

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOMENTUM AND ERROR FEEDBACK FOR CLIPPING WITH FAST RATES AND DIFFERENTIAL PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving both strong Differential Privacy (DP) and efficient optimization is critical for Federated Learning (FL), where client data must remain confidential without compromising model performance. However, existing methods typically sacrifice one for the other: they either provide robust DP guarantees at the cost of assuming bounded gradients/data heterogeneity, or they achieve strong optimization rates without any privacy protection. In this paper, we bridge this gap by introducing Clip21-SGD2M, a novel method that integrates gradient clipping, heavy-ball momentum, and error feedback to deliver state-of-the-art optimization and strong privacy guarantees. Specifically, we establish optimal convergence rates for non-convex smooth distributed problems, even in the challenging setting of heterogeneous client data, without requiring restrictive boundedness assumptions. Additionally, we demonstrate that Clip21-SGD2M achieves competitive (local) DP guarantees, comparable to the best-known results. Numerical experiments on non-convex logistic regression and neural network training confirm the superior optimization performance of our approach across a wide range of DP noise levels, underscoring its practical value in real-world FL applications.

1 INTRODUCTION

Federated Learning (FL) (Konečný et al., 2016; McMahan et al., 2017a) is a modern training paradigm where multiple (possibly heterogeneous) clients aim to collaboratively train a shared model without exposing their private data. This paradigm brings a host of design challenges, including communication efficiency, partial participation of clients, data heterogeneity, security, and privacy (Kairouz et al., 2021; Wang et al., 2021), which have spurred the development of numerous optimization methods for FL. Yet despite this progress, it remains difficult to design FL algorithms that achieve both fast optimization convergence and strong differential privacy (DP) guarantees (Dwork et al., 2014) due to the conflicting nature of these objectives. Indeed, most of the results in the field of DP are obtained by injecting noise (e.g. Gaussian noise) into the method’s update (Abadi et al., 2016; Chen et al., 2020) to protect the client’s data and prevent data reconstruction. This inevitably reduces update accuracy and slows convergence. Furthermore, to control sensitivity and ensure DP, updates must be bounded—typically by applying *gradient clipping* (Pascanu et al., 2013)—before noise injection.

In FL, *data heterogeneity* is ubiquitous and critically affects algorithmic behavior. Indeed, naïve distributed Clipped Gradient Descent (Clip-GD) can fail to converge under *heterogeneous* client data—even without any DP-noise (Khirirat et al., 2023). To tackle this issue, Khirirat et al. (2023) embeds the EF21 mechanism—originally proposed by Richtárik et al. (2021) to enhance standard Error Feedback (Seide et al., 2014) for contractive compressors—into Clip-GD, resulting in a method known as Clip21-GD. They prove that, unlike Clip-GD, Clip21-GD attains an $\mathcal{O}(1/T)$ rate on smooth non-convex objectives for arbitrary heterogeneous data on clients. However, their guarantees rely on full-batch gradients and break down in the presence of DP noise. This leads us to the natural question:

Is it possible to design a method that achieves both fast convergence and strong DP guarantees while accommodating arbitrary data heterogeneity?

054 **Our contribution.** We answer this affirmatively by introducing Clip21-SGD2M, a novel algo-
 055 rithm that integrates gradient clipping, error-feedback, and Heavy-Ball momentum (Polyak, 1964).
 056 For smooth non-convex distributed objectives under arbitrary data heterogeneity, we prove that
 057 Clip21-SGD2M (i) attains the optimal $\mathcal{O}(1/T)$ in the full-batch regime, (ii) achieves the optimal
 058 high-probability convergence rate $\tilde{\mathcal{O}}(1/\sqrt{nT})$ when using sub-Gaussian stochastic gradients, and
 059 (iii) achieves competitive local DP-error when DP-noise is added to the clients' updates. We fur-
 060 ther show that Clip21-SGD can fail to converge with stochastic gradients, underscoring the critical
 061 role of our momentum extension. Our experiments on logistic regression and neural networks high-
 062 light the robustness of Clip21-SGD2M across clipping thresholds and its competitive privacy-utility
 063 trade-off compared to several baselines at fixed DP budgets.

064 1.1 PROBLEM FORMULATION AND ASSUMPTIONS

065 We consider the optimization problem of the form

$$066 \min_{x \in \mathbb{R}^d} [f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)], \quad (1)$$

067 where x are the model parameters, f_i is the loss associated with the local dataset \mathcal{D}_i of worker
 068 $i \in [n]$, and f is the overall average loss across all n clients.

069 We work under two standard assumptions. First, we assume smoothness and a finite optimum (Car-
 070 mon et al., 2020; Danilova et al., 2022).

071 **Assumption 1.1.** Each individual loss function f_i is L -smooth, i.e., for any $x, y \in \mathbb{R}^d$ and $i \in [n]$
 072 we have

$$073 \|\nabla f_i(x) - \nabla f_i(y)\| \leq L\|x - y\|. \quad (2)$$

074 Moreover, we assume that $f^* := \inf_{x \in \mathbb{R}^d} f(x) > -\infty$.

075 Our analysis can be straightforwardly generalized to allow each f_i to have its own smoothness
 076 constant L_i . Second, since full gradients are often impractical, we model stochastic gradients with
 077 sub-Gaussian noise.

078 **Assumption 1.2.** Each worker i has access to a σ -sub-Gaussian unbiased estimator $\nabla f_i(x, \xi)$ of a
 079 local gradient $\nabla f_i(x)$, i.e., for some¹ $\sigma \geq 0$ and any $x \in \mathbb{R}^d$ and $\forall i \in [n]$ we have

$$080 \mathbb{E} [\nabla f_i(x, \xi)] = \nabla f_i(x), \mathbb{E} [\exp(\|\theta_i\|^2/\sigma^2)] \leq \exp(1), \quad (3)$$

081 where ξ denotes the source of the stochasticity and $\theta_i := \nabla f_i(x, \xi) - \nabla f_i(x)$.

082 Although this assumption is stronger than bounded variance, it is standard for the high-probability²
 083 analysis of SGD-type methods with polylogarithmic dependence on the confidence level (Nemirovski
 084 et al., 2009; Ghadimi & Lan, 2012). Equivalently, the second part of (3) implies the tail bound
 085 $\Pr(\|\theta_i^t\| \geq b) \leq 2 \exp(-b^2/(2\sigma^2))$ (up to constant factors in σ^2) (Vershynin, 2018). Our results can
 086 be extended to heavier sub-Weibull tails (Madden et al., 2024)—still with only polylogarithmic de-
 087 pendence on the confidence level—at the cost of worse logarithmic factors in the final rates (Madden
 088 et al., 2024).

089 Finally, we introduce two key definitions. The first one is the clipping operator, a nonlinear map
 090 from \mathbb{R}^d to \mathbb{R}^d parameterized by the clipping threshold/level $\tau > 0$ and defined as

$$091 \text{clip}_\tau(x) := \begin{cases} \frac{\tau}{\|x\|}x, & \text{if } \|x\| > \tau, \\ x, & \text{if } \|x\| \leq \tau. \end{cases} \quad (4)$$

092 Second, we recall the standard definition of (ε, δ) -Differential Privacy, which introduces plausible
 093 deniability into the output of a learning algorithm.

094 **Definition 1.3** (ε, δ) -Differential Privacy (Dwork et al., 2014)). A randomized method $\mathcal{M} : \mathcal{D} \rightarrow$
 095 \mathcal{R} satisfies (ε, δ) -Differential Privacy $((\varepsilon, \delta)\text{-DP})$ if for any adjacent datasets $D, D' \in \mathcal{D}$ (e.g., if D
 096 and D' differ in 1 sample) and for any $S \subseteq \mathcal{R}$

$$097 \Pr(\mathcal{M}(D) \in S) \leq e^\varepsilon \Pr(\mathcal{M}(D') \in S) + \delta. \quad (5)$$

098¹For simplicity, we define $0/0 := 0$. Then, (3) with $\sigma = 0$ implies $\nabla f_i(x, \xi) = \nabla f_i(x)$ almost surely.

099²We elaborate on the reasons why we focus on high-probability analysis in Section 3.2.

108 In this definition, the smaller ε, δ are, the more private the method is. Intuitively, if inequality (5)
 109 holds with small values of ε and δ , it becomes difficult to infer the specific data point that differs
 110 between two similar datasets based solely on the output of \mathcal{M} .
 111

112 **1.2 RELATED WORK**
 113

114 **Differential Privacy.** The standard recipe for differential privacy in federated learning is to first
 115 clip each client’s update to a fixed ℓ_2 -norm bound and then add Gaussian noise—either to each
 116 individual update or to their aggregated average—so as to mask the influence of any single participant
 117 (McMahan et al., 2017b). There are two prevailing privacy models. In the *central model*, a
 118 trusted server gathers updates from clients and injects noise only when forming the global update;
 119 this protects client data from external observers but still requires trusting the server. In the *local
 120 model*, each client clips and perturbs its own update before transmission, thus safeguarding privacy
 121 even against the server and other clients (Kasiviswanathan et al., 2011; Allouah et al., 2024). While
 122 local privacy offers stronger protection, it typically degrades learning accuracy, since heavier noise
 123 is needed to obscure individual updates (Chan et al., 2012; Duchi et al., 2018). This trade-off can
 124 be mitigated by using secure shuffling, which randomly permutes client updates before aggregation
 125 (Erlingsson et al., 2019; Balle et al., 2019), or a secure aggregator (Bonawitz et al., 2017), which
 126 sums updates before sending them to the server. These methods anonymize updates and enhance
 127 privacy while maintaining reasonable learning performance, even without a fully trusted server. Fi-
 128 nally, (Chaudhuri et al., 2022; Hegazy et al., 2024) show that when DP is required, one can also
 129 achieve compression of updates for free.

130 In this work, we adopt the local DP model by injecting Gaussian noise into each client’s update.
 131 However, the average noise can also be viewed as noise added to the average update. Therefore,
 132 Clip21-SGD2M is compatible with all the aforementioned techniques and can also be applied to the
 133 central DP model with a smaller amount of noise. However, it is worth mentioning that our analysis
 134 is not directly compatible with the privacy amplification by sub-sampling (Balle et al., 2018; Li
 135 et al., 2012; Dong et al., 2025; Bonawitz et al., 2017), which is another important tool for achieving
 136 improved DP guarantees.

137 **Error Feedback.** Error Feedback (EF) (Seide et al., 2014) is widely used to incorporate commu-
 138 nication compression into distributed and federated learning, but its convergence theory for smooth
 139 non-convex objectives has remained limited. Existing analyses either focus on the single-node set-
 140 ting or impose stringent conditions—such as bounded gradient/compression error, or under data
 141 heterogeneity (gradient dissimilarity)—to prove convergence (Stich et al., 2018; Stich & Karim-
 142 ireddy, 2019; Karimireddy et al., 2019; Koloskova et al., 2019; Beznosikov et al., 2023; Tang et al.,
 143 2019; Xie et al., 2020; Sahu et al., 2021). Moreover, the known EF convergence rates degrade in
 144 the presence of client heterogeneity, and this dependence is not merely an artifact of the proofs—it
 145 shows up empirically in solving strongly convex problems (Gorbunov et al., 2020b). To overcome
 146 these drawbacks, Richtárik et al. (2021) introduced EF21, a variant whose convergence guarantees
 147 no longer rely on heterogeneity bounds; however, EF21-SGD still requires increasingly large batch
 148 sizes to reach any fixed accuracy (Fatkhullin et al., 2021). Fortunately, this drawback is not fun-
 149 damental: recent work demonstrates that adding Heavy-Ball momentum removes the large-batch
 150 requirement (Fatkhullin et al., 2024), and momentum likewise enhances EF’s performance in decen-
 151 tralized setting (Yau & Wai, 2022; Huang et al., 2023; Islamov et al., 2024a).

152 **Distributed methods with clipping.** In the single-node setting, Clip-SGD has been rigorously
 153 studied under a range of assumptions (Zhang et al., 2020b;c;a; Gorbunov et al., 2020a; Cutkosky
 154 & Mehta, 2021; Sadiev et al., 2023; Liu et al., 2023). These analyses extend to multi-client train-
 155 ing when clipping is applied to the aggregate (e.g., the averaged update), although mini-batching
 156 requires a refined analysis when the noise is heavy-tailed (Kornilov et al., 2024). However, en-
 157 suring DP requires clipping each client’s communicated update before aggregation; in this regime
 158 Clip-SGD can fail to converge *even with deterministic gradients* (Chen et al., 2020; Khirirat et al.,
 159 2023). To recover convergence, prior work imposes additional restrictive *heterogeneity bounds*.
 160 For instance, Liu et al. (2022) prove convergence of a clipped FedAvg/Local-SGD variant under
 161 *homogeneous* clients with gradients symmetric around their mean, and Wei et al. (2020) analyze
 162 clipped Local-SGD assuming *bounded heterogeneity*. Other approaches assume *bounded gradients*
 163 (thereby implicitly bounding heterogeneity): Zhang et al. (2022) study FedAvg with clipping of

model differences (see also the empirical study in (Geyer et al., 2017)); Noble et al. (2022) propose and analyze DP-SCAFFOLD; Li & Chi (2023) develop PORTER (a clipped BEER) under bounded-gradient/heterogeneity assumptions; Allouah et al. (2023) give convex lower bounds and new upper bounds for distributed SGD with momentum and clipped stochastic gradients; and Allouah et al. (2024) study clipped Gossip-SGD (DECOR). While these methods come with formal DP guarantees, none prove convergence *without some bounded heterogeneity condition*. Moreover, several works require the clipping threshold to *exceed the norm of the communicated vector* (Zhang et al., 2022; Noble et al., 2022; Allouah et al., 2023; 2024), rely on symmetric gradient noise (Liu et al., 2022), or assume full-gradient computation at clients (Wei et al., 2020). In this work, we remove these limitations: Clip21-SGD2M achieves fast optimization and strong (local-)DP guarantees under arbitrary data heterogeneity.

Challenges of Coupling Error Feedback and Clipping. Various prior works have combined error feedback with clipping. In particular, Khirirat et al. (2023) introduced Clip21-GD by embedding the EF21 mechanism into the gradient-clipping operator, while Gorbunov et al. (2024) developed algorithms that clip the difference between stochastic gradients and learnable shifts – an idea originally proposed by Mishchenko et al. (2019) to address data heterogeneity under unbiased communication compression. Viewing *clipping as a contractive compressor*, as suggested by Khirirat et al. (2023), highlights a key limitation: standard contractive compressors admit a uniform contraction factor across all inputs, whereas the contractive behavior of clipping is inherently input-dependent. To address this limitation, Khirirat et al. (2023) analyzed Clip21-GD only in a full-batch, noise-free regime and *without a valid DP guarantee*.³ More recently, Shulgin et al. (2025a;b) partially closed this DP gap by replacing clipping with a smoothed normalization operator. However, their guarantees still depend on *full-batch gradients* and *careful initialization*. Thus, it remains an open problem whether error feedback and clipping can be combined in a way that avoids such restrictive theoretical assumptions.

2 NON-CONVERGENCE OF CLIP-SGD AND CLIP21-SGD

We start with a discussion of the key limitation of Clip-SGD (Algorithm 1) and Clip21-SGD (Alg. 2) – their potential non-convergence.

Algorithm 1 Clip-SGD (Abadi et al., 2016)

Require: $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, clipping parameter $\tau > 0$

- 1:
- 2: **for** $t = 0, \dots, T - 1$ **do**
- 3:
- 4: **for** $i = 1, \dots, n$ in parallel **do**
- 5:
- 6: $g_i^t = \text{clip}_\tau(\nabla f_i(x^t, \xi_i^t))$
- 7: **end for**
- 8: $g^t = \frac{1}{n} \sum_{i=1}^n g_i^t$
- 9: $x^{t+1} = x^t - \gamma g^t$
- 10: **end for**

Algorithm 2 Clip21-SGD (Khirirat et al., 2023)

Require: $x^0, g^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, clipping parameter $\tau > 0$

- 1: Initialize $g_i^0 = g^0$ for all $i \in [n]$
- 2: **for** $t = 0, \dots, T - 1$ **do**
- 3: $x^{t+1} = x^t - \gamma g^t$
- 4: **for** $i = 1, \dots, n$ in parallel **do**
- 5: $c_i^{t+1} = \text{clip}_\tau(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - g_i^t)$
- 6: $g_i^{t+1} = g_i^t + c_i^{t+1}$
- 7: **end for**
- 8: $g^{t+1} = g^t + \frac{1}{n} \sum_{i=1}^n c_i^{t+1}$
- 9:
- 10: **end for**

We start by restating the example from (Chen et al., 2020) illustrating the potential non-convergence of Clip-SGD even when full gradients are computed on clients (Clip-GD).

Example 2.1 (Non-Convergence of Clip-GD (Chen et al., 2020)). *Let $n = 2$, $d = 1$, and $f_1(x) = \frac{1}{2}(x - 3)^2$, $f_2(x) = \frac{1}{2}(x + 3)^2$ in problem (1) having a unique solution $x^* = 0$. Consider Clip-GD with $\tau = 1$ applied to this problem. If for some t_0 we have $x^{t_0} \in [-2, 2]$ in Clip-GD, then $g^t = 0$ and $x^t = x^{t_0}$ for any $t \geq t_0$, which can be seen via direct calculations. In particular, for any $x^0 \in [-2, 2]$, the method does not move away from x^0 .*

³The DP guarantee in Khirirat et al. (2023) relies on the condition that for some $C > 1$ and $\nu, \sigma_\omega \geq 0$, one has $\min\{\nu^2, \sigma_\omega^2\} \geq C \max\{\nu^2, \sigma_\omega^2\}$. This holds if and only if $\nu = \sigma_\omega = 0$, implying that no DP noise is added, since σ_ω^2 denotes the variance of the DP noise.

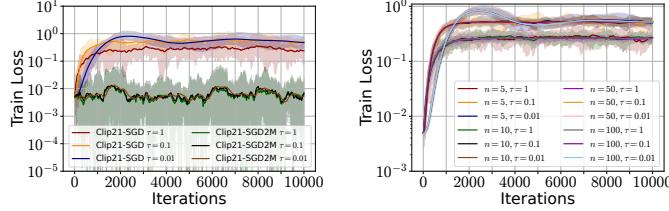


Figure 1: **Left:** behavior of stochastic Clip21-SGD and Clip21-SGD2M without DP noise (see Alg. 3) initialized at $x^0 = (0, -0.07)^\top$, with stepsize $\gamma = 1/\sqrt{T}$ where $T = 10^4$, i.e., close to the solution and small stepsize. We observe that Clip21-SGD escapes the good neighborhood of the solution for the problem from Theorem 2.2 with $n = 1, L = 2, \sigma = 5$, and varying $\tau \in \{1, 0.1, 0.01\}$. In contrast, Clip21-SGD2M remains stable around the solution. **Right:** convergence of Clip21-SGD does not improve with the increase of n for the same problem.

To address Clip-GD’s non-convergence, Khirirat et al. (2023) introduce Clip21-GD, which applies clipping not to raw gradients but to their “shifted” differences: $\nabla f_i(x^{t+1}) - g_i^t$, where g_i^t tracks the previous gradient. In the deterministic setting, this guarantees that after enough iterations, every client’s difference falls below the threshold τ in norm, so clipping effectively turns off and the algorithm converges.

However, even if we replace the exact shift g_i^t with the stochastic gradient itself, i.e., we use

$$\begin{aligned} x^{t+1} &= x^t - \gamma g^t, g^t = \frac{1}{n} \sum_{i=1}^n g_i^t, \\ g_i^{t+1} &= \nabla f_i(x^{t+1}) + \text{clip}_\tau(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1})), \end{aligned} \quad (6)$$

this “idealized” stochastic version of Clip21-SGD can diverge. The following theorem demonstrates non-convergence on a simple quadratic under sub-Gaussian noise.

Theorem 2.2. *Let $L, \sigma > 0$, $0 < \gamma \leq 1/L$, $n = 1$. There exists a convex, L -smooth problem, clipping parameter $\tau < 3\sigma\sqrt{3}/10$, and an unbiased stochastic gradient satisfying Assumption 1.2 such that the method (6) is run with a stepsize γ and clipping parameter τ , then for all $x^0 \in \{(0, x_{(2)}^0) \in \mathbb{R}^2 \mid x_{(2)}^0 < 0\}$ we have*

$$\mathbb{E} [\|\nabla f(x^T)\|^2] \geq \frac{1}{2} \min \left\{ \|\nabla f(x^0)\|^2, \frac{\tau^2}{45} \right\}. \quad (7)$$

Moreover, fix $0 < \varepsilon < L/\sqrt{2}$ and $x^0 = (0, -1)^\top$. Let the sub-Gaussian variance of stochastic gradients is bounded by σ^2/B where B is a batch size. If $B < 27\sigma^2/(60\varepsilon^2)$ and $\tau \geq \varepsilon/(3\sqrt{10})$, then we have $\mathbb{E} [\|\nabla f(x^T)\|^2] > \varepsilon^2$ for all $T > 0$.

We also illustrate the above result with simple numerical experiments reported in Figure 1. The left figure shows that Clip21-SGD diverges from the initial function sub-optimality level while the right one demonstrates non-improvement with the number of workers n — one of the desired properties of algorithms for FL. We note that analogous reasoning applies to α -NormEC-SGD (Shulgin et al., 2025a): While it enjoys similar convergence guarantees in the full-batch setting, it can fail to converge once stochastic gradient noise is used.

3 CLIP21-SGD2M: NEW METHOD AND THEORETICAL RESULTS

We now introduce Clip21-SGD2M (Alg. 3) for private distributed training and outline its key components. First, we employ client momentum with parameter β , which averages out stochastic gradient noise by exploiting momentum’s variance-reduction effect (Ma & Yarats, 2018; Cutkosky & Orabona, 2019). This removes the need for the full-batch updates assumed in prior work. A central challenge in combining client-side momentum with DP, however, is that DP noise accumulates in the momentum vector; to mitigate this, we incorporate a server-side momentum that damps and smooths the noisy aggregated update. While similar double-momentum schemes have appeared in the optimization literature (Fatkullin et al., 2024; Xu & Huang, 2022; Wang et al., 2023), to the best of our knowledge, this is the first application in a DP setting analyzed under a standard smoothness assumption. Finally, we adopt EF21-style error feedback on the client side to correct clipping-induced client drift. Since clipping acts as a contractive compressor but with input-dependent contractivity, standard EF analyses fail to apply. To overcome this, we first develop an induction-based analysis in

270 **Algorithm 3** Clip21-SGD2M

272 **Require:** $x^0, g^0, v^0 \in \mathbb{R}^d$ (by default $g^0 = v^0 = 0$), momentum parameters $\beta, \hat{\beta} \in (0, 1]$, stepsize
 273 $\gamma > 0$, clipping parameter $\tau > 0$, DP-variance parameter $\sigma_\omega^2 \geq 0$
 274 1: Set $g_i^0 = g^0$ and $v_i^0 = v^0$ for all $i \in [n]$
 275 2: **for** $t = 0, \dots, T - 1$ **do**
 276 3: $x^{t+1} = x^t - \gamma g^t$
 277 4: **for** $i = 1, \dots, n$ **do**
 278 5: $v_i^{t+1} = (1 - \beta)v_i^t + \beta \nabla f_i(x^{t+1}, \xi_i^{t+1})$
 279 6: $\omega_i^{t+1} \sim \mathcal{N}(0, \sigma_\omega^2 \mathbf{I})$ only for DP version
 280 7: $c_i^{t+1} = \text{clip}_\tau(v_i^{t+1} - g_i^t) + \omega_i^{t+1}$
 281 8: $g_i^{t+1} = g_i^t + \hat{\beta} \text{clip}_\tau(v_i^{t+1} - g_i^t)$
 282 9: **end for**
 283 10: $g^{t+1} = g^t + \frac{\hat{\beta}}{n} \sum_{i=1}^n c_i^{t+1}$
 284 11: **end for**

285 the deterministic regime by explicitly bounding the magnitude of the clipping input, and then extend
 286 the result to the stochastic setting using a high-probability argument that guarantees steady progress
 287 despite DP noise.

289 3.1 ANALYSIS IN THE DETERMINISTIC CASE

291 The next result derives a convergence rate for Clip21-SGD2M when $\nabla f_i(x^{t+1}, \xi_i^{t+1}) \equiv \nabla f_i(x^t)$
 292 almost surely, i.e., Assumption 1.2 holds with $\sigma = 0$.

293 **Theorem 3.1** (Simplified). *Let Assumptions 1.1 and 1.2 with $\sigma = 0$ hold. Let $B :=$
 294 $\max_i \|\nabla f_i(x^0)\| > 3\tau$ and $\Delta \geq f(x^0) - f^*$. Then, for any constant $\hat{\beta} \in (0, 1]$, there exists a
 295 stepsize $\gamma \leq \min\{1/12L, \tau/12BL\}$ and momentum parameter $\beta = 4L\gamma$ such that the iterates of
 296 Clip21-SGD2M (Algorithm 3) converge with the rate*

$$297 \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \mathcal{O}\left(\frac{L\Delta(1+B/\tau)}{T}\right). \quad (8)$$

299 Moreover, after at most $\frac{2B}{\beta\tau}$ iterations, the clipping will eventually be turned off for all workers.

301 *Proof sketch* The proof of Theorem 3.1 (and all subsequent theorems) relies on a carefully constructed Lyapunov function:

$$304 \Phi^t := \delta^t + \frac{2\gamma}{\hat{\beta}\eta n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2 + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2 n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2 + \frac{2\gamma}{\beta} \|v^t - \nabla f(x^t)\|^2, \quad (9)$$

306 where $\delta^t := f(x^t) - f^*$. The coefficients are calibrated so that all terms contribute on a comparable scale to Φ^t . Once we establish a descent of Φ^t , it follows that both the learning shift variables
 307 $\{g_i^t\}_{i=1}^n$ and the momentum buffers $\{v_i^t\}_{i=1}^n$ track the true gradients $\{\nabla f_i(x^t)\}_{i=1}^n$, thereby justifying
 308 their role in the method. The only new constant introduced is η , which captures the key technical
 309 difficulty in the proof. Through an induction argument, and with a careful choice of $\eta \sim \tau$, we establish
 310 a uniform gap bound $\|v_i^{t+1} - g_i^t\| \leq \tau/\eta$. This result allows us to regard clipping as a contractive
 311 operation on the increments $v_i^{t+1} - g_i^t$, thereby enabling a standard error-feedback analysis. The full
 312 proof is provided in Appendix E.

314 This theorem guarantees an $\mathcal{O}(1/T)$ convergence rate, which is known to be optimal for smooth non-
 315 convex first-order methods (Carmon et al., 2020; 2021). Notably, like Clip21-SGD, Clip21-SGD2M
 316 also turns off clipping after finitely many iterations—once $\|v_i^{t+1} - g_i^t\| \leq \tau$. Crucially, our result
 317 holds without any bounded-heterogeneity or bounded-gradient assumptions. By contrast, even under
 318 such restrictive conditions, many prior nonconvex analyses (Liu et al., 2022; Zhang et al., 2022;
 319 Li & Chi, 2023; Allouah et al., 2024) fail to achieve an $\mathcal{O}(1/T)$ rate in the noise-free setting.

321 3.2 ANALYSIS IN THE STOCHASTIC CASE WITHOUT DP-NOISE

322 Next, we turn to the stochastic setting where each worker has access to local gradient estimators
 323 satisfying Assumption 1.2. First, we consider the case without DP noise, i.e., non-private training.

324 **Theorem 3.2** (Simplified). *Let Assumptions 1.1 and 1.2 hold and $\alpha \in (0, 1)$. Let $\tilde{B} :=$
 325 $\max_i \|\nabla f_i(x^0)\| > 3\tau$ and $\Delta \geq \Phi^0$. Then, for any constant $\hat{\beta} \in (0, 1]$, there exists a stepsize γ
 326 and momentum parameter β such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
 327 at least $1 - \alpha$ are such that $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2$ is bounded by*

$$329 \quad \tilde{\mathcal{O}} \left(\frac{L\Delta(1+\tilde{B}/\tau)}{T} + \frac{\sigma(\sqrt{L\Delta}+\tilde{B}+\sigma)}{\sqrt{Tn}} \right) \quad (10)$$

331 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors, and higher order terms that decrease in T .
 332

333 *Proof sketch.* The proof follows the same overall structure as Theorem 3.1, but with the key compli-
 334 cation that the increments $v_i^{t+1} - g_i^t$ are now random and can, in principle, grow without bound under
 335 Assumption 1.2. To handle this, we switch to a high-probability argument: by inductively showing
 336 that, with a large probability, each $v_i^{t+1} - g_i^t$ stays below a fixed threshold, we recover a contrac-
 337 tive property of the clipping operator on these random vectors. The remainder of the proof then
 338 mirrors the deterministic case, augmented by careful martingale-difference concentration bounds;
 339 see Appendix H for full details. This result demonstrates that Clip21-SGD2M achieves an optimal
 340 $\mathcal{O}(1/\sqrt{nT})$ (Arjevani et al., 2023) rate in the stochastic setting. In contrast to the previous works
 341 establishing similar rates (Liu et al., 2022; Noble et al., 2022; Allouah et al., 2024), our result does
 342 not rely on the boundedness of the gradients or data heterogeneity. Moreover, when $\sigma = 0$ (no
 343 stochastic noise), the rate from (10) becomes $\mathcal{O}(1/T)$, recovering the one given by Theorem 3.1.

344 3.3 ANALYSIS IN THE STOCHASTIC CASE WITH DP-NOISE

345 Finally, we provide the convergence result for Clip21-SGD2M with DP-noise.

346 **Theorem 3.3.** *Let Assumptions 1.1 and 1.2 hold and $\alpha \in (0, 1)$. Let $\Delta \geq \Phi^0$. Then, there exists
 347 a stepsize γ and momentum parameters $\beta, \hat{\beta}$ such that the iterates of Clip21-SGD2M (Algorithm 3)
 348 with the DP-noise variance σ_ω^2 with probability at least $1 - \alpha$ are such that $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2$ is
 349 bounded by*

$$350 \quad \tilde{\mathcal{O}} \left(\left(\frac{L\Delta\sigma d\sigma_\omega^2 \tilde{B}^2}{(nT)^{3/2}\tau^2} \left(\sqrt{L\Delta} + \tilde{B} + \sigma \right) \right)^{1/3} + \left(\frac{\sqrt{L\Delta}d\sigma_\omega}{\tau\sqrt{nT}} + \frac{\sqrt{L\Delta}d^{1/3}\sigma_\omega^{2/3}}{\tau^{2/3}(Tn)^{1/3}} \right) \left(\sqrt{L\Delta} + \tilde{B} + \sigma \right) \right), \quad (11)$$

354 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors, and higher order terms decreasing in T .
 355

356 In the special case of local Differential Privacy, the noise level has to be chosen in a specific way. In
 357 this setting, we obtain the following privacy-utility trade-off.

358 **Corollary 3.4.** *Let Assumptions 1.1 and 1.2 hold and $\alpha \in (0, 1)$. Let $\Delta \geq \Phi^0$ and σ_ω be chosen
 359 as $\sigma_\omega = \Theta \left(\frac{\varepsilon}{\delta} \sqrt{T \log \left(\frac{T}{\delta} \right) \log \left(\frac{1}{\delta} \right)} \right)$ for some $\varepsilon, \delta \in (0, 1)$. Then there exists a stepsize γ and
 360 momentum parameters $\beta, \hat{\beta}$ such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
 361 at least $1 - \alpha$ satisfy local (ε, δ) -DP and*

$$362 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \tilde{\mathcal{O}} \left(\sqrt{L\Delta} \left(\frac{\sqrt{d}}{\sqrt{n}\varepsilon} + \left(\frac{\sqrt{d}}{\sqrt{n}\varepsilon} \right)^{2/3} \right) (\sqrt{L\Delta} + \tilde{B} + \sigma) \right), \quad (12)$$

366 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors, and terms decreasing in T .

367 The proof of the above result is provided in Appendix G. Disregarding dependencies on polylogarithmic
 368 factors, $L\Delta$, \tilde{B} , and σ , the derived utility bound simplifies to $\tilde{\mathcal{O}} \left(\sqrt{d}/(\sqrt{n}\varepsilon) + (\sqrt{d}/(\sqrt{n}\varepsilon))^{2/3} \right)$.
 369

370 When $\sqrt{d}/\sqrt{n}\varepsilon > 1$ —which is common in modern models where d is at least hundreds of millions
 371 and far exceeds the number of clients n (Charles et al., 2024; Chua et al., 2024)—the first term
 372 in (12) dominates, yielding a rate that matches the best-known non-convex utility bounds (Allouah
 373 et al., 2023). However, when $\sqrt{d}/(\sqrt{n}\varepsilon) < 1$, our bound is less favorable. The tightness of this bound
 374 under the general assumptions considered in this work remains an open question.

375 A key limitation of our DP guarantee is its incompatibility with privacy amplification by sub-
 376 sampling. This arises from the client-side computation of vectors v_i^{t+1} and g_i^{t+1} , which accumulate
 377 private information over multiple iterations. These components are essential for our method to han-
 378 dle data heterogeneity (through g_i^{t+1}) and to reduce stochastic noise (through v_i^{t+1}). In contrast,

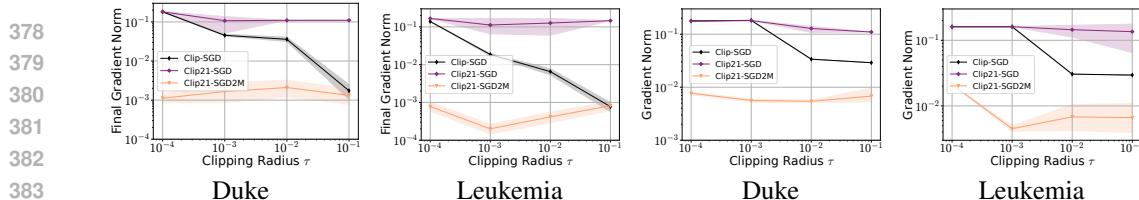


Figure 2: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M on logistic regression with non-convex regularization for various clipping radii τ with mini-batch (**two left**) and Gaussian-added (**two right**) stochastic gradients. The final gradient norm is averaged over the last 100 iterations. The gradient norm dynamics are reported in Figure I.1.

many existing methods benefit from this amplification, as illustrated by Clip-SGD (Abadi et al., 2016), which achieves a smaller DP-noise parameter $\sigma_\omega = \Theta\left((q\tau/\varepsilon)\sqrt{T \log(1/\delta)}\right)$, where q is the sampling probability for each individual data point. However, these methods typically rely on restrictive assumptions such as bounded data heterogeneity, as discussed in Section 1.2. Achieving both privacy amplification by sub-sampling and provable convergence without such limiting assumptions remains an open challenge. Despite these limitations, our experimental results indicate that Clip21-SGD2M achieves a privacy-utility trade-off comparable to Clip21-SGD.

4 EXPERIMENTS

In this section, we provide an empirical evaluation of the proposed algorithm against baselines such as Clip21-SGD (Khirirat et al., 2023), α -NormEC-SGD (Shulgin et al., 2023a), and Clip-SGD, where the latter is considered as the method of choice in private training.

First, we test the convergence of Clip-SGD, Clip21-SGD, and the proposed Clip21-SGD2M algorithms with stochastic gradients for various clipping radii τ on several workloads. These results demonstrate the significance of using the momentum technique to achieve better performance.

Non-convex Logistic Regression. In this experiment, we assess each algorithm using only stochastic gradients—either by adding Gaussian noise to the full local gradient $\nabla f_i(x)$ or by sampling mini-batches—without any additional DP noise. We focus on logistic regression with a non-convex regularizer, $f_i(x) = \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-b_{ij} a_{ij}^\top x)) + \lambda \sum_{l=1}^d \frac{x_l^2}{1+x_l^2}$, on the Duke and Leukemia datasets (Chang & Lin, 2011), a setup used in prior work (Khirirat et al., 2023; Li & Chi, 2023). We fix $\hat{\beta}$ (no DP noise), and full tuning details appear in Appendix I.1. Figure 2 plots the average gradient norm over the final 100 iterations, aggregated across three runs, for a range of clipping radii τ . Clip21-SGD2M consistently matches or outperforms the other methods—especially at small τ —demonstrating its robustness to the choice of clipping threshold and aligning with our theoretical guarantees. Furthermore, the convergence curves in Figure I.1 show that Clip21-SGD2M reaches optimality faster than its competitors.

Training Resnet20 and VGG16. We next evaluate our methods on training ResNet-20 (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014) models on CIFAR-10 (Krizhevsky et al., 2009)⁴. Results, averaged over three random seeds, appear in Figure 3 (global clipping across all weights) and Figure I.2 (layer-wise clipping). As before, we set $\hat{\beta} = 1$ for Clip21-SGD2M due to the absence of DP noise. The detailed experiment description is provided in Appendix I.2.1.

We report both test accuracy and training loss at the end of training. Clip-SGD’s performance degrades steadily as the clipping radius τ shrinks, whereas both Clip21-SGD and Clip21-SGD2M remain much more stable. In particular, for small τ , Clip21-SGD2M outperforms Clip21-SGD, achieving lower training loss and higher test accuracy—empirical findings that further validate our theoretical predictions. Full training curves are given in Figures I.3–I.4 for VGG-16 and Figures I.5–I.6 for ResNet-20.

Adding Gaussian Noise for DP. In our second experimental suite, we evaluate Gaussian-DP variants of the optimizers on MLP and CNN architectures using the MNIST dataset (Deng, 2012).

⁴Our implementation is based on the open-source code of (Horváth & Richtárik, 2020) with minor adjustments.

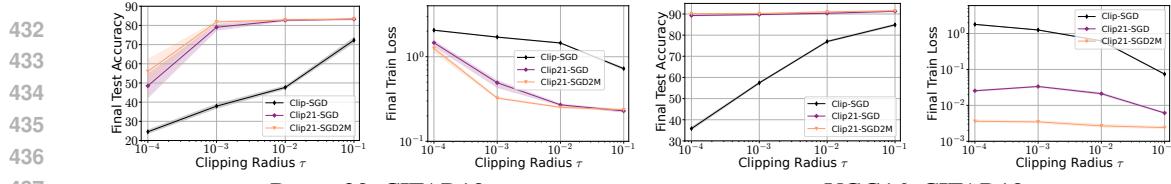


Figure 3: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training Resnet20 (two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied globally. The train loss and test accuracy dynamics are reported in Figure I.3 and Figure I.5.

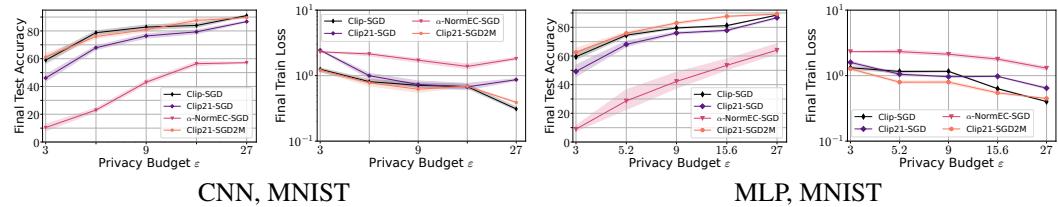


Figure 4: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training CNN (two left) and MLP (two right) models on MNIST dataset, varying the privacy budget ϵ where the clipping is applied globally. The training loss and test accuracy dynamics are presented in Figures I.7 to I.10.

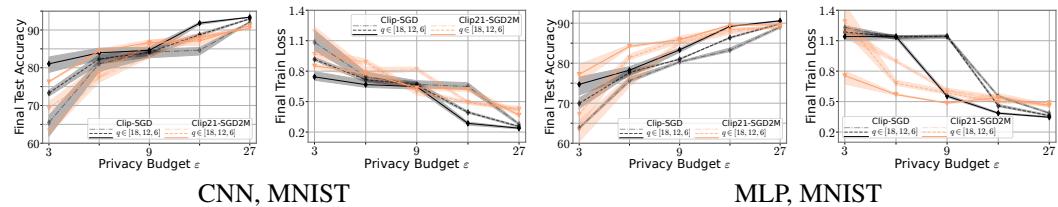


Figure 5: Comparison of Clip-SGD and Clip21-SGD2M when training CNN (two left) and MLP (two right) models on MNIST dataset, varying the privacy budget ϵ and number of sampled clients $|S_t|$, where the clipping is applied globally.

We compare Clip-SGD, Clip21-SGD, α -NormEC, and Clip21-SGD2M across privacy budgets $\epsilon \in \{3, 5.2, 9, 15.6, 27\}$ (with $\delta = 10^{-3}$). The data are split into $n = 25$ equal shards, and each method is run for $T = 150$ epochs with batch size 64 and 3 random seeds. Full experimental details are reported in Appendix I.2.2. As shown in Figure 4, Clip21-SGD2M achieves competitive performance: it slightly outperforms Clip-SGD on the MLP and matches it on the CNN, further corroborating our theoretical results. We report the training dynamics in Figures I.7 to I.10. To remain consistent with our analysis (where we assume σ -sub-Gaussian gradient noise), we do not consider amplification by client sub-sampling in the experiments.

Partial Client Participation. Although our current theory does not cover partial client participation, our experiments in Figure 5 indicate that Clip21-SGD2M benefits from privacy amplification via client sub-sampling. In this variant, the server updates g^t (line 10) using only $\{c_i^{t+1}\}_{i \in S_t}$ from the sampled set S_t (see Appendix A for more details). We train CNN and MLP models on MNIST dataset following the previous setup, varying the number of sampled clients $|S_t| \in \{6, 12, 18\}$ with $n = 24$. We observe that the performance of Clip21-SGD2M is competitive with that of Clip-SGD.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced Clip21-SGD2M, a method achieving optimal convergence rates and strong privacy-utility trade-offs without assuming bounded gradients or data heterogeneity. Several promising extensions remain open, including: (i) improving the DP neighborhood and enabling privacy amplification by sub-sampling (see Section 3.3); (ii) generalizing the analysis to handle heavy-tailed noise; (iii) developing AdaGrad/Adam-type variants for improved deep learning performance (Street & McMahan, 2010; Duchi et al., 2011; Kingma & Ba, 2014); and (iv) extending the analysis to settings with generalized smoothness (Zhang et al., 2020b).

486 REPRODUCIBILITY STATEMENT
487488 All experiments utilize publicly available datasets, cited accordingly. We provide the implementa-
489 tion of our algorithms in the supplementary, while the training details are listed in the appendix.
490491 ETHICS STATEMENT
492493 This paper presents work whose goal is to advance the field of Machine Learning. There are many
494 potential societal consequences of our work, none of which we feel must be specifically highlighted
495 here.
496497 REFERENCES
498500 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
501 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
502 *conference on computer and communications security*, 2016. (Cited on pages 1, 4, and 8)503 Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and John Stephan. On the
504 privacy-robustness-utility trilemma in distributed learning. In *International Conference on Ma-*
505 *chine Learning*, pp. 569–626. PMLR, 2023. (Cited on pages 4 and 7)506 Youssef Allouah, Anastasia Koloskova, Aymane El Firdoussi, Martin Jaggi, and Rachid Guerraoui.
507 The privacy power of correlated noise in decentralized learning. *arXiv preprint arXiv:2405.01031*,
508 2024. (Cited on pages 3, 4, 6, and 7)509 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
510 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 2023. (Cited
511 on page 7)512 Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
513 analyses via couplings and divergences. *Advances in neural information processing systems*, 31,
514 2018. (Cited on page 3)515 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model.
516 In *Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference*,
517 *Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II* 39, 2019. (Cited on page 3)518 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compres-
519 sion for distributed learning. *Journal of Machine Learning Research*, 2023. (Cited on page 3)520 Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
521 Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
522 preserving machine learning. In *proceedings of the 2017 ACM SIGSAC Conference on Computer*
523 *and Communications Security*, 2017. (Cited on page 3)524 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
525 points i. *Mathematical Programming*, 2020. (Cited on pages 2 and 6)526 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
527 points ii: first-order methods. *Mathematical Programming*, 2021. (Cited on page 6)528 TH Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially private multi-
529 party aggregation. In *European Symposium on Algorithms*, 2012. (Cited on page 3)530 Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. *ACM trans-*
531 *actions on intelligent systems and technology (TIST)*, 2011. (Cited on pages 8 and 55)532 Zachary Charles, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Nicole Mitchell, Krishna
533 Pillutla, and Keith Rush. Fine-tuning large language models with user-level differential privacy.
534 *arXiv preprint arXiv:2407.07737*, 2024. (Cited on page 7)

540 Kamalika Chaudhuri, Chuan Guo, and Mike Rabbat. Privacy-aware compression for federated data
 541 analysis. In *Uncertainty in Artificial Intelligence*, 2022. (Cited on page 3)

542

543 Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd:
 544 A geometric perspective. *Advances in Neural Information Processing Systems*, 2020. (Cited on
 545 pages 1, 3, and 4)

546 Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Daogao Liu, Pasin Manu-
 547 rangsi, Amer Sinha, and Chiyuan Zhang. Mind the privacy unit! user-level differential privacy
 548 for language model fine-tuning. *arXiv preprint arXiv:2406.14322*, 2024. (Cited on page 7)

549

550 Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
 551 with heavy tails. *Advances in Neural Information Processing Systems*, 2021. (Cited on page 3)

552

553 Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
 554 *Advances in neural information processing systems*, 32, 2019. (Cited on page 5)

555

556 Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov,
 557 Dmitry Kamzolov, and Innokenti Shibaev. Recent theoretical advances in non-convex optimiza-
 558 tion. In *High-Dimensional Optimization and Probability: With a View Towards Data Science*, pp.
 559 79–163. Springer, 2022. (Cited on page 2)

560

561 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE
 562 Signal Processing Magazine*, 2012. (Cited on page 8)

563

564 Andy Dong, Wei-Ning Chen, and Ayfer Ozgur. Leveraging randomness in model and data partition-
 565 ing for privacy amplification. *arXiv preprint arXiv:2503.03043*, 2025. (Cited on page 3)

566

567 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 568 stochastic optimization. *Journal of machine learning research*, 2011. (Cited on page 9)

569

570 John C Duchi, Michael I Jordan, and Martin J Wainwright. Minimax optimal procedures for locally
 571 private estimation. *Journal of the American Statistical Association*, 2018. (Cited on page 3)

572

573 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations
 574 and Trends® in Theoretical Computer Science*, 2014. (Cited on pages 1, 2, and 54)

575

576 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
 577 Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
 578 anonymity. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
 579 rithms*, 2019. (Cited on page 3)

580

581 Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. Ef21 with
 582 bells & whistles: Practical algorithmic extensions of modern error feedback. *arXiv preprint
 583 arXiv:2110.03294*, 2021. (Cited on page 3)

584

585 Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feed-
 586 back! *Advances in Neural Information Processing Systems*, 2024. (Cited on pages 3 and 5)

587

588 Yuan Gao, Rustem Islamov, and Sebastian U Stich. EControl: Fast distributed optimization with
 589 compression and error control. In *International Conference on Learning Representations*, 2024.
 590 (Cited on page 55)

591

592 Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
 593 level perspective. *arXiv preprint arXiv:1712.07557*, 2017. (Cited on page 4)

594

595 Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
 596 vex stochastic composite optimization i: A generic algorithmic framework. *SIAM Journal on
 597 Optimization*, 2012. (Cited on page 2)

598

599 Eduard Gorbunov, Darina Dvinskikh, and Alexander Gasnikov. Optimal decentralized distributed
 600 algorithms for stochastic convex optimization. *arXiv preprint arXiv:1911.07363*, 2019. (Cited on
 601 page 18)

594 Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with heavy-
 595 tailed noise via accelerated gradient clipping. *Advances in Neural Information Processing Sys-
 596 tems*, 2020a. (Cited on page 3)

597 Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
 598 error compensated sgd. *Advances in Neural Information Processing Systems*, 2020b. (Cited on
 599 page 3)

600 Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel
 601 Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability convergence for com-
 602 posite and distributed stochastic minimization and variational inequalities with heavy-tailed noise.
 603 In *Proceedings of the 41st International Conference on Machine Learning*, 2024. (Cited on pages 4
 604 and 61)

605 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 606 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016.
 607 (Cited on page 8)

608 Mahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, and Aymeric Dieuleveut. Compression with exact
 609 error distribution for federated learning. In *International Conference on Artificial Intelligence
 610 and Statistics*, 2024. (Cited on page 3)

611 Samuel Horváth and Peter Richtárik. A better alternative to error feedback for communication-
 612 efficient distributed learning. *arXiv preprint arXiv:2006.11077*, 2020. (Cited on page 8)

613 Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning
 614 with communication compression. *arXiv preprint arXiv:2308.08165*, 2023. (Cited on page 3)

615 Rustem Islamov, Yuan Gao, and Sebastian U Stich. Near optimal decentralized optimization with
 616 compression and momentum tracking. *arXiv preprint arXiv:2405.20114*, 2024a. (Cited on page 3)

617 Rustem Islamov, Mher Safaryan, and Dan Alistarh. Asgrad: A sharp unified analysis of
 618 asynchronous-sgd algorithms. In *International Conference on Artificial Intelligence and Statis-
 619 tics*, pp. 649–657. PMLR, 2024b. (Cited on page 55)

620 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 621 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 622 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
 623 2021. (Cited on page 1)

624 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
 625 fixes signsgd and other gradient compression schemes. In *International Conference on Machine
 626 Learning*, 2019. (Cited on page 3)

627 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
 628 Smith. What can we learn privately? *SIAM Journal on Computing*, 2011. (Cited on page 3)

629 Sarit Khirirat, Eduard Gorbunov, Samuel Horváth, Rustem Islamov, Fakhri Karray, and Peter
 630 Richtárik. Clip21: Error feedback for gradient clipping. *arXiv preprint arXiv:2305.18929*, 2023.
 631 (Cited on pages 1, 3, 4, 5, 8, and 18)

632 Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. *arXiv preprint
 633 arXiv:1412.6980*, 2014. (Cited on page 9)

634 Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
 635 Stochastic bias and tight convergence guarantees. In *International Conference on Machine Learn-
 636 ing*, 2023. (Cited on page 61)

637 Anastasiia Koloskova, Tao Lin, Sebastian Urban Stich, and Martin Jaggi. Decentralized deep learn-
 638 ing with arbitrary communication compression. In *Proceedings of the 8th International Confer-
 639 ence on Learning Representations*, 2019. (Cited on page 3)

648 Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and
 649 Dave Bacon. Federated learning: Strategies for improving communication efficiency. In *NIPS*
 650 *Private Multi-Party Machine Learning Workshop*, 2016. (Cited on page 1)

651

652 Nikita Kornilov, Ohad Shamir, Aleksandr Lobanov, Darina Dvinskikh, Alexander Gasnikov, Inno-
 653 kentiy Shibaev, Eduard Gorbunov, and Samuel Horváth. Accelerated zeroth-order method for
 654 non-smooth stochastic convex optimization problem with infinite variance. *Advances in Neural*
 655 *Information Processing Systems*, 2024. (Cited on page 3)

656 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
 657 images. *Scientific Report*, 2009. (Cited on page 8)

658

659 Boyue Li and Yuejie Chi. Convergence and privacy of decentralized nonconvex optimization with
 660 gradient clipping and communication compression. *arXiv preprint arXiv:2305.09896*, 2023.
 661 (Cited on pages 4, 6, and 8)

662 Ninghui Li, Wahbeh Qardaji, and Dong Su. On sampling, anonymization, and differential privacy
 663 or, k-anonymization meets differential privacy. In *Proceedings of the 7th ACM Symposium on*
 664 *Information, Computer and Communications Security*, pp. 32–33, 2012. (Cited on page 3)

665

666 Mingrui Liu, Zhenxun Zhuang, Yunwen Lei, and Chunyang Liao. A communication-efficient dis-
 667 tributed gradient clipping algorithm for training deep neural networks. *Advances in Neural Infor-*
 668 *mation Processing Systems*, 2022. (Cited on pages 3, 4, 6, and 7)

669 Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
 670 convergence of stochastic gradient methods. In *International Conference on Machine Learning*,
 671 2023. (Cited on page 3)

672 Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. *arXiv preprint*
 673 *arXiv:1810.06801*, 2018. (Cited on page 5)

674

675 Liam Madden, Emiliano Dall’Anese, and Stephen Becker. High probability convergence bounds
 676 for non-convex stochastic gradient descent with sub-weibull noise. *Journal of Machine Learning*
 677 *Research*, 2024. (Cited on page 2)

678

679 Maksim Makarenko, Elnur Gasanov, Rustem Islamov, Abdurakhmon Sadiev, and Peter Richtárik.
 680 Adaptive compression for communication-efficient distributed training. *arXiv preprint*
 681 *arXiv:2211.00188*, 2022. (Cited on page 55)

682

683 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 684 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-*
 685 *gence and statistics*, 2017a. (Cited on page 1)

686

687 H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
 688 recurrent language models. *arXiv preprint arXiv:1710.06963*, 2017b. (Cited on page 3)

689

690 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
 691 with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019. (Cited on page 4)

692

693 Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
 694 approximation approach to stochastic programming. *SIAM Journal on optimization*, 2009. (Cited
 695 on page 2)

696

697 Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private federated learn-
 698 ing on heterogeneous data. In *Proceedings of The 25th International Conference on Artificial*
 699 *Intelligence and Statistics*, 2022. (Cited on pages 4 and 7)

700

701 Francesco Orabona. A modern introduction to online learning. *arXiv preprint arXiv:1912.13213*,
 702 2019. (Cited on page 18)

703 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
 704 networks. In *Proceedings of the 30th International Conference on International Conference on*
 705 *Machine Learning-Volume 28*, 2013. (Cited on page 1)

702 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr computational mathematics and mathematical physics*, 1964. (Cited on page 2)

703

704

705 Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
706 practically faster error feedback. In *Advances in Neural Information Processing Systems*, 2021.
707 (Cited on pages 1 and 3)

708

709 Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel
710 Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochastic
711 optimization and variational inequalities: the case of unbounded variance. In *International Conference on Machine Learning*, 2023. (Cited on page 3)

712

713 Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos
714 Kalnis. Rethinking gradient sparsification as total error minimization. *Advances in Neural Information Processing Systems*, 2021. (Cited on page 3)

715

716 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
717 its application to data-parallel distributed training of speech dnns. In *Interspeech*, 2014. (Cited on
718 pages 1 and 3)

719

720 Egor Shulgin, Sarit Khirirat, and Peter Richtárik. Smoothed normalization for efficient distributed
721 private optimization. *arXiv preprint arXiv:2502.13482*, 2025a. (Cited on pages 4, 5, and 8)

722

723 Egor Shulgin, Grigory Malinovsky, Sarit Khirirat, and Peter Richtárik. First provable guarantees for
724 practical private fl: Beyond restrictive assumptions. In *Tiny Titans: The next wave of On-Device
725 Learning for Foundational Models (TTODLer-FM)*, 2025b. (Cited on page 4)

726

727 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
728 recognition. *arXiv preprint arXiv:1409.1556*, 2014. (Cited on page 8)

729

730 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
731 sgd with delayed gradients and compressed communication. *arXiv preprint arXiv:1909.05350*,
732 2019. (Cited on page 3)

733

734 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. *Advances in neural information processing systems*, 2018. (Cited on page 3)

735

736 Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. *arXiv preprint
737 arXiv:1002.4862*, 2010. (Cited on page 9)

738

739 Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
740 gradient descent with double-pass error-compensated compression. In *International Conference
741 on Machine Learning*, 2019. (Cited on page 3)

742

743 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*.
744 Cambridge University Press, 2018. (Cited on pages 2 and 17)

745

746 Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
747 Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
748 optimization. *arXiv preprint arXiv:2107.06917*, 2021. (Cited on page 1)

749

750 Shiqiang Wang, Jake Perazzone, Mingyue Ji, and Kevin S Chan. Federated learning with flexible
751 control. In *IEEE INFOCOM 2023-IEEE Conference on Computer Communications*, 2023. (Cited
752 on page 5)

753

754 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
755 and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
756 analysis. *IEEE transactions on information forensics and security*, 2020. (Cited on pages 3 and 4)

757

758 Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. Cser:
759 Communication-efficient sgd with error reset. *Advances in Neural Information Processing Systems*,
760 2020. (Cited on page 3)

756 An Xu and Heng Huang. Coordinating momenta for cross-silo federated learning. In *Proceedings*
757 *of the AAAI Conference on Artificial Intelligence*, 2022. (Cited on page 5)
758

759 Chung-Yiu Yau and Hoi-To Wai. Docom: Compressed decentralized optimization with near-optimal
760 sample complexity. *arXiv preprint arXiv:2202.00255*, 2022. (Cited on page 3)

761 Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
762 non-convex optimization. In *Advances in Neural Information Processing Systems*, 2020a. (Cited
763 on page 3)

764

765 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
766 training: A theoretical justification for adaptivity. In *International Conference on Learning Rep-
767 resentations*, 2020b. (Cited on pages 3 and 9)

768 Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
769 Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In *Advances in
770 Neural Information Processing Systems*, 2020c. (Cited on page 3)

771

772 Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Jinfeng Yi. Understanding
773 clipping for federated learning: Convergence and client-level differential privacy. In *International
774 Conference on Machine Learning, ICML 2022*, 2022. (Cited on pages 3, 4, and 6)

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Appendix

CONTENTS

810	A Extension to Partial Participation Setting	16
811		
812		
813		
814		
815	B Notation	17
816		
817	C Useful Lemmas	18
818		
819	D Proof of Theorem 2.2 (Non-convergence of Clip21-SGD)	19
820		
821		
822	E Proof of Theorem 3.1 (Convergence of Clip21-SGD2M in Full-batch Setting)	20
823		
824	F Proof of Theorem 3.3 (Convergence of Clip21-SGD2M in the Stochastic Setting with DP Noise)	28
825		
826		
827	G Proof of Corollary 3.4 (Privacy Analysis of Clip21-SGD2M)	53
828		
829	H Proof of Theorem 3.2 (Convergence of Clip21-SGD2M in the Stochastic Setting without DP Noise)	54
830		
831		
832	I Experiments: Additional Details and Results	55
833		
834	I.1 Experiments with Logistic Regression	55
835		
836	I.2 Experiments with Neural Networks	55
837		
838	I.3 Learning Rate Tuning for CNN	58
839		
840	I.4 Learning Rate Tuning for MLP	59
841		
842		
843	J Discussion on Privacy Amplification by Subsampling	60
844		
845	J.1 On the Theoretical Analysis of Clip21-SGD2M+	61
846		
847	J.2 Empirical Performance of Clip21-SGD2M+	61
848		
849		
850		
851		
852	A EXTENSION TO PARTIAL PARTICIPATION SETTING	
853		
854		

855 In this section, we provide a more detailed discussion of the extension of Clip21-SGD2M when the
 856 server samples only a subset S_t of clients at each communication round.

857 The algorithm design in this case is outlined in Alg. 4. There are two main changes in the algorithm
 858 design.

859

- 860 1. Only clients sampled in S_t execute steps in lines 6–9; unsampled clients remain idle.
- 861 2. The server uses the updates $\{c_i^{t+1}\}_{i \in S_t}$ from the sampled clients only.

862 This variation of Clip21-SGD2M benefits from amplification by sub-sampling similar to Clip-SGD.

864 **Algorithm 4** Clip21-SGD2M with partial participation

865

866 **Require:** $x^0, g^0, v^0 \in \mathbb{R}^d$ (by default $g^0 = v^0 = 0$), momentum parameters $\beta, \hat{\beta} \in (0, 1]$, stepsize
867 $\gamma > 0$, clipping parameter $\tau > 0$, number of sampled clients s , DP-variance parameter $\sigma_\omega^2 \geq 0$

868 1: Set $g_i^0 = g^0$ and $v_i^0 = v^0$ for all $i \in [n]$

869 2: **for** $t = 0, \dots, T - 1$ **do**

870 3: $x^{t+1} = x^t - \gamma g^t$

871 4: sample $S_t \subseteq [n]$ such that $|S_t| = s$

872 5: **for** $i \in S_t$ **do**

873 6: $v_i^{t+1} = (1 - \beta)v_i^t + \beta \nabla f_i(x^{t+1}, \xi_i^{t+1})$

874 7: $\omega_i^{t+1} \sim \mathcal{N}(0, \sigma_\omega^2 \mathbf{I})$

875 8: $c_i^{t+1} = \text{clip}_\tau(v_i^{t+1} - g_i^t) + \omega_i^{t+1}$

876 9: $g_i^{t+1} = g_i^t + \hat{\beta} \text{clip}_\tau(v_i^{t+1} - g_i^t)$

877 10: **end for**

878 11: **for** $i \notin S_t$ **do**

879 12: $v_i^{t+1} = v_i^t$

880 13: $g_i^{t+1} = g_i^t$

881 14: **end for**

882 15: $g^{t+1} = g^t + \frac{\hat{\beta}}{s} \sum_{i \in S_t} c_i^{t+1}$

883 16: **end for**

B NOTATION

884 For brevity, in all proofs, we use the following notation

$$\begin{aligned} 885 \delta^t &:= f(x^t) - f^*, \quad \tilde{V}^t := \frac{1}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2, \\ 886 \tilde{P}^t &:= \frac{1}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2, \quad P^t := \|v^t - \nabla f(x^t)\|^2, \\ 887 R^t &:= \|x^{t+1} - x^t\|^2. \end{aligned}$$

888 We additionally denote $\eta_i^t := \frac{\tau}{\|v_i^t - g_i^{t-1}\|}$ and $\eta := \frac{\tau}{B}$ where B is defined in each section (it is
889 different in deterministic and stochastic settings). Besides, we define $\mathcal{I}_t := \{i \in [n] \mid \|v_i^t - g_i^{t-1}\| > \\ 890 \tau\}.$

891 We denote $\theta_i^t := \nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)$. From Assumption 1.2, we have that θ_i^t is zero-centered
892 σ -sub-Gaussian random vector conditioned at x^t , namely

$$901 \mathbb{E} [\theta_i^t \mid x^t] = 0, \quad \mathbb{E} \left[\exp \left(\frac{\|\theta_i^t\|^2}{\sigma^2} \right) \mid x^t \right] \leq \exp(1), \quad (13)$$

902 which is equivalent to

$$903 \Pr(\|\theta_i^t\| > b) \leq 2 \exp \left(-\frac{b^2}{2\sigma^2} \right) \quad \forall b > 0 \quad (14)$$

904 up to the numerical factor in σ (Vershynin, 2018). Moreover, we define an average of θ_i^t as $\theta^t := \frac{1}{n} \sum_{i=1}^n \theta_i^t$,
905 an average of ω_i^t as $\Omega^t = \frac{1}{n} \sum_{i=1}^n \omega_i^t$, and an average of g_i^t as $\bar{g}^t = \frac{1}{n} \sum_{i=1}^n g_i^t$.
906 Thus, we have the following relation between g^t and \bar{g}^t :

$$907 g^t = \bar{g}^t + \hat{\beta} \Omega^t. \quad (15)$$

908 Indeed, it is true at iteration 0 by the initialization. Let us assume that it holds at iteration t , then we
909 have

$$910 g^{t+1} = g^t + \frac{\hat{\beta}}{n} \sum_{i=1}^n (\text{clip}_\tau(v_i^{t+1} - g_i^t) + \omega_i^{t+1}) = \bar{g}^t + \hat{\beta} \Omega^t + \frac{\hat{\beta}}{n} \sum_{i=1}^n (\text{clip}_\tau(v_i^{t+1} - g_i^t) + \omega_i^{t+1}) = \bar{g}^{t+1} + \hat{\beta} \Omega^{t+1},$$

911 i.e., it holds at iteration $t + 1$ as well.

918 C USEFUL LEMMAS
919

920 **Lemma C.1** (Lemma C.3 in (Gorbunov et al., 2019)). *Let $\{\xi_k\}_{k=1}^N$ be the sequence of random*
921 *vectors with values in \mathbb{R}^n such that*

$$922 \mathbb{E} [\xi_k \mid \xi_{k-1}, \dots, \xi_1] = 0 \text{ almost surely, } \forall k \in \{1, \dots, N\},$$

923 *and set $S_N := \sum_{k=1}^N \xi_k$. Assume that the sequence $\{\xi_k\}_{k=1}^N$ are sub-Gaussian, i.e.*

$$924 \mathbb{E} [\exp(\|\xi_k\|^2/\sigma_k^2) \mid \xi_{k-1}, \dots, \xi_1] \leq \exp(1) \text{ almost surely, } \forall k \in \{1, \dots, N\},$$

925 *where $\sigma_2, \dots, \sigma_N$ are some positive numbers. Then for all $\gamma \geq 0$*

$$926 \Pr \left(\|S_N\| \geq (\sqrt{2} + 2\gamma) \sqrt{\sum_{k=1}^N \sigma_k^2} \right) \leq \exp(-\gamma^2/3). \quad (16)$$

927 **Lemma C.2.** *Let f be L -smooth, $\delta^t = f(x^t) - f^*$, $\{x^t\}$ be generated by Algorithm 3, and the*
928 *stepsize $\gamma \leq \frac{1}{2L}$. Then*

$$929 \delta^{t+1} \leq \delta^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{1}{4\gamma} \|x^t - x^{t+1}\|^2 + 2\gamma \|\nabla f(x^t) - v^t\|^2 \\ 930 + \frac{2\gamma}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2 + \gamma \hat{\beta}^2 \|\Omega^t\|^2. \quad (17)$$

931 *Proof.* Using L -smoothness of f we have
932

$$933 f(x^{t+1}) \stackrel{(i)}{\leq} f(x^t) + \langle \nabla f(x^t), x^{t+1} - x^t \rangle + \frac{L}{2} \|x^{t+1} - x^t\|^2 \\ 934 \stackrel{(ii)}{=} f(x^t) - \gamma \langle \nabla f(x^t), g^t \rangle + \frac{L\gamma^2}{2} \|g^t\|^2 \\ 935 \stackrel{(iii)}{=} f(x^t) - \frac{\gamma}{2} (\|\nabla f(x^t)\|^2 + \|g^t\|^2 - \|\nabla f(x^t) - g^t\|^2) + \frac{L\gamma^2}{2} \|g^t\|^2 \\ 936 = f(x^t) - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{\gamma}{2} \|g^t\|^2 (1 - L\gamma) + \frac{\gamma}{2} \|\nabla f(x^t) - g^t\|^2 \\ 937 \stackrel{(iv)}{\leq} f(x^t) - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{\gamma}{4} \|g^t\|^2 + \frac{\gamma}{2} \|\nabla f(x^t) - g^t\|^2. \quad (18)$$

938 where (i) follows from smoothness; (ii) from the update rule (iii) from $\|a - b\|^2 =$
939 $\|a\|^2 + \|b\|^2 - 2\langle a, b \rangle$; (iv) from the stepsize restriction $\gamma \leq \frac{1}{2L}$. Using (15) we continue as fol-
940 lows

$$941 f(x^{t+1}) \leq f(x^t) - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{\gamma}{4} \|g^t\|^2 + \gamma \|\nabla f(x^t) - \bar{g}^t\|^2 + \gamma \hat{\beta}^2 \|\Omega^t\|^2 \\ 942 \stackrel{(i)}{\leq} f(x^t) - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{\gamma}{4} \|g^t\|^2 + 2\gamma \|\nabla f(x^t) - v^t\|^2 + 2\gamma \|\bar{g}^t - v^t\|^2 + \gamma \hat{\beta}^2 \|\Omega^t\|^2 \\ 943 \stackrel{(ii)}{\leq} f(x^t) - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{\gamma}{4} \|g^t\|^2 + 2\gamma \|\nabla f(x^t) - v^t\|^2 + \frac{2\gamma}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2 + \gamma \hat{\beta}^2 \|\Omega^t\|^2, \quad (19)$$

944 where (i-ii) follow from Young's inequality. It remains to subtract f^* from both sides. It remains to
945 replace g^t by $\frac{1}{\gamma}(x^t - x^{t+1})$

□

946 **Lemma C.3** (Lemma 4.1 in (Khirirat et al., 2023)). *The clipping operator satisfies for any $x \in \mathbb{R}^d$*
947
$$\|\text{clip}_\tau(x) - x\| \leq \max \{\|x\| - \tau, 0\}. \quad (20)$$

948 **Lemma C.4** (Property of smooth functions). *Let $\phi: \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth and lower bounded by*
949 *$\phi^* \in \mathbb{R}$, i.e. $\phi(x) \geq \phi^*$ for any $x \in \mathbb{R}^d$. Then we have*

$$950 \|\nabla \phi(x)\|^2 \leq 2L(\phi(x) - \phi^*). \quad (21)$$

951 *Proof.* It is a standard property of smooth functions. We refer to Theorem 4.23 of (Orabona, 2019).
952

□

972 **D PROOF OF THEOREM 2.2 (NON-CONVERGENCE OF CLIP21-SGD)**
 973

974 *Proof. The case $n = 1$.* Let us consider the problem $f(x) = \frac{L}{2}\|x\|^2$. Let vectors $\{z_j\}_{j=1}^3$ be
 975 defined as

$$976 \quad z_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100}}, \quad z_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100}}, \quad z_3 = \begin{pmatrix} -3 \\ -4 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100}}.$$

978 Note that we have

$$979 \quad \|z_1\|^2 = \frac{27\sigma^2}{100}, \quad \|z_2\|^2 = \frac{24\sigma^2}{50}, \quad \|z_3\|^2 = \frac{3\sigma^2}{4},$$

981 meaning that $\tau < \|z_i\|$ for all $i \in [3]$. We define the stochastic gradient as $\nabla f(x^t, \xi^t) = \nabla f(x^t) +$
 982 $\xi^t = Lx^t + \xi^t$ where ξ^t is picked uniformly at random from $\{z_1, z_2, z_3\}$. Simple calculations verify
 983 that Assumption 1.2 holds for such noise. Next, the update rule of the method (6) in the case $n = 1$
 984 is

$$985 \quad x^{t+1} = x^t - \gamma g^t = x^t - \gamma(\nabla f(x^t) + \text{clip}_\tau(\nabla f(x^t, \xi^t) - \nabla f(x^t))) = x^t - L\gamma x^t - \gamma \text{clip}_\tau(\xi^t).$$

987 Since $\tau < \|z_i\|$ for any $i \in \{1, 2, 3\}$ clipping is always active and we have

$$\begin{aligned} 988 \quad \mathbb{E}[\text{clip}_\tau(\xi^t)] &= \frac{1}{3} \text{clip}_\tau(z_1) + \frac{1}{3} \text{clip}_\tau(z_2) + \frac{1}{3} \text{clip}_\tau(z_3) \\ 989 &= \frac{1}{3} \frac{\tau}{\|z_1\|} z_1 + \frac{1}{3} \frac{\tau}{\|z_2\|} z_2 + \frac{1}{3} \frac{\tau}{\|z_3\|} z_3 \\ 990 &= \frac{1}{3} \frac{\tau}{\frac{3\sqrt{3}\sigma}{10}} \frac{\sigma\sqrt{3}}{10} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \frac{1}{3} \frac{\tau}{\frac{4\sqrt{3}\sigma}{10}} \frac{\sigma\sqrt{3}}{10} \begin{pmatrix} 0 \\ 4 \end{pmatrix} + \frac{1}{3} \frac{\tau}{\frac{5\sqrt{3}\sigma}{10}} \frac{\sigma\sqrt{3}}{10} \begin{pmatrix} -3 \\ -4 \end{pmatrix} \\ 991 &= \frac{\tau}{9} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \frac{\tau}{12} \begin{pmatrix} 0 \\ 4 \end{pmatrix} + \frac{\tau}{15} \begin{pmatrix} -3 \\ -4 \end{pmatrix} \\ 992 &= \underbrace{\frac{\tau}{15} \begin{pmatrix} 2 \\ 1 \end{pmatrix}}_{:=h}. \end{aligned}$$

1001 Thus, we obtain

$$\begin{aligned} 1002 \quad \mathbb{E}[x^T] &= (1 - L\gamma)\mathbb{E}[x^{T-1}] - \gamma\mathbb{E}[\text{clip}_\tau(\xi^t)] \\ 1003 &= (1 - L\gamma)\mathbb{E}[x^{T-1}] - \gamma h \\ 1004 &= (1 - L\gamma)^T x^0 - \gamma h \sum_{t=0}^{T-1} (1 - L\gamma)^{T-1-t} \\ 1005 &= (1 - L\gamma)^T \begin{pmatrix} 0 \\ x_{(2)}^0 \end{pmatrix} - \frac{\tau\gamma}{15} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \frac{1 - (1 - L\gamma)^T}{1 - (1 - L\gamma)} \\ 1006 &= (1 - L\gamma)^T \begin{pmatrix} 0 \\ x_{(2)}^0 \end{pmatrix} - \frac{\tau}{15L} \begin{pmatrix} 2 \\ 1 \end{pmatrix} (1 - (1 - L\gamma)^T). \end{aligned}$$

1013 Therefore, since $x_{(2)}^0 < 0$ we have

$$\begin{aligned} 1014 \quad \mathbb{E}[\|\nabla f(x^T)\|^2] &= \mathbb{E}[\|Lx^T\|^2] \\ 1015 &= \|\mathbb{E}[Lx^T]\|^2 + \mathbb{E}[\|Lx^T - \mathbb{E}[Lx^T]\|^2] \\ 1016 &\geq \|\mathbb{E}[Lx^T]\|^2 \\ 1017 &= \frac{4\tau^2}{165} \left(1 - (1 - L\gamma)^T\right)^2 + L^2 \left((1 - L\gamma)^T x_{(2)}^0 - \frac{\tau}{15L} \left(1 - (1 - L\gamma)^T\right)\right)^2 \\ 1018 &\geq \frac{4\tau^2}{165} \left(1 - (1 - L\gamma)^T\right)^2 + (1 - L\gamma)^{2T} \|Lx^0\|^2 + \frac{\tau^2}{165} (1 - (1 - L\gamma)^T)^2 \\ 1019 &= \frac{\tau^2}{45} \left(1 - (1 - L\gamma)^T\right)^2 + (1 - L\gamma)^{2T} \|\nabla f(x^0)\|^2. \end{aligned}$$

1026 Note that the function $a(1-x)^2 + x^2b \geq \frac{ab}{a+b}$. Applying this result for $a = \frac{\tau^2}{45}, b = \|\nabla f(x^0)\|^2$,
 1027 and $x = (1 - L\gamma)^T$ we get
 1028

$$1029 \mathbb{E} [\|\nabla f(x^T)\|^2] \geq \frac{\frac{\tau^2}{45} \|\nabla f(x^0)\|^2}{\frac{\tau^2}{45} + \|\nabla f(x^0)\|^2} \geq \frac{1}{2} \min \left\{ \|\nabla f(x^0)\|^2, \frac{\tau^2}{45} \right\}.$$

1032 **The case $n > 1$.** If $n > 1$ then we can consider a similar example where each client is quadratic
 1033 $\frac{L}{2} \|x\|^2$ and the stochastic gradient is constructed as $\nabla f_i(x^t, \xi_i^t) = \nabla f_i(x^t) + \xi_i^t = Lx^t + \xi_i^t$ where
 1034 ξ_i^t is sampled uniformly at random from vectors $\{z_1, z_2, z_3\}$ such that
 1035

$$1036 z_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100B}}, \quad z_2 = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100B}}, \quad z_3 = \begin{pmatrix} -3 \\ -4 \end{pmatrix} \sqrt{\frac{3\sigma^2}{100B}}.$$

1039 Then, Assumption 1.2 is satisfied with σ^2/B . Therefore, if $x_{(2)}^0 = -1, \varepsilon < \frac{L}{\sqrt{2}}$, and $\tau \geq \frac{\varepsilon}{3\sqrt{10}}$, this
 1040 implies that $B \leq \frac{243\sigma^2}{5\varepsilon^2} < \frac{27\sigma^2}{50\tau^2}$, and
 1041

$$1042 \mathbb{E} [\|\nabla f(x^T)\|^2] \geq \frac{1}{2} \min \left\{ \|\nabla f(x^0)\|^2, \frac{\tau^2}{45} \right\} \geq \varepsilon^2.$$

□

1047 E PROOF OF THEOREM 3.1 (CONVERGENCE OF CLIP21-SGD2M IN 1048 FULL-BATCH SETTING)

1050 As we mention in the main part of the paper, the proofs are induction-based: by induction, we
 1051 show that several quantities remain bounded throughout the work of the method. That is, in Lem-
 1052 mas E.1-E.7, we establish several useful bounds and recurrences. These lemmas allow us to use the
 1053 contraction-like property (Lemma C.3) of the clipping operator and finish the proof of Theorem 3.1
 1054 applying similar techniques used in the analysis of EF21.

1055 **Lemma E.1.** *Let each f_i be L -smooth. Then, the iterates generated by Clip21-SGD2M with
 1056 $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise) satisfy the following
 1057 inequality*

$$1058 \|v_i^{t+1} - g_i^t\| \leq (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\} + L\gamma\beta\|g^t\| \\ 1059 + \beta\|\nabla f_i(x^t) - v_i^t\|. \quad (22)$$

1060

1061 *Proof.* We have

$$1063 \|v_i^{t+1} - g_i^t\| \stackrel{(i)}{=} \|(1 - \beta)v_i^t + \beta\nabla f_i(x^{t+1}) - g_i^t\| \\ 1064 \stackrel{(ii)}{\leq} \|v_i^t - g_i^t\| + \beta\|\nabla f_i(x^{t+1}) - v_i^t\| \\ 1065 \stackrel{(iii)}{=} \|v_i^t - g_i^{t-1} - \hat{\beta}\text{clip}_\tau(v_i^t - g_i^{t-1})\| + \beta\|\nabla f_i(x^{t+1}) - \nabla f_i(x^t)\| + \beta\|\nabla f_i(x^t) - v_i^t\| \\ 1066 \stackrel{(iv)}{\leq} (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta}\|v_i^t - g_i^{t-1} - \text{clip}_\tau(v_i^t - g_i^{t-1})\| + L\gamma\beta\|g^t\| + \beta\|\nabla f_i(x^t) - v_i^t\| \\ 1067 \stackrel{(v)}{\leq} (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\} + L\gamma\beta\|g^t\| + \beta\|\nabla f_i(x^t) - v_i^t\|.$$

1073 where (i) follows from the update rule of v_i^t in deterministic case, (ii) from triangle inequality, (iii)
 1074 from the update rule of g_i^t , (iv) from triangle inequality, update rule of x^t , and L -smoothness, (v)
 1075 properties of clipping from Lemma C.3. □

1076 **Lemma E.2.** *Let each f_i be L -smooth, $\Delta \geq \Phi^0$, and $B > \tau$. Assume that the following inequal-
 1077 ities hold for the iterates generated by Clip21-SGD2M with $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full
 1078 gradients) and $\sigma_\omega = 0$ (no DP-noise)*

1079

$$1. \quad \|g^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau);$$

1080 2. $\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau);$
 1081
 1082 3. $\|v_i^t - g_i^{t-1}\| \leq B \forall i \in [n];$
 1083
 1084 4. $\gamma \leq \frac{1}{12L};$
 1085
 1086 5. $\hat{\beta}, \beta \in [0, 1];$
 1087
 1088 6. $\Phi^t \leq \Delta.$

1089 *Then we have*

$$\|g^t\| \leq \sqrt{64L\Delta} + 3(B - \tau). \quad (23)$$

1090 *Proof.* We have

$$\begin{aligned} 1093 \quad & \|g^t\| \\ 1094 \quad & \stackrel{(i)}{=} \left\| g^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \text{clip}_\tau(v_i^t - g_i^{t-1}) \right\| \\ 1095 \quad & = \left\| g^{t-1} + \hat{\beta}(v^t - g^{t-1}) + \frac{\hat{\beta}}{n} \sum_{i=1}^n (\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})) \right\| \\ 1096 \quad & = \left\| (1 - \hat{\beta})g^{t-1} + \hat{\beta}\nabla f(x^t) + \hat{\beta}(v^t - \nabla f(x^t)) + \frac{\hat{\beta}}{n} \sum_{i=1}^n (\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})) \right\| \\ 1097 \quad & \stackrel{(ii)}{\leq} (1 - \hat{\beta})\|g^{t-1}\| + \hat{\beta}\|\nabla f(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\}, \\ 1098 \quad & \stackrel{(iii)}{\leq} (1 - \hat{\beta})\|g^{t-1}\| + \hat{\beta}\|\nabla f(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\}, \\ 1099 \quad & \stackrel{(iv)}{\leq} (1 - \hat{\beta})\|g^{t-1}\| + \hat{\beta}\|\nabla f(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|\nabla f_i(x^t) - v_i^{t-1}\| + \hat{\beta}(B - \tau), \\ 1100 \quad & \stackrel{(v)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta})(\sqrt{2L(f(x^t) - f^*)} + L\gamma\hat{\beta}\|g^{t-1}\| + \frac{\hat{\beta}}{n}(1 - \beta) \sum_{i=1}^n \|\nabla f_i(x^t) - v_i^{t-1}\| \\ 1101 \quad & \quad + \hat{\beta}(B - \tau)) \\ 1102 \quad & \stackrel{(vi)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta})(\sqrt{2L\Delta} + \hat{\beta}(1 - \beta)(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)) + \hat{\beta}(B - \tau)) \\ 1103 \quad & \stackrel{(vii)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta}(2 - \beta))\|g^{t-1}\| + \hat{\beta}\sqrt{2L\Delta} + \hat{\beta}(1 - \beta)(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)) + \hat{\beta}(B - \tau), \\ 1104 \quad & \stackrel{(viii)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta}(2 - \beta))(\sqrt{64L\Delta} + 3(B - \tau)) + \hat{\beta}\sqrt{2L\Delta} + \hat{\beta}(1 - \beta)(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)) \\ 1105 \quad & \quad + \hat{\beta}(B - \tau), \end{aligned}$$

1106 where (i) follows from the update rule g_i^t , (ii) from triangle inequality and clipping properties from
 1107 Lemma C.3. We continue the derivation of the bound for $\|g^t\|$ as follows

$$\begin{aligned} 1108 \quad & \|g^t\| \stackrel{(i)}{\leq} (1 - \hat{\beta})\|g^{t-1}\| + \hat{\beta}\|\nabla f(x^{t-1})\| + \hat{\beta}\|\nabla f(x^t) - \nabla f(x^{t-1})\| \\ 1109 \quad & \quad + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|(1 - \beta)v_i^{t-1} + \beta\nabla f_i(x^t) - \nabla f_i(x^t)\| + \hat{\beta}(B - \tau) \\ 1110 \quad & \stackrel{(ii)}{\leq} (1 - \hat{\beta})\|g^{t-1}\| + \hat{\beta}\sqrt{2L(f(x^t) - f^*)} + L\gamma\hat{\beta}\|g^{t-1}\| + \frac{\hat{\beta}}{n}(1 - \beta) \sum_{i=1}^n \|\nabla f_i(x^t) - v_i^{t-1}\| \\ 1111 \quad & \quad + \hat{\beta}(B - \tau) \\ 1112 \quad & \stackrel{(iii)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta})\|g^{t-1}\| + \hat{\beta}\sqrt{2L\Phi^t} + \frac{\hat{\beta}}{n}(1 - \beta) \sum_{i=1}^n \|\nabla f_i(x^t) - \nabla f_i(x^{t-1})\| \\ 1113 \quad & \quad + \frac{\hat{\beta}}{n}(1 - \beta) \sum_{i=1}^n \|\nabla f_i(x^{t-1}) - v_i^{t-1}\| + \hat{\beta}(B - \tau) \\ 1114 \quad & \stackrel{(iv)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta}(2 - \beta))\|g^{t-1}\| + \hat{\beta}\sqrt{2L\Delta} + \hat{\beta}(1 - \beta)(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)) + \hat{\beta}(B - \tau) \\ 1115 \quad & \stackrel{(v)}{\leq} (1 - \hat{\beta} + L\gamma\hat{\beta}(2 - \beta))(\sqrt{64L\Delta} + 3(B - \tau)) + \hat{\beta}\sqrt{2L\Delta} + \hat{\beta}(1 - \beta)(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)) \\ 1116 \quad & \quad + \hat{\beta}(B - \tau), \end{aligned}$$

1117 where (i) follows from triangle inequality and update of v_i^t , (ii) from L -smoothness and update rule
 1118 of x^t , (iii) from the definition of Φ^t and triangle inequality, (iv) from the assumptions 2 and 6, (v)
 1119 from the assumption 1. The above is satisfied if we have simultaneously

$$8(1 - \hat{\beta} + 2L\gamma\hat{\beta}) + \sqrt{2}\hat{\beta} + 2\hat{\beta} \leq 8$$

$$3(1 - \hat{\beta} + 2L\gamma\hat{\beta}) + \frac{3}{2}\hat{\beta} + \hat{\beta} \leq 3.$$

1134 Both inequalities hold when $L\gamma \leq \frac{1}{12}$. □
 1135

1136 **Lemma E.3.** *Let each f_i be L -smooth, $\Delta \geq \Phi^0$, and $B > \tau$. Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M with $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise)*
 1137
 1138
 1139

1140 1. $4L\gamma \leq \beta$ and $\gamma \leq \frac{1}{4L}$;
 1141
 1142 2. $\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau)$;
 1143
 1144 3. $\|g^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau)$.

1145 Then we have

1146

$$1147 \|\nabla f_i(x^t) - v_i^t\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) \quad \forall i \in [n]. \quad (24)$$

1148

1149 *Proof.* We have

1150

$$\begin{aligned} 1151 \|\nabla f_i(x^t) - v_i^t\| &\stackrel{(i)}{=} \|\nabla f_i(x^t) - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t)\| \\ 1152 &= (1 - \beta)\|\nabla f_i(x^t) - v_i^{t-1}\| \\ 1153 &\stackrel{(ii)}{\leq} (1 - \beta)L\gamma\|g^{t-1}\| + (1 - \beta)\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \\ 1154 &\stackrel{(iii)}{\leq} L\gamma\left(\sqrt{64L\Delta} + 3(B - \tau)\right) + (1 - \beta)\left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau)\right) \\ 1155 &= (8L\gamma + 2(1 - \beta))\sqrt{L\Delta} + \left(3L\gamma + \frac{3(1 - \beta)}{2}\right)(B - \tau), \end{aligned}$$

1156

1157 where (i) follows from the update rule of v_i^t , (ii) from triangle inequality, smoothness, and update
 1158 of x^t , (iii) from conditions 2-3 in the statement of the lemma. We need to satisfy

1159

$$\begin{aligned} 1160 8L\gamma + 2(1 - \beta) &\leq 2 \Leftrightarrow 4L\gamma \leq \beta. \\ 1161 3L\gamma + \frac{3}{2}(1 - \beta) &\leq \frac{3}{2} \Leftrightarrow 2L\gamma \leq \beta. \end{aligned}$$

1162

1163 Since $4L\gamma \leq \beta$, both inequalities are satisfied. □

1164
 1165
 1166
 1167
 1168 **Lemma E.4.** *Let each f_i be L -smooth, $\Delta \geq \Phi^0$, $B > \tau$, and $i \in \mathcal{I}_t := \{i \in [n] \mid \|v_i^t - g_i^{t-1}\| > \tau\}$. Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M with $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise)*
 1169

1170 1. $4L\gamma \leq \beta$;
 1171
 1172 2. $L\gamma \leq \frac{1}{12}$;
 1173
 1174 3. $\frac{8}{3}\beta\sqrt{L\Delta} \leq \frac{\hat{\beta}\tau}{4}$;
 1175
 1176 4. $\frac{7}{4}\beta(B - \tau) \leq \frac{\hat{\beta}\tau}{4}$;
 1177
 1178 5. $\|g^t\| \leq \sqrt{64L\Delta} + 3(B - \tau)$;
 1179
 1180 6. $\|\nabla f_i(x^t) - v_i^t\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau)$.

1181 Then

1182

$$1183 \|v_i^{t+1} - g_i^t\| \leq \|v_i^t - g_i^{t-1}\| - \frac{\hat{\beta}\tau}{2}. \quad (25)$$

1184

1188 *Proof.* Since $i \in \mathcal{I}_t$, then $\|v_i^t - g_i^{t-1}\| > \tau$, thus from Lemma E.1 we have
 1189

$$\begin{aligned} 1190 \quad \|v_i^{t+1} - g_i^t\| &\leq (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta}(\|v_i^t - g_i^{t-1}\| - \tau) + \beta L\gamma\|g^t\| + \beta\|\nabla f_i(x^t) - v_i^t\| \\ 1191 \quad &\stackrel{(i)}{\leq} \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + \beta L\gamma \left(\sqrt{64L\Delta} + 3(B - \tau) \right) + \beta \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) \right) \\ 1192 \quad &= \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + (8\beta L\gamma + 2\beta)\sqrt{L\Delta} + (3\beta L\gamma + 3\beta/2)(B - \tau), \\ 1193 \end{aligned}$$

1194 where (i) follows from assumptions 5-6 of the statement of the lemma. Since $L\gamma \leq \frac{1}{12}$, we have
 1195

$$1197 \quad \|v_i^{t+1} - g_i^t\| \leq \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + \frac{8}{3}\beta\sqrt{L\Delta} + \frac{7}{4}\beta(B - \tau). \\ 1198$$

1199 Due to assumptions 2-3 of the lemma, we have
 1200

$$1201 \quad \|v_i^{t+1} - g_i^t\| \leq \|v_i^t - g_i^{t-1}\| - \frac{\hat{\beta}\tau}{2}, \\ 1202$$

1203 which concludes the proof. \square
 1204

1205 **Lemma E.5.** *Let each f_i be L -smooth. Then, for the iterates generated by Clip21-SGD2M with
 1206 $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise) the quantity
 1207 $\tilde{P}^t := \frac{1}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2$ decreases as*
 1208

$$1209 \quad \tilde{P}^{t+1} \leq (1 - \beta)\tilde{P}^t + \frac{3L^2}{\beta}R^t. \quad (26) \\ 1210$$

1211 *Proof.* We have
 1212

$$\begin{aligned} 1213 \quad \|v_i^{t+1} - \nabla f_i(x^{t+1})\|^2 &\stackrel{(i)}{=} \|(1 - \beta)v_i^t + \beta\nabla f_i(x^{t+1}) - \nabla f_i(x^{t+1})\|^2 \\ 1214 \quad &= (1 - \beta)^2\|\nabla f_i(x^{t+1}) - v_i^t\|^2 \\ 1215 \quad &\stackrel{(ii)}{\leq} (1 - \beta)^2(1 + \beta/2)\|v_i^t - \nabla f_i(x^t)\|^2 \\ 1216 \quad &\quad + (1 - \beta)^2(1 + 2/\beta)\|\nabla f_i(x^t) - \nabla f_i(x^{t+1})\|^2 \\ 1217 \quad &\stackrel{(iii)}{\leq} (1 - \beta)\|v_i^t - \nabla f_i(x^t)\|^2 + \frac{3L^2}{\beta}\|x^t - x^{t+1}\|^2, \\ 1218 \end{aligned}$$

1219 where (i) follows from the update rule of v_i^t , (ii) – from the inequality $\|a + b\|^2 \leq (1 + \beta/2)\|a\|^2 + (1 + 2/\beta)\|b\|^2$ that holds for any $a, b \in \mathbb{R}^d$ and $\beta > 0$, and (iii) – from $(1 - \beta)(1 + \beta/2) \leq 1$, which holds for any $\beta \in [0, 1]$, and smoothness. Averaging the inequalities above across $i \in [n]$, we get the statement of the lemma. \square
 1220

1221 Similarly, we can get the recursion for $P^t := \|v^t - \nabla f(x^t)\|^2$.
 1222

1223 **Lemma E.6.** *Let each f_i be L -smooth. Then, for the iterates generated by Clip21-SGD2M with
 1224 $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise) the quantity
 1225 $P^t := \|v^t - \nabla f(x^t)\|^2$ decreases as*
 1226

$$1227 \quad P^{t+1} \leq (1 - \beta)P^t + \frac{3L^2}{\beta}R^t. \quad (27) \\ 1228$$

1229 Next, we establish the recursion for $\tilde{V}^t := \frac{1}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2$.
 1230

1231 **Lemma E.7.** *Let each f_i be L -smooth. Consider Clip21-SGD2M with $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full gradients) and $\sigma_\omega = 0$ (no DP-noise). Let $\|v_i^t - g_i^{t-1}\| \leq B$, for all $i \in [n]$ and some $B \geq \tau$, and $\hat{\beta} \leq \frac{1}{2\eta}$. Then*
 1232

$$1233 \quad \|g_i^t - v_i^t\|^2 \leq (1 - \hat{\beta}\eta)\|g_i^{t-1} - v_i^{t-1}\|^2 + \frac{4\beta^2}{\hat{\beta}\eta}\|v_i^{t-1} - \nabla f_i(x^{t-1})\|^2 + \frac{4L^2\beta^2}{\hat{\beta}}R^{t-1}. \\ 1234$$

1242 and, in particular,

$$1243 \quad \tilde{V}^t \leq (1 - \eta) \tilde{V}^{t-1} + \frac{4\beta^2}{\hat{\beta}\eta} \tilde{P}^{t-1} + \frac{4\beta^2 L^2}{\hat{\beta}\eta} R^{t-1},$$

1244 where $\eta := \frac{\tau}{B}$, $R^t := \|x^{t+1} - x^t\|^2$, and $\tilde{V}^t := \frac{1}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2$.

1245 *Proof.* Since $\|v_i^t - g_i^{t-1}\| \leq B$, for $\eta_i^t := \frac{\tau}{\|v_i^t - g_i^{t-1}\|}$ we have $\eta_i^t \geq \eta$. This implies

$$\begin{aligned} 1246 \quad \|g_i^t - v_i^t\|^2 &\stackrel{(i)}{=} \|g_i^{t-1} + \hat{\beta} \text{clip}_\tau(v_i^t - g_i^{t-1}) - v_i^t\|^2 \\ 1247 \quad &= \|\hat{\beta}(g_i^{t-1} - v_i^t + \text{clip}_\tau(v_i^t - g_i^{t-1})) + (1 - \hat{\beta})(g_i^{t-1} - v_i^t)\|^2 \\ 1248 \quad &\stackrel{(ii)}{\leq} (1 - \eta)^2 \hat{\beta} \|g_i^{t-1} - v_i^t\|^2 + (1 - \hat{\beta}) \|g_i^{t-1} - v_i^t\|^2, \end{aligned}$$

1249 where (i) follows from the update rule of g_i^t and (ii) from the convexity of $\|\cdot\|^2$ and the fact that
1250 $\|v_i^t - g_i^{t-1}\| \leq B$. We continue the derivations as follows

$$\begin{aligned} 1251 \quad \|g_i^t - v_i^t\|^2 &= (1 - \hat{\beta} + \hat{\beta}(1 - 2\eta + \eta^2)) \|g_i^{t-1} - v_i^t\|^2 \\ 1252 \quad &= (1 - \hat{\beta}\eta(2 - \eta)) \|g_i^{t-1} - v_i^t\|^2. \end{aligned}$$

1253 Let $\rho = 2\hat{\beta}\eta$ (note that $\eta \leq 1$). Then we have

$$\begin{aligned} 1254 \quad \|g_i^t - v_i^t\|^2 &\leq (1 - \rho) \|g_i^{t-1} - v_i^t\|^2 \\ 1255 \quad &\stackrel{(i)}{=} (1 - \rho) \|g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta \nabla f_i(x^t)\|^2 \\ 1256 \quad &\stackrel{(ii)}{\leq} (1 - \rho)(1 + \rho/2) \|g_i^{t-1} - v_i^{t-1}\|^2 + (1 - \rho)(1 + \rho/2)\beta^2 \|v_i^{t-1} - \nabla f_i(x^t)\|^2 \\ 1257 \quad &\stackrel{(iii)}{\leq} (1 - \rho/2) \|g_i^{t-1} - v_i^{t-1}\|^2 + \frac{4\beta^2}{\rho} \|v_i^{t-1} - \nabla f_i(x^{t-1})\|^2 + \frac{4L^2\beta^2}{\rho} R^{t-1}, \end{aligned}$$

1258 where (i) follows from the update rule of g_i^t , (ii) from the inequality $\|a + b\|^2 \leq (1 + r/2)\|a\|^2 + (1 + 2/r)\|b\|^2$, which holds for any positive r (i.e., for $r = \rho$ for some $\rho > 0$) and $a, b \in \mathbb{R}^d$, (iii) from
1259 the fact that $\rho \leq 1$ by assumption, the inequality $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$, which holds for any
1260 $a, b \in \mathbb{R}^d$, and smoothness. Finally, since $2\hat{\beta}\eta \leq 1$, we ensure that $\rho \leq 1$, and derive the final bound

$$1261 \quad \|g_i^t - v_i^t\|^2 \leq (1 - \hat{\beta}\eta) \|g_i^{t-1} - v_i^{t-1}\|^2 + \frac{4\beta^2}{\hat{\beta}\eta} \|v_i^{t-1} - \nabla f_i(x^{t-1})\|^2 + \frac{4L^2\beta^2}{\hat{\beta}} R^{t-1}.$$

1262 \square

1263 **Theorem E.8** (Full statement of Theorem 3.1). *Let Assumption 1.1 hold. Let*
1264 $B := \max\{3\tau, \max_i \|\nabla f_i(x^0)\|\}$ *and Φ^0 defined in (9) satisfies $\Delta \geq \Phi^0$ for some $\Delta > 0$. Assume*
1265 *the following inequalities hold*

1266 1. **stepsize restrictions:** $\gamma \leq \frac{1}{12L}, 4L\gamma = \beta$, and

$$1267 \quad \frac{5}{8} - \frac{32\beta^2 L^2}{\hat{\beta}^2 \eta^2} \gamma^2 - \frac{96L^2}{\hat{\beta}^2 \eta^2} \gamma^2 \geq 0;$$

1268 2. **momentum restrictions:** $\frac{8}{3}\beta\sqrt{L\Delta} \leq \frac{\hat{\beta}\tau}{4}, \frac{7}{4}\beta(B - \tau) \leq \frac{\hat{\beta}\tau}{4}, \hat{\beta} \leq \frac{1}{2\eta}$ ⁵.

1269 Then, the Lyapunov function from (9) for Clip21-SGD2M with $\nabla f_i(x^{t+1}, \xi_i^{t+1}) = \nabla f_i(x^{t+1})$ (full
1270 gradients) and $\sigma_\omega = 0$ (no DP-noise) decreases as

$$1271 \quad \Phi^{t+1} \leq \Phi^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2,$$

1272 ⁵Note that $\eta = \frac{\tau}{B} \leq \frac{1}{3}$ by the choice of B , therefore $\hat{\beta} \leq \frac{1}{2\eta}$ does not impose any additional assumption
1273 on $\hat{\beta}$ and it can be chosen from $[0, 1]$.

1296 and we have

$$1297 \quad 1298 \quad 1299 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \frac{2\Delta}{\gamma T} = \mathcal{O}\left(\frac{1}{T}\right). \quad (28)$$

1300 Moreover, after at most $\frac{2B}{\beta\tau}$ iterations, the clipping operator will be turned off for all workers.

1302 *Proof.* For convenience, we define

$$1303 \quad \nabla f_i(x^{-1}) = v_i^{-1} = g_i^{-1} = 0, \quad \Phi^{-1} = +\infty.$$

1304 Then, we will derive the result by induction, i.e., using the induction w.r.t. t , we will show that

- 1306 1. the Lyapunov function decreases as $\Phi^t \leq \Phi^{t-1} - \frac{\gamma}{2} \|\nabla f(x^{t-1})\|^2$;
- 1307 2. $\|g^t\| \leq \sqrt{64L\Delta} + 3(B - \tau)$;
- 1308 3. $\|v_i^t - \nabla f_i(x^t)\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau)$;
- 1309 4. $\|v_i^t - g_i^{t-1}\| \leq \max\left\{0, B - \frac{t\hat{\beta}\tau}{2}\right\}$.

1314 First, we prove that the base of induction holds.

1316 Base of induction.

- 1317 1. $\|v_i^0 - g_i^{-1}\| = \|v_i^0\| = \beta \|\nabla f_i(x^0)\| \leq \frac{1}{2}B \leq B$ holds;
- 1318 2. $g^0 = \frac{1}{n} \sum_{i=1}^n (g_i^{-1} + \hat{\beta} \text{clip}_\tau(v_i^0 - g_i^{-1})) = \frac{\hat{\beta}}{n} \sum_{i=1}^n \text{clip}_\tau(\beta \nabla f_i(x^0))$. Therefore, we have

$$1319 \quad \|g^0\| \leq \left\| \frac{\hat{\beta}}{n} \sum_{i=1}^n \beta \nabla f_i(x^0) + (\text{clip}_\tau(\beta \nabla f_i(x^0)) - \beta \nabla f_i(x^0)) \right\|$$

$$1320 \quad \leq \hat{\beta} \beta \|\nabla f(x^0)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \max\{0, \beta \|\nabla f_i(x^0)\| - \tau\}$$

$$1321 \quad \leq \hat{\beta} \beta \sqrt{2L(f(x^0) - f^*)} + \hat{\beta}(B - \tau)$$

$$1322 \quad \leq \sqrt{64L\Delta} + 3(B - \tau).$$

- 1324 3. We have

$$1325 \quad \|v_i^0 - \nabla f_i(x^0)\| = \|\beta \nabla f_i(x^0) - \nabla f_i(x^0)\|$$

$$1326 \quad \leq (1 - \beta)B$$

$$1327 \quad \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau)$$

- 1329 4. $\Phi^0 \leq \Phi^{-1} - \frac{\gamma}{2} \|\nabla f(x^{-1})\|^2 = \Phi^{-1}$ holds.

1338 **Transition of induction.** Assume that for K we have that for all $t \in \{0, 1, \dots, K\}$

- 1340 1. $\Phi^t \leq \Phi^{t-1} - \frac{\gamma}{2} \|\nabla f(x^{t-1})\|^2$ (implying $\Phi^t \leq \Delta$);
- 1341 2. $\|g^t\| \leq \sqrt{64L\Delta} + 3(B - \tau)$;
- 1342 3. $\|v_i^t - \nabla f_i(x^t)\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau)$;
- 1343 4. $\|v_i^t - g_i^{t-1}\| \leq \max\left\{\hat{\beta}\tau, B - \frac{t\hat{\beta}\tau}{2}\right\}$.

1347 We proceed via analyzing two possible situations for $\mathcal{I}_{K+1} := \{i \in [n] \mid \|v_i^{K+1} - g_i^K\| > \tau\}$: either $|\mathcal{I}_{K+1}| > 0$ (there are workers with turned on gradient clipping) or $|\mathcal{I}_{K+1}| = 0$ (for all workers the clipping is turned off).

1350 CASE $|\mathcal{I}_{K+1}| > 0$. Since all requirements of Lemma E.4 are satisfied at iteration K we get for all
 1351 $i \in \mathcal{I}_{K+1}$
 1352

1353 $\|v_i^{K+1} - g_i^K\| \leq \|v_i^K - g_i^{K-1}\| - \frac{\hat{\beta}\tau}{2} \stackrel{(i)}{\leq} \max \left\{ \tau, B - \frac{K\hat{\beta}\tau}{2} \right\} - \frac{\hat{\beta}\tau}{2} \leq \max \left\{ \tau, B - \frac{(K+1)\hat{\beta}\tau}{2} \right\},$
 1354
 1355

1356 where (i) follows from the condition 4 of the induction assumption. Similarly due to the assumption
 1357 of induction, from Lemma E.2 we get that
 1358

1359 $\|g^{K+1}\| \leq \sqrt{64L\Delta} + 3(B - \tau),$
 1360

1361 and from Lemma E.3

1362 $\|\nabla f_i(x^{K+1}) - v_i^{K+1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau).$
 1363
 1364

1365 This means that conditions 2-4 in the assumption of the induction are also verified for step $K+1$.
 1366 The remaining part is the descent of the Lyapunov function. For estimating

1367 $\tilde{V}^{K+1} := \frac{1}{n} \sum_{i=1}^n \|g_i^{K+1} - v_i^{K+1}\|^2$ we have Lemma E.7 since $\|v_i^{K+1} - g_i^K\| \leq B - \frac{\tau}{2}$
 1368

1369 $\tilde{V}^{K+1} \leq (1 - \hat{\beta}\eta)\tilde{V}^K + \frac{4\beta^2}{\hat{\beta}\eta}\tilde{P}^K + \frac{4\beta^2L^2}{\hat{\beta}\eta}R^K.$
 1370
 1371

1372 Combining this result with the claims of Lemmas C.2, E.5 and E.6 we get
 1373

1374 $\Phi^{K+1} = \delta^{K+1} + \frac{2\gamma}{\hat{\beta}\eta}\tilde{V}^{K+1} + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2}\tilde{P}^{K+1} + \frac{2\gamma}{\beta}P^{K+1}$
 1375
 1376 $\leq \delta^K - \frac{\gamma}{2}\|\nabla f(x^K)\|^2 - \frac{1}{4\gamma}R^K + 2\gamma\tilde{V}^K + 2\gamma P^K$
 1377
 1378 $+ \frac{2\gamma}{\hat{\beta}\eta} \left((1 - \hat{\beta}\eta)\tilde{V}^K + \frac{4\beta^2}{\hat{\beta}\eta}\tilde{P}^K + \frac{4\beta^2L^2}{\hat{\beta}\eta}R^K \right)$
 1379
 1380 $+ \frac{8\gamma\beta}{\hat{\beta}^2\eta^2} \left((1 - \beta)\tilde{P}^K + \frac{3L^2}{\beta}R^K \right)$
 1381
 1382 $+ \frac{2\gamma}{\beta} \left((1 - \beta)P^K + \frac{3L^2}{\beta}R^K \right)$
 1383
 1384 $= \delta^K - \frac{\gamma}{2}\|\nabla f(x^K)\|^2 + \frac{2\gamma}{\hat{\beta}\eta}\tilde{V}^K \left(1 - \hat{\beta}\eta + \hat{\beta}\eta \right) + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2}\tilde{P}^K \left(1 - \beta + \beta \right)$
 1385
 1386 $+ \frac{2\gamma}{\beta}P^K \left(1 - \beta + \beta \right) - \frac{1}{4\gamma} \left(1 - \frac{32\beta^2L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{24L^2}{\beta^2}\gamma^2 \right) R^K$
 1387
 1388 $= \Phi^K - \frac{\gamma}{2}\|\nabla f(x^K)\|^2 - \frac{1}{4\gamma} \left(1 - \frac{32\beta^2L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{24L^2}{\beta^2}\gamma^2 \right) R^K.$
 1389
 1390
 1391
 1392

1393 Since we choose $\beta^2 = 64L^2\gamma^2$, then $-\frac{1}{\beta^2} = -\frac{1}{64L^2\gamma^2}$ and $-\frac{24L^2}{\beta^2}\gamma^2 = -\frac{24L^2}{64^2L^2\gamma^2}\gamma^2 \geq -\frac{3}{8}$
 1394 Therefore,
 1395

1396 $1 - \frac{32\beta^2L^2}{\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{24L^2}{\beta^2}\gamma^2 \geq \frac{5}{8} - \frac{32\beta^2L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 \geq 0,$
 1397
 1398

1399 by the choice of γ . Thus, we get
 1400

1401 $\Phi^{K+1} \leq \Phi^K - \frac{\gamma}{2}\|\nabla f(x^K)\|^2.$
 1402

1403 In particular, this implies $\Phi^{K+1} \leq \Phi^K \leq \Delta$.

1404 CASE $|\mathcal{I}_{K+1}| = 0$. In this case, $\eta_i^{K+1} = 1$ for all $i \in [n]$, i.e., $\text{clip}_\tau(v_i^{K+1} - g_i^K) = v_i^{K+1} - g_i^K$
 1405 that leads to $g_i^{K+1} = v_i^{K+1}$. Thus, $\tilde{V}^{K+1} = 0$. Moreover, $|\mathcal{I}_{K+1}| = 0$ implies that condition 4
 1406 from the induction assumption holds for $t = K + 1$ and using this and induction assumption we get
 1407 $\|g^{K+1}\| \leq \sqrt{64L\Delta} + 3(B - \tau)$ from Lemma E.2 and $\|\nabla f_i(x^{K+1}) - v_i^{K+1}\| \leq \sqrt{4L\Delta + \frac{3}{2}(B - \tau)}$
 1408 from Lemma E.3. Next, taking into account that $\tilde{V}^{K+1} = 0$, we can perform similar steps as before
 1409 for Φ^{K+1} and get less restrictive inequality
 1410

$$1411 \quad \Phi^{K+1} \leq \Phi^K - \frac{\gamma}{2} \|\nabla f(x^K)\|^2 - \frac{1}{4\gamma} \left(1 - \frac{96L^2}{\hat{\beta}^2\eta^2} \gamma^2 - \frac{24L^2}{\beta^2} \gamma^2 \right) R^K.$$

1414 Again, $1 - \frac{96L^2}{\hat{\beta}^2\eta^2} \gamma^2 - \frac{24L^2}{\beta^2} \gamma^2 \geq \frac{5}{8} - \frac{96L^2}{\hat{\beta}^2\eta^2} \gamma^2 \geq 0$ which is satisfied by the choice of γ .
 1415

1416 We conclude that in both cases the Lyapunov function decreases as $\Phi^{K+1} \leq \Phi^K - \frac{\gamma}{2} \|\nabla f(x^K)\|^2$,
 1417 and consequently, $\Phi^{K+1} \leq \Delta$. This finalizes the induction step. Therefore, we can guarantee that
 1418 for all iterations $t \in \{0, 1, \dots, T - 1\}$ we have

$$1419 \quad \Phi^{t+1} \leq \Phi^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 \Rightarrow \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \frac{2\Delta}{\gamma T}.$$

1422 Moreover, the proof shows that the clipping operator will be eventually turned off after at most $\frac{2B}{\hat{\beta}\tau}$
 1423 iterations since $\|v_i^t - g_i^{t-1}\| \leq \max \left\{ \tau, B - \frac{t\hat{\beta}\tau}{2} \right\}$. \square
 1424

1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 **F PROOF OF THEOREM 3.3 (CONVERGENCE OF CLIP21-SGD2M IN THE**
 1459 **STOCHASTIC SETTING WITH DP NOISE)**

1461 We define constants a , b , and c , which will be used later in the proofs, as follows:

$$\begin{aligned} 1463 \quad a &:= \left(\sqrt{2} + 2\sqrt{3 \log \frac{6(T+1)}{\alpha}} \right) \sqrt{d}\sigma_\omega \sqrt{\frac{T}{n}}, \\ 1464 \quad b^2 &:= 2\sigma^2 \log \left(\frac{12(T+1)n}{\alpha} \right), \\ 1465 \quad c^2 &:= \left(\sqrt{2} + 2\sqrt{3 \log \frac{6(T+1)}{\alpha}} \right)^2 \sigma^2, \end{aligned} \quad (29)$$

1468 where T is the number of iterations, n is the number of workers, d is the dimension of the problem,
 1469 σ is from Assumption 1.2, $\alpha \in (0, 1)$ is a constant, and σ_ω is the variance of DP noise.

1470 **Lemma F.1.** *Let each f_i be L -smooth. Then, for the iterates of Clip21-SGD2M we have the following inequality with probability 1*

$$\begin{aligned} 1476 \quad \|v_i^{t+1} - g_i^t\| &\leq (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max \{0, \|v_i^t - g_i^{t-1}\| - \tau\} + \beta L \gamma \|g^t\| \\ 1477 \quad &\quad + \beta \|\nabla f_i(x^t) - v_i^t\| + \beta \|\theta_i^{t+1}\|, \end{aligned} \quad (30)$$

1478 where $\theta_i^t := \nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)$.

1479 *Proof.* We have

$$\begin{aligned} 1482 \quad \|v_i^{t+1} - g_i^t\| &\stackrel{(i)}{=} \|(1 - \beta)v_i^t + \beta \nabla f_i(x^{t+1}, \xi_i^{t+1}) - g_i^t\| \\ 1483 \quad &\stackrel{(ii)}{\leq} \|v_i^t - g_i^t\| + \beta \|\nabla f_i(x^{t+1}, \xi_i^{t+1}) - v_i^t\| \\ 1484 \quad &\stackrel{(iii)}{=} \|v_i^t - \hat{\beta} \text{clip}_\tau(v_i^t - g_i^{t-1}) - g_i^{t-1}\| + \beta \|\nabla f_i(x^{t+1}, \xi_i^{t+1}) - v_i^t\| \\ 1485 \quad &\stackrel{(iv)}{\leq} (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max \{0, \|v_i^t - g_i^{t-1}\| - \tau\} + \beta \|\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1})\| \\ 1486 \quad &\quad + \beta \|\nabla f_i(x^{t+1}) - \nabla f_i(x^t)\| + \beta \|\nabla f_i(x^t) - v_i^t\| \\ 1487 \quad &\stackrel{(v)}{\leq} (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max \{0, \|v_i^t - g_i^{t-1}\| - \tau\} + \beta L \|x^{t+1} - x^t\| \\ 1488 \quad &\quad + \beta \|\nabla f_i(x^t) - v_i^t\| + \beta \|\theta_i^{t+1}\| \\ 1489 \quad &\stackrel{(vi)}{=} (1 - \hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta} \max \{0, \|v_i^t - g_i^{t-1}\| - \tau\} + \beta L \gamma \|g^t\| \\ 1490 \quad &\quad + \beta \|\nabla f_i(x^t) - v_i^t\| + \beta \|\theta_i^{t+1}\|, \end{aligned}$$

1491 where (i) follows from the update rule of v_i^t , (ii) from triangle inequality, (iii) from the update rule
 1492 of g_i^t , (iv) from the properties of the clipping operator from Lemma C.3 and triangle inequality, (v)
 1493 from smoothness, (vi) from the update rule of x^t . \square

1494 **Lemma F.2.** *Let each f_i be L -smooth, $\Delta \geq \Phi^0$. Assume that the following inequalities hold for the
 1495 iterates generated by Clip21-SGD2M*

- 1503 1. $g^0 = \frac{1}{n} \sum_{i=1}^n g_i^0$;
- 1504 2. $\|g^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a$;
- 1505 3. $\|\bar{g}^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b$;
- 1506 4. $\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a$ for all $i \in [n]$;
- 1507 5. $\|v_i^t - g_i^{t-1}\| \leq B$ for all $i \in [n]$;
- 1508 6. $\gamma \leq \frac{1}{12L}$;

1512 7. $\|\theta_i^t\| \leq b$ for all $i \in [n]$;

1513

1514

1515 8. $\left\| \frac{1}{n} \sum_{l=1}^t \sum_{i=1}^n \omega_i^l \right\| \leq a$;

1516

1517

1518 9. $\beta, \hat{\beta} \in [0, 1]$;

1519

1520

1521 10. $\Phi^{t-1} \leq 2\Delta$.

1522

1523 *Then we have*

$$\|g^t\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a. \quad (31)$$

1536 *Proof.* We start as follows

$$\begin{aligned} \|g^t\| &\stackrel{(i)}{=} \left\| g^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \text{clip}_\tau(v_i^t - g_i^{t-1}) + \frac{\hat{\beta}}{n} \sum_{i=1}^n \omega_i^t \right\| \\ &= \left\| g^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n [\nabla f_i(x^t) + (v_i^t - \nabla f_i(x^t)) + \text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})] \right. \\ &\quad \left. - \bar{g}^{t-1} + (1 - \hat{\beta})\bar{g}^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \omega_i^t \right\| \\ &\stackrel{(ii)}{\leq} \left\| g^{t-1} - \bar{g}^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \omega_i^t \right\| + \hat{\beta} \|\nabla f(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|\text{clip}_\tau(v_i^t - g_i^{t-1}) - v_i^t + g_i^{t-1}\| \\ &\quad + (1 - \hat{\beta}) \|\bar{g}^{t-1}\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\| \\ &\stackrel{(iii)}{\leq} \left\| \bar{g}^{t-1} + \hat{\beta}\Omega^{t-1} - \bar{g}^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \omega_i^t \right\| + \hat{\beta} \|\nabla f(x^{t-1})\| + \hat{\beta} \|\nabla f(x^t) - \nabla f(x^{t-1})\| \\ &\quad + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|\text{clip}_\tau(v_i^t - g_i^{t-1}) - v_i^t + g_i^{t-1}\| + (1 - \hat{\beta}) \|\bar{g}^{t-1}\| \\ &\quad + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|(1 - \beta)v_i^{t-1} + \beta\nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)\|, \end{aligned}$$

1564 where (i) follows from the update rule of g^t , (ii) – from the triangle inequality, (iii) – from the
 1565 update rule of v_i^t , equality (15), and triangle inequality. Using the definition of Ω^t , we continue as

1566 follows

$$\begin{aligned}
\|g^t\| &\stackrel{(iv)}{\leq} \hat{\beta}\|\Omega^t\| + \hat{\beta}\|\nabla f(x^{t-1})\| + \hat{\beta}L\gamma\|g^{t-1}\| + \frac{\hat{\beta}}{n}\sum_{i=1}^n \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\} + (1 - \hat{\beta})\|\bar{g}^{t-1}\| \\
&\quad + \frac{\hat{\beta}}{n}\sum_{i=1}^n \|(1 - \beta)v_i^{t-1} + \beta\nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)\| \\
&\stackrel{(v)}{\leq} \hat{\beta}\sqrt{2L(f(x^{t-1}) - f^*)} + \hat{\beta}L\gamma\|g^{t-1}\| + (1 - \hat{\beta})\|\bar{g}^{t-1}\| + \hat{\beta}(B - \tau) + \hat{\beta}\|\Omega^t\| \\
&\quad + \frac{\hat{\beta}}{n}\sum_{i=1}^n \|(1 - \beta)v_i^{t-1} - \nabla f_i(x^t)\| + \beta\|\nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)\| \\
&\stackrel{(vi)}{\leq} \hat{\beta}\sqrt{2L(f(x^{t-1}) - f^*)} + \hat{\beta}L\gamma\|g^{t-1}\| + (1 - \hat{\beta})\|\bar{g}^{t-1}\| + \hat{\beta}(B - \tau) + \hat{\beta}\|\Omega^t\| \\
&\quad + \frac{\hat{\beta}\beta}{n}\sum_{i=1}^n \|\theta_i^t\| + \frac{\hat{\beta}}{n}(1 - \beta)\sum_{i=1}^n (\|v_i^{t-1} - \nabla f_i(x^{t-1})\| + \|\nabla f_i(x^t) - \nabla f_i(x^{t-1})\|) \\
&\stackrel{(vii)}{\leq} \hat{\beta}\sqrt{2L(f(x^{t-1}) - f^*)} + \hat{\beta}L\gamma(2 - \beta)\|g^{t-1}\| + (1 - \hat{\beta})\|\bar{g}^{t-1}\| + \hat{\beta}(B - \tau) + \hat{\beta}\|\Omega^t\| \\
&\quad + \frac{\hat{\beta}\beta}{n}\sum_{i=1}^n \|\theta_i^t\| + \frac{\hat{\beta}}{n}(1 - \beta)\sum_{i=1}^n \|v_i^{t-1} - \nabla f_i(x^{t-1})\|.
\end{aligned}$$

(iv) – from the properties of the clipping operator from Lemma C.3, L -smoothness and update rule of x^t , (v) – from L -smoothness and triangle inequality, (vi) – from triangle inequality, (vii) – from L -smoothness. Now we use the assumptions 2-5, 7-8, and 10 to bound the terms

$$\begin{aligned}
\|g^t\| &\leq \hat{\beta}\sqrt{4L\Delta} + 2L\gamma\hat{\beta}\left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a\right) + (1 - \hat{\beta})\left(\sqrt{64L\Delta} + 3(B - \tau) + 3b\right) \\
&\quad + \hat{\beta}(B - \tau) + \hat{\beta}a + \hat{\beta}\beta b + \hat{\beta}(1 - \beta)\left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a\right).
\end{aligned}$$

1595 Regrouping the terms we obtain

$$\begin{aligned}
\|g^t\| &\leq \sqrt{L\Delta}[2\hat{\beta} + 16L\gamma\hat{\beta} + 8(1 - \hat{\beta}) + 2\hat{\beta}(1 - \beta)] + b[6L\gamma\hat{\beta} + 3(1 - \hat{\beta}) + \hat{\beta}\beta + 3/2\hat{\beta}(1 - \beta)] \\
&\quad + (B - \tau)[6L\gamma\hat{\beta} + 3(1 - \hat{\beta}) + \hat{\beta} + 3/2\hat{\beta}(1 - \beta)] + a[6L\gamma\hat{\beta}^2 + \hat{\beta} + \hat{\beta}^2(1 - \beta)].
\end{aligned}$$

1600 For the first coefficient, we have

$$2\hat{\beta} + 16L\gamma\hat{\beta} + 8(1 - \hat{\beta}) + 2\hat{\beta}(1 - \beta) \leq 8 \Leftrightarrow 4\hat{\beta} + 16L\gamma\hat{\beta} \leq 8\hat{\beta} \Leftrightarrow 4L\gamma \leq 1,$$

1603 where the last inequality is satisfied by the choice of the stepsize $L\gamma \leq \frac{1}{12}$. For the second coefficient, we have

$$\begin{aligned}
6L\gamma\hat{\beta} + 3(1 - \hat{\beta}) + \hat{\beta}\beta + \frac{3}{2}\hat{\beta}(1 - \beta) &\leq 3 \Leftrightarrow 6L\gamma\hat{\beta} + \hat{\beta}\beta + \frac{3}{2}\hat{\beta}(1 - \beta) \leq 3\hat{\beta} \\
&\Leftrightarrow 6L\gamma + 1 + \frac{3}{2}(1 - \beta) \leq 3,
\end{aligned}$$

1610 where the last inequality is satisfied by the choice of the stepsize $6L\gamma \leq \frac{1}{2}$ and momentum parameter $\beta \leq 1$. For the third coefficient, we have

$$6L\gamma\hat{\beta} + 3(1 - \hat{\beta}) + \hat{\beta} + \frac{3}{2}\hat{\beta}(1 - \beta) \leq 3 \Leftrightarrow 6L\gamma\hat{\beta} + \hat{\beta} + \frac{3}{2}\hat{\beta}(1 - \beta) \leq 3\hat{\beta} \Leftrightarrow 6L\gamma + 1 + \frac{3}{2} \leq 3,$$

1614 where the last inequality is satisfied by the choice of the stepsize $6L\gamma \leq \frac{1}{2}$. For the fourth coefficient, we have

$$6L\gamma\hat{\beta}^2 + \hat{\beta} + \hat{\beta}^2(1 - \beta) \leq 3\hat{\beta} \Leftrightarrow 6L\gamma\hat{\beta}^2 + \hat{\beta}^2 \leq 2\hat{\beta} \Leftrightarrow 6L\gamma\hat{\beta} + \hat{\beta} \leq 2,$$

1618 where the last inequality is satisfied by the choice of the stepsize $6L\gamma \leq \frac{1}{2}$ and momentum parameter $\hat{\beta} \leq 1$. Thus, the statement of the lemma holds. \square

1620 **Lemma F.3.** Let each f_i be L -smooth, $\Delta \geq \Phi^0$, $B > \tau$. Assume that the following inequalities
 1621 hold for the iterates generated by Clip21-SGD2M
 1622

- 1623 1. $\gamma \leq \frac{1}{12L}$;
- 1624 2. $6L\gamma \leq \beta$;
- 1625 3. $\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a$ for all $i \in [n]$;
- 1626 4. $\|\theta_i^t\| \leq b$ for all $i \in [n]$;
- 1627 5. $\|g^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a$;
- 1628 6. $\|\bar{g}^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b$.

1629 Then we have

$$1630 \|\nabla f_i(x^t) - v_i^t\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a. \quad (32)$$

1631 *Proof.* We have

$$\begin{aligned} 1632 \|\nabla f_i(x^t) - v_i^t\| &\stackrel{(i)}{=} \|\nabla f_i(x^t) - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t, \xi_i^t)\| \\ 1633 &\stackrel{(ii)}{\leq} (1 - \beta)\|\nabla f_i(x^t) - v_i^{t-1}\| + \beta\|\nabla f_i(x^t) - \nabla f_i(x^t, \xi_i^t)\| \\ 1634 &\stackrel{(iii)}{\leq} (1 - \beta)L\gamma\|g^{t-1}\| + (1 - \beta)\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| + \beta\|\theta_i^t\| \\ 1635 &\stackrel{(iv)}{\leq} (1 - \beta)L\gamma\left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a\right) \\ 1636 &\quad + (1 - \beta)\left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a\right) + \beta b \\ 1637 &= (8L\gamma + 2(1 - \beta))\sqrt{L\Delta} + (3L\gamma + 3(1 - \beta)/2)(B - \tau) \\ 1638 &\quad + (3L\gamma(1 - \beta) + 3/2(1 - \beta) + \beta)b + (3L\gamma\hat{\beta} + (1 - \beta)\hat{\beta})a, \end{aligned}$$

1639 where (i) follows from the update rule of v_i^t , (ii) from the triangle inequality, (iii) from triangle
 1640 inequality, smoothness, and the update rule of x^t , (iv) from assumptions 2-4 of the lemma. We
 1641 notice that

$$\begin{aligned} 1642 8L\gamma + 2(1 - \beta) &\leq 2 \Leftrightarrow 4L\gamma \leq \beta, \\ 1643 3L\gamma + \frac{3}{2}(1 - \beta) &\leq \frac{3}{2} \Leftrightarrow 2L\gamma \leq \beta, \\ 1644 3L\gamma + \frac{3}{2}(1 - \beta) + \beta &\leq \frac{3}{2} \Leftrightarrow 6L\gamma \leq \beta, \\ 1645 3L\gamma\hat{\beta} + (1 - \beta)\hat{\beta} &\leq \hat{\beta} \Leftrightarrow 3L\gamma \leq \beta, \end{aligned}$$

1646 where the last inequalities in each line are satisfied for β , satisfying the conditions of the lemma. \square

1647 **Lemma F.4.** Let each f_i be L -smooth, $\Delta \geq \Phi^0$, $B > \tau$. Assume that the following inequalities hold
 1648 for the iterates generated by Clip21-SGD2M

- 1649 1. $\gamma \leq \frac{1}{12L}$;
- 1650 2. $\hat{\beta} \leq \min\{\frac{\sqrt{L\Delta}}{a}, 1\}$;
- 1651 3. $\|v_i^t - g_i^{t-1}\| \leq B$ for all $i \in [n]$;
- 1652 4. $\|g^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + \hat{\beta}a$;
- 1653 5. $\|\bar{g}^{t-1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b$;

1674 6. $\|\nabla f_i(x^{t-1}) - v_i^{t-1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a$ for all $i \in [n]$;

1675 7. $\Phi^{t-1} \leq 2\Delta$;

1676 8. $\|\theta_i^t\| \leq b$ for all $i \in [n]$.

1679 Then we have

$$\|\bar{g}^t\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b.$$

1682 *Proof.* We have

$$\begin{aligned} \|\bar{g}^t\| &\stackrel{(i)}{=} \left\| \bar{g}^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n \text{clip}_\tau(v_i^t - g_i^{t-1}) \right\| \\ &= \left\| \hat{\beta} \nabla f(x^t) + \hat{\beta}(v^t - \nabla f(x^t)) + (1 - \hat{\beta}) \bar{g}^{t-1} + \frac{\hat{\beta}}{n} \sum_{i=1}^n [\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})] \right\| \\ &\stackrel{(ii)}{\leq} \hat{\beta} \|\nabla f(x^t)\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\| + (1 - \hat{\beta}) \|\bar{g}^{t-1}\| \\ &\quad + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})\| \\ &\stackrel{(iii)}{\leq} \hat{\beta} \|\nabla f(x^{t-1})\| + \hat{\beta} L \gamma \|g^{t-1}\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \|(1 - \beta)v_i^{t-1} + \beta \nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)\| \\ &\quad + (1 - \hat{\beta}) \|\bar{g}^{t-1}\| + \frac{\hat{\beta}}{n} \sum_{i=1}^n \max\{0, \|v_i^t - g_i^{t-1}\| - \tau\} \\ &\stackrel{(iv)}{\leq} \hat{\beta} \sqrt{2L(f(x^{t-1}) - f^*)} + \hat{\beta} L \gamma \|g^{t-1}\| + (1 - \hat{\beta}) \|\bar{g}^{t-1}\| + \hat{\beta}(B - \tau) \\ &\quad + \frac{\hat{\beta}}{n} \sum_{i=1}^n ((1 - \beta)[\|v_i^{t-1} - \nabla f_i(x^{t-1})\| + \|\nabla f_i(x^{t-1}) - \nabla f_i(x^t)\|] + \beta \|\nabla f_i(x^t) - \nabla f_i(x^t, \xi_i^t)\|), \end{aligned}$$

1706 where (i) follows from the update rule of each g_i^t , (ii) – from the triangle inequality, (iii) – from
1707 the update of v_i^t and properties of clipping from Lemma C.3, (iv) – from L -smoothness, assumption
1708 3 of the lemma, and triangle inequality. Now we use assumptions 4-7 to derive

$$\begin{aligned} \|\bar{g}^t\| &\leq \hat{\beta} \sqrt{4L\Delta} + \hat{\beta} L \gamma (2 - \beta) \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + \hat{\beta}a \right) + \hat{\beta}(B - \tau) \\ &\quad + (1 - \hat{\beta}) \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b \right) + \hat{\beta}(1 - \beta) \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right) + \hat{\beta}\beta b \\ &= \sqrt{L\Delta} \left(2\hat{\beta} + 8L\gamma(2 - \beta)\hat{\beta} + 8(1 - \hat{\beta}) + 2\hat{\beta}(1 - \beta) \right) + a(L\gamma\hat{\beta}^2(2 - \beta) + \hat{\beta}^2) \\ &\quad + (B - \tau) \left(3L\gamma\hat{\beta}(2 - \beta) + \hat{\beta} + 3(1 - \hat{\beta}) + \frac{3}{2}\hat{\beta}(1 - \beta) \right) \\ &\quad + b(3L\gamma\hat{\beta}(2 - \beta) + 3(1 - \hat{\beta}) + 3/2\hat{\beta}(1 - \beta)). \end{aligned}$$

1719 For the second term, we have

$$2L\gamma\hat{\beta}^2a + \hat{\beta}^2a \leq 2L\gamma\hat{\beta}\sqrt{L\Delta} + \hat{\beta}\sqrt{L\Delta} = (2L\gamma\hat{\beta} + \hat{\beta})\sqrt{L\Delta},$$

1722 where we use $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$. Therefore, the second term should be added to the first term. Thus, we
1723 have for the term with $\sqrt{L\Delta}$

$$\begin{aligned} &2L\gamma\hat{\beta} + \hat{\beta} + 2\hat{\beta} + 8L\gamma\hat{\beta}(2 - \beta) + 8(1 - \hat{\beta}) + 2\hat{\beta}(1 - \beta) \leq 8 \\ &\Leftrightarrow 2L\gamma + 1 + 2 + 8L\gamma(2 - \beta) + 2(1 - \beta) \leq 8 \\ &\Leftrightarrow 18L\gamma \leq 3, \end{aligned}$$

1728 where the last inequality is satisfied by the choice of the stepsize $L\gamma \leq \frac{1}{12}$. For the third coefficient,
1729 we have

1730
$$3L\gamma\hat{\beta}(2-\beta) + \hat{\beta} + 3(1-\hat{\beta}) + \frac{3}{2}\hat{\beta}(1-\beta) \leq 3 \Leftrightarrow 3L\gamma(2-\beta) + 1 + \frac{3}{2}(1-\beta) \leq 3 \Leftrightarrow 6L\gamma \leq \frac{1}{2},$$

1731

1732 where the last inequality is satisfied by the choice of the stepsize $L\gamma \leq \frac{1}{12}$. For the fourth coefficient,
1733 we have the same derivations as for the third one. This implies that

1734
$$\|\bar{g}^t\| \leq 8\sqrt{L\Delta} + 3(B-\tau) + 3b,$$

1735

1736 which concludes the proof. □

1737 **Lemma F.5.** *Let each f_i be L -smooth, $\Delta \geq \Phi^0$, $B > \tau$, and $i \in \mathcal{I}_t := \{i \in [n] \mid \|v_i^t - g_i^{t-1}\| > \tau\}$.
1738 Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M*

1739 1. $12L\gamma \leq 1$;
1740 2. $6L\gamma \leq \beta$;
1741 3. $\beta \leq \min\{\frac{3\hat{\beta}\tau}{64\sqrt{L\Delta}}, 1\}$;
1742 4. $\beta \leq \min\{\frac{\hat{\beta}\tau}{14(B-\tau)}, 1\}$;
1743 5. $\beta \leq \min\{\frac{\hat{\beta}\tau}{22b}, 1\}$;
1744 6. $\hat{\beta} \leq \min\{\frac{\sqrt{L\Delta}}{a}, 1\}$;
1745 7. $\|g^t\| \leq \sqrt{64L\Delta} + 3(B-\tau) + 3b + 3a$;
1746 8. $\|\theta_i^{t+1}\| \leq b$;
1747 9. $\|\nabla f_i(x^t) - v_i^t\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B-\tau) + \frac{3}{2}b + \hat{\beta}a$.

1748 *Then*

1749
$$\|v_i^{t+1} - g_i^t\| \leq \|v_i^t - g_i^{t-1}\| - \frac{\hat{\beta}\tau}{2}. \quad (33)$$

1750 *Proof.* Since $i \in \mathcal{I}_t$, then $\|v_i^t - g_i^{t-1}\| > \tau$ and from Lemma F.1 we have

1751
$$\begin{aligned} \|v_i^{t+1} - g_i^t\| &\leq (1-\hat{\beta})\|v_i^t - g_i^{t-1}\| + \hat{\beta}\|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + \beta L\gamma\|g^t\| + \beta\|\nabla f_i(x^t) - v_i^t\| + \beta\|\theta_i^{t+1}\| \\ 1752 &\stackrel{(i)}{\leq} \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + \beta L\gamma \left(\sqrt{64L\Delta} + 3(B-\tau) + 3b + 3\hat{\beta}a \right) \\ 1753 &\quad + \beta \left(\sqrt{4L\Delta} + \frac{3}{2}(B-\tau) + \frac{3}{2}b + \hat{\beta}a \right) + \beta b \\ 1754 &= \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + (8\beta L\gamma + 2\beta)\sqrt{L\Delta} + (3L\gamma\beta + 3\beta/2)(B-\tau) \\ 1755 &\quad + (3L\gamma\beta + 3\beta/2 + \beta)b + (3L\gamma\beta + \beta)\hat{\beta}a, \end{aligned}$$

1756 where (i) follows from assumptions 6-8 of the lemma. Since $12L\gamma \leq 1$ we have

1757
$$(8\beta L\gamma + 2\beta)\sqrt{L\Delta} \leq (2\beta/3 + 2\beta)\sqrt{L\Delta} = \frac{8}{3}\beta\sqrt{L\Delta} \leq \frac{\hat{\beta}\tau}{8},$$

1758 where we used $\beta \leq \frac{3\hat{\beta}\tau}{64\sqrt{L\Delta}}$. Since $12L\gamma \leq 1$ we have

1759
$$\left(3L\gamma\beta + \frac{3\beta}{2}\right)(B-\tau) \leq (\beta/4 + \frac{3\beta}{2})(B-\tau) = \frac{7}{4}\beta(B-\tau) \leq \frac{\hat{\beta}\tau}{8},$$

1782 where we used $\beta \leq \frac{\hat{\beta}\tau}{14(B-\tau)}$. Since $12L\gamma \leq 1$ we have
1783

$$1784 \quad (3L\gamma\beta + 5\beta/2)b \leq (\beta/4 + 5\beta/2)b = \frac{11}{4}\beta b \leq \frac{\hat{\beta}\tau}{8},$$

1787 where we used $\beta \leq \frac{\hat{\beta}\tau}{22b}$. Since $12L\gamma \leq 1$ and $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ we have
1788

$$1789 \quad (3L\gamma\beta + \beta)\hat{\beta}a \leq (\beta/4 + \beta)\sqrt{L\Delta} = \frac{5}{4}\beta\sqrt{L\Delta} \leq \frac{\hat{\beta}\tau}{8},$$

1792 where we used $\beta \leq \frac{\hat{\beta}\tau}{22b}$. Thus we have
1793

$$1794 \quad \|v_i^{t+1} - g_i^t\| \leq \|v_i^t - g_i^{t-1}\| - \hat{\beta}\tau + 4 \cdot \frac{\hat{\beta}\tau}{8} = \|v_i^t - g_i^{t-1}\| - \frac{\hat{\beta}\tau}{2},$$

1796 which concludes the proof. \square
1797

1798 **Lemma F.6.** *Let $\|\theta_i^{t+1}\| \leq b$ for all $i \in [n]$. Let each f_i be L -smooth. Then, for the iterates
1799 generated by Clip21-SGD2M the quantity $\tilde{P}^t := \frac{1}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2$ decreases as
1800*

$$1801 \quad \tilde{P}^{t+1} \leq (1 - \beta)\tilde{P}^t + \frac{3L^2}{\beta}R^t + \beta^2b^2 + \frac{2}{n}\beta(1 - \beta) \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle, \quad (34)$$

1804 where $R^t := \|x^{t+1} - x^t\|$ and $\theta_i^t := \nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t)$.
1805

1806 *Proof.* We have
1807

$$\begin{aligned} 1809 \quad \|v_i^{t+1} - \nabla f_i(x^{t+1})\|^2 &\stackrel{(i)}{=} \|(1 - \beta)v_i^t + \beta\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1})\|^2 \\ 1810 &= \|(1 - \beta)(v_i^t - \nabla f_i(x^{t+1})) + \beta(\nabla f_i(x^{t+1}, \xi_i^{t+1}) - \nabla f_i(x^{t+1}))\|^2 \\ 1811 &= (1 - \beta)^2\|v_i^t - \nabla f_i(x^{t+1})\|^2 + \beta^2\|\theta_i^{t+1}\|^2 \\ 1812 &\quad + 2\beta(1 - \beta)\langle v_i^t - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\ 1813 &\stackrel{(ii)}{\leq} (1 - \beta)^2(1 + \beta/2)\|v_i^t - \nabla f_i(x^t)\|^2 \\ 1814 &\quad + (1 - \beta)^2(1 + 2/\beta)\|\nabla f_i(x^t) - \nabla f_i(x^{t+1})\|^2 + \beta^2b^2 \\ 1815 &\quad + 2\beta(1 - \beta)\langle v_i^t - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\ 1816 &\stackrel{(iii)}{\leq} (1 - \beta)\|v_i^t - \nabla f_i(x^t)\|^2 + \frac{3L^2}{\beta}\|x^t - x^{t+1}\|^2 + \beta^2b^2 \\ 1817 &\quad + 2\beta(1 - \beta)\langle v_i^t - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle, \end{aligned}$$

1823 where (i) follows from the update rule of v_i^t , (ii) from $\|x + y\|^2 \leq (1 + r)\|x\|^2 + (1 + r^{-1})\|y\|^2$ for
1824 any $x, y \in \mathbb{R}^d$ and $r > 0$, (iii) from the smoothness and inequalities $(1 - \beta)^2(1 + \beta/2) \leq (1 - \beta)$
1825 and $(1 - \beta)^2(1 + 2/\beta) \leq 3/\beta$. Averaging the inequalities above across all $i \in [n]$, we get the lemma's
1826 statement. \square
1827

1828 Similarly, we can get the recursion for $P^t := \|v^t - \nabla f(x^t)\|^2$.
1829

1830 **Lemma F.7.** *Let $\|\theta_i^{t+1}\| \leq \frac{c}{\sqrt{n}}$ for all $i \in [n]$. Let each f_i be L -smooth. Then, for the iterates
1831 generated by Clip21-SGD2M the quantity $P^t := \|v^t - \nabla f(x^t)\|^2$ decreases as
1832*

$$1833 \quad P^{t+1} \leq (1 - \beta)P^t + \frac{3L^2}{\beta}R^t + \beta^2\frac{c^2}{n} + 2\beta(1 - \beta)\langle v^t - \nabla f(x^{t+1}), \theta^{t+1} \rangle,$$

1834 where $R^t := \|x^{t+1} - x^t\|$ and $\theta^t := \frac{1}{n} \sum_{i=1}^n \theta_i^t = \frac{1}{n} \sum_{i=1}^n (\nabla f_i(x^t, \xi_i^t) - \nabla f_i(x^t))$.
1835

1836 *Proof.* For shortness, we denote $\nabla f(x^t, \xi^t) := \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^t, \xi_i^t)$ and $\theta^t :=$
 1837 $\frac{1}{n} \sum_{i=1}^n (\nabla f_i(x^t, \xi^t) - \nabla f_i(x^t))$. Then, we have
 1838

$$\begin{aligned}
 \|v^{t+1} - \nabla f(x^{t+1})\|^2 &\stackrel{(i)}{=} \|(1-\beta)v^t + \beta \nabla f(x^{t+1}, \xi^{t+1}) - \nabla f(x^{t+1})\|^2 \\
 &= \|(1-\beta)(v^t - \nabla f(x^{t+1})) + \beta(\nabla f(x^{t+1}, \xi^{t+1}) - \nabla f(x^{t+1}))\|^2 \\
 &= (1-\beta)^2 \|v^t - \nabla f(x^{t+1})\|^2 + \beta^2 \|\theta^{t+1}\|^2 \\
 &\quad + 2\beta(1-\beta) \langle v^t - \nabla f(x^{t+1}), \theta^{t+1} \rangle \\
 &\stackrel{(ii)}{\leq} (1-\beta)^2 (1 + \beta/2) \|v^t - \nabla f(x^t)\|^2 \\
 &\quad + (1-\beta)^2 (1 + 2/\beta) \|\nabla f(x^t) - \nabla f(x^{t+1})\|^2 + \beta^2 \frac{c^2}{n} \\
 &\quad + 2\beta(1-\beta) \langle v^t - \nabla f(x^{t+1}), \theta_i^{t+1} \rangle \\
 &\stackrel{(iii)}{\leq} (1-\beta) \|v^t - \nabla f(x^t)\|^2 + \frac{3L^2}{\beta} \|x^t - x^{t+1}\|^2 + \beta^2 \frac{c^2}{n} \\
 &\quad + 2\beta(1-\beta) \langle v^t - \nabla f(x^{t+1}), \theta^{t+1} \rangle,
 \end{aligned}$$

1854 where (i) follows from the update rule of v_i^t , (ii) from $\|x + y\|^2 \leq (1+r)\|x\|^2 + (1+r^{-1})\|y\|^2$ for
 1855 any $x, y \in \mathbb{R}^d$ and $r > 0$, (iii) from the smoothness and inequalities $(1-\beta)^2(1 + \beta/2) \leq (1-\beta)$
 1856 and $(1-\beta)^2(1 + 2/\beta) \leq 3/\beta$. \square

1857

1858 Next, we establish the recursion for $\tilde{V}^t := \frac{1}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2$.
 1859

1860 **Lemma F.8.** Let $\|\theta_i^t\| \leq b$ for all $i \in [n]$, each f_i be L -smooth, and $\|v_i^t - g_i^{t-1}\| \leq B$ for all $i \in [n]$
 1861 and some $B > \tau$, and $\hat{\beta} \leq \frac{1}{2\eta}$ ⁶. Then, for the iterates generated by Clip21-SGD2M we have

$$\begin{aligned}
 \|g_i^t - v_i^t\|^2 &\leq (1 - \hat{\beta}\eta) \|g_i^{t-1} - v_i^{t-1}\|^2 + \frac{4\beta^2}{\hat{\beta}\eta} \|v_i^{t-1} - \nabla f_i(x^{t-1})\|^2 + \frac{4\beta^2 L^2}{\hat{\beta}\eta} R^{t-1} + \beta^2 b^2 \quad (35) \\
 &\quad + 2(1 - \hat{\beta}\eta)^2 \beta \langle (g_i^{t-1} - v_i^{t-1}) + \beta(v_i^{t-1} - \nabla f_i(x^{t-1})), \theta_i^t \rangle \\
 &\quad + 2(1 - \hat{\beta}\eta)^2 \beta \langle \beta(\nabla f_i(x^{t-1}) - \nabla f_i(x^t)), \theta_i^t \rangle,
 \end{aligned}$$

1868 where $R^t := \|x^{t+1} - x^t\|^2$ and $\eta := \frac{\tau}{B}$. Moreover, averaging the inequalities across all $i \in [n]$, we
 1869 get

$$\begin{aligned}
 \tilde{V}^t &\leq (1 - \hat{\beta}\eta) \tilde{V}^{t-1} + \frac{4\beta^2}{\hat{\beta}\eta} \tilde{P}^{t-1} + \frac{4\beta^2 L^2}{\hat{\beta}\eta} R^{t-1} + \beta^2 b^2 \quad (36) \\
 &\quad + \frac{2}{n} (1 - \hat{\beta}\eta)^2 \beta \sum_{i=1}^n \langle (g_i^{t-1} - v_i^{t-1}) + \beta(v_i^{t-1} - \nabla f_i(x^{t-1})) + \beta(\nabla f_i(x^{t-1}) - \nabla f_i(x^t)), \theta_i^t \rangle,
 \end{aligned}$$

1876 where $\tilde{V}^t := \frac{1}{n} \sum_{i=1}^n \|g_i^t - v_i^t\|^2$ and $\tilde{P}^t := \frac{1}{n} \sum_{i=1}^n \|v_i^t - \nabla f_i(x^t)\|^2$.
 1877

1878 *Proof.* Since $\|v_i^t - g_i^{t-1}\| \leq B$ and $B > \tau$, we have $\eta_i^t := \frac{\tau}{\|v_i^t - g_i^{t-1}\|} \geq \frac{\tau}{B} =: \eta \in (0, 1)$. Thus, we
 1879 have
 1880

$$\begin{aligned}
 \|g_i^t - v_i^t\|^2 &\stackrel{(i)}{=} \|g_i^{t-1} + \hat{\beta} \text{clip}_\tau(v_i^t - g_i^{t-1}) - v_i^t\|^2 \\
 &= \|\hat{\beta}(\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})) + (1 - \hat{\beta})(g_i^{t-1} - v_i^t)\|^2 \\
 &\stackrel{(ii)}{\leq} (1 - \hat{\beta}) \|g_i^{t-1} - v_i^t\|^2 + \hat{\beta} \|\text{clip}_\tau(v_i^t - g_i^{t-1}) - (v_i^t - g_i^{t-1})\|^2 \\
 &\stackrel{(iii)}{\leq} (1 - \hat{\beta}) \|g_i^{t-1} - v_i^t\|^2 + \hat{\beta}(1 - \eta)^2 \|g_i^{t-1} - v_i^t\|^2 \\
 &= (1 - \hat{\beta}\eta(2 - \eta)) \|g_i^{t-1} - v_i^t\|^2,
 \end{aligned}$$

⁶Since $\eta \in (0, 1)$, then this restriction is not necessary because the momentum parameter $\hat{\beta} \leq 1$ by default.

1890 where (i) follows from the update rule of v_i^t , (ii) – from the convexity of $\|\cdot\|^2$, (iii) – from the
1891 properties of the clipping operator in Lemma C.3. Let $\rho = 2\hat{\beta}\eta \leq 1$. Then we have
1892

$$\begin{aligned}
1893 \quad & \|g_i^t - v_i^t\|^2 \leq (1 - \rho)\|g_i^{t-1} - v_i^t\|^2 \\
1894 \quad & \stackrel{(i)}{=} (1 - \rho)\|g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t, \xi_i^t)\|^2 \\
1895 \quad & = (1 - \rho)\|g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\theta_i^t - \beta\nabla f_i(x^t)\|^2 \\
1896 \quad & = (1 - \rho)\|g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t)\|^2 + (1 - \rho)\beta^2\|\theta_i^t\|^2 \\
1897 \quad & \quad - 2(1 - \rho)\beta\langle g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t), \theta_i^t \rangle \\
1898 \quad & \stackrel{(ii)}{\leq} (1 - \rho)(1 + \rho/2)\|g_i^{t-1} - v_i^{t-1}\|^2 + (1 - \rho)(1 + 2/\rho)\beta^2\|v_i^{t-1} - \nabla f_i(x^t)\|^2 + \beta^2b^2 \\
1899 \quad & \quad - 2(1 - \rho)\beta\langle g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t), \theta_i^t \rangle \\
1900 \quad & \stackrel{(iii)}{\leq} (1 - \rho/2)\|g_i^{t-1} - v_i^{t-1}\|^2 + \frac{4\beta^2}{\rho}\|v_i^{t-1} - \nabla f_i(x^{t-1})\|^2 + \frac{4\beta^2L^2}{\rho}R^{t-1} + \beta^2b^2 \\
1901 \quad & \quad - 2(1 - \rho)\beta\langle g_i^{t-1} - (1 - \beta)v_i^{t-1} - \beta\nabla f_i(x^t), \theta_i^t \rangle,
\end{aligned}$$

1902 where (i) follows from the update rule of v_i^t , (ii) – from the inequality $\|a + b\|^2 \leq (1 + r)\|a\|^2 + (1 + r^{-1})\|b\|^2$ which holds for any $a, b \in \mathbb{R}^d$ and $r > 0$, and assumption of the lemma, (iii) – from L -
1903 smoothness, Young's inequality $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$. \square
1904

1905 **Theorem F.9** (Proof of Theorem 3.3). *Let $B := \max\{3\tau, \max_i\{\|\nabla f_i(x^0)\|\} + b\}$, Assumptions 1.1
1906 and 1.2 hold, probability confidence level $\alpha \in (0, 1)$, constants a, b , and c be defined as in (29), and
1907 $\Delta \geq \Phi^0$ for Φ^0 defined in (9). Consider the run of Clip21-SGD2M (Algorithm 3) for T iterations
1908 with DP noise variance σ_ω . Assume the following inequalities hold*

1909 **1. stepsize restrictions:**

$$\begin{aligned}
1910 \quad & i) \quad 12L\gamma \leq 1; \\
1911 \quad & ii) \quad \frac{1}{3} - \frac{32\beta^2L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 \geq 0; \\
1912 \quad & iii) \quad \frac{1}{3} - \frac{32\beta^2L^2}{\hat{\beta}^2\eta^2}\gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2}\gamma^2 \geq 0;
\end{aligned} \tag{37}$$

1913 **2. momentum restrictions:**

$$\begin{aligned}
1914 \quad & i) \quad 6L\gamma = \beta; \\
1915 \quad & ii) \quad \beta \leq \min\{\frac{3\hat{\beta}\tau}{64\sqrt{L\Delta}}, 1\}; \\
1916 \quad & iii) \quad \beta \leq \min\{\frac{\hat{\beta}\tau}{14(B-\tau)}, 1\}; \\
1917 \quad & iv) \quad \beta \leq \min\{\frac{\hat{\beta}\tau}{22b}, 1\}; \\
1918 \quad & v) \quad \hat{\beta} \leq \min\{\frac{\sqrt{L\Delta}}{a}, \sqrt{L\Delta}\left(\frac{4}{\tau a^2 T}\right)^{1/3}, 1\}; \\
1919 \quad & vi) \quad \beta, \hat{\beta} \in (0, 1]; \\
1920 \quad & vii) \quad \text{and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47);}
\end{aligned}$$

1921 Then, with probability $1 - \alpha$, we have $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2$ is bounded by
1922

$$1923 \quad \tilde{\mathcal{O}} \left(\left(\frac{L\Delta\sigma d\sigma_\omega^2 B^2}{(nT)^{3/2}\tau^2} \left(\sqrt{L\Delta} + B + \sigma \right) \right)^{1/3} + \sqrt{L\Delta} \left(\frac{\sqrt{d}\sigma_\omega}{\tau\sqrt{nT}} + \left(\frac{\sqrt{d}}{\tau\sqrt{Tn}} \right)^{2/3} \right) \left(\sqrt{L\Delta} + B + \sigma \right) \right),$$

1924 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors and higher order terms decreasing in T .
1925

1926 *Proof.* For convenience, we define $\nabla f_i(x^{-1}, \xi_i^{-1}) = v_i^{-1} = g_i^{-1} = 0$, $\Phi^{-1} = \Phi^0$. Next, let
1927 us define an event E^t for each $t \in \{0, \dots, T\}$ such that the following inequalities hold for all
1928 $k \in \{0, \dots, t\}$

$$1929 \quad 1. \quad \|v_i^k - g_i^{k-1}\| \leq B \text{ for } i \in \mathcal{I}_k;$$

1944 2. $\|g^k\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a;$
1945 3. $\|v_i^k - \nabla f_i(x^k)\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a;$
1946 4. $\|\bar{g}^k\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b;$
1947 5. $\|\theta_i^k\| \leq b$ for all $i \in [n]$ and $\|\theta^k\| \leq \frac{c}{\sqrt{n}};$
1948 6. $\left\| \frac{1}{n} \sum_{l=1}^{k+1} \sum_{i=1}^n \omega_i^l \right\| \leq a;$
1949 7. $\Phi^k \leq 2\Delta;$
1950 8.

1951
$$\frac{7}{8}\Delta \geq \frac{4\gamma\beta}{n\hat{\beta}\eta}(1-\eta)^2 \sum_{l=0}^{k-1} \sum_{i=1}^n \langle (g_i^l - v_i^l) + \beta(v_i^l - \nabla f_i(x^l)) + \beta(\nabla f_i(x^l) - \nabla f_i(x^{l+1})), \theta_i^t \rangle$$
1952
$$+ \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2}(1-\beta) \sum_{l=0}^{k-1} \sum_{i=1}^n \langle v_i^l - \nabla f_i(x^l), \theta_i^{l+1} \rangle + 4\gamma(1-\beta) \sum_{l=0}^{k-1} \langle v^l - \nabla f(x^l), \theta^{l+1} \rangle$$
1953
$$+ \frac{15\gamma\beta^2}{n\hat{\beta}^2\eta^2}(1-\beta) \sum_{l=0}^{k-1} \sum_{i=1}^n \langle \nabla f_i(x^l) - \nabla f_i(x^{l+1}), \theta_i^{l+1} \rangle$$
1954
$$+ 4\gamma(1-\beta) \sum_{l=0}^{k-1} \langle \nabla f(x^l) - \nabla f(x^{l+1}), \theta^{l+1} \rangle.$$

1955 Then, we will derive the result by induction, i.e., using the induction w.r.t. t , we will show that
1956 $\Pr(E^t) \geq 1 - \frac{\alpha(t+1)}{T+1}$ for all $t \in \{0, \dots, T-1\}$.

1957 Before we move on to the induction part of the proof, we need to establish several useful bounds.
1958 Denote the events Θ_i^t, Θ^t and N^{t+1} as

1959
$$\Theta_i^t := \{\|\theta_i^t\| \geq b\}, \quad \Theta^t := \left\{ \|\theta^t\| \geq \frac{c}{\sqrt{n}} \right\}, \quad \text{and} \quad N^{t+1} := \left\{ \left\| \frac{1}{n} \sum_{l=1}^t \sum_{i=1}^n \omega_i^l \right\| \geq a \right\} \quad (38)$$

1960 respectively. From Assumption 1.2 we have (see (14))

1961
$$\Pr(\Theta_i^t) \leq 2 \exp\left(-\frac{b^2}{2\sigma^2}\right) = \frac{\alpha}{6(T+1)n}$$

1962 where the last equality is by definition of b^2 . Therefore, $\Pr(\bar{\Theta}_i^t) \geq 1 - \frac{\alpha}{6(T+1)n}$. Besides, notice that
1963 the constant c in (29) can be viewed as
1964

1965
$$c = (\sqrt{2} + 2b_3)\sigma \quad \text{where} \quad b_3^2 = 3 \log \frac{6(T+1)}{\alpha}.$$

1966 Now, we can use Lemma C.1 to bound $\Pr(\Theta^t)$. Since all θ_i^t are independent σ -sub-Gaussian random
1967 vectors, then we have

1968
$$\Pr\left(\left\| \sum_{i=1}^n \theta_i^t \right\| \geq c\sqrt{n}\right) = \Pr\left(\|\theta^t\| \geq \frac{c}{\sqrt{n}}\right) \leq \exp(-b_3^2/3) = \frac{\alpha}{6(T+1)}.$$

1969 We also use Lemma C.1 to bound $\Pr(N^t)$. Indeed, since all ω_i^l are independent Gaussian random
1970 vectors, then we have

1971
$$\Pr\left(\left\| \sum_{l=1}^t \sum_{i=1}^n \omega_i^l \right\| \geq (\sqrt{2} + 2b_2) \sqrt{\sum_{l=1}^t \sum_{i=1}^n \sigma_\omega^2 d} \right) \leq \exp(-b_2^2/3) = \frac{\alpha}{6(T+1)}.$$

1998 with $b_2^2 = 3 \log \left(\frac{6(T+1)}{\alpha} \right)$. This implies that
 1999

$$2000 \quad \Pr \left(\left\| \frac{1}{n} \sum_{l=1}^t \sum_{i=1}^n \omega_i^l \right\| \geq a \right) \leq \frac{\alpha}{6(T+1)}$$

$$2001$$

$$2002$$

2003 due to the choice of a from (29):

$$2004 \quad a = (\sqrt{2} + 2b_2)\sigma_\omega \sqrt{d} \sqrt{\frac{T}{n}}, \quad \text{where } b_2^2 = 3 \log \frac{6(T+1)}{\alpha}.$$

$$2005$$

2006 Note that with this choice of a we have that the above is true for any $t \in \{1, \dots, T\}$, i.e., $\Pr(N^t) \geq$
 2007 $1 - \frac{\alpha}{6(T+1)}$ for all $t \in \{1, \dots, T\}$.
 2008

2009 Now, we are ready to prove that $\Pr(E^t) \geq 1 - \frac{\alpha(t+1)}{T+1}$ for all $t \in \{0, \dots, T-1\}$. First, we show
 2010 that the base of induction holds.

2011 **Base of induction.**

2012 1. $\|v_i^0 - g_i^{-1}\| = \|v_i^0\| = \beta \|\nabla f_i(x^0, \xi_i^0)\| = \beta \|\theta_i^0\| + \beta \|\nabla f_i(x^0)\| \leq \frac{1}{2}b + \frac{1}{2}B \leq \frac{1}{2}B + \frac{1}{2}B = B$
 2013 holds with probability $1 - \frac{\alpha}{6(T+1)}$. Indeed, we have
 2014

$$2015 \quad \Pr(\Theta_i^0) \leq 2 \exp \left(-\frac{b^2}{2\sigma^2} \right) = \frac{\alpha}{6(T+1)n}.$$

$$2016$$

$$2017$$

2018 Therefore, we have

$$2019 \quad \Pr \left(\bigcap_{i=1}^n \overline{\Theta}_i^0 \right) = 1 - \Pr \left(\bigcup_{i=1}^n \Theta_i^0 \right) \geq 1 - \sum_{i=1}^n \Pr(\Theta_i^0) = 1 - n \frac{\alpha}{6(T+1)n} = 1 - \frac{\alpha}{6(T+1)}.$$

$$2020$$

$$2021$$

2022 Moreover, we have

$$2023 \quad \Pr(\Theta^0) \leq \frac{\alpha}{6(T+1)}.$$

$$2024$$

2025 This means that the probability of the event that each $\left\| \frac{1}{n} \sum_{l=1}^0 \sum_{i=1}^n \omega_i^l \right\| \leq a$, $\|\theta_i^0\| \leq b$,
 2026 and $\|\theta^0\| \leq \frac{c}{\sqrt{n}}$, and is at least
 2027

$$2028 \quad 1 - \frac{\alpha}{6(T+1)} - n \frac{\alpha}{6n(T+1)} - \frac{\alpha}{6(T+1)} = 1 - \frac{\alpha}{2(T+1)}.$$

$$2029$$

$$2030$$

2031 2. We have already shown that

$$2032 \quad \Pr \left(\left\| \frac{1}{n} \sum_{i=1}^n \omega_i^1 \right\| \geq a \right) \leq \frac{\alpha}{6(T+1)},$$

$$2033$$

2034 implying that $\left\| \frac{1}{n} \sum_{i=1}^n \omega_i^1 \right\| \leq a$ with probability at least $1 - \frac{\alpha}{6(T+1)}$.
 2035

2036 3. $g^0 = \frac{1}{n} \sum_{i=1}^n (g_i^{-1} + \hat{\beta} \text{clip}_\tau(v_i^0 - g_i^{-1})) = \frac{1}{n} \sum_{i=1}^n \hat{\beta} \text{clip}_\tau(\beta \nabla f_i(x^0, \xi_i^0))$. Therefore, we
 2037 have
 2038

$$2039 \quad \|g^0\| \leq \left\| \frac{1}{n} \sum_{i=1}^n \hat{\beta} \beta \nabla f_i(x^0) + \hat{\beta} \beta \theta_i^0 + (\hat{\beta} \text{clip}_\tau(\beta \nabla f_i(x^0, \xi_i^0)) - \hat{\beta} \beta \nabla f_i(x^0, \xi_i^0)) \right\|$$

$$2040$$

$$2041 \leq \hat{\beta} \beta \|\nabla f(x^0)\| + \frac{\hat{\beta} \beta}{n} \sum_{i=1}^n \|\theta_i^0\| + \frac{1}{n} \sum_{i=1}^n \max \{0, \beta \|\nabla f_i(x^0, \xi_i^0)\| - \tau\}$$

$$2042$$

$$2043 \leq \hat{\beta} \beta \sqrt{2L(f(x^0) - f(x^*))} + \frac{\hat{\beta} \beta}{n} \sum_{i=1}^n \|\theta_i^0\| + \frac{\hat{\beta} \beta}{n} \sum_{i=1}^n \max \{0, \beta \|\nabla f_i(x^0)\| + \beta \|\theta_i^0\| - \tau\}$$

$$2044$$

$$2045 \leq \frac{1}{2} \sqrt{2L\Phi^0} + \frac{2\hat{\beta}\beta}{n} \sum_{i=1}^n \|\theta_i^0\| + \frac{\hat{\beta}\beta}{n} \sum_{i=1}^n \|\nabla f_i(x^0)\| - \hat{\beta}\tau$$

$$2046$$

$$2047 \leq \sqrt{64L\Delta} + 2\hat{\beta}\beta b + \hat{\beta}\beta B - \hat{\beta}\tau$$

$$2048$$

$$2049 \leq \sqrt{64L\Delta} + \frac{3}{2}B - \tau + b \leq \sqrt{64L\Delta} + 3(B - \tau) + \frac{3}{2}b + \hat{\beta}a.$$

$$2050$$

$$2051$$

2052 The inequalities above again hold in $\cap_{i=1}^n \overline{\Theta}_i^0$, i.e., with probability at least $1 - \frac{\alpha}{6(T+1)}$. Note
 2053 that for the base of induction we have $\overline{g}^0 = \overline{g}$, therefore, the condition 4 holds as well.
 2054

2055 4. We have
 2056

$$\begin{aligned} \|v_i^0 - \nabla f_i(x^0)\| &= \|\nabla \beta f_i(x^0, \xi_i^0) - \nabla f_i(x^0)\| \\ &\leq \beta \|\nabla f_i(x^0, \xi_i^0) - \nabla f_i(x^0)\| + (1 - \beta) \|\nabla f_i(x^0)\| \\ &\leq \beta b + (1 - \beta)B \end{aligned}$$

2061
 2062 This bound holds with probability at least $1 - \frac{\alpha}{6(T+1)}$ because it holds in $\cap_{i=1}^n \overline{\Theta}_i^0$.
 2063

2064 5. Condition 7 of the induction assumption also hold, as $\Phi^0 \leq 2\Phi^0 \leq 2\Delta$ by the choice of Δ .
 2065

2066 6. Finally, condition 8 of the induction assumption holds since the RHS equals 0.
 2067

2068
 2069 Therefore, we conclude that the conditions 1-8 hold with a probability of at least
 2070

$$\begin{aligned} \Pr\left(\Theta^0 \cap \left(\cap_{i=1}^n \overline{\Theta}_i^0\right) \cap \overline{N}^t\right) &\geq 1 - \Pr(\Theta^0) - \sum_{i=1}^n \Pr(\Theta_i^0) - \Pr(N^0) \\ &\geq 1 - \frac{\alpha}{6(T+1)} - n \cdot \frac{\alpha}{6n(T+1)} - \frac{\alpha}{6(T+1)} \\ &= 1 - \frac{\alpha}{2(T+1)} > 1 - \frac{\alpha}{T+1}, \end{aligned}$$

2079 i.e., $\Pr(E^0) \geq 1 - \frac{\alpha}{T+1}$ holds. This is the base of the induction.
 2080

2081
 2082 **Transition step of induction.** Case $|\mathcal{I}_{K+1}| > 0$. Assume that all events $\overline{\Theta}^{K+1}, \overline{\Theta}_i^{K+1}$ and \overline{N}^{K+1}
 2083 take place, i.e., $\|\theta_i^{K+1}\| \leq b$, $\|\theta^{K+1}\| \leq \frac{c}{\sqrt{n}}$ for all $i \in [n]$ and $\left\| \frac{1}{n} \sum_{l=1}^K \sum_{i=1}^n \omega_i^l \right\| \leq a$. That is, we
 2084 assume that event $\overline{\Theta}^{K+1} \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1}\right) \cap \overline{N}^{K+1} \cap E^K$ holds. Then, by the assumptions of the
 2085 induction, from Lemma F.5 we get for all $i \in \mathcal{I}_{K+1}$
 2086

$$\|v_i^{K+1} - g_i^K\| \leq \|v_i^K - g_i^{K-1}\| - \frac{\hat{\beta}\tau}{2} \leq B - \frac{\hat{\beta}\tau}{2}.$$

2090
 2091 Therefore, from Lemma F.2 we get that
 2092

$$\|g^{K+1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a,$$

2093
 2094 from Lemma F.4 we get that
 2095

$$\|\overline{g}^{K+1}\| \leq \sqrt{64L\Delta} + 3(B - \tau) + 3b,$$

2096
 2097 and from Lemma F.3
 2098

$$\|\nabla f_i(x^{K+1}) - v_i^{K+1}\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a.$$

2101
 2102 This means that conditions 1-6 in the induction assumption are also verified for the step $K + 1$.
 2103 Since for all $t \in \{0, \dots, K + 1\}$ inequalities 1-6 are verified, we can write for each $t \in \{0, \dots, K\}$
 2104 by Lemmas C.2 and F.6 to F.8 the following
 2105

$$\begin{aligned}
\Phi^{t+1} &= \delta^{t+1} + \frac{2\gamma}{\hat{\beta}\eta} \tilde{V}^{t+1} + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2} \tilde{P}^{t+1} + \frac{2\gamma}{\beta} P^{t+1} \\
&\leq \delta^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 - \frac{1}{4\gamma} R^t + 2\gamma \tilde{V}^t + 2\gamma P^t + \gamma \hat{\beta}^2 \|\Omega^t\|^2 \\
&\quad + \frac{2\gamma}{\hat{\beta}\eta} \left((1 - \hat{\beta}\eta) \tilde{V}^t + \frac{4\beta^2}{\hat{\beta}\eta} \tilde{P}^t + \frac{4\beta^2 L^2}{\hat{\beta}\eta} R^t + \beta^2 b^2 \right. \\
&\quad \left. + \frac{2}{n} \beta (1 - \hat{\beta}\eta)^2 \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \right) \\
&\quad + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2} \left((1 - \beta) \tilde{P}^t + \frac{3L^2}{\beta} R^t + \beta^2 b^2 + \frac{2}{n} \beta (1 - \beta) \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \right) \\
&\quad + \frac{2\gamma}{\beta} \left((1 - \beta) P^t + \frac{3L^2}{\beta} R^t + \beta^2 \frac{c^2}{n} + 2\beta(1 - \beta) \langle v^t - \nabla f(x^{t+1}), \theta^{t+1} \rangle \right)
\end{aligned}$$

Rearranging terms, we get

$$\begin{aligned}
\Phi^{t+1} &\leq \delta^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 + \frac{2\gamma}{\hat{\beta}\eta} \tilde{V}^t \left(\hat{\beta}\eta + 1 - \hat{\beta}\eta \right) + \frac{8\gamma\beta}{\hat{\beta}^2\eta^2} \tilde{P}^t (\beta + 1 - \beta) + \frac{2\gamma}{\beta} P^t (\beta + 1 - \beta) \\
&\quad - \frac{1}{4\gamma} R^t \left(1 - \frac{32L^2\beta^2}{\hat{\beta}^2\eta^2} \gamma^2 - \frac{96L^2}{\hat{\beta}^2\eta^2} \gamma^2 - \frac{24L^2}{\beta^2} \gamma^2 \right) + b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + c^2 \frac{2\gamma\beta}{n} \\
&\quad + \frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \\
&\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^t), \theta_i^{t+1} \rangle + 4\gamma(1 - \beta) \langle v^t - \nabla f(x^t), \theta^{t+1} \rangle \\
&\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{i=1}^n \langle \nabla f_i(x^t) - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\
&\quad + 4\gamma(1 - \beta) \langle \nabla f(x^t) - \nabla f(x^{t+1}), \theta^{t+1} \rangle + \gamma \hat{\beta}^2 \|\Omega^t\|^2.
\end{aligned}$$

Using momentum restriction (i), stepsize restriction, momentum restriction (i), (ii) and assumption of the induction that $\|\Omega^t\| \leq a$, we get rid of the term with R^t and obtain

$$\begin{aligned}
\Phi^{t+1} &\leq \Phi^t - \frac{\gamma}{2} \|\nabla f(x^t)\|^2 + b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + c^2 \frac{2\gamma\beta}{n} + \frac{\beta}{6L} \hat{\beta}^2 a^2 \\
&\quad + \frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \\
&\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^t), \theta_i^{t+1} \rangle + 4\gamma(1 - \beta) \langle v^t - \nabla f(x^t), \theta^{t+1} \rangle \\
&\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{i=1}^n \langle \nabla f_i(x^t) - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\
&\quad + 4\gamma(1 - \beta) \langle \nabla f(x^t) - \nabla f(x^{t+1}), \theta^{t+1} \rangle.
\end{aligned}$$

2160 Now we sum all the inequalities above using momentum restriction (ii) for $t \in \{0, \dots, K\}$ and get
 2161

$$\begin{aligned}
 2162 \Phi^{K+1} &\leq \Phi^0 - \frac{\gamma}{2} \sum_{t=0}^K \|\nabla f(x^t)\|^2 + K b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + K c^2 \frac{2\gamma\beta}{n} + K \frac{\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2 \\
 2163 &\quad + \frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \\
 2164 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^t), \theta_i^{t+1} \rangle + 4\gamma(1 - \beta) \sum_{t=0}^K \langle v^t - \nabla f(x^t), \theta^{t+1} \rangle \\
 2165 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle \nabla f_i(x^t) - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\
 2166 &\quad + 4\gamma(1 - \beta) \sum_{t=0}^K \langle \nabla f(x^t) - \nabla f(x^{t+1}), \theta^{t+1} \rangle. \tag{39}
 2167 \\
 2168 \\
 2169 \\
 2170 \\
 2171 \\
 2172 \\
 2173 \\
 2174 \\
 2175 \\
 2176 \\
 2177 \\
 2178 \\
 2179 \\
 2180
 \end{aligned}$$

Rearranging terms, we get

$$\begin{aligned}
 2181 \frac{\gamma}{2} \sum_{t=0}^K \|\nabla f(x^t)\|^2 &\leq \Phi^0 - \Phi^{K+1} + K b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + K c^2 \frac{2\gamma\beta}{n} + \frac{K\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2 \\
 2182 &\quad + \frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \\
 2183 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^t), \theta_i^{t+1} \rangle + 4\gamma(1 - \beta) \sum_{t=0}^K \langle v^t - \nabla f(x^t), \theta^{t+1} \rangle \\
 2184 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle \nabla f_i(x^t) - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\
 2185 &\quad + 4\gamma(1 - \beta) \sum_{t=0}^K \langle \nabla f(x^t) - \nabla f(x^{t+1}), \theta^{t+1} \rangle. \\
 2186 \\
 2187 \\
 2188 \\
 2189 \\
 2190 \\
 2191 \\
 2192 \\
 2193 \\
 2194 \\
 2195 \\
 2196 \\
 2197 \\
 2198 \\
 2199
 \end{aligned}$$

Taking into account that $\frac{\gamma}{2} \sum_{t=0}^K \|\nabla f(x^t)\|^2 \geq 0$, we get that the event $E^K \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1} \right) \cap \overline{N}^t \cap \overline{\Theta}^{K+1}$ implies

$$\begin{aligned}
 2200 \Phi^{K+1} &\leq \Phi^0 + K b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + K c^2 \frac{2\gamma\beta}{n} + \frac{K\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2 \\
 2201 &\quad + \frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle (g_i^t - v_i^t) + \beta(v_i^t - \nabla f_i(x^t)) + \beta(\nabla f_i(x^t) - \nabla f_i(x^{t+1})), \theta_i^{t+1} \rangle \\
 2202 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle v_i^t - \nabla f_i(x^t), \theta_i^{t+1} \rangle + \frac{4\gamma(1 - \beta)}{n} \sum_{t=0}^K \sum_{i=1}^n \langle v^t - \nabla f(x^t), \theta_i^{t+1} \rangle \\
 2203 &\quad + \frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \sum_{t=0}^K \sum_{i=1}^n \langle \nabla f_i(x^t) - \nabla f_i(x^{t+1}), \theta_i^{t+1} \rangle \\
 2204 &\quad + \frac{4\gamma(1 - \beta)}{n} \sum_{t=0}^K \sum_{i=1}^n \langle \nabla f(x^t) - \nabla f(x^{t+1}), \theta_i^{t+1} \rangle. \\
 2205 \\
 2206 \\
 2207 \\
 2208 \\
 2209 \\
 2210 \\
 2211 \\
 2212 \\
 2213
 \end{aligned}$$

2214 Next, we define the following random vectors:
2215
2216 $\zeta_{1,i}^t := \begin{cases} g_i^t - v_i^t, & \text{if } \|g_i^t - v_i^t\| \leq B \\ 0, & \text{otherwise} \end{cases},$
2217
2218 $\zeta_{2,i}^t := \begin{cases} v_i^t - \nabla f_i(x^t), & \text{if } \|v_i^t - \nabla f_i(x^t)\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \\ 0, & \text{otherwise} \end{cases},$
2219
2220
2221 $\zeta_{3,i}^t := \begin{cases} \nabla f_i(x^t) - \nabla f_i(x^{t+1}), & \text{if } \|\nabla f_i(x^t) - \nabla f_i(x^{t+1})\| \leq L\gamma \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a \right) \\ 0, & \text{otherwise} \end{cases},$
2222
2223
2224 $\zeta_4^t := \begin{cases} v^t - \nabla f(x^t), & \text{if } \|v^t - \nabla f(x^t)\| \leq \sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \\ 0, & \text{otherwise} \end{cases},$
2225
2226
2227 $\zeta_5^t := \begin{cases} \nabla f(x^t) - \nabla f(x^{t+1}), & \text{if } \|\nabla f(x^t) - \nabla f(x^{t+1})\| \leq L\gamma \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a \right) \\ 0, & \text{otherwise} \end{cases}.$
2228
2229

2230 By definition, all introduced random vectors $\zeta_{l,i}^t, l \in [3], i \in [n], \zeta_{4,5}^t$ are bounded with probability
2231 1. Moreover, by the definition of E^t we get that the event $E^K \cap \overline{\Theta}^{K+1} \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1} \right) \cap \overline{N}^{K+1}$
2232 implies

$$\zeta_{1,i}^t = g_i^t - v_i^t, \quad \zeta_{2,i}^t = v_i^t - \nabla f_i(x^t), \quad \zeta_{3,i}^t = \nabla f_i(x^t) - \nabla f_i(x^{t+1}),$$

$$\zeta_4^t = v^t - \nabla f(x^t), \quad \zeta_5^t = \nabla f(x^t) - \nabla f(x^{t+1}).$$

2233 Therefore, the event $E^K \cap \overline{\Theta}^{K+1} \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1} \right) \cap \overline{N}^{K+1}$ implies
2234
2235

$$\Phi^{K+1} \leq \Phi^0 + K b^2 \underbrace{\left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right)}_{\textcircled{1}} + K c^2 \frac{2\gamma\beta}{n} + K \gamma L \Delta \mathbb{1}_{a>0} + \underbrace{\frac{4\gamma\beta}{n\hat{\beta}\eta} (1-\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{1,i}^t, \theta_i^{t+1} \rangle}_{\textcircled{2}}$$

$$+ \underbrace{\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1-\hat{\beta}\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle}_{\textcircled{3}} + \underbrace{\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1-\hat{\beta}\eta)^2 \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{3,i}^t, \theta_i^{t+1} \rangle}_{\textcircled{4}}$$

$$+ \underbrace{\frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1-\beta) \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle}_{\textcircled{5}} + \underbrace{\frac{4\gamma(1-\beta)}{n} \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_4^t, \theta_i^{t+1} \rangle}_{\textcircled{6}}$$

$$+ \underbrace{\frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1-\beta) \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{3,i}^t, \theta_i^{t+1} \rangle}_{\textcircled{7}} + \underbrace{\frac{4\gamma(1-\beta)}{n} \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_5^t, \theta_i^{t+1} \rangle}_{\textcircled{8}}.$$

2254 BOUND OF THE TERM $\textcircled{1}$. Since $6L\gamma \leq \beta$, for the term $\textcircled{1}$ we have
2255

$$K b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + K c^2 \frac{2\gamma\beta}{n} + \frac{K\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2 \leq K b^2 \left(\frac{\beta^3}{3L\hat{\beta}\eta} + \frac{4\beta^4}{3L\hat{\beta}^2\eta^2} \right) + K c^2 \frac{\beta^2}{3Ln}$$

$$+ \frac{K\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2.$$

2260 By choosing β such that
2261

$$\beta \leq \min \left\{ \left(\frac{3L\Delta\hat{\beta}\eta}{32Tb^2} \right)^{1/3}, \left(\frac{3L\Delta\hat{\beta}^2\eta^2}{128Tb^2} \right)^{1/4}, \left(\frac{3L\Delta n}{32Tc^2} \right)^{1/2} \right\}, \quad (40)$$

2265 and $\hat{\beta}$ satisfying momentum restriction (v) we get that
2266

$$K b^2 \left(\frac{2\beta^2\gamma}{\hat{\beta}\eta} + \frac{8\gamma\beta^3}{\hat{\beta}^2\eta^2} \right) + K c^2 \frac{2\gamma\beta}{n} + \frac{K\tau}{128L\sqrt{L\Delta}} \hat{\beta}^3 a^2 \leq 4 \cdot \frac{\Delta}{32} = \frac{\Delta}{8}.$$

Note that the worst dependency in the restriction on β in T is $\mathcal{O}(1/T)$ but it is present only in the case $a > 0$. The second worst on β is $\mathcal{O}(1/T^{3/4})$ since $\hat{\beta} \sim \frac{1}{a} \sim \frac{1}{T}$ that comes from the second term in (40).

BOUND OF THE TERM ②. For term ②, let us enumerate random variables as

$$\langle \zeta_{1,1}^0, \theta_1^1 \rangle, \dots, \langle \zeta_{1,n}^0, \theta_n^1 \rangle, \langle \zeta_{1,1}^1, \theta_1^2 \rangle, \dots, \langle \zeta_{1,n}^1, \theta_n^2 \rangle, \dots, \langle \zeta_{1,1}^K, \theta_1^{K+1} \rangle, \dots, \langle \zeta_{1,n}^K, \theta_n^{K+1} \rangle,$$

i.e., first by index i , then by index t . Then we have that the event $E^K \cap \left(\cap_{i=1}^n \bar{\Theta}_i^{K+1} \right)$ implies

$$\mathbb{E} \left[\frac{4\gamma\beta}{n\hat{\beta}\eta} (1-\eta)^2 \langle \zeta_{1,i}^l, \theta_i^{l+1} \rangle \mid \langle \zeta_{1,i-1}^l, \theta_{i-1}^{l+1} \rangle, \dots, \langle \zeta_{1,1}^l, \theta_1^{l+1} \rangle, \dots, \langle \zeta_{1,1}^0, \theta_1^1 \rangle \right] = 0,$$

because $\{\theta_i^{l+1}\}_{i=1}^n$ are independent. Let

$$\sigma_2^2 := \frac{16\gamma^2\beta^2}{n^2\hat{\beta}^2\eta^2} \cdot B^2 \cdot \sigma^2.$$

Since θ_i^{l+1} is σ -sub-Gaussian random vector, for

$$\mathbb{E} [\cdot \mid l, i-1] := \mathbb{E} [\cdot \mid \langle \zeta_{1,i-1}^l, \theta_{i-1}^{l+1} \rangle, \dots, \langle \zeta_{1,1}^l, \theta_1^{l+1} \rangle, \dots, \langle \zeta_{1,1}^0, \theta_1^1 \rangle]$$

we have

$$\begin{aligned} & \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_2^2} \frac{16\gamma^2\beta^2}{n^2\hat{\beta}^2\eta^2} (1-\eta)^4 \langle \zeta_{1,i}^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i-1 \right] \\ & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_1^2} \frac{16\gamma^2\beta^2}{n^2\hat{\beta}^2\eta^2} \|\zeta_{1,i}^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_2^2} \frac{16\gamma^2\beta^2}{n^2\hat{\beta}^2\eta^2} \cdot B^2 \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ & \leq \mathbb{E} \left[\exp \left(\frac{n^2\hat{\beta}^2\eta^2}{16\gamma^2\beta^2 \cdot B^2 \cdot \sigma^2} \frac{16\gamma^2\beta^2}{n^2\hat{\beta}^2\eta^2} \cdot B^2 \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \mid l, i-1 \right) \right] \leq \exp(1). \end{aligned}$$

Therefore, we have by Lemma C.1 with $\sigma_k^2 \equiv \sigma_2^2$ that

$$\begin{aligned} & \Pr \left(\frac{4\gamma\beta}{n\hat{\beta}\eta} (1-\hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{1,i}^t, \theta_i^{t+1} \rangle \right\| \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16B^2\gamma^2\beta^2\sigma^2}{n^2\hat{\beta}^2\eta^2}} \right) \\ & \leq \exp(-b_1^2/3) \\ & = \frac{\alpha}{14(T+1)} \end{aligned}$$

with $b_1^2 = 3 \log \left(\frac{14(T+1)}{\alpha} \right)$. Note that since $6L\gamma \leq \beta$

$$\begin{aligned} & (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16B^2\gamma^2\beta^2\sigma^2}{n^2\hat{\beta}^2\eta^2}} \leq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{4B^2\beta^4\sigma^2}{9L^2n^2\hat{\beta}^2\eta^2}} \\ & = (\sqrt{2} + \sqrt{2}b_1) \frac{2B\beta^2\sigma}{3Ln\hat{\beta}\eta} \sqrt{(K+1)n} \\ & \leq \frac{\Delta}{8}, \end{aligned}$$

because we choose β such that

$$\beta \leq \left(\frac{3L\Delta\sqrt{n}\hat{\beta}\eta}{16\sqrt{2}(1+b_1)B\sigma\sqrt{T}} \right)^{1/2}, \quad \text{and} \quad K+1 \leq T. \quad (41)$$

2322 This implies that
 2323

$$2324 \quad \Pr \left(\frac{4\gamma\beta}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{1,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}$$

2327 with this choice of momentum parameter. The dependency of (41) on T is $\tilde{\mathcal{O}}(1/T^{3/4})$ since $\hat{\beta} \sim \frac{1}{T}$.
 2328

2329 BOUND OF THE TERM ③. The bound in this case is similar to the previous one. Let
 2330

$$2331 \quad \sigma_3^2 := \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2.$$

2334 Then,

$$\begin{aligned} 2335 \quad & \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_3^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} (1 - \hat{\beta}\eta)^4 \langle \zeta_{2,i}^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i-1 \right] \\ 2336 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_3^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \|\zeta_{2,i}^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \right] \\ 2337 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_3^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ 2338 \quad & \leq \mathbb{E} \left[\exp \left(\left[\frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right. \\ 2339 \quad & \left. \left. \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ 2340 \quad & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \mid l, i-1 \right] \leq \exp(1). \end{aligned}$$

2352 Therefore, we have by Lemma C.1 that
 2353

$$\begin{aligned} 2354 \quad & \Pr \left[\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle \right\| \right. \\ 2355 \quad & \left. \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16\gamma^2\beta^4\sigma^2}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2} \right] \\ 2356 \quad & \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)}. \end{aligned}$$

2362 Note that by using the restrictions $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ and $6L\gamma \leq \beta$ we get
 2363

$$\begin{aligned} 2364 \quad & (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{4\gamma\beta^2\sigma}{\hat{\beta}\eta n} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right) \\ 2365 \quad & \leq (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{2\beta^3\sigma}{3L\hat{\beta}\eta n} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \sqrt{L\Delta} \right) \\ 2366 \quad & \leq \frac{\Delta}{8} \end{aligned}$$

2369 holds because we choose
 2370

$$2371 \quad \beta \leq \left(\frac{3L\Delta\hat{\beta}\eta\sqrt{n}}{16\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(\sqrt{9L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b \right)} \right)^{1/3}, \quad \text{and} \quad K+1 \leq T. \quad (42)$$

2376 This implies

$$2378 \quad \Pr \left(\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}.$$

2380 Note that the worst dependency in the choice of β w.r.t. T is $\tilde{\mathcal{O}}(1/T^{1/2})$ since $\hat{\beta} \sim \frac{1}{T}$.

2382 BOUND OF THE TERM ④. The bound in this case is similar to the previous one. Let

$$2384 \quad \sigma_4^2 := \frac{16L^2\gamma^4\beta^4}{n^2\hat{\beta}^2\eta^2} \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a \right)^2 \cdot \sigma^2.$$

2386 Then we have

$$\begin{aligned} 2387 \quad & \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_4^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} (1 - \hat{\beta}\eta)^4 \langle \zeta_{3,i}^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i-1 \right] \\ 2388 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_4^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \|\zeta_{3,i}^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ 2389 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_4^2} \frac{16\gamma^2\beta^4}{n^2\hat{\beta}^2\eta^2} \cdot L^2\gamma^2 \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ 2390 \quad & \leq \mathbb{E} \left[\exp \left(\left[\frac{16L^2\gamma^4\beta^4}{n^2\hat{\beta}^2\eta^2} \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right. \\ 2391 \quad & \quad \left. \left. \frac{16L^2\gamma^4\beta^4}{n^2\hat{\beta}^2\eta^2} \left(\sqrt{64L\Delta} + 3(B - \tau) + 3b + 3\hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ 2392 \quad & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \right] \leq \exp(1). \end{aligned}$$

2403 Therefore, we have by Lemma C.1 that

$$\begin{aligned} 2404 \quad & \Pr \left(\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{3,i}^t, \theta_i^{t+1} \rangle \right\| \right. \\ 2405 \quad & \quad \left. \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16L^2\gamma^4\beta^4\sigma^2}{n^2\hat{\beta}^2\eta^2} \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2} \right) \\ 2406 \quad & \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)}. \end{aligned}$$

2412 Using the restrictions $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ and $6L\gamma \leq \beta$ we get

$$\begin{aligned} 2414 \quad & (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{4L\gamma^2\beta^2\sigma}{\hat{\beta}\eta n} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right) \\ 2415 \quad & \leq \sqrt{2}(1+b_1) \sqrt{(K+1)n} \frac{\beta^4\sigma}{9L\hat{\beta}\eta n} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\sqrt{L\Delta} \right) \\ 2416 \quad & \leq \frac{\Delta}{8}, \end{aligned}$$

2419 because we choose β such that

$$2422 \quad \beta \leq \left(\frac{9L\Delta\hat{\beta}\eta\sqrt{n}}{8\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(11\sqrt{L\Delta} + 3(B - \tau + b) \right)} \right)^{1/4}, \quad \text{and} \quad K+1 \leq T. \quad (43)$$

2425 This implies

$$2427 \quad \Pr \left(\frac{4\gamma\beta^2}{n\hat{\beta}\eta} (1 - \hat{\beta}\eta)^2 \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)},$$

2429 Note that the worst dependency in the choice of β w.r.t. T is $\tilde{\mathcal{O}}(1/T^{3/8})$ since $\hat{\beta} \sim \frac{1}{T}$.

2430 BOUND OF THE TERM ⑤. The bound in this case is similar to the previous one. Let
2431

$$2432 \quad \sigma_5^2 := \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2.$$

2434 Then we have

$$\begin{aligned} 2435 \quad & \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_5^2} \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} (1 - \beta)^2 \langle \zeta_{2,i}^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i - 1 \right] \\ 2436 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_5^2} \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \|\zeta_{2,i}^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2437 \quad & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_5^2} \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2438 \quad & = \mathbb{E} \left[\exp \left(\left[\frac{256\gamma^2\beta^4}{L^2 n^2 \hat{\beta}^4 \eta^4} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right. \\ 2439 \quad & \quad \left. \left. \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2440 \quad & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \mid l, i - 1 \right] \leq \exp(1). \end{aligned}$$

2441 Therefore, we have by Lemma C.1 that
2442

$$\begin{aligned} 2443 \quad & \Pr \left[\frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle \right\| \right. \\ 2444 \quad & \quad \left. \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{256\gamma^2\beta^4\sigma^2}{n^2\hat{\beta}^4\eta^4} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2} \right] \\ 2445 \quad & \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)}. \end{aligned}$$

2446 Using the restrictions $6L\gamma \leq \beta$ and $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ we get
2447

$$\begin{aligned} 2448 \quad & (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{16\gamma\beta^2\sigma}{n\hat{\beta}^2\eta^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right) \\ 2449 \quad & \leq (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{8\beta^3\sigma}{3Ln\hat{\beta}^2\eta^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \sqrt{L\Delta} \right) \\ 2450 \quad & \leq \frac{\Delta}{8} \end{aligned}$$

2451 because we choose β such that
2452

$$2453 \quad \beta \leq \left(\frac{3L\Delta\hat{\beta}^2\eta^2\sqrt{n}}{64\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(3\sqrt{L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b \right)} \right)^{1/3}, \quad \text{and } K+1 \leq T. \quad (44)$$

2454 This implies
2455

$$2456 \quad \Pr \left(\frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \hat{\beta}\beta) \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{2,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}.$$

2457 Note that the worst dependency in the choice of β w.r.t. T is $\tilde{\mathcal{O}}(1/T^{5/6})$ since $\hat{\beta} \sim \frac{1}{T}$.
2458

2484 BOUND OF THE TERM ⑦. The bound in this case is similar to the previous one. Let
 2485

$$2486 \sigma_7^2 := \frac{256L^2\gamma^4\beta^4}{n^2\hat{\beta}^4\eta^4} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \sigma^2.$$

2488 Then we have
 2489

$$\begin{aligned} 2490 \mathbb{E} & \left[\exp \left(\left| \frac{1}{\sigma_7^2} \frac{256L^2\gamma^4\beta^4}{n^2\hat{\beta}^4\eta^4} (1 - \beta)^2 \langle \zeta_{3,i}^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i - 1 \right] \\ 2491 & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_7^2} \frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \|\zeta_{3,i}^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2492 & \leq \mathbb{E} \left[\exp \left(\frac{256\gamma^2\beta^4}{n^2\hat{\beta}^4\eta^4} \cdot L^2\gamma^2 \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2493 & \leq \mathbb{E} \left[\exp \left(\left[\frac{256L^2\gamma^4\beta^4}{n^2\hat{\beta}^4\eta^4} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right. \\ 2494 & \quad \left. \left. \frac{256L^2\gamma^4\beta^4}{n^2\hat{\beta}^4\eta^4} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right] \\ 2495 & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \mid l, i - 1 \right] \leq \exp(1). \end{aligned}$$

2506 Therefore, we have by Lemma C.1 that
 2507

$$\begin{aligned} 2508 \Pr & \left[\frac{16\gamma\beta^2}{n\hat{\beta}^2\eta^2} (1 - \beta) \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{3,i}^t, \theta_i^{t+1} \rangle \right\| \geq \right. \\ 2509 & \quad \left. (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{256L^2\gamma^4\beta^4\sigma^2}{n^2\hat{\beta}^4\eta^4} \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2} \right] \\ 2510 & \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)}. \end{aligned}$$

2517 Using the restrictions $6L\gamma \leq \beta$ and $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ we get
 2518

$$\begin{aligned} 2519 & (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{16L\gamma^2\beta^2\sigma}{\hat{\beta}^2\eta^2n} \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right) \\ 2520 & \leq (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \frac{4\beta^4\sigma}{9L\hat{\beta}^2\eta^2n} \left(8\sqrt{L\Delta} + 3(B - \tau + b) + 3\sqrt{L\Delta} \right) \\ 2521 & \leq \frac{\Delta}{8} \end{aligned}$$

2526 because we choose
 2527

$$2528 \beta \leq \left(\frac{9L\Delta\hat{\beta}^2\eta^2\sqrt{n}}{32\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(11\sqrt{L\Delta} + 3(B - \tau + b) \right)} \right)^{1/4}, \quad \text{and } K+1 \leq T. \quad (45)$$

2532 This implies
 2533

$$2534 \Pr \left(\frac{8\gamma\beta^2}{n\eta^2} (1 - \beta) \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{3,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}.$$

2537 Note that the worst dependency in the choice of β w.r.t. T is $\tilde{\mathcal{O}}(1/T^{5/8})$ since $\hat{\beta} \sim \frac{1}{T}$.

2538 BOUND OF THE TERM ⑥. The bound in this case is similar to the previous one. Let
 2539

$$2540 \quad \sigma_6^2 := \frac{16\gamma^2}{n^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2.$$

$$2541$$

$$2542$$

2543 Then we have
 2544

$$2545 \quad \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_6^2} \frac{16\gamma^2}{n^2} (1 - \beta)^2 \langle \zeta_4^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i - 1 \right]$$

$$2546$$

$$2547 \quad \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_6^2} \frac{16\gamma^2}{n^2} \|\zeta_4^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right]$$

$$2548$$

$$2549 \quad \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_6^2} \frac{16\gamma^2}{n^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right]$$

$$2550$$

$$2551 \quad \leq \mathbb{E} \left[\exp \left(\left[\frac{16\gamma^2}{n^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right.$$

$$2552$$

$$2553 \quad \left. \left. \frac{16\gamma^2}{n^2} \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i - 1 \right]$$

$$2554$$

$$2555 \quad = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \mid l, i - 1 \right] \leq \exp(1).$$

$$2556$$

$$2557$$

$$2558$$

$$2559$$

$$2560$$

2561 Therefore, we have by Lemma C.1 that
 2562

$$2563 \quad \Pr \left[\frac{\gamma(1 - \beta)}{n} \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{4,i}^t, \theta_i^{t+1} \rangle \right\| \right.$$

$$2564$$

$$2565 \quad \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16\gamma^2}{n^2} \sigma^2 \cdot \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)^2}$$

$$2566$$

$$2567$$

$$2568 \quad \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)},$$

$$2569$$

$$2570$$

$$2571$$

2572 Using the restrictions $6L\gamma \leq \beta$ and $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ we get
 2573

$$2574 \quad (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \cdot \frac{4\gamma}{n} \sigma \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \hat{\beta}a \right)$$

$$2575$$

$$2576 \quad \leq (\sqrt{2} + \sqrt{2}b_1) \sqrt{(K+1)n} \cdot \frac{2\beta}{3Ln} \sigma \left(\sqrt{4L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b + \sqrt{L\Delta} \right)$$

$$2577$$

$$2578 \quad \leq \frac{\Delta}{8}$$

$$2579$$

$$2580$$

2581 because we choose β such that
 2582

$$2583 \quad \beta \leq \left(\frac{3L\Delta\sqrt{n}}{16\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(3\sqrt{L\Delta} + \frac{3}{2}(B - \tau) + \frac{3}{2}b \right)} \right), \quad \text{and} \quad K+1 \leq T. \quad (46)$$

$$2584$$

$$2585$$

$$2586$$

$$2587$$

2588 This implies
 2589

$$2590 \quad \Pr \left(\frac{4\gamma(1 - \beta)}{n} \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{4,i}^t, \theta_i^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}.$$

$$2591$$

2592 Note that the worst dependency in the choice of β w.r.t. T is $\tilde{\mathcal{O}}(1/T^{1/2})$.

BOUND OF THE TERM ⑧. The bound in this case is similar to the previous one. Let

$$\sigma_8^2 := \frac{16L^2\gamma^4}{n^2} \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \sigma^2.$$

Then we have

$$\begin{aligned} & \mathbb{E} \left[\exp \left(\left| \frac{1}{\sigma_8^2} \frac{16\gamma^2}{n^2} (1-\beta)^2 \langle \zeta_5^l, \theta_i^{l+1} \rangle^2 \right| \right) \mid l, i-1 \right] \\ & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_8^2} \frac{16\gamma^2}{n^2} \|\zeta_5^l\|^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ & \leq \mathbb{E} \left[\exp \left(\frac{1}{\sigma_8^2} \frac{16\gamma^2}{n^2} L^2 \gamma^2 \left(\sqrt{64L\Delta} + 3(B-\tau+b) + 3\hat{\beta}a \right) \cdot \|\theta_i^{l+1}\|^2 \right)^2 \mid l, i-1 \right]. \end{aligned}$$

Since θ_i^{l+1} is sub-Gaussian with parameter σ^2 , then we can continue the chain of inequalities above using the definition of σ_8^2

$$\begin{aligned} & \mathbb{E} \left[\exp \left(\left[\frac{16L^2\gamma^4}{n^2} \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \sigma^2 \right]^{-1} \right. \right. \\ & \quad \left. \left. \frac{4L^2\gamma^4}{n^2} \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2 \cdot \|\theta_i^{l+1}\|^2 \right) \mid l, i-1 \right] \\ & = \mathbb{E} \left[\exp \left(\frac{\|\theta_i^{l+1}\|^2}{\sigma^2} \right) \right] \leq \exp(1). \end{aligned}$$

Therefore, we have by Lemma C.1 that

$$\begin{aligned}
& \Pr \left[\frac{4\gamma(1-\beta)}{n} \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{5,i}^t, \theta^{t+1} \rangle \right\| \right. \\
& \geq (\sqrt{2} + \sqrt{2}b_1) \sqrt{\sum_{t=0}^K \sum_{i=1}^n \frac{16L^2\gamma^4}{n^2} \sigma^2 \cdot \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right)^2} \\
& \leq \exp(-b_1^2/3) = \frac{\alpha}{14(T+1)}.
\end{aligned}$$

Using the restrictions $6L\gamma \leq \beta$ and $\hat{\beta} \leq \frac{\sqrt{L\Delta}}{a}$ we get

$$\begin{aligned}
& (\sqrt{2} + \sqrt{2}b_1)\sqrt{(K+1)n} \cdot \frac{4L\gamma^2}{n} \sigma \left(\sqrt{64L\Delta} + 3(B - \tau + b) + 3\hat{\beta}a \right) \\
& \leq (\sqrt{2} + \sqrt{2}b_1)\sqrt{(K+1)n} \cdot \frac{\beta^2\sigma}{9Ln} \left(8\sqrt{L\Delta} + 3(B - \tau) + 3b + 3\sqrt{L\Delta} \right) \\
& \leq \frac{\Delta}{8}
\end{aligned}$$

because we choose β such that

$$\beta \leq \left(\frac{9L\Delta\sqrt{n}}{\sqrt{2}(1+b_1)\sigma\sqrt{T} \left(11\sqrt{L\Delta} + 3(B-\tau+b) \right)} \right)^{1/2} \quad \text{and} \quad K+1 \leq T. \quad (47)$$

This implies

$$\Pr \left(4\gamma(1-\beta) \left\| \sum_{t=0}^K \sum_{i=1}^n \langle \zeta_{5,i}^t, \theta^{t+1} \rangle \right\| \geq \frac{\Delta}{8} \right) \leq \frac{\alpha}{14(T+1)}.$$

Note that the worst dependency w.r.t T is $\tilde{\mathcal{O}}(1/T^{1/4})$

2646
2647**Final probability.** Therefore, the probability event2648
2649

$$\Omega := E^K \cap \overline{\Theta}^{K+1} \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1} \right) \cap \overline{N}^{K+1} \cap E_{\textcircled{1}} \cap E_{\textcircled{2}} \cap E_{\textcircled{3}} \cap E_{\textcircled{4}} \cap E_{\textcircled{5}} \cap E_{\textcircled{6}} \cap E_{\textcircled{7}} \cap E_{\textcircled{8}},$$

2650
2651where each $E_{\textcircled{1}}\text{-}E_{\textcircled{8}}$ denotes that each of 1-8-th terms is smaller than $\frac{\Delta}{8}$, implies that2652
2653
2654

$$\textcircled{1} + \textcircled{2} + \textcircled{3} + \textcircled{4} + \textcircled{5} + \textcircled{6} + \textcircled{7} + \textcircled{8} \leq 8 \cdot \frac{\Delta}{8} = \Delta,$$

2655

i.e., condition 7 in the induction assumption holds. Moreover, this also implies that

2656
2657

$$\Phi^{K+1} \leq \Phi^0 + \Delta \leq \Delta + \Delta = 2\Delta,$$

2658
2659
2660i.e., condition 6 in the induction assumption holds. The probability $\Pr(E_{K+1})$ can be lower bounded as follows

2661

$$\Pr(E_{K+1}) \geq \Pr(\Omega)$$

2662

$$= \Pr \left(E_K \cap \overline{\Theta}^{K+1} \cap \left(\cap_{i=1}^n \overline{\Theta}_i^{K+1} \right) \cap \overline{N}^{K+1} \cap E_{\textcircled{1}} \cap E_{\textcircled{2}} \cap E_{\textcircled{3}} \cap E_{\textcircled{4}} \cap E_{\textcircled{5}} \cap E_{\textcircled{6}} \cap E_{\textcircled{7}} \cap E_{\textcircled{8}} \right)$$

2663

$$= 1 - \Pr \left(\overline{E}_K \cup \Theta^{K+1} \cup \left(\cup_{i=1}^n \Theta_i^{K+1} \right) \cup N^{K+1} \cup \overline{E}_{\textcircled{1}} \cup \overline{E}_{\textcircled{2}} \cup \overline{E}_{\textcircled{3}} \cup \overline{E}_{\textcircled{4}} \cup \overline{E}_{\textcircled{5}} \cup \overline{E}_{\textcircled{6}} \cup \overline{E}_{\textcircled{7}} \cup \overline{E}_{\textcircled{8}} \right)$$

2664

$$\geq 1 - \Pr(\overline{E}_K) - \Pr(\Theta^{K+1}) - \sum_{i=1}^n \Pr(\Theta_i^{K+1}) - \Pr(N^{K+1}) - \Pr(\overline{E}_{\textcircled{1}}) - \Pr(\overline{E}_{\textcircled{2}})$$

2665

$$- \Pr(\overline{E}_{\textcircled{3}}) - \Pr(\overline{E}_{\textcircled{4}}) - \Pr(\overline{E}_{\textcircled{5}}) - \Pr(\overline{E}_{\textcircled{6}}) - \Pr(\overline{E}_{\textcircled{7}}) - \Pr(\overline{E}_{\textcircled{8}})$$

2666

$$\geq 1 - \frac{\alpha(K+1)}{T+1} - \frac{\alpha}{6(T+1)} - \sum_{i=1}^n \frac{\alpha}{6n(T+1)} - \frac{\alpha}{6(T+1)} - 0 - 7 \cdot \frac{\alpha}{14(T+1)}$$

2667

$$= 1 - \frac{\alpha(K+2)}{T+1}.$$

2668

This finalizes the transition step of induction. The result of the theorem follows by setting $K = T - 1$. Indeed, from (39) we obtain

2669

$$\frac{\gamma}{2} \sum_{t=0}^K \|\nabla f(x^t)\|^2 \leq \Phi^0 - \Phi^{K+1} + \Delta \leq 2\Delta \Rightarrow \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \frac{4\Delta}{\gamma T}. \quad (48)$$

2670

Final rate. Translating momentum restrictions (40), (41), (42), (43), (44), (46), (45), and (47) to the stepsize restriction using $6L\gamma = \beta$ equality we get that the stepsize should satisfy

2671

$$\gamma \leq \frac{1}{L} \widetilde{\mathcal{O}} \left(\min \left\{ \underbrace{\left(\frac{L\Delta n}{T\sigma^2} \right)^{1/2}, \left(\frac{L\Delta \hat{\beta}^2 \eta^2}{T\sigma^2} \right)^{1/4}, \underbrace{\left(\frac{L\Delta \sqrt{n} \hat{\beta} \eta}{B\sigma\sqrt{T}} \right)^{1/2}, \underbrace{\left(\frac{L\Delta \sqrt{n} \hat{\beta} \eta}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right)^{1/3}}_{\text{from term 3}},}_{\text{from term 1}} \right. \right. \\ \left. \left. \underbrace{\left(\frac{L\Delta \hat{\beta} \eta \sqrt{n}}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right)^{1/4}, \underbrace{\left(\frac{L\Delta \hat{\beta}^2 \eta^2 \sqrt{n}}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right)^{1/3}, \underbrace{\left(\frac{L\Delta \hat{\beta}^2 \eta^2 \sqrt{n}}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right)^{1/4}}_{\text{from term 7}},}_{\text{from term 4}} \right. \right. \\ \left. \left. \underbrace{\left(\frac{L\Delta \sqrt{n}}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right), \left(\frac{L\Delta \sqrt{n}}{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}} \right)^{1/2}}_{\text{from term 8}} \right\} \right). \quad (49)$$

The worst power of T comes from the term ⑤ and equals $\frac{1}{T^{5/6}}$. The second worst comes from terms ①, ②, and ④, and equals to $\gamma \leq \frac{1}{T^{3/4}}$ in the case $\hat{\beta} \sim \frac{1}{T}$. These terms give the rate of the form

$$\begin{aligned} & \tilde{\mathcal{O}} \left(\frac{L\Delta}{T} \left(\frac{T\sigma^2}{L\Delta\hat{\beta}^2\eta^2} \right)^{1/4} + \frac{L\Delta}{T} \left(\frac{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}}{L\Delta\hat{\beta}\eta\sqrt{n}} \right)^{1/3} \right. \\ & \quad \left. + \frac{L\Delta}{T} \left(\frac{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}}{L\Delta\hat{\beta}^2\eta^2\sqrt{n}} \right)^{1/3} + \frac{L\Delta}{T} \left(\frac{B\sigma\sqrt{T}}{L\Delta\sqrt{n}\hat{\beta}\eta} \right)^{1/2} \right). \end{aligned} \quad (50)$$

In the case, when $\hat{\beta} = 1$ the worst dependency in (49) w.r.t. T comes from the terms ① and ⑥. We also have restriction $\gamma \leq \mathcal{O}(1/L)$. All of those restrictions give the rate of the form

$$\begin{aligned} & \frac{L\Delta}{T} \tilde{\mathcal{O}} \left(1 + \frac{T^{1/2}\sigma}{L^{1/2}\Delta^{1/2}n^{1/2}} + \frac{\sigma(\sqrt{L\Delta} + B + \sigma)\sqrt{T}}{L\Delta\sqrt{n}} \right) \\ & = \tilde{\mathcal{O}} \left(\frac{L\Delta}{T} + \frac{\sqrt{L\Delta}\sigma}{\sqrt{nT}} + \frac{\sigma(\sqrt{L\Delta} + B + \sigma)}{\sqrt{nT}} \right) \\ & = \tilde{\mathcal{O}} \left(\frac{L\Delta}{T} + \frac{\sigma(\sqrt{L\Delta} + B + \sigma)}{\sqrt{nT}} \right). \end{aligned} \quad (51)$$

Choosing $\hat{\beta} \leq \sqrt{L\Delta}/a$ in (50), where a is defined in (29), and setting $\eta = \frac{\tau}{B}$ we get

$$\begin{aligned} & \frac{L\Delta}{T} \cdot \tilde{\mathcal{O}} \left(\left(\frac{T\sigma^2B^2a^2}{L^2\Delta^2\tau^2} \right)^{1/4} + \left(\frac{\sigma a B (\sqrt{L\Delta} + B + \sigma)\sqrt{T}}{L^{3/2}\Delta^{3/2}\tau\sqrt{n}} \right)^{1/3} + \left(\frac{\sigma a^2 (\sqrt{L\Delta} + B + \sigma)B^2\sqrt{T}}{L^2\Delta^2\tau^2\sqrt{n}} \right)^{1/3} \right. \\ & \quad \left. + \left(\frac{aB^2\sigma\sqrt{T}}{L^{3/2}\Delta^{3/2}\sqrt{n}\tau} \right)^{1/2} \right) \\ & = \frac{L\Delta}{T} \cdot \tilde{\mathcal{O}} \left(\left(\frac{T\sigma^2B^2a^2}{L^2\Delta^2\tau^2} \right)^{1/4} + \left(\frac{\sigma a B \sqrt{T}}{L\Delta\tau\sqrt{n}} \right)^{1/3} + \left(\frac{\sigma a B^2 \sqrt{T}}{L^{3/2}\Delta^{3/2}\tau\sqrt{n}} \right)^{1/3} + \left(\frac{\sigma^2 a B \sqrt{T}}{L^{3/2}\Delta^{3/2}\tau\sqrt{n}} \right)^{1/3} \right. \\ & \quad \left. + \left(\frac{\sigma a^2 B^2 \sqrt{T}}{L^{3/2}\Delta^{3/2}\tau^2\sqrt{n}} \right)^{1/3} + \left(\frac{\sigma a^2 B^3 \sqrt{T}}{L^2\Delta^2\tau^2\sqrt{n}} \right)^{1/3} + \left(\frac{\sigma^2 a^2 B^2 \sqrt{T}}{L^2\Delta^2\tau^2\sqrt{n}} \right)^{1/3} \right. \\ & \quad \left. + \left(\frac{aB^2\sigma\sqrt{T}}{L^{3/2}\Delta^{3/2}\sqrt{n}\tau} \right)^{1/2} \right). \end{aligned}$$

Now we use the exact value for a to derive

$$\begin{aligned}
 & \tilde{\mathcal{O}} \left(\left(\frac{L^4 \Delta^4 T \sigma^2 B^2 d \sigma_\omega^2 \frac{T}{n}}{T^4 L^2 \Delta^2 \tau^2} \right)^{1/4} + \left(\frac{L^3 \Delta^3 \sigma d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}} B \sqrt{T}}{T^3 L \Delta \tau \sqrt{n}} \right)^{1/3} + \left(\frac{L^3 \Delta^3 \sigma d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}} B^2 \sqrt{T}}{T^3 L^{3/2} \Delta^{3/2} \tau \sqrt{n}} \right)^{1/3} \right. \\
 & + \left(\frac{L^3 \Delta^3 \sigma^2 d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}} B \sqrt{T}}{T^3 L^{3/2} \Delta^{3/2} \tau \sqrt{n}} \right)^{1/3} + \left(\frac{L^3 \Delta^3 \sigma d \sigma_\omega^2 \frac{T}{n} B^2 \sqrt{T}}{T^3 L^{3/2} \Delta^{3/2} \tau^2 \sqrt{n}} \right)^{1/3} + \left(\frac{L^3 \Delta^3 \sigma d \sigma_\omega^2 \frac{T}{n} B^3 \sqrt{T}}{T^3 L^2 \Delta^2 \tau^2 \sqrt{n}} \right)^{1/3} \\
 & + \left(\frac{L^3 \Delta^3 \sigma^2 d \sigma_\omega^2 \frac{T}{n} B^2 \sqrt{T}}{T^3 L^2 \Delta^2 \tau^2 \sqrt{n}} \right)^{1/3} + \left(\frac{L^2 \Delta^2 d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}} B^2 \sigma \sqrt{T}}{T^2 L^{3/2} \Delta^{3/2} \sqrt{n} \tau} \right)^{1/2} \right) \\
 & = \tilde{\mathcal{O}} \left(\left(\frac{L^2 \Delta^2 \sigma^2 B^2 d \sigma_\omega^2}{T^2 n \tau^2} \right)^{1/4} + \left(\frac{L^2 \Delta^2 \sigma d^{1/2} \sigma_\omega B}{n T^2 \tau} \right)^{1/3} + \left(\frac{L^{3/2} \Delta^{3/2} \sigma d^{1/2} \sigma_\omega B^2}{n T^2 \tau} \right)^{1/3} \right. \\
 & + \left(\frac{L^{3/2} \Delta^{3/2} \sigma^2 d^{1/2} \sigma_\omega B}{n T^2 \tau} \right)^{1/3} + \left(\frac{L^{3/2} \Delta^{3/2} \sigma d \sigma_\omega^2 B^2}{T^{3/2} n^{3/2} \tau^2} \right)^{1/3} + \left(\frac{L \Delta \sigma d \sigma_\omega^2 B^3}{n^{3/2} T^{3/2} \tau^2} \right)^{1/3} \\
 & \left. + \left(\frac{L \Delta \sigma^2 d \sigma_\omega^2 B^2}{T^{3/2} n^{3/2} \tau^2} \right)^{1/3} + \left(\frac{L^{1/2} \Delta^{1/2} d^{1/2} \sigma_\omega B^2 \sigma}{T n \tau} \right)^{1/2} \right). \tag{52}
 \end{aligned}$$

As we can see, the worst dependency on T and σ_ω comes from terms 5 – 7. Therefore, we omit the rest of the terms. Hence, the worst term w.r.t. T in the presence of DP noise gives the rate

$$\begin{aligned}
 & \tilde{\mathcal{O}} \left(\left(\frac{L^{3/2} \Delta^{3/2} \sigma d \sigma_\omega^2 B^2}{T^{3/2} n^{3/2} \tau^2} \right)^{1/3} + \left(\frac{L \Delta \sigma d \sigma_\omega^2 B^3}{n^{3/2} T^{3/2} \tau^2} \right)^{1/3} + \left(\frac{L \Delta \sigma^2 d \sigma_\omega^2 B^2}{T^{3/2} n^{3/2} \tau^2} \right)^{1/3} \right) \\
 & = \tilde{\mathcal{O}} \left(\frac{L^{1/2} \Delta^{1/2} \sigma^{1/3} d^{1/3} \sigma_\omega^{2/3} B^{2/3}}{T^{1/2} n^{1/2} \tau^{2/3}} + \frac{L^{1/3} \Delta^{1/3} \sigma^{1/3} d^{1/3} \sigma_\omega^{2/3} B}{n^{1/2} T^{1/2} \tau^{2/3}} + \frac{L^{1/3} \Delta^{1/3} \sigma^{2/3} d^{1/3} \sigma_\omega^{2/3} B^{2/3}}{T^{3/2} n^{3/2} \tau^2} \right) \\
 & = \tilde{\mathcal{O}} \left(\frac{L^{1/3} \Delta^{1/3} \sigma^{1/3} d^{1/3} \sigma_\omega^{2/3} B^{2/3}}{T^{1/2} n^{1/2} \tau^{2/3}} \left((L \Delta)^{1/6} + B^{1/3} + \sigma^{1/3} \right) \right) \\
 & = \tilde{\mathcal{O}} \left(\left(\frac{L \Delta \sigma d \sigma_\omega^2 B^2}{(n T)^{3/2} \tau^2} \left(\sqrt{L \Delta} + B + \sigma \right) \right)^{1/3} \right). \tag{53}
 \end{aligned}$$

Besides, the momentum restrictions $\hat{\beta} \leq \frac{\sqrt{L \Delta}}{a}$ and $6L\gamma = \beta$ give us the following restrictions on the stepsize

$$\gamma \leq \frac{1}{L} \tilde{\mathcal{O}} \left(\min \left\{ \frac{\tau}{a}, \frac{\tau \sqrt{L \Delta}}{B a T}, \frac{\sqrt{L \Delta} \tau}{\sigma a} \right\} \right)$$

that translate to the following rate

$$\begin{aligned}
 & \frac{L \Delta}{T} \tilde{\mathcal{O}} \left(\frac{a}{\tau} + \frac{B a}{\tau \sqrt{L \Delta}} + \frac{\sigma a}{\tau \sqrt{L \Delta}} \right) \\
 & = \tilde{\mathcal{O}} \left(\frac{L \Delta}{T} \frac{d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}}}{\tau} + \frac{\sqrt{L \Delta} B d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}}}{T \tau} + \frac{L \Delta \sigma d^{1/2} \sigma_\omega \frac{T^{1/2}}{n^{1/2}}}{T \tau \sqrt{L \Delta}} \right) \\
 & = \tilde{\mathcal{O}} \left(\frac{\sqrt{L \Delta} d \sigma_\omega}{\tau \sqrt{n T}} \left(\sqrt{L \Delta} + B + \sigma \right) \right). \tag{54}
 \end{aligned}$$

Besides, the momentum restrictions $\hat{\beta} \leq \sqrt{L \Delta} \left(\frac{4}{a^2 \tau T} \right)^{1/3}$ and $6L\gamma = \beta$ give us the following restrictions on the stepsize

$$\gamma \leq \frac{1}{L} \tilde{\mathcal{O}} \left(\min \left\{ \frac{\tau^{2/3}}{a^{2/3} T^{1/3}}, \frac{\tau^{2/3} \sqrt{L \Delta}}{B a^{2/3} T^{1/3}}, \frac{\sqrt{L \Delta} \tau^{2/3}}{\sigma a^{2/3} T^{1/3}} \right\} \right)$$

2808 that translate to the following rate
2809

$$\begin{aligned}
& \frac{L\Delta}{T} \tilde{\mathcal{O}} \left(\frac{a^{2/3} T^{1/3}}{\tau^{2/3}} + \frac{B a^{2/3} T^{1/3}}{\tau^{2/3} \sqrt{L\Delta}} + \frac{\sigma a^{2/3} T^{1/3}}{\tau^{2/3} \sqrt{L\Delta}} \right) \\
& = \tilde{\mathcal{O}} \left(\frac{L\Delta}{T^{2/3}} \frac{d^{1/3} \sigma_{\omega}^{2/3} \frac{T^{1/3}}{n^{1/3}}}{\tau^{2/3}} + \frac{\sqrt{L\Delta} B d^{1/3} \sigma_{\omega}^{2/3} \frac{T^{1/3}}{n^{1/3}}}{T^{2/3} \tau^{2/3}} + \frac{\sqrt{L\Delta} \sigma d^{1/3} \sigma_{\omega}^{2/3} \frac{T^{1/3}}{n^{1/3}}}{T^{2/3} \tau^{2/3} \sqrt{L\Delta}} \right) \\
& = \tilde{\mathcal{O}} \left(\frac{L\Delta}{T^{1/3}} \frac{d^{1/3} \sigma_{\omega}^{2/3}}{\tau^{2/3} n^{1/3}} + \frac{\sqrt{L\Delta} B d^{1/3} \sigma_{\omega}^{2/3}}{T^{1/3} \tau^{2/3} n^{1/3}} + \frac{\sqrt{L\Delta} \sigma d^{1/3} \sigma_{\omega}^{2/3}}{T^{1/3} \tau^{2/3} n^{1/3}} \right) \\
& = \tilde{\mathcal{O}} \left(\frac{\sqrt{L\Delta} d^{1/3} \sigma_{\omega}^{2/3}}{\tau^{2/3} (Tn)^{1/3}} (\sqrt{L\Delta} + B + \sigma) \right). \tag{55}
\end{aligned}$$

2821 The restriction in (37) translates to
2822

$$\gamma \leq \tilde{\mathcal{O}} \left(\min \left\{ \frac{\hat{\beta}\eta}{L}, \frac{\sqrt{\hat{\beta}\eta}}{L} \right\} \right),$$

2826 that translates to the following rate of convergence
2827

$$\begin{aligned}
& \frac{L\Delta}{T} \tilde{\mathcal{O}} \left(\frac{B d^{1/2} \sigma_{\omega} \frac{T^{1/2}}{n^{1/2}}}{\tau \sqrt{L\Delta}} + \frac{B^{1/2} d^{1/4} \sigma_{\omega}^{1/2} \frac{T^{1/4}}{n^{1/4}}}{\tau^{1/2}} \right) \\
& = \tilde{\mathcal{O}} \left(\frac{\sqrt{L\Delta} B d^{1/2} \sigma_{\omega}}{\sqrt{Tn\tau}} + \frac{L^{3/4} \Delta^{3/4} B^{1/2} d^{1/4} \sigma_{\omega}^{1/2}}{T^{3/4} n^{1/4} \tau^{1/2}} \right). \tag{56}
\end{aligned}$$

2833 Combining (53), (54), (55), and (56), we derive the final bound
2834

$$\tilde{\mathcal{O}} \left(\left(\frac{L\Delta \sigma d \sigma_{\omega}^2 B^2}{(nT)^{3/2} \tau^2} (\sqrt{L\Delta} + B + \sigma) \right)^{1/3} + \frac{\sqrt{L\Delta} d \sigma_{\omega}}{\tau \sqrt{nT}} (\sqrt{L\Delta} + B + \sigma) \right) \tag{57}$$

$$+ \frac{\sqrt{L\Delta} d^{1/3} \sigma_{\omega}^{2/3}}{\tau^{2/3} (Tn)^{1/3}} (\sqrt{L\Delta} + B + \sigma) \right), \tag{58}$$

2840 where we hide the terms that decrease faster in T than the two in (57).
2841

2842 CASE $\mathcal{I}_{K+1} = 0$. This case is even easier. The only change will be with the term next to R^t . We
2843 will get
2844

$$1 - \frac{96L^2}{\hat{\beta}^2 \eta^2} \gamma^2 - \frac{24L^2}{\beta^2} \gamma^2 \geq \frac{1}{3} - \frac{96L^2}{\hat{\beta}^2 \eta^2} \gamma^2 \geq 0$$

2846 instead of
2847

$$1 - \frac{32\beta^2 L^2}{\hat{\beta}^2 \eta^2} \gamma^2 - \frac{96L^2}{\hat{\beta}^2 \eta^2} \gamma^2 - \frac{24L^2}{\beta^2} \gamma^2 \geq 0$$

2849 as in the previous case. This difference comes from Lemma F.8 because $\tilde{V}^{K+1} = 0$. The rest is a
2850 repetition of the previous derivations.
2851 \square
2852

2853 G PROOF OF COROLLARY 3.4 (PRIVACY ANALYSIS OF CLIP21-SGD2M)

2855 **Corollary 3.4.** *Let Assumptions 1.1 and 1.2 hold and $\alpha \in (0, 1)$. Let $\Delta \geq \Phi^0$ and σ_{ω} be chosen
2856 as $\sigma_{\omega} = \Theta \left(\frac{\tau}{\varepsilon} \sqrt{T \log \left(\frac{T}{\delta} \right) \log \left(\frac{1}{\delta} \right)} \right)$ for some $\varepsilon, \delta \in (0, 1)$. Then there exists a stepsize γ and
2857 momentum parameters $\beta, \hat{\beta}$ such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
2858 at least $1 - \alpha$ satisfy local (ε, δ) -DP and
2859*

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \tilde{\mathcal{O}} \left(\sqrt{L\Delta} \left(\frac{\sqrt{d}}{\sqrt{n\varepsilon}} + \left(\frac{\sqrt{d}}{\sqrt{n\varepsilon}} \right)^{2/3} \right) (\sqrt{L\Delta} + \tilde{B} + \sigma) \right), \tag{12}$$

2862 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors, and terms decreasing in T .
 2863

2864 *Proof.* We need to plug in the value of σ_ω inside (11). Indeed, we have that
 2865

$$\begin{aligned}
 2866 \quad & \tilde{\mathcal{O}} \left(\left(\frac{\sqrt{L\Delta}d\sqrt{T}\frac{\tau}{\varepsilon}}{\sqrt{nT}\tau} + \frac{\sqrt{L\Delta}d^{1/3}\frac{\tau^{2/3}}{\varepsilon^{2/3}}T^{1/3}}{\tau^{2/3}(Tn)^{1/3}} \right) (\sqrt{L\Delta} + B + \sigma) \right. \\
 2867 \quad & \left. + \left(\frac{L\Delta\sigma B^2 \frac{\tau^2}{\varepsilon^2} T}{(nT)^{3/2}\tau^2} (\sqrt{L\Delta} + B + \sigma) \right)^{1/3} \right) \\
 2872 \quad & = \tilde{\mathcal{O}} \left(\sqrt{L\Delta} \left(\frac{\sqrt{d}}{\sqrt{n\varepsilon}} + \left(\frac{\sqrt{d}}{\sqrt{n\varepsilon}} \right)^{2/3} \right) (\sqrt{L\Delta} + B + \sigma) + \left(\frac{L\Delta\sigma B^2}{n^{3/2}T^{1/2}\varepsilon^2} (\sqrt{L\Delta} + B + \sigma) \right)^{1/3} \right)
 \end{aligned}$$

2875 Leaving only the terms that do not improve with T we get the result, i.e., the utility bound.
 2876

2877 It remains to formally show that for chosen σ_ω , Clip21-SGD2M satisfies local (ε, δ) -DP. First, we no-
 2878 tice that for $\sigma_\omega = \frac{8\tau}{\varepsilon} \sqrt{T \log(\frac{5T}{4\delta}) \log(\frac{1}{\delta})}$ each step of Clip21-SGD2M satisfies $(\tilde{\varepsilon}, \tilde{\delta})$ -DP (Dwork
 2879 et al., 2014, Theorem 3.22) with

$$\tilde{\varepsilon} = \frac{\varepsilon}{2\sqrt{2T \log(\frac{1}{\delta})}} \quad \text{and} \quad \tilde{\delta} = \frac{\delta}{T}.$$

2884 Then, applying advanced composition theorem (Dwork et al., 2014, Theorem 3.20 and Corollary
 2885 3.21 with $\delta' = \delta$), we get that T steps of Clip21-SGD2M satisfy (ε, δ) -DP, which concludes the
 2886 proof. \square

2887 H PROOF OF THEOREM 3.2 (CONVERGENCE OF CLIP21-SGD2M IN THE 2888 STOCHASTIC SETTING WITHOUT DP NOISE

2891 We highlight that the proof of Theorem 3.2 mainly follows that of Theorem 3.3. The main difference
 2892 comes from the fact that stepsize and momentum restrictions become less demanding as in a purely
 2893 stochastic setting (without DP noise) $a = 0$. This, in particular, means that the restriction $\hat{\beta} \leq$
 2894 $\frac{\sqrt{L\Delta}}{a}$ disappears and we can set $\hat{\beta} = 1$.

2895 **Theorem H.1** (Full statement of Theorem 3.2). *Let Assumptions 1.1 and 1.2 hold,*

$$2897 \quad B := \max\{3\tau, \max_i \|\nabla f_i(x^0)\| + b\} > \tau,$$

2898 *probability confidence level $\alpha \in (0, 1)$, constants b and c be defined as in (29), and $\Delta \geq \Phi^0$ for Φ^0
 2899 defined in (9). Let us run Algorithm 3 for T iterations with DP noise variance $\sigma_\omega = 0$. Assume the
 2900 following inequalities hold*

2902 1. stepsize restrictions:

- 2904 i) $12L\gamma \leq 1$;
- 2905 ii)

$$2906 \quad \frac{1}{3} - \frac{32\beta^2 L^2}{\eta^2} \gamma^2 - \frac{96L^2}{\eta^2} \gamma^2 \geq 0;$$

2908 2. momentum restrictions:

- 2910 i) $6L\gamma = \beta$;
- 2911 ii) $\beta \leq \frac{3\tau}{64\sqrt{L\Delta}}$;
- 2912 iii) $\beta \leq \frac{\tau}{14(B-\tau)}$;
- 2913 iv) $\beta \leq \frac{\tau}{22b}$;
- 2914 v) *and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47),
 2915 where $\hat{\beta} = 1$.*

2916 Then with probability $1 - \alpha$ we have
 2917

$$2918 \quad \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x^t)\|^2 \leq \tilde{\mathcal{O}} \left(\frac{\sigma(\sqrt{L\Delta} + B + \sigma)}{\sqrt{Tn}} \right),$$

$$2919$$

$$2920$$

2921 where $\tilde{\mathcal{O}}$ hides constant and polylogarithmic factors, and higher order terms decrease in T .
 2922

2923 *Proof.* The proof mainly follows that of Theorem 3.3. Since in this case, we can set $\hat{\beta} = 1$ and
 2924 $a = 0$, the worst stepsize restrictions that we have in this case lead to the rate (51), which concludes
 2925 the proof.
 2926

□

2929 I EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS 2930

2931 I.1 EXPERIMENTS WITH LOGISTIC REGRESSION 2932

2933 We evaluate our methods on non-convex logistic regression with regularization $\lambda = 10^{-3}$ over 10^4
 2934 iterations—a setup standard in recent studies (Gao et al., 2024; Islamov et al., 2024b; Makarenko
 2935 et al., 2022). Using the Duke and Leukemia datasets from LIBSVM (Chang & Lin, 2011), we split
 2936 each into $n = 4$ equal shards and normalize each feature vector. To emulate stochastic gradients, we
 2937 either add zero-mean Gaussian noise (variance $\sigma = 0.05$ for Duke, $\sigma = 0.1$ for Leukemia) or sample
 2938 mini-batches of size 1/3 of each local dataset for Duke and 1/4 for Leukemia. For Clip-SGD and
 2939 Clip21-SGD, we sweep the stepsize $\gamma \in \{2^{-5}, \dots, 2^5\}$ and select the value minimizing the final
 2940 gradient norm (averaged over three random seeds). Clip21-SGD2M is tuned over the same γ grid
 2941 plus momentum $\beta \in \{0.1, 0.5, 0.9\}$, choosing the best (γ, β) pair similarly. Figure I.1 shows the
 2942 resulting convergence curves. We observe that Clip21-SGD2M remains stable across a wide range of
 2943 clipping thresholds τ , whereas Clip-SGD requires sufficiently large τ to converge, and Clip21-SGD
 2944 often fails altogether—consistent with our theoretical non-convergence result in Theorem 2.2.
 2945

2945 I.2 EXPERIMENTS WITH NEURAL NETWORKS 2946

2947 The experiments of this section are conducted on a single Nvidia GTX 3090 GPU with 24 Gb RAM.
 2948

2949 I.2.1 VARYING CLIPPING RADIUS τ 2950

2951 We then turn to training ResNet-20 and VGG-16 on CIFAR-10, deliberately avoiding any learning-
 2952 rate schedules, warm-up schemes, or weight-decay regularization across all methods. For Clip-SGD
 2953 and Clip21-SGD, we sweep the stepsize $\gamma \in \{10^{-3}, \dots, 10^0\}$ and select the value that maxi-
 2954 mizes test accuracy. For Clip21-SGD2M, we search over the same γ grid and momentum $\beta \in$
 2955 $\{0.1, 0.5, 0.9\}$ (with $\hat{\beta} = 1$), picking the (γ, β) pair that yields the highest test performance. All
 2956 experiments use a batch size of 32, and we evaluate both global and layer-wise clipping.
 2957

2958 Figure I.2 reports that Clip21-SGD2M enjoys more robustness to the choice of the clipping parameter
 2959 τ when clipping is applied layer-wise. As shown in Figures I.5–I.4, Clip-SGD’s accuracy and loss
 2960 deteriorate sharply once the clipping radius τ becomes small. In contrast, Clip21-SGD2M remains
 2961 robust to the choice of τ , consistently achieving lower training loss and higher test accuracy even
 2962 under aggressive clipping.
 2963

I.2.2 RESULTS WITH ADDITIVE DP NOISE

2964 We evaluate private training on MNIST using two architectures—a one-hidden-layer MLP (256
 2965 units, Tanh activation) and a CNN with two convolutional layers (16 filters, kernel size 5), one
 2966 max-pooling layer, and Tanh activations—under privacy budgets $\epsilon \in \{3, 5.2, 9, 15.6, 27\}$ (with
 2967 $\delta = 10^{-3}$). For each ϵ , we conduct a thorough grid search over the stepsize $\gamma \in \{10^{-3}, \dots, 10^0\}$,
 2968 clipping thresholds $\tau \in \{10^{-5}, 10^{-4}, 10^{-3}, \dots, 10^{-2}\}$ for Clip21-SGD2M and Clip21-SGD
 2969 and $\tau \in \{10^{-4}, 10^{-3}, 10^{-2}, \dots, 10^0\}$ for Clip-SGD, and algorithm-specific parameters: $\alpha \in$
 $\{10^{-2}, \dots, 10^1\}$ for α -NormEC-SGD, $\beta \in \{0.1, 0.5, 0.9\}$ for Clip21-SGD2M client momentum, and

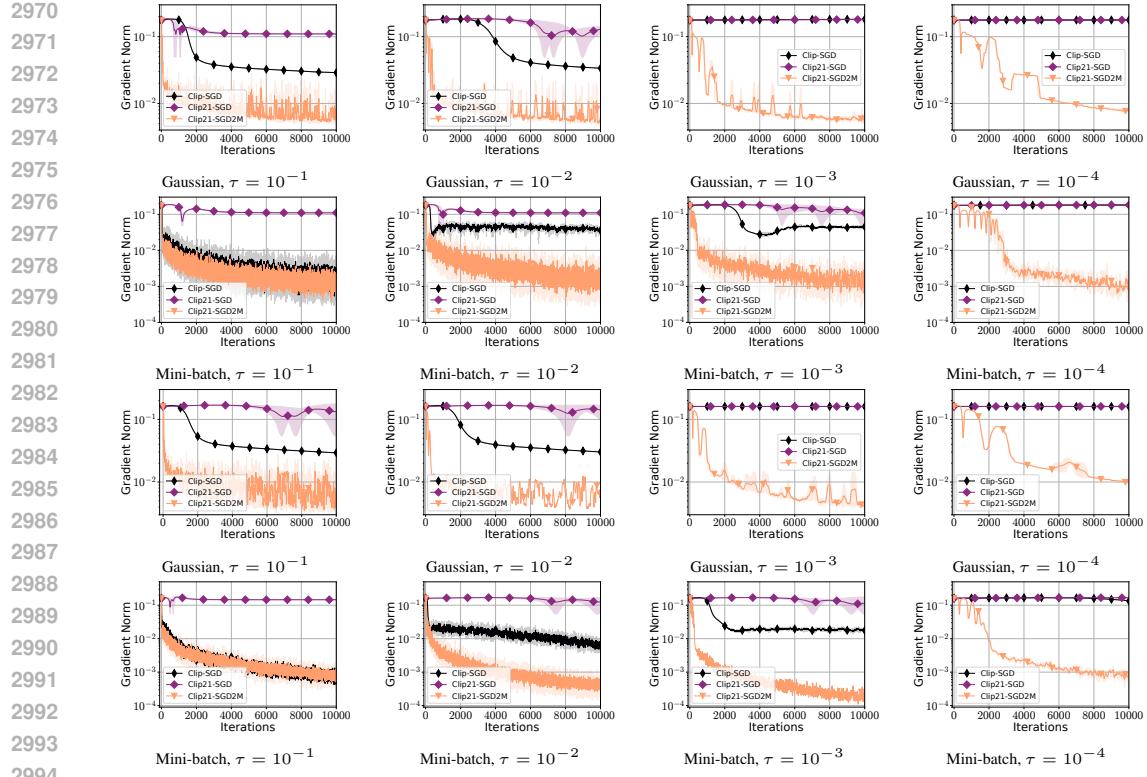


Figure I.1: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M ($\hat{\beta} = 1$) on logistic regression with non-convex regularization for various the clipping radii τ with mini-batch and Gaussian-added stochastic gradients on Duke (two first rows) and Leukemia (two last rows).

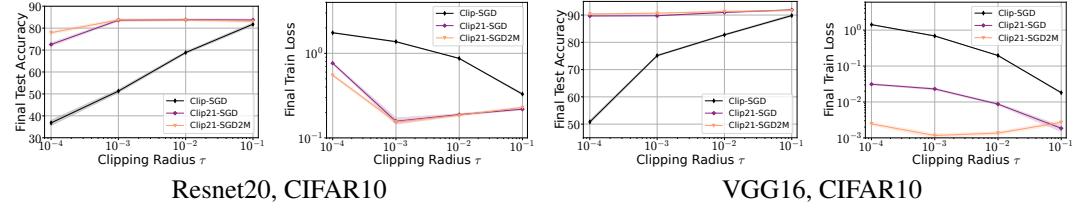


Figure I.2: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training Resnet20 (two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied layer-wise. The training loss and test accuracy dynamics are presented in Figure I.4 and Figure I.6.

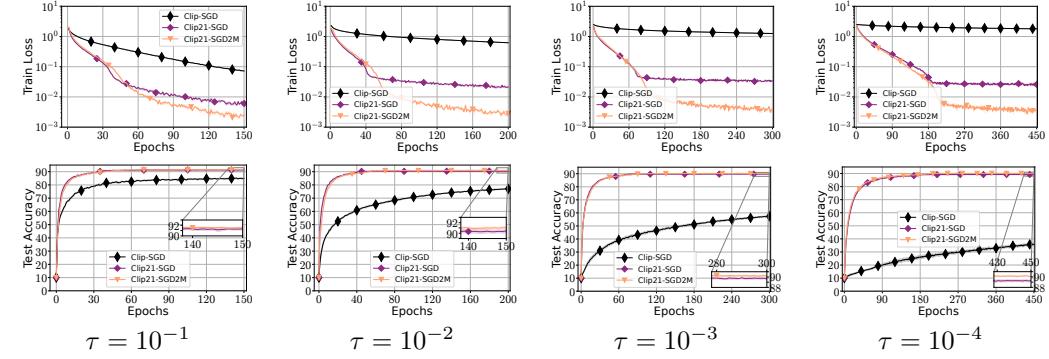
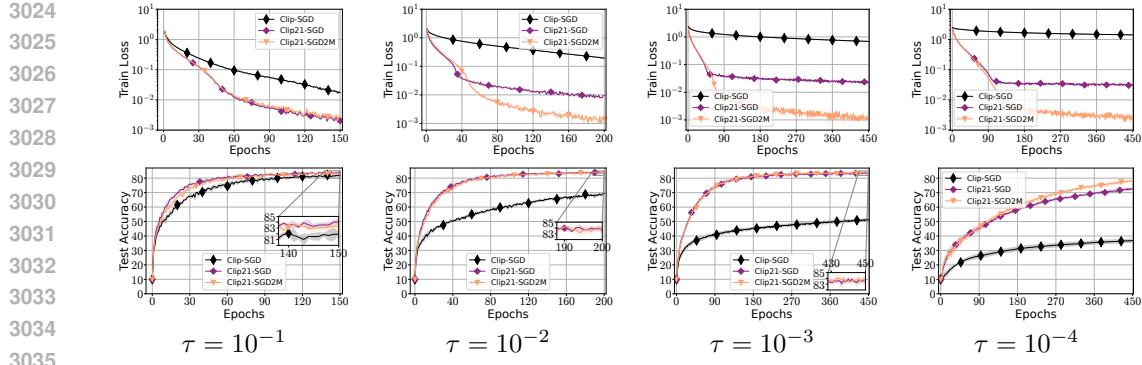
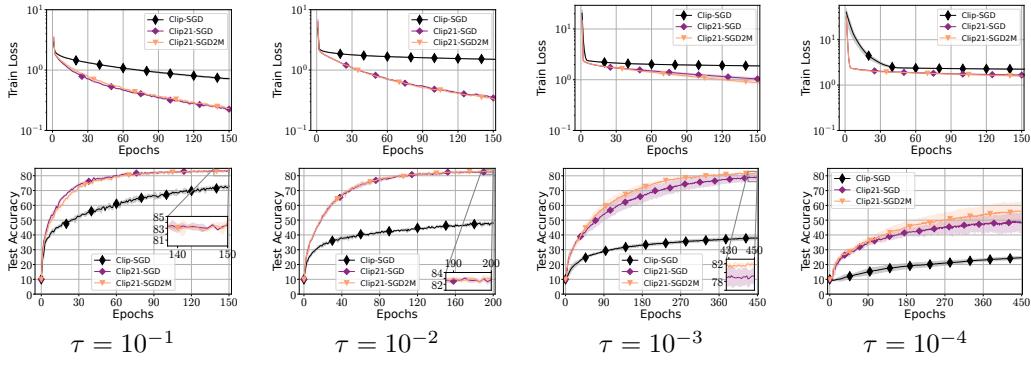


Figure I.3: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M ($\hat{\beta} = 1$) on training VGG16 model on CIFAR10 dataset where the clipping is applied globally.

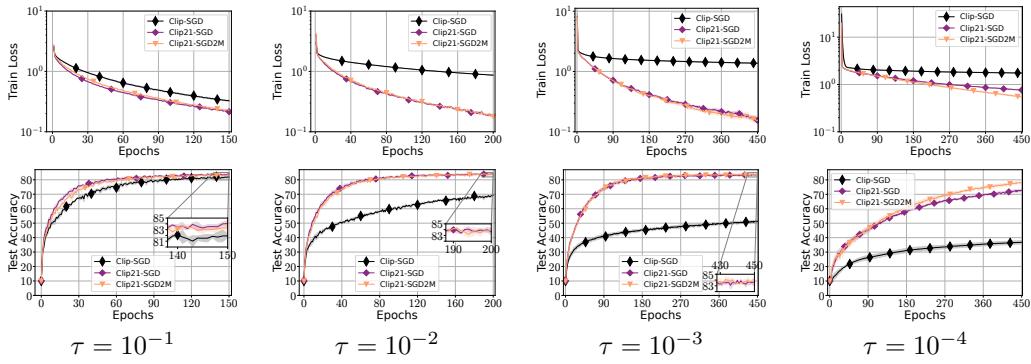
$\hat{\beta} \in \{0.01, 0.1, 0.5, 0.9\}$ for both Clip21-SGD2M and α -NormEC-SGD. No learning-rate schedules or weight decay are used, and all methods train with batch size 64.



3036 Figure I.4: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M ($\hat{\beta} = 1$) on training
3037 VGG16 model on CIFAR10 dataset the clipping is applied layer-wise.
3038
3039



3052 Figure I.5: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M ($\hat{\beta} = 1$) on training
3053 Resnet20 model on CIFAR10 dataset where the clipping is applied globally.
3054
3055

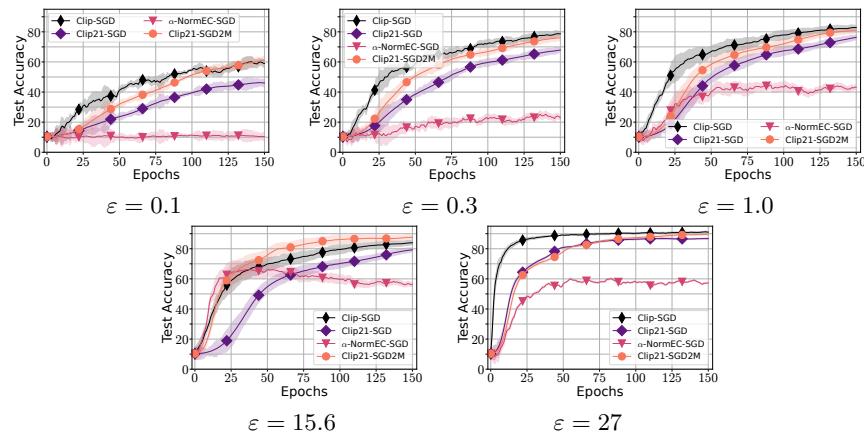


3068 Figure I.6: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M ($\hat{\beta} = 1$) on training
3069 Resnet20 model on CIFAR10 dataset where the clipping is applied layer-wise.
3070
3071

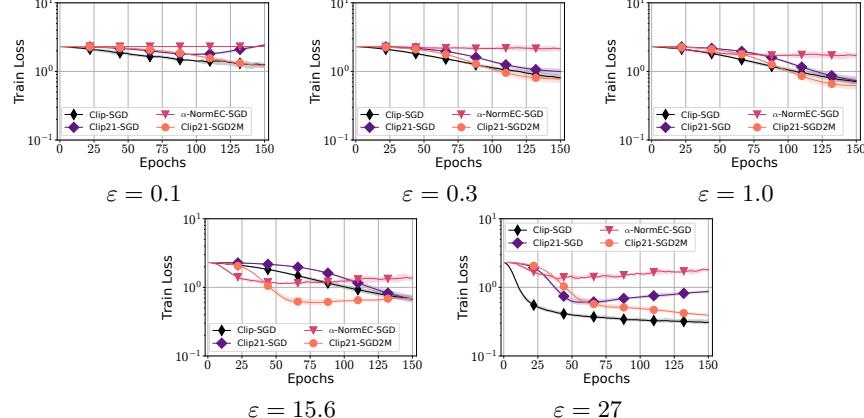
3072 As shown in Figures I.7–I.10, both Clip-SGD and Clip21-SGD2M consistently surpass Clip21-SGD
3073 and α -NormEC-SGD across privacy budgets. Clip-SGD achieves marginally higher accuracy on
3074 the CNN, while Clip21-SGD2M leads on the MLP. These results demonstrate that Clip21-SGD2M
3075 matches the state-of-the-art performance of Clip-SGD under differential privacy, but does so with
3076 stronger theoretical optimization guarantees and without assuming bounded data heterogeneity or
3077 gradient norms. Final test accuracy is reported in Table 1.

3078
 3079 Table 1: Test accuracy when training MLP and CNN models with additive Gaussian noise for (ε, δ) -
 3080 DP. We vary the privacy budget ε and fix $\delta = 10^{-3}$. These results demonstrate that Clip21-SGD2M
 3081 achieves competitive performance to the state-of-the-art Clip-SGD method without relying on the
 3082 bounded heterogeneity assumptions.

3083 Model	3084 Dataset	3085 Method	3086 Hyperparameters	3087 Final Test Accuracy				
				$\varepsilon = 3$	$\varepsilon = 5.2$	$\varepsilon = 9$	$\varepsilon = 15.6$	$\varepsilon = 27$
3088 MLP	3089 MNIST	Clip-SGD	3090 batch size 64, # epochs 150, $n = 25$	59.5 \pm 2.6	74.5 \pm 1.3	79.5 \pm 0.4	81.2 \pm 0.3	88.5 \pm 0.1
		Clip21-SGD		49.2 \pm 4.0	68.1 \pm 1.9	79.0 \pm 0.7	77.9 \pm 0.6	86.7 \pm 0.5
		α -NormEC		9.0 \pm 2.0	28.7 \pm 6.7	42.2 \pm 5.6	53.4 \pm 3.8	64.1 \pm 3.5
		Clip21-SGD2M		62.6 \pm 2.8	75.9 \pm 0.9	83.0 \pm 0.9	87.7 \pm 0.6	89.2 \pm 0.3
3091 CNN	3092 MNIST	Clip-SGD	3093 batch size 64, # epochs 150, $n = 25$	58.9 \pm 2.4	78.7 \pm 1.4	82.8 \pm 1.6	83.9 \pm 1.4	91.0 \pm 0.4
		Clip21-SGD		46.1 \pm 2.4	67.9 \pm 1.4	76.4 \pm 1.6	79.3 \pm 1.4	86.7 \pm 0.4
		α -NormEC		10.4 \pm 2.4	23.0 \pm 1.4	56.4 \pm 1.6	56.4 \pm 1.4	57.1 \pm 0.4
		Clip21-SGD2M		61.2 \pm 2.4	76.0 \pm 1.4	80.9 \pm 1.6	87.6 \pm 1.4	89.6 \pm 0.4



3106 Figure I.7: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training the CNN
 3107 model on the MNIST dataset, varying the privacy budget ε .



3122 Figure I.8: Comparison of Clip-SGD, Clip21-SGD, and Clip21-SGD2M when training the CNN
 3123 model on the MNIST dataset, varying the privacy budget ε .

3124 I.3 LEARNING RATE TUNING FOR CNN

3125 In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training
 3126 the CNN model on the MNIST dataset. We select the best hyperparameters based on a single run.
 3127 Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to
 3128 the results in Figure 4.

3129 The results are presented in Tables 2, 3, 4, 5, 6, 7. We observe that in most cases, the optimal
 3130 learning rate lies strictly inside the tested range.

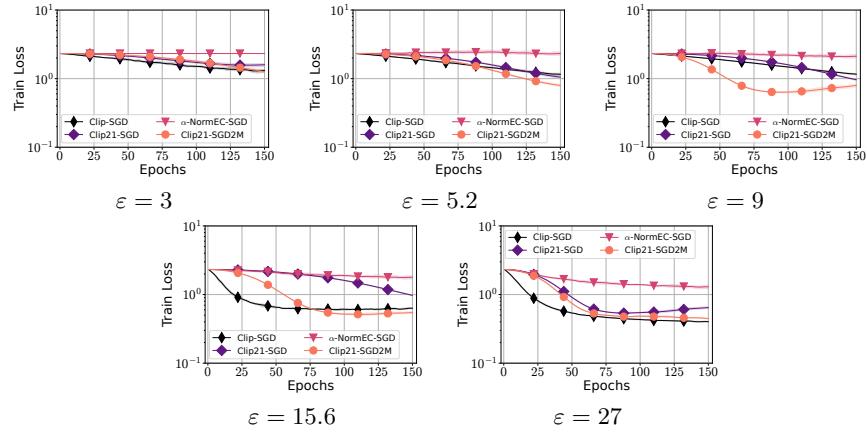


Figure I.9: Comparison of Clip-SGD, Clip21-SGD, α -NormEC, and Clip21-SGD2M when training the MLP model on the MNIST dataset, varying the privacy budget ϵ .

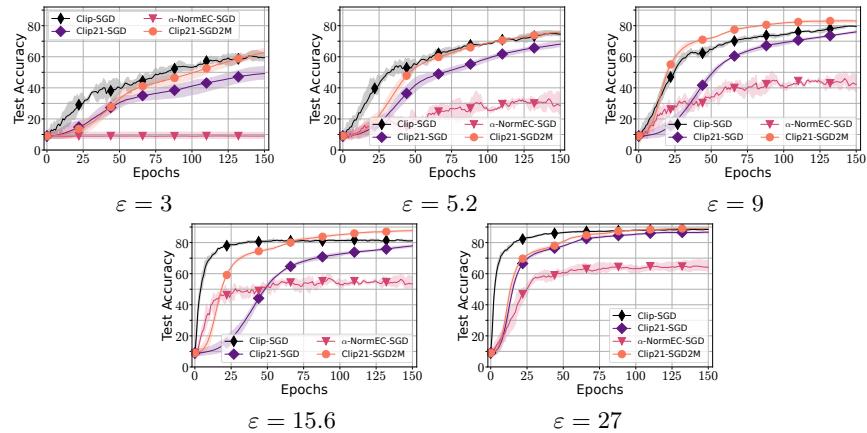


Figure I.10: Comparison of Clip-SGD, Clip21-SGD, α -NormEC, and Clip21-SGD2M when training the MLP model on the MNIST dataset, varying the noise-clipping ratio.

Table 2: Performance (test accuracy) of Clip21-SGD2M when training the CNN model on the MNIST dataset, varying the clipping radius τ and learning rate.

Clipping radius	Learning rate																			
	$\epsilon = 3$				$\epsilon = 5.2$				$\epsilon = 9$				$\epsilon = 15.6$				$\epsilon = 27$			
	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
1e-5	18.4	38.0	63.4	29.8	16.2	21.0	56.8	78.7	16.2	20.7	63.6	82.9	18.0	47.6	78.6	88.0	18.0	47.9	79.0	89.2
1e-4	37.9	63.5	29.8	13.4	21.0	56.8	78.8	53.0	20.7	63.5	82.9	75.7	47.4	78.9	87.9	75.8	47.8	79.4	89.3	84.8
1e-3	58.4	27.6	13.2	7.3	56.6	78.9	52.33	28.0	63.3	83.2	74.8	49.8	81.6	85.5	73.0	45.6	82.1	89.6	83.1	70.0
1e-2	22.4	14.5	6.2	5.3	75.0	44.6	25.8	8.1	82.8	66.6	46.3	16.7	69.9	58.6	36.6	14.4	81.1	68.4	55	26.5

I.4 LEARNING RATE TUNING FOR MLP

In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training the MLP model on the MNIST dataset. We select the best hyperparameters based on a single run. Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to the results in Figure 4. We refer to Tables 2 to 7 for the results of the sweeps. We observe that in most cases, the optimal learning rate lies strictly inside the tested range.

3186 Table 3: Performance (test accuracy) of Clip21-SGD when training the CNN model on the MNIST
 3187 dataset, varying the clipping radius τ and learning rate.
 3188

Clipping radius	Learning rate																			
	$\varepsilon = 3$				$\varepsilon = 5.2$				$\varepsilon = 9$				$\varepsilon = 15.6$				$\varepsilon = 27$			
	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
1e-5	19.6	34.5	46.1	16.9	16.4	45.1	71.6	30.7	19.3	53.8	79.4	60.6	19.3	57.7	81.8	79.0	19.2	59.2	82.8	87.0
	33.2	45.3	16.9	8.2	43.5	71.2	30.4	9.0	52.4	79.2	60.0	23.9	56.1	81.9	78.6	44.9	57.6	82.9	86.8	68.3
	32.2	15.9	7.8	7.0	61.5	29.4	10.6	7.4	74.2	52.4	21.6	7.7	79.5	71.3	41.5	14.5	80.8	83.4	65.1	24.4
	12.1	8.1	7.0	6.6	20.5	7.1	6.8	6.7	31.7	17.1	7.6	7.3	48.8	31.8	14.1	5.6	63.8	49.3	26.0	7.0
	7.0	6.9	6.6	6.8	9.7	7.4	6.5	6.9	11.1	6.6	7.2	7.2	13.0	8.0	5.9	7.1	20.2	17.0	6.8	5.5
	6.9	7.1	6.7	6.6	6.5	6.6	6.7	6.6	6.9	6.7	6.5	6.7	8.5	6.9	6.6	6.7	9.4	7.9	7.3	7.1

3198 Table 4: Performance (test accuracy) of Clip-SGD when training the CNN model on the MNIST
 3199 dataset, varying the clipping radius τ and learning rate.
 3200

Clipping radius	Learning rate																			
	$\varepsilon = 3$				$\varepsilon = 5.2$				$\varepsilon = 9$				$\varepsilon = 15.6$				$\varepsilon = 27$			
	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
1e-5	15.8	15.8	16.0	18.4	15.8	15.8	16.0	18.4	15.8	15.8	15.9	18.2	15.8	15.8	15.9	18.1	15.8	15.8	15.9	18.0
	15.8	16.0	18.4	37.1	15.8	16.0	18.4	42.9	15.8	15.9	18.2	46.4	15.8	15.9	18.1	47.6	15.8	15.9	18.0	47.9
	16.0	18.4	37.1	57.4	16.0	18.4	42.9	79.9	15.9	18.2	46.4	84.3	15.9	18.1	47.6	85.2	15.9	18.0	47.9	85.5
	18.4	37.1	57.4	13.5	18.4	42.9	79.9	9.2	18.2	46.4	84.3	59.3	18.1	47.6	85.2	82.0	18.0	47.9	85.5	91.4
	37.1	57.4	13.5	7.8	42.9	79.9	9.2	15.7	46.7	84.3	59.3	17.7	47.6	85.2	82.0	10.6	47.9	85.5	91.4	62.0
	57.4	13.5	7.6	6.1	79.9	9.2	15.6	6.4	84.3	59.3	17.5	7.7	85.2	82.1	10.6	14.1	85.4	91.4	68.2	11.0

3210 Table 5: Performance (test accuracy) of Clip21-SGD2M when training the MLP model on the
 3211 MNIST dataset, varying the clipping radius τ and learning rate.
 3212

Clipping radius	Learning rate																			
	$\varepsilon = 3$				$\varepsilon = 5.2$				$\varepsilon = 9$				$\varepsilon = 15.6$				$\varepsilon = 27$			
	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
1e-5	14.0	39.6	65.4	53.4	11.9	16.5	58.9	76.8	13.7	41.0	74.5	83.4	13.7	41.3	75.5	87.7	15.4	59.9	80.8	89.5
	38.1	64.7	52.9	38.1	16.5	59.0	76.8	66.3	40.8	74.8	83.9	68.4	41.3	75.8	87.8	76.2	60.0	81.4	89.6	80.4
	34.5	39.5	32.9	23.4	56.9	76.6	64.8	49.3	72.9	76.5	63.7	49.7	75.5	84.9	72.6	64.0	77.8	85.3	75.3	68.6
	14.7	14.6	14.1	13.1	56.9	50.8	41.1	29.9	45.7	40.8	35.3	27.2	61.6	50.8	46.7	38.9	60.9	50.9	48.4	43.8
	9.9	9.8	9.7	9.7	10.7	10.7	10.4	10.1	12.1	12.0	11.5	10.8	14.1	13.7	12.9	12.0	17.7	17.2	15.9	13.7
	9.4	9.4	9.5	9.4	9.7	9.7	9.7	9.6	9.9	9.9	9.8	9.8	10.3	10.2	10.0	10.0	10.7	10.5	10.1	10.1

3221 Table 6: Performance (test accuracy) of Clip21-SGD when training the MLP model on the MNIST
 3222 dataset, varying the clipping radius τ and learning rate.
 3223

Clipping radius	Learning rate																			
	$\varepsilon = 3$				$\varepsilon = 5.2$				$\varepsilon = 9$				$\varepsilon = 15.6$				$\varepsilon = 27$			
	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
1e-5	15.7	42.7	53.7	32.1	15.1	46.0	70.4	49.5	14.8	50.8	76.8	67.1	14.7	52.8	78.1	81.0	14.6	53.6	78.3	87.1
	40.1	51.7	31.5	18.7	45.0	69.4	48.6	29.0	48.7	76.4	66.0	43.2	51.3	78.0	80.3	58.2	52.3	78.2	86.8	69.8
	26.0	24.8	17.4	12.3	48.5	40.6	27.2	16.9	66.7	57.5	39.8	25.2	72.2	72.2	53.9	137.1	74.4	82.5	65.4	51.9
	12.6	12.1	11.6	10.8	18.1	16.2	13.8	12.2	30.0	25.0	19.4	14.5	42.7	35.9	28.4	19.7	57.4	46.5	39.6	28.4
	9.9	9.8	9.7	9.7	10.7	10.7	10.4	10.1	12.1	12.0	11.5	10.8	14.1	13.7	12.9	12.0	17.7	17.2	15.9	13.7
	9.4	9.4	9.5	9.4	9.7	9.7	9.7	9.6	9.9	9.9	9.8	9.8	10.3	10.2	10.0	10.0	10.7	10.5	10.1	10.1

J DISCUSSION ON PRIVACY AMPLIFICATION BY SUBSAMPLING

3235 We acknowledge that enabling amplification through data subsampling is an important aspect of
 3236 algorithm design. However, example-wise clipping – required to incorporate such a modification –
 3237 necessitates a substantially more involved theoretical analysis and more advanced proof techniques.
 3238 Moreover, it remains an open question whether Clip-SGD can provably achieve privacy amplification
 3239 through subsampling under standard assumptions. We therefore leave this direction to future
 work.

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
Table 7: Performance (test accuracy) of Clip-SGD when training the MLP model on the MNIST dataset, varying the clipping radius τ and learning rate.

		Learning rate																			
		$\varepsilon = 3$				$\varepsilon = 5.2$				$\varepsilon = 9$				$\varepsilon = 15.6$				$\varepsilon = 27$			
		1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0	1e-3	1e-2	1e-1	1e0
Clipping radius	1e-5	15.8	15.8	16.0	18.4	15.8	15.8	16.0	18.4	15.8	15.8	15.9	18.2	15.8	15.8	15.9	18.1	15.8	15.8	15.9	18.0
	1e-4	15.8	16.0	18.4	37.1	15.8	16.0	18.4	42.9	15.8	15.9	18.2	46.4	15.8	15.9	18.1	47.6	15.8	15.9	18.0	47.9
	1e-3	16.0	18.4	37.1	57.4	16.0	18.4	42.9	79.9	15.9	18.2	46.4	84.3	15.9	12.1	47.6	85.2	15.9	18.0	47.9	85.5
	1e-2	18.4	37.1	57.4	13.5	18.4	42.9	79.9	9.2	18.2	46.4	84.3	59.3	18.1	47.6	85.2	82.0	18.0	47.9	85.5	91.4
	1e-1	37.1	57.4	13.5	7.8	42.9	79.9	9.2	15.7	46.4	84.3	59.3	17.7	47.6	85.2	82.0	10.6	47.9	85.5	91.4	62.0
	1e0	57.3	13.5	7.6	6.1	79.9	9.2	15.6	6.4	84.3	59.3	17.5	7.7	85.2	82.0	10.6	14.1	85.4	91.4	68.2	11.0

Nonetheless, we study this question in practice. In this setting, we assume that local functions f_i have a finite-sum structure, namely, $f_i(x) := \frac{1}{m} \sum_{j=1}^m f_{ij}(x)$. To enable privacy amplification by data subsampling, each client $i \in [n]$ at iteration t samples a batch S_i^t of size b , and each example-wise gradient is clipped. In this case, DP-noise variance can be significantly reduced by a factor $\frac{b}{m}$, which allows for achieving better practical performance. We call a modification of Clip21-SGD2M with example-wise clipping as Clip21-SGD2M+ for clarity.

J.1 ON THE THEORETICAL ANALYSIS OF CLIP21-SGD2M+

The key difficulty in the theoretical convergence analysis of Clip21-SGD2M+ comes from per-sample gradient clipping (see Line 7 in Algorithm 5), which introduces bias in the local momentum vector v_i^{t+1} . Therefore, for an arbitrary clipping level τ_{in} , we expect that the method will provably converge to some irreducible neighborhood even when $\sigma_\omega = 0$, similarly to the case of Clip-SGD (Koloskova et al., 2023). One may address this issue by taking τ_{in} sufficiently large such that the introduced bias is controlled, similarly to the analysis of DProx-clipped-SGD-shift in the convex case (Gorbunov et al., 2024, Theorem 2.5). The clipping level in this case will depend on some notion of gradient heterogeneity at some reference point. Nevertheless, for large enough τ_{in} our analysis of Clip21-SGD2M will require just minor modifications to be extended to Clip21-SGD2M+. The main idea behind this analysis is to show that $\|\nabla f_{ij}(x^{t+1})\|$ is bounded with high probability throughout the trajectory of the method. More precisely, taking $\tau_{\text{in}} \sim \max_{ij} \|\nabla f_{ij}(x^0)\| + CLR$ with $R = \sup\{\|x^0 - x^*\| \mid \nabla f(x^*) = 0\}$ and showing by induction that $\|x^0 - x^t\| \leq CR$ for some $C > 0$ with high probability, one can prove that $\|\nabla f_{ij}(x^{t+1})\| \leq \|\nabla f_{ij}(x^0)\| + \|\nabla f_{ij}(x^{t+1}) - \nabla f_{ij}(x^0)\| \leq \max_{ij} \|\nabla f_{ij}(x^0)\| + CLR = \tau_{\text{in}}$. That is, the inner clipping in this case is turned off with high probability, and the proof should closely follow the current analysis of Clip21-SGD2M, where only one clipping is used. Such an analysis still avoids using unrealistic assumptions like bounded gradients.

We leave the formal theoretical convergence analysis of Clip21-SGD2M+ for future work.

J.2 EMPIRICAL PERFORMANCE OF CLIP21-SGD2M+

Now we test the performance of Clip21-SGD2M+ when training the same CNN and MLP models on the MNIST dataset. In this setting, we rescale the DP-noise variance σ_ω by a factor $\frac{b}{m}$. We test the performance of Clip21-SGD2M+ against Clip-SGD, where we similarly use example-wise clipping to enable privacy amplification by data subsampling. Since Clip21-SGD2M+ has two clipping parameters, we fix $\tau_{\text{in}} = 0.1$ and tune τ_{out} . In this experiment, we tune the learning rate $\gamma \in \{10^{-2}, 10^{-1}, 10^0, 10^1\}$, clipping radius in $\{0.01, 0.03, 0.1, 0.3, 1\}$, while fixing $\beta = 0.1$, $\hat{\beta} = 0.01$. For both algorithms, we use the batch size 32, while the data partitioning is the same as before.

We present the results in fig. J.1. We observe that Clip21-SGD2M+ achieves competitive performance to Clip-SGD, even in the setting when privacy amplification by data subsampling is used.

3294

3295

3296

3297

3298

3299

3300

Algorithm 5 Clip21-SGD2M+

Require: $x^0, g^0, v^0 \in \mathbb{R}^d$ (by default $g^0 = v^0 = 0$), momentum parameters $\beta, \hat{\beta} \in (0, 1]$, stepsize $\gamma > 0$, clipping parameters $\tau_{\text{in}}, \tau_{\text{out}} > 0$, batch size b , DP-variance parameter $\sigma_\omega^2 \geq 0$

1: Set $g_i^0 = g^0$ and $v_i^0 = v^0$ for all $i \in [n]$

2: **for** $t = 0, \dots, T - 1$ **do**

3: $x^{t+1} = x^t - \gamma g^t$

4: **for** $i = 1, \dots, n$ **do**

5: Sample DP-noise $\omega_i^{t+1} \sim \mathcal{N}(0, \sigma_\omega^2 \mathbf{I})$ only for DP version

6: Sample batch \mathcal{S}_i^t

7: $v_i^{t+1} = (1 - \beta)v_i^t + \beta \left(\frac{1}{b} \sum_{j \in \mathcal{S}_i^t} \text{clip}_{\tau_{\text{in}}}(\nabla f_{ij}(x^{t+1})) + \omega_i^{t+1} \right)$

8: $c_i^{t+1} = \text{clip}_{\tau_{\text{out}}}(v_i^{t+1} - g_i^t)$

9: $g_i^{t+1} = g_i^t + \hat{\beta} \text{clip}_{\tau_{\text{out}}}(v_i^{t+1} - g_i^t)$

10: **end for**

11: $g^{t+1} = g^t + \frac{\hat{\beta}}{n} \sum_{i=1}^n c_i^{t+1}$

12: **end for**

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

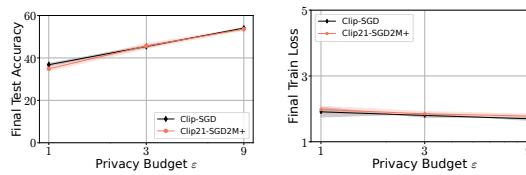
3343

3344

3345

3346

3347



CNN, MNIST

Figure J.1: Comparison of Clip-SGD and Clip21-SGD2M+ when training CNN on CIFAR10 dataset.