M when training the MLP model on the
MNIST dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us 1e-5 14.0 39.6 65.4 53.4 11.9 16.5 58.9 76.8 13.7 41.0 74.5 83.4 13.7 41.3 75.5 87.7 15.4 59.9 80.8 89.5

1e-4 38.1 64.7 52.9 38.1 16.5 59.0 76.8 66.3 40.8 74.8 83.9 68.4 41.3 75.8 87.8 76.2 60.0 81.4 89.6 80.4

1e-3 34.5 39.5 32.9 23.4 56.9 76.6 64.8 49.3 72.9 76.5 63.7 49.7 75.5 84.9 72.6 64.0 77.8 85.3 75.3 68.6

1e-2 14.7 14.6 14.1 13.1 56.9 50.8 41.1 29.9 45.7 40.8 35.3 27.2 61.6 50.8 46.7 38.9 60.9 50.9 48.4 43.8

Table 6: Performance (test accuracy) of Clip21-SGD when training the MLP model on the MNIST
dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us

1e-5 15.7 42.7 53.7 32.1 15.1 46.0 70.4 49.5 14.8 50.8 76.8 67.1 14.7 52.8 78.1 81.0 14.6 53.6 78.3 87.1

1e-4 40.1 51.7 31.5 18.7 45.0 69.4 48.6 29.0 48.7 76.4 66.0 43.2 51.3 78.0 80.3 58.2 52.3 78.2 86.8 69.8

1e-3 26.0 24.8 17.4 12.3 48.5 40.6 27.2 16.9 66.7 57.5 39.8 25.2 72.2 72.2 53.9 137.1 74.4 82.5 65.4 51.9

1e-2 12.6 12.1 11.6 10.8 18.1 16.2 13.8 12.2 30.0 25.0 19.4 14.5 42.7 35.9 28.4 19.7 57.4 46.5 39.6 28.4

1e-1 9.9 9.8 9.7 9.7 10.7 10.7 10.4 10.1 12.1 12.0 11.5 10.8 14.1 13.7 12.9 12.0 17.7 17.2 15.9 13.7

1e0 9.4 9.4 9.5 9.4 9.7 9.7 9.7 9.6 9.9 9.9 9.8 9.8 10.3 10.2 10.0 10.0 10.7 10.5 10.1 10.1

J DISCUSSION ON PRIVACY AMPLIFICATION BY SUBSAMPLING

We acknowledge that enabling amplification through data subsampling is an important aspect of
algorithm design. However, example-wise clipping – required to incorporate such a modification –
necessitates a substantially more involved theoretical analysis and more advanced proof techniques.
Moreover, it remains an open question whether Clip-SGD can provably achieve privacy amplifica-
tion through subsampling under standard assumptions. We therefore leave this direction to future
work.
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Table 7: Performance (test accuracy) of Clip-SGD when training the MLP model on the MNIST
dataset, varying the clipping radius τ and learning rate.

Learning rate

ε = 3 ε = 5.2 ε = 9 ε = 15.6 ε = 27

1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0 1e-3 1e-2 1e-1 1e0

C
lip

pi
ng

ra
di

us

1e-5 15.8 15.8 16.0 18.4 15.8 15.8 16.0 18.4 15.8 15.8 15.9 18.2 15.8 15.8 15.9 18.1 15.8 15.8 15.9 18.0

1e-4 15.8 16.0 18.4 37.1 15.8 16.0 18.4 42.9 15.8 15.9 18.2 46.4 15.8 15.9 18.1 47.6 15.8 15.9 18.0 47.9

1e-3 16.0 18.4 37.1 57.4 16.0 18.4 42.9 79.9 15.9 18.2 46.4 84.3 15.9 12.1 47.6 85.2 15.9 18.0 47.9 85.5

1e-2 18.4 37.1 57.4 13.5 18.4 42.9 79.9 9.2 18.2 46.4 84.3 59.3 18.1 47.6 85.2 82.0 18.0 47.9 85.5 91.4

1e-1 37.1 57.4 13.5 7.8 42.9 79.9 9.2 15.7 46.4 84.3 59.3 17.7 47.6 85.2 82.0 10.6 47.9 85.5 91.4 62.0

1e0 57.3 13.5 7.6 6.1 79.9 9.2 15.6 6.4 84.3 59.3 17.5 7.7 85.2 82.0 10.6 14.1 85.4 91.4 68.2 11.0

Nonetheless, we study this question in practice. In this setting, we assume that local functions fi
have a finite-sum structure, namely, fi(x) := 1

m

∑m
j=1 fij(x). To enable privacy amplification by

data subsampling, each client i ∈ [n] at iteration t samples a batch St
i of size b, and each example-

wise gradient is clipped. In this case, DP-noise variance can be significantly reduced by a factor b
m ,

which allows for achieving better practical performance. We call a modification of Clip21-SGD2M
with example-wise clipping as Clip21-SGD2M+ for clarity.

J.1 ON THE THEORETICAL ANALYSIS OF CLIP21-SGD2M+

The key difficulty in the theoretical convergence analysis of Clip21-SGD2M+ comes from per-
sample gradient clipping (see Line 7 in Algorithm 5), which introduces bias in the local momen-
tum vector vt+1

i . Therefore, for an arbitrary clipping level τin, we expect that the method will
provably converge to some irreducible neighborhood even when σω = 0, similarly to the case of
Clip-SGD (Koloskova et al., 2023). One may address this issue by taking τin sufficiently large
such that the introduced bias is controlled, similarly to the analysis of DProx-clipped-SGD-shift
in the convex case (Gorbunov et al., 2024, Theorem 2.5). The clipping level in this case will
depend on some notion of gradient heterogeneity at some reference point. Nevertheless, for
large enough τin our analysis of Clip21-SGD2M will require just minor modifications to be ex-
tended to Clip21-SGD2M+. The main idea behind this analysis is to show that ∥∇fij(x

t+1)∥
is bounded with high probability throughout the trajectory of the method. More precisely, tak-
ing τin ∼ maxij∥∇fij(x

0)∥+CLR with R = sup{∥x0 − x∗∥ | ∇f(x∗) = 0} and showing
by induction that ∥x0 − xt∥≤ CR for some C > 0 with high probability, one can prove that
∥∇fij(x

t+1)∥≤ ∥∇fij(x
0)∥+∥∇fij(x

t+1) −∇fij(x
0)∥≤ maxij∥∇fij(x

0)∥+CLR = τin. That
is, the inner clipping in this case is turned off with high probability, and the proof should closely
follow the current analysis of Clip21-SGD2M, where only one clipping is used. Such an analysis
still avoids using unrealistic assumptions like bounded gradients.

We leave the formal theoretical convergence analysis of Clip21-SGD2M+ for future work.

J.2 EMPIRICAL PERFORMANCE OF CLIP21-SGD2M+

Now we test the performance of Clip21-SGD2M+ when training the same CNN and MLP mod-
els on the MNIST dataset. In this setting, we rescale the DP-noise variance σω by a factor b

m .
We test the performance of Clip21-SGD2M+ against Clip-SGD, where we similarly use example-
wise clipping to enable privacy amplification by data subsampling. Since Clip21-SGD2M+ has two
clipping parameters, we fix τin = 0.1 and tune τout. In this experiment, we tune the learning
rate γ ∈ {10−2, 10−1, 100, 101}, clipping radius in {0.01, 0.03, 0.1, 0.3, 1}, while fixing β = 0.1,
β̂ = 0.01. For both algorithms, we use the batch size 32, while the data partitioning is the same as
before.

We present the results in fig. J.1. We observe that Clip21-SGD2M+ achieves competitive perfor-
mance to Clip-SGD, even in the setting when privacy amplification by data subsampling is used.
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Algorithm 5 Clip21-SGD2M+

Require: x0, g0, v0 ∈ Rd (by default g0 = v0 = 0), momentum parameters β, β̂ ∈ (0, 1], stepsize
γ > 0, clipping parameters τin, τout > 0, batch size b, DP-variance parameter σ2

ω ≥ 0
1: Set g0i = g0 and v0i = v0 for all i ∈ [n]
2: for t = 0, . . . , T − 1 do
3: xt+1 = xt − γgt

4: for i = 1, . . . , n do
5: Sample DP-noise ωt+1

i ∼ N (0, σ2
ωI) only for DP version

6: Sample batch St
i

7: vt+1
i = (1− β)vti + β

(
1
b

∑
j∈St

i
clipτin(∇fij(x

t+1)) + ωt+1
i

)
8: ct+1

i = clipτout
(vt+1

i − gti)

9: gt+1
i = gti + β̂ clipτout

(vt+1
i − gti)

10: end for
11: gt+1 = gt + β̂

n

∑n
i=1 c

t+1
i

12: end for
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Figure J.1: Comparison of Clip-SGD and Clip21-SGD2M+ when training CNN on CIFAR10
dataset.
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