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ABSTRACT

Achieving both strong Differential Privacy (DP) and efficient optimization is crit-
ical for Federated Learning (FL), where client data must remain confidential with-
out compromising model performance. However, existing methods typically sac-
rifice one for the other: they either provide robust DP guarantees at the cost of as-
suming bounded gradients/data heterogeneity, or they achieve strong optimization
rates without any privacy protection. In this paper, we bridge this gap by intro-
ducing C1ip21-SGD2M, a novel method that integrates gradient clipping, heavy-
ball momentum, and error feedback to deliver state-of-the-art optimization and
strong privacy guarantees. Specifically, we establish optimal convergence rates
for non-convex smooth distributed problems, even in the challenging setting of
heterogeneous client data, without requiring restrictive boundedness assumptions.
Additionally, we demonstrate that C1ip21-SGD2M achieves competitive (local)
DP guarantees, comparable to the best-known results. Numerical experiments on
non-convex logistic regression and neural network training confirm the superior
optimization performance of our approach across a wide range of DP noise levels,
underscoring its practical value in real-world FL applications.

1 INTRODUCTION

Federated Learning (FL) (Kone¢ny et al., 2016; McMahan et al., 2017a) is a modern training
paradigm where multiple (possibly heterogeneous) clients aim to collaboratively train a shared
model without exposing their private data. This paradigm brings a host of design challenges, in-
cluding communication efficiency, partial participation of clients, data heterogeneity, security, and
privacy (Kairouz et al., 2021; Wang et al., 2021), which have spurred the development of numer-
ous optimization methods for FL. Yet despite this progress, it remains difficult to design FL algo-
rithms that achieve both fast optimization convergence and strong differential privacy (DP) guaran-
tees (Dwork et al., 2014) due to the conflicting nature of these objectives. Indeed, most of the results
in the field of DP are obtained by injecting noise (e.g. Gaussian noise) into the method’s update
(Abadi et al., 2016; Chen et al., 2020) to protect the client’s data and prevent data reconstruction.
This inevitably reduces update accuracy and slows convergence. Furthermore, to control sensitivity
and ensure DP, updates must be bounded—typically by applying gradient clipping (Pascanu et al.,
2013)—before noise injection.

In FL, data heterogeneity is ubiquitous and critically affects algorithmic behavior. Indeed, naive
distributed Clipped Gradient Descent (C1lip-GD) can fail to converge under heterogeneous client
data—even without any DP-noise (Khirirat et al., 2023). To tackle this issue, Khirirat et al. (2023)
embeds the EF21 mechanism—originally proposed by Richtarik et al. (2021) to enhance standard Er-
ror Feedback (Seide et al., 2014) for contractive compressors—into C1ip-GD, resulting in a method
known as C1ip21-GD. They prove that, unlike C1ip-GD, C1ip21-GD attains an O(1/7) rate on
smooth non-convex objectives for arbitrary heterogeneous data on clients. However, their guaran-
tees rely on full-batch gradients and break down in the presence of DP noise. This leads us to the
natural question:

Is it possible to design a method that achieves both fast convergence and strong DP guarantees

while accommodating arbitrary data heterogeneity?
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Our contribution. We answer this affirmatively by introducing C1ip21-SGD2M, a novel algo-
rithm that integrates gradient clipping, error-feedback, and Heavy-Ball momentum (Polyak, 1964).
For smooth non-convex distributed objectives under arbitrary data heterogeneity, we prove that
Clip21-SGD2M (¢) attains the optimal O(1/T) in the full-batch regime, (i¢) achieves the optimal
high-probability convergence rate O(1/vaT) when using sub-Gaussian stochastic gradients, and
(7i7) achieves competitive local DP-error when DP-noise is added to the clients’ updates. We fur-
ther show that C1ip21-SGD can fail to converge with stochastic gradients, underscoring the critical
role of our momentum extension. Our experiments on logistic regression and neural networks high-
light the robustness of C1ip21-SGD2M across clipping thresholds and its competitive privacy-utility
trade-off compared to several baselines at fixed DP budgets.

1.1 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the optimization problem of the form
. 1 n
min [f(2) = 3 330, fil=)] ey

where x are the model parameters, f; is the loss associated with the local dataset D; of worker
i € [n], and f is the overall average loss across all n clients.

We work under two standard assumptions. First, we assume smoothness and a finite optimum (Car-
mon et al., 2020; Danilova et al., 2022).

Assumption 1.1. Each individual loss function f; is L-smooth, i.e., for any z,y € R? and i € [n]
we have

IV fi(z) = Vfi(y)ll< Lo — yl|. )
Moreover, we assume that f* := inf,cge f(x) > —o0.

Our analysis can be straightforwardly generalized to allow each f; to have its own smoothness
constant L;. Second, since full gradients are often impractical, we model stochastic gradients with
sub-Gaussian noise.

Assumption 1.2. Each worker 7 has access to a o-sub-Gaussian unbiased estimator V f;(z, §) of a
local gradient V f;(z), i.e., for some' o > 0 and any = € R? and Vi € [n] we have

E[Vfi(x,8)] = Vfi(x), E [exp (19:1°/52)] < exp(1), 3)
where & denotes the source of the stochasticity and 6; := V f;(z,£) — V f;(x).

Although this assumption is stronger than bounded variance, it is standard for the high-probability?
analysis of SGD-type methods with polylogarithmic dependence on the confidence level (Nemirovski
et al., 2009; Ghadimi & Lan, 2012). Equivalently, the second part of (3) implies the tail bound
Pr (||0f]|> b) < 2exp (—°/(20*)) (up to constant factors in ¢%) (Vershynin, 2018). Our results can
be extended to heavier sub-Weibull tails (Madden et al., 2024)—still with only polylogarithmic de-
pendence on the confidence level—at the cost of worse logarithmic factors in the final rates (Madden
et al., 2024).

Finally, we introduce two key definitions. The first one is the clipping operator, a nonlinear map
from R? to R? parameterized by the clipping threshold/level 7 > 0 and defined as

e if |z||> 7
l' = ”me, ! ’ 4
et { if o< 7. @

Second, we recall the standard definition of (g, §)-Differential Privacy, which introduces plausible
deniability into the output of a learning algorithm.

Definition 1.3 ((¢, §)-Differential Privacy (Dwork et al., 2014)). A randomized method M : D —
R satisfies (e, ¢)-Differential Privacy ((g, §)-DP) if for any adjacent datasets D, D’ € D (e.g., if D
and D’ differ in 1 sample) and for any S C R

Pr(M(D) € §) < ¢ Pr (M(D') € §) + 6. )

'For simplicity, we define 9/0 := 0. Then, (3) with o = 0 implies V f;(, &) = V f;(z) almost surely.
We elaborate on the reasons why we focus on high-probability analysis in Section 3.2.
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In this definition, the smaller ¢, § are, the more private the method is. Intuitively, if inequality (5)
holds with small values of £ and §, it becomes difficult to infer the specific data point that differs
between two similar datasets based solely on the output of M.

1.2 RELATED WORK

Differential Privacy. The standard recipe for differential privacy in federated learning is to first
clip each client’s update to a fixed ¢3-norm bound and then add Gaussian noise—either to each
individual update or to their aggregated average—so as to mask the influence of any single partic-
ipant (McMahan et al., 2017b). There are two prevailing privacy models. In the central model, a
trusted server gathers updates from clients and injects noise only when forming the global update;
this protects client data from external observers but still requires trusting the server. In the local
model, each client clips and perturbs its own update before transmission, thus safeguarding privacy
even against the server and other clients (Kasiviswanathan et al., 2011; Allouah et al., 2024). While
local privacy offers stronger protection, it typically degrades learning accuracy, since heavier noise
is needed to obscure individual updates (Chan et al., 2012; Duchi et al., 2018). This trade-off can
be mitigated by using secure shuffling, which randomly permutes client updates before aggregation
(Erlingsson et al., 2019; Balle et al., 2019), or a secure aggregator (Bonawitz et al., 2017), which
sums updates before sending them to the server. These methods anonymize updates and enhance
privacy while maintaining reasonable learning performance, even without a fully trusted server. Fi-
nally, (Chaudhuri et al., 2022; Hegazy et al., 2024) show that when DP is required, one can also
achieve compression of updates for free.

In this work, we adopt the local DP model by injecting Gaussian noise into each client’s update.
However, the average noise can also be viewed as noise added to the average update. Therefore,
Clip21-SGD2M is compatible with all the aforementioned techniques and can also be applied to the
central DP model with a smaller amount of noise. However, it is worth mentioning that our analysis
is not directly compatible with the privacy amplification by sub-sampling (Balle et al., 2018; Li
etal., 2012; Dong et al., 2025; Bonawitz et al., 2017), which is another important tool for achieving
improved DP guarantees.

Error Feedback. Error Feedback (EF) (Seide et al., 2014) is widely used to incorporate commu-
nication compression into distributed and federated learning, but its convergence theory for smooth
non-convex objectives has remained limited. Existing analyses either focus on the single-node set-
ting or impose stringent conditions—such as bounded gradient/compression error, or under data
heterogeneity (gradient dissimilarity)—to prove convergence (Stich et al., 2018; Stich & Karim-
ireddy, 2019; Karimireddy et al., 2019; Koloskova et al., 2019; Beznosikov et al., 2023; Tang et al.,
2019; Xie et al., 2020; Sahu et al., 2021). Moreover, the known EF convergence rates degrade in
the presence of client heterogeneity, and this dependence is not merely an artifact of the proofs—it
shows up empirically in solving strongly convex problems (Gorbunov et al., 2020b). To overcome
these drawbacks, Richtérik et al. (2021) introduced EF21, a variant whose convergence guarantees
no longer rely on heterogeneity bounds; however, EF21-SGD still requires increasingly large batch
sizes to reach any fixed accuracy (Fatkhullin et al., 2021). Fortunately, this drawback is not fun-
damental: recent work demonstrates that adding Heavy-Ball momentum removes the large-batch
requirement (Fatkhullin et al., 2024), and momentum likewise enhances EF’s performance in decen-
tralized setting (Yau & Wai, 2022; Huang et al., 2023; Islamov et al., 2024a).

Distributed methods with clipping. In the single-node setting, Clip-SGD has been rigorously
studied under a range of assumptions (Zhang et al., 2020b;c;a; Gorbunov et al., 2020a; Cutkosky
& Mehta, 2021; Sadiev et al., 2023; Liu et al., 2023). These analyses extend to multi-client train-
ing when clipping is applied to the aggregate (e.g., the averaged update), although mini-batching
requires a refined analysis when the noise is heavy-tailed (Kornilov et al., 2024). However, en-
suring DP requires clipping each client’s communicated update before aggregation; in this regime
Clip-SGD can fail to converge even with deterministic gradients (Chen et al., 2020; Khirirat et al.,
2023). To recover convergence, prior work imposes additional restrictive heterogeneity bounds.
For instance, Liu et al. (2022) prove convergence of a clipped FedAvg/Local-SGD variant under
homogeneous clients with gradients symmetric around their mean, and Wei et al. (2020) analyze
clipped Local-SGD assuming bounded heterogeneity. Other approaches assume bounded gradients
(thereby implicitly bounding heterogeneity): Zhang et al. (2022) study FedAvg with clipping of
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model differences (see also the empirical study in (Geyer et al., 2017)); Noble et al. (2022) propose
and analyze DP-SCAFFOLD; Li & Chi (2023) develop PORTER (a clipped BEER) under bounded-
gradient/heterogeneity assumptions; Allouah et al. (2023) give convex lower bounds and new upper
bounds for distributed SGD with momentum and clipped stochastic gradients; and Allouah et al.
(2024) study clipped Gossip-SGD (DECOR). While these methods come with formal DP guarantees,
none prove convergence without some bounded heterogeneity condition. Moreover, several works
require the clipping threshold to exceed the norm of the communicated vector (Zhang et al., 2022;
Noble et al., 2022; Allouah et al., 2023; 2024), rely on symmetric gradient noise (Liu et al., 2022),
or assume full-gradient computation at clients (Wei et al., 2020). In this work, we remove these limi-
tations: Clip21-SGD2M achieves fast optimization and strong (local-)DP guarantees under arbitrary
data heterogeneity.

Challenges of Coupling Error Feedback and Clipping. Various prior works have combined er-
ror feedback with clipping. In particular, Khirirat et al. (2023) introduced C1ip21-GD by embedding
the EF21 mechanism into the gradient-clipping operator, while Gorbunov et al. (2024) developed al-
gorithms that clip the difference between stochastic gradients and learnable shifts — an idea originally
proposed by Mishchenko et al. (2019) to address data heterogeneity under unbiased communication
compression. Viewing clipping as a contractive compressor, as suggested by Khirirat et al. (2023),
highlights a key limitation: standard contractive compressors admit a uniform contraction factor
across all inputs, whereas the contractive behavior of clipping is inherently input-dependent. To
address this limitation, Khirirat et al. (2023) analyzed C1ip21-GD only in a full-batch, noise-free
regime and without a valid DP guarantee.> More recently, Shulgin et al. (2025a;b) partially closed
this DP gap by replacing clipping with a smoothed normalization operator. However, their guaran-
tees still depend on full-batch gradients and careful initialization. Thus, it remains an open problem
whether error feedback and clipping can be combined in a way that avoids such restrictive theoretical
assumptions.

2 NON-CONVERGENCE OF CLIP-SGD AND CLIP21-SGD

We start with a discussion of the key limitation of Clip-SGD (Algortihm 1) and C1ip21-SGD
(Alg. 2) — their potential non-convergence.

Algorithm 1 C1ip-SGD (Abadi et al., 2016) Algorithm 2 C1ip21-SGD (Khirirat et al., 2023)
Require: 2° € RY, stepsize v > 0, clipping pa- Require: 2°,¢° € R?, stepsize v > 0, clipping
rameter 7 > 0 parameter 7 > 0

1: 1: Initialize g9 = ¢° for all i € [n]

2: fort=0,...,T—1do 2: fort=0,...,T—1do

3: 30zl =gt — gt

4: fori=1,...,nin parallel do 4: for:=1,...,n in parallel do

5: 5: i = clip, (Vfi(xt1, €671 — gb)

6: g; = clip(V fi(2',£})) 6: gttt =gt 4+t

7: end for 7 end for

8 g =aX g 8 gl =g+ gt

9: it =2t — 44t 9:
10: end for 10: end for

We start by restating the example from (Chen et al., 2020) illustrating the potential non-convergence
of C1lip-SGD even when full gradients are computed on clients (C1ip-GD).

Example 2.1 (Non-Convergence of C1ip-GD (Chen et al., 2020)). Letn =2, d = 1, and f1(z) =
2(x —3)% fo(x) = (2 + 3)% in problem (1) having a unique solution z* = 0. Consider Clip-GD
with 7 = 1 applied to this problem. If for some tq we have x'° € [—2,2] in Clip-GD, then g' = 0
and xt = xt° for any t > to, which can be seen via direct calculations. In particular, for any
20 € [—2,2], the method does not move away from x°.

3The DP guarantee in Khirirat et al. (2023) relies on the condition that for some C' > 1 and v, o, > 0, one
has min{v? 62} > Cmax{v? 02}. This holds if and only if v = o, = 0, implying that no DP noise is
added, since 03, denotes the variance of the DP noise.
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Figure 1: Left: behavior of stochastic C1ip21-SGD and C1ip21-SGD2M without DP noise (see
Alg. 3) initialized at 2° = (0, —0.07)T, with stepsize v = 1/vT where T = 10%, i.e., close to
the solution and small stepsize. We observe that C1ip21-SGD escapes the good neighborhood of
the solution for the problem from Theorem 2.2 with n = 1,L = 2,0 = 5, and varying 7 €
{1,0.1,0.01}. In contrast, CLip21-SGD2M remains stable around the solution. Right: convergence
of C1ip21-SGD does not improve with the increase of n for the same problem.

To address C1ip-GD’s non-convergence, Khirirat et al. (2023) introduce C1ip21-GD, which applies
clipping not to raw gradients but to their “shifted” differences: V f;(z'*1) — gf, where g! tracks
the previous gradient. In the deterministic setting, this guarantees that after enough iterations, every
client’s difference falls below the threshold 7 in norm, so clipping effectively turns off and the
algorithm converges.

However, even if we replace the exact shift gf with the stochastic gradient itself, i.e., we use

et =at — gt gt = 13 gl
gt = V(@) + clip, (Vfi (2", €11 — V fi(z')), (6)

this “idealized” stochastic version of C1ip21-SGD can diverge. The following theorem demonstrates
non-convergence on a simple quadratic under sub-Gaussian noise.

Theorem 2.2. Let L,o > 0,0 < v < 1/L,n = 1. There exists a convex, L-smooth problem,
clipping parameter T < 32V3/10, and an unbiased stochastic gradient satisfying Assumption 1.2

such that the method (6) is run with a stepsize vy and clipping parameter 7, then for all z° €
{(0,$((J2)) €R?| x?Q) < 0} we have

E[IVAT)I?] 2 min {|VSG)] % | ™

Moreover, fix 0 < ¢ < L/v2 and 2° = (0,—1)T. Let the sub-Gaussian variance of stochastic
gradients is bounded by o*/B where B is a batch size. If B < 270%/(60s*) and T > ¢/(3/10), then we
have E [||V f(2T)||?] > &2 forall T > 0.

We also illustrate the above result with simple numerical experiments reported in Figure 1. The
left figure shows that C1ip21-SGD diverges from the initial function sub-optimality level while the
right one demonstrates non-improvement with the number of workers n — one of the desired prop-
erties of algorithms for FL. We note that analogous reasoning applies to a—~NormEC-SGD (Shulgin
et al., 2025a): While it enjoys similar convergence guarantees in the full-batch setting, it can fail to
converge once stochastic gradient noise is used.

3 CL1P21-SGD2M: NEW METHOD AND THEORETICAL RESULTS

We now introduce C1ip21-SGD2M (Alg. 3) for private distributed training and outline its key com-
ponents. First, we employ client momentum with parameter 3, which averages out stochastic gra-
dient noise by exploiting momentum’s variance—reduction effect (Ma & Yarats, 2018; Cutkosky &
Orabona, 2019). This removes the need for the full-batch updates assumed in prior work. A central
challenge in combining client-side momentum with DP, however, is that DP noise accumulates in the
momentum vector; to mitigate this, we incorporate a server-side momentum that damps and smooths
the noisy aggregated update. While similar double-momentum schemes have appeared in the op-
timization literature (Fatkhullin et al., 2024; Xu & Huang, 2022; Wang et al., 2023), to the best of
our knowledge, this is the first application in a DP setting analyzed under a standard smoothness as-
sumption. Finally, we adopt EF21-style error feedback on the client side to correct clipping-induced
client drift. Since clipping acts as a contractive compressor but with input-dependent contractivity,
standard EF analyses fail to apply. To overcome this, we first develop an induction-based analysis in
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Algorithm 3 C1ip21-SGD2M

Require: 20, g% v° € R? (by default ¢° = v" = 0), momentum parameters B,B € (0, 1], stepsize
v > 0, clipping parameter 7 > 0, DP-variance parameter o2 > ()
1: Set ¢ = g” and v? = v° for all i € [n]

2: fort=20,...,7T—1do

3 gt =gt gt

4 fori=1,...,ndo

5: ot = (1= Bl + BV fi(at T, &)

6: w;_H ~ N(0,021) only for DP version
7 =dip (ot = gh)+ W

8 gt =gl + Belip (v —gf)

9:  end for R

10 gt+1 =gt + % Z;}:l c,f+1

11: end for

the deterministic regime by explicitly bounding the magnitude of the clipping input, and then extend
the result to the stochastic setting using a high-probability argument that guarantees steady progress
despite DP noise.

3.1 ANALYSIS IN THE DETERMINISTIC CASE

The next result derives a convergence rate for C1ip21-SGD2M when V f; (2!, 1Y) = Vfi(at)
almost surely, i.e., Assumption 1.2 holds with ¢ = 0.

Theorem 3.1 (Simplified). Let Assumptions 1.1 and 1.2 with ¢ = 0 hold. Let B =

max; ||V fi(z0)||> 37 and A > f(z°) — f*. Then, for any constant 3 € (0,1], there exists a
stepsize v < min{l/121,7/12BL} and momentum parameter 3 = 4L~ such that the iterates of
Clip21-SGD2M (Algorithm 3) converge with the rate

F X IV ]P0 (RAlERm). ®)

Moreover, after at most %—f iterations, the clipping will eventually be turned off for all workers.

Proof sketch The proof of Theorem 3.1 (and all subsequent theorems) relies on a carefully con-
structed Lyapunov function:

D=5+ LS gt — ol P S ! = VP ot - VI ©)
where 0¢ := f(2') — f*. The coefficients are calibrated so that all terms contribute on a compara-
ble scale to ®¢. Once we establish a descent of ®¢, it follows that both the learning shift variables
{g}}™_, and the momentum buffers {v!}?_; track the true gradients {V f;(x")}™_,, thereby justify-
ing their role in the method. The only new constant introduced is 1, which captures the key technical
difficulty in the proof. Through an induction argument, and with a careful choice of 7 ~ 7, we estab-
lish a uniform gap bound |[vit* — g||< 7/n. This result allows us to regard clipping as a contractive
operation on the increments vf“ — g!, thereby enabling a standard error-feedback analysis. The full
proof is provided in Appendix E.

This theorem guarantees an O(1/T) convergence rate, which is known to be optimal for smooth non-
convex first-order methods (Carmon et al., 2020; 2021). Notably, like C1ip21-SGD, C1ip21-SGD2M
also turns off clipping after finitely many iterations—once |[v/** — g!||< 7. Crucially, our result
holds without any bounded-heterogeneity or bounded-gradient assumptions. By contrast, even un-
der such restrictive conditions, many prior nonconvex analyses (Liu et al., 2022; Zhang et al., 2022;
Li & Chi, 2023; Allouah et al., 2024) fail to achieve an O(1/T) rate in the noise-free setting.

3.2 ANALYSIS IN THE STOCHASTIC CASE WITHOUT DP-NOISE

Next, we turn to the stochastic setting where each worker has access to local gradient estimators
satisfying Assumption 1.2. First, we consider the case without DP noise, i.e., non-private training.
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Theorem 3.2 (Simplified). Let Assumptions 1.1 and 1.2 hold and o € (0,1). Let B =

max; ||V fi(z0)||> 37 and A > ®°. Then, for any constant 3 € (0,1], there exists a stepsize 7y
and momentum parameter [ such that the iterates of Clip21-SGD2M (Algorithm 3) with probability

at least 1 — o are such that + ZZ:OI |V £(2?)||? is bounded by

%) (LA(l;B/‘r) i a(\/%3+a)> (10)

where O hides constant and polylogarithmic factors, and higher order terms that decrease in T

Proof sketch. The proof follows the same overall structure as Theorem 3.1, but with the key compli-
cation that the increments vf - g} are now random and can, in principle, grow without bound under
Assumption 1.2. To handle this, we switch to a high-probability argument: by inductively showing
that, with a large probability, each vf"’l — ¢! stays below a fixed threshold, we recover a contrac-
tive property of the clipping operator on these random vectors. The remainder of the proof then
mirrors the deterministic case, augmented by careful martingale-difference concentration bounds;
see Appendix H for full details. This result demonstrates that C1ip21-SGD2M achieves an optimal
O(Y/vnT) (Arjevani et al., 2023) rate in the stochastic setting. In contrast to the previous works
establishing similar rates (Liu et al., 2022; Noble et al., 2022; Allouah et al., 2024), our result does
not rely on the boundedness of the gradients or data heterogeneity. Moreover, when o = 0 (no
stochastic noise), the rate from (10) becomes O(/T), recovering the one given by Theorem 3.1.

3.3 ANALYSIS IN THE STOCHASTIC CASE WITH DP-NOISE

Finally, we provide the convergence result for C1ip21-SGD2M with DP-noise.
Theorem 3.3. Let Assumptions 1.1 and 1.2 hold and o € (0,1). Let A > ®°. Then, there exists
a stepsize vy and momentum parameters 3, 3 such that the iterates of Clip21-SGD2M (Algorithm 3)

with the DP-noise variance o2 with probability at least 1 — o are such that + ZtT;()l V£ (x)]|? is
bounded by

O ((Semasls (VEB+ B +a)) 4 (Y5 4 SREEY) (VIK+ B o)), D

TvVnT
where O hides constant and polylogarithmic factors, and higher order terms decreasing in T.

In the special case of local Differential Privacy, the noise level has to be chosen in a specific way. In
this setting, we obtain the following privacy-utility trade-off.

Corollary 3.4. Let Assumptions 1.1 and 1.2 hold and o € (0,1). Let A > ®° and o, be chosen
as o, = © (g\/T log (%) log (%)) for some £,6 € (0,1). Then there exists a stepsize v and

momentum parameters [3, B such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
at least 1 — « satisfy local (¢, 0)-DP and

PRI 6 (VIS (f+ () ) IR+ Bea).

15

where O hides constant and polylogarithmic factors, and terms decreasing in T'.

The proof of the above result is provided in Appendix G. Disregarding dependencies on polylogarith-
mic factors, LA, B, and o, the derived utility bound simplifies to O (ﬂ/ma) + (Ya/iyme)) ").

When Vd/\/me > 1— which is common in modern models where d is at least hundreds of millions
and far exceeds the number of clients n (Charles et al., 2024; Chua et al., 2024)—the first term
in (12) dominates, yielding a rate that matches the best-known non-convex utility bounds (Allouah
et al., 2023). However, when \/3/ (v/me) < 1, our bound is less favorable. The tightness of this bound
under the general assumptions considered in this work remains an open question.

A key limitation of our DP guarantee is its incompatibility with privacy amplification by sub-
sampling. This arises from the client-side computation of vectors vf“ and g,f +1 which accumulate
private information over multiple iterations. These components are essential for our method to han-

dle data heterogeneity (through g{*') and to reduce stochastic noise (through vf“). In contrast,

(2
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Figure 2: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M on logistic regression with
non-convex regularization for various clipping radii 7 with mini-batch (two left) and Gaussian-
added (two right) stochastic gradients. The final gradient norm is averaged over the last 100 itera-
tions. The gradient norm dynamics are reported in Figure I.1.
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many existing methods benefit from this amplification, as illustrated by C1ip-SGD (Abadi et al.,
2016), which achieves a smaller DP-noise parameter o, = O ((qT/E) T log (1/5)), where ¢ is

the sampling probability for each individual data point. However, these methods typically rely on
restrictive assumptions such as bounded data heterogeneity, as discussed in Section 1.2. Achiev-
ing both privacy amplification by sub-sampling and provable convergence without such limiting
assumptions remains an open challenge. Despite these limitations, our experimental results indicate
that C1ip21-SGD2M achieves a privacy-utility trade-off comparable to C1ip21-SGD.

4 EXPERIMENTS

In this section, we provide an empirical evaluation of the proposed algorithm against baselines
such as C1ip21-SGD (Khirirat et al., 2023), a-NormEC-SGD (Shulgin et al., 2025a), and C1ip-SGD,
where the latter is considered as the method of choice in private training.

First, we test the convergence of C1ip-SGD, C1ip21-SGD, and the proposed C1ip21-SGD2M algo-
rithms with stochastic gradients for various clipping radii 7 on several workloads. These results
demonstrate the significance of using the momentum technique to achieve better performance.

Non-convex Logistic Regression. In this experiment, we assess each algorithm using only
stochastic gradients—either by adding Gaussian noise to the full local gradient V f;(x) or by sam-

pling mini-batches—without any additional DP noise. We focus on logistic regression with a non-
2
convex regularize, f;(z) = L >y log(1 + exp(—bija;x)) + A Z;i:l 11# on the Duke and
h 1
Leukemia datasets (Chang & Lin, 2011), a setup used in prior work (Khirirat et al., 2023; Li &
Chi, 2023). We fix S (no DP noise), and full tuning details appear in Appendix I.1. Figure 2 plots
the average gradient norm over the final 100 iterations, aggregated across three runs, for a range of
clipping radii 7 C1ip21-SGD2M consistently matches or outperforms the other methods—especially
at small 7—demonstrating its robustness to the choice of clipping threshold and aligning with our
theoretical guarantees. Furthermore, the convergence curves in Figure 1.1 show that C1ip21-SGD2M

reaches optimality faster than its competitors.

Training Resnet20 and VGG16. We next evaluate our methods on training ResNet-20 (He et al.,
2016) and VGG-16 (Simonyan & Zisserman, 2014) models on CIFAR-10 (Krizhevsky et al., 2009)*.
Results, averaged over three random seeds, appear in Figure 3 (global clipping across all weights)
and Figure [.2 (layer-wise clipping). As before, we set B =1 for Clip21-SGD2M due to the absence
of DP noise. The detailed experiment description is provided in Appendix 1.2.1.

We report both test accuracy and training loss at the end of training. Clip-SGD’s performance
degrades steadily as the clipping radius 7 shrinks, whereas both C1ip21-SGD and C1ip21-SGD2M
remain much more stable. In particular, for small 7, C1ip21-SGD2M outperforms C1lip21-SGD,
achieving lower training loss and higher test accuracy—empirical findings that further validate our
theoretical predictions. Full training curves are given in Figures 1.3-1.4 for VGG-16 and Figures
1.5-1.6 for ResNet-20.

Adding Gaussian Noise for DP. In our second experimental suite, we evaluate Gaussian-DP vari-
ants of the optimizers on MLP and CNN architectures using the MNIST dataset (Deng, 2012).

*Our implementation is based on the open-source code of (Horvith & Richtarik, 2020) with minor adjust-
ments.
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Figure 3: Comparison of Clip-SGD, C1ip21-SGD, and C1ip21-SGD2M when training Resnet20
(two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied glob-
ally. The train loss and test accuracy dynamics are reported in Figure 1.3 and Figure L.5.
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Figure 4: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M when training CNN (two
left) and MLP (two right) models on MNIST dataset, varying the privacy budget € where the clip-
ping is applied globally. The training loss and test accuracy dynamics are presented in Figures 1.7
to 1.10.
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Figure 5: Comparison of C1ip-SGD and C1ip21-SGD2M when training CNN (two left) and MLP
(two right) models on MNIST dataset, varying the privacy budget ¢ and number of sampled clients
|S¢|, where the clipping is applied globally.

We compare Clip-SGD, C1ip21-SGD, a-NormEC, and Clip21-SGD2M across privacy budgets
e € {3,5.2,9,15.6,27} (with § = 10~3). The data are split into n = 25 equal shards, and each
method is run for 7" = 150 epochs with batch size 64 and 3 random seeds. Full experimental de-
tails are reported in Appendix 1.2.2. As shown in Figure 4, C1ip21-SGD2M achieves competitive
performance: it slightly outperforms C1ip-SGD on the MLP and matches it on the CNN, further
corroborating our theoretical results. We report the training dynamics in Figures 1.7 to 1.10. To
remain consistent with our analysis (where we assume o-sub-Gaussian gradient noise), we do not
consider amplification by client sub-sampling in the experiments.

Partial Client Participation. Although our current theory does not cover partial client participa-
tion, our experiments in Figure 5 indicate that C1ip21-SGD2M benefits from privacy amplification
via client sub-sampling. In this variant, the server updates g* (line 10) using only {cf“}ie s, from
the sampled set S; (see Appendix A for more details). We train CNN and MLP models on MNIST
dataset following the previous setup, varying the number of sampled clients |S;|€ {6,12, 18} with
n = 24. We observe that the performance of C1ip21-SGD2M is competitive with that of C1ip-SGD.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced C1ip21-SGD2M, a method achieving optimal convergence rates and
strong privacy-utility trade-offs without assuming bounded gradients or data heterogeneity. Several
promising extensions remain open, including: (7) improving the DP neighborhood and enabling
privacy amplification by sub-ampling (see Section 3.3); (ii) generalizing the analysis to handle
heavy-tailed noise; (ii7) developing AdaGrad/Adam-type variants for improved deep learning per-
formance (Streeter & McMahan, 2010; Duchi et al., 2011; Kingma & Ba, 2014); and (iv) extending
the analysis to settings with generalized smoothness (Zhang et al., 2020b).
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In this section, we provide a more detailed discussion of the extension of C1ip21-SGD2M when the

server samples only a subset S; of clients at each communication round.

The algorithm design in this case is outlined in Alg. 4. There are two main changes in the algorithm

design.

1. Only clients sampled in S; execute steps in lines 6—9; unsampled clients remain idle.

2. The server uses the updates {cﬁ“}ie s, from the sampled clients only.

This variation of C1ip21-SGD2M benefits from amplification by sub-sampling similar to C1ip-SGD.
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Algorithm 4 C1ip21-SGD2M with partial participation

Require: 20, g% v° € R? (by default ¢° = v = 0), momentum parameters B,B € (0, 1], stepsize
v > 0, clipping parameter 7 > 0, number of sampled clients s, DP-variance parameter o2 > 0

1: Set ¢ = g” and v? = v° for all i € [n]

2: fort=20,...,7T—1do

3 gitl = gt gt

4:  sample Sy C [n] such that |S¢|= s

5. foric S;do

6: ot = (1= Byt + BV fi(zt, )
7: Hl ~ N(0,021) only for DP version
8: H'l = Chp_r( t+ —gh+witt

9 g1 =gt + Belip, (' — gf)
10:  end for
11:  fori ¢ S;do
12: oIt =t
13: gf“ = gf
14:  end for
15 gt =gt Byt
16: end for

B NOTATION

For brevity, in all proofs, we use the following notation

* T 1 -
S CORF AN G R
=1

P'i=— lev = ViEI?, Ph= ot = V],
R = thH —2'2.
We additionally denote 7! = M and = L where B is defined in each section (it is

different in deterministic and stochastic settings). Besides, we define Z; := {i € [n] | |[v} — g |>
T}

We denote 0! = Vf;(z',&!) — V f;(2'). From Assumption 1.2, we have that 6! is zero-centered
o-sub-Gaussian random vector conditioned at x*, namely

E[6!|2'] =0, E |ex 6:11* b <
i =0, P2 | 2" < exp(1), (13)

which is equivalent to
2

Pr(l0]> 1) < 2exp [~y ) Wb >0 (14
202

up to the numen’cal factor in o (Vershynin 2018). Moreover we define an average of 0! as 0" :=
LS 1 6, an average of w! as O = Zl 1 Zz 1 w and an average of g as g = L 31" | gt
Thus, we have the following relation between gt and g :

gt =g + Bt (15)

Indeed, it is true at iteration O by the initialization. Let us assume that it holds at iteration ¢, then we
have

3 \Q>

n B . B n . B
Z clip, (v —g})+w ™) = g +BQ"+ =D (clip, (v —g))+wi ) =g +pQ,
P i=1

i.e., it holds at iteration ¢ + 1 as well.

17
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C USEFUL LEMMAS

Lemma C.1 (Lemma C.3 in (Gorbunov et al., 2019)). Let {&,}i_, be the sequence of random
vectors with values in R™ such that

E &k | Ek—1,---,&1) = 0 almost surely, Vk € {1,...,N},
and set Sy = Zﬁzl & Assume that the sequence {§k}f€\[=1 are sub-Gaussian, i.e.

E [exp (II&kHZ/ai | Ek—1,.-. ,51)] < exp(1) almost surely, Vk € {1,..., N},
where 0s, ... ,0N are some positive numbers. Then for all v > 0

Pr | [Sn|> (V2+27)

N
> o? | < exp(—7/s). (16)
k=1

Lemma C.2. Let f be L-smooth, 6' = f(z') — f*, {x'} be generated by Algorithm 3, and the
stepsize 7 < i Then

¥ 1
51 <8 = vt

@th = a2y ||V f (') = o)

27 o Ao ) a7
+ 205 gt — ot 4B
i=1
Proof. Using L-smoothness of f we have
() L
FE) < f@) +(VFh), 2™ = at) + Sl =2t
(i4) LAy?
2 f(at) ~ VI, ) + T2l P
(i) ¥ Ly?
= f@") =5 (V@I 1PV (") = o'I7) + =~ 1g"II*
v v 0
= f(@") = SIVFEOIP= Sl 1 (1 = Ly) + V(") = ¢'[1”
(i) ¥ ol ol
< @) = SIVIEDIP= g IP+5 1V ") = o'l (18)
where (i) follows from smoothness; (i7) from the update rule (iii) from ||a — b|?=

l|al|?+[b][*—2(a, b); (iv) from the stepsize restriction ¥ < 5-. Using (15) we continue as fol-
lows

Y Y — A
f@™h) < fa') - §|\Vf($t)||2—1Hgt||2+7||Vf($t) — |2+ 02 112
(1) y ~y . ~
< ) - LIV A - T lg A V£ — o' [2+23]lg" ot 242

(i) v v 27 ;
< f@") = SIVFEOIP= L1 IP+20IV f ") — o' [P+ > llgk = o329,
i=1
(19)
where (i-i7) follow from Young’s inequality. It remains to subtract f* from both sides. It remains to
replace g¢ by %(xt —lth)
O

Lemma C.3 (Lemma 4.1 in (Khirirat et al., 2023)). The clipping operator satisfies for any x € R?

lclip, (2) — o< max {[lz] -7, 0} . (20)
Lemma C.4 (Property of smooth functions). Let ¢:R? — R be L-smooth and lower bounded by
¢* € R, i.e. p(x) > ¢* for any x € R®. Then we have

IV (z)[?< 2L(¢(x) — ¢*). @1

Proof. Tt is a standard property of smooth functions. We refer to Theorem 4.23 of (Orabona, 2019).
O
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D PROOF OF THEOREM 2.2 (NON-CONVERGENCE OF CLIP21-SGD)

Proof. The case n = 1. Let us consider the problem f(z) = Z||z||>. Let vectors {z; 3_) be

defined as
3 302 0 302 -3 302
=@V = (Vi - CVEs
Note that we have

2702 2402 302
2 2_ 2_
lealP= 20, lzal?= 22, lasli?= 2,

meaning that 7 < ||2;|| for all i € [3]. We define the stochastic gradient as V f(z¢,£!) = V f (%) +
& = Lat + &' where £ is picked uniformly at random from {21, 22, 23}. Simple calculations verify
that Assumption 1.2 holds for such noise. Next, the update rule of the method (6) in the case n = 1
is

t+1

et =at =gt =2t =y (Vf(a') +clip(Vf(2', ") = Vf(2'))) = 2" — Lya’ — yclip, ().

Since 7 < ||z;]|| for any i € {1, 2, 3} clipping is always active and we have

1 1 1
E [CllpT (ft)] =3 Clip,,.(Zl) + 3 Chp'r (’22) + 3 Chpr (’23)

3 3 3
1 T +1 T 1 T
“ 30zl 3Tl "3 Tzs] *®

_1 T V3
T 33v3¢ 10

0500+

z2
T oV3 + 1 7 ov3 (-3
3 4fg 10 4 35v3c 10 \—4

50

Thus, we obtain
E [27] = (1 — Ly)E [&" '] — 7E [clip, (¢")]

=(1—Ly)E[z"'] —~h

= (=L = yh Yy (1 - Lyt
t=0

-7 (4) -2 () T
—(1-Ly)" <$?2)> S G) 1 (1 I)").

Therefore, since x?2) < 0 we have

E[IVF@D)I?) = E [I1La" ]
= |[E [La"] | + E [||La™ — E [£27] "]

o

> |E [27] |
%5 (1 — (1= L) ) + L ((1 = L)ty ~ 15L (1 — (1= 1Lv) ))2
4 2

16 (1= (= ")+ (1= L)L 1 - (1 = L))

= (1= = 1)) (= PV

;J;

19



Under review as a conference paper at ICLR 2026

2

Note that the function a(1 — )? 4+ b > -9 Applying this result for a = 7=,b = ||V f(2°)|]?,

and z = (1 — Lvy)T we get

e s _sIVIEP 1 { 0 }
E(IVS@NIT) 2 2 nera = g min IV 5 1

+

The case n > 1. If n > 1 then we can consider a similar example where each client is quadratic
£||z||? and the stochastic gradient is constructed as V f;(z!,&!) = V f;(2') + & = Lat + ¢! where
&! is sampled uniformly at random from vectors {21, 22, 23} such that

(3 302 {0 302 (-3 302
A7\0) Voo 27~ W/ V1o 7 \—4) V1008

Then, Assumption 1.2 is satisfied with @ /B Therefore, if x(2) =-l,e< f’ and 7 > 3%, this
implies that B < 21‘; - < gg‘;g , and
2 2 2
E[IVF@D)I?] > 5 mln IV £ (%)%, T
O

E PROOF OF THEOREM 3.1 (CONVERGENCE OF CL1P21-SGD2M IN
FULL-BATCH SETTING)

As we mention in the main part of the paper, the proofs are induction-based: by induction, we
show that several quantities remain bounded throughout the work of the method. That is, in Lem-
mas E.1-E.7, we establish several useful bounds and recurrences. These lemmas allow us to use the
contraction-like property (Lemma C.3) of the clipping operator and finish the proof of Theorem 3.1
applying similar techniques used in the analysis of EF21.

Lemma E.1. Let each f; be L-smooth. Then, the iterates generated by Clip21-SGD2M with
V(a7 = V(a1 (full gradients) and o,, = 0 (no DP-noise) satisfy the following
inequality

lof ™t = gfll < (1 = B)llvf — gi~H|+Bmax{0, |[vf — gi M| =7} + LBg'|

(22)
+BIIVfi(a") = vl

Proof. We have
o+t — gt & H(l— B)vi + BV fi(z"™) — gi
< [0 = g lI+BIIV fi(a*) — of|

(i) t— ZJRN t—
=" |lvf —gi" = Belip, (v — g; DI+BIV fila"™") = V(e [+B]V fi(a") = i
(iv)

(@) A _ . _
< (1= P)llvi = g~ I+Amax{0, v — g; " |-} + LyBllg"I+8] V fi(a*) — vi].

where (4) follows from the update rule of v} in deterministic case, (i) from triangle inequality, (i77)
from the update rule of g, (iv) from trlangle inequality, update rule of x!, and L-smoothness, (v)
properties of clipping from Lemma C.3. O

Lemma E.2. Let each f; be L-smooth, A > ®°, and B > 7. Assume that the following inequal-
ities hold for the iterates generated by Clip21-SGD2M with V fi(z!+1 €M) = V f;(2+1) (full
gradients) and o, = 0 (no DP-noise)

1 |l¢"t|I< VEALA + 3(B — 7);

20

< (1= B)|vt = gt M+t — it = clip, (v} — gt [+ LBl gt |+ BV fi () —

vill
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2. |Vfi(a'™") =oM< VALA + §(B — 7);
3. ol = gi < BVi € [n];

4. 7 < 121L;

5. 3,8€l0,1];

6. t < A

Then we have

llg'l|< V6ALA + 3(B — 7). (23)

Proof. We have
9"l

3 n

—1 6 : t—1

= |lg* —|—Eélchp7v—gl )
1=

LB

—~
.
=

gt1 +B(Ut — gt

3 \

chpT of =gt = (f =g 1))H

>

3 \

=|(1=B)g" " + BV f(ah) + B(v' - V(z Loy Z clip, (vf — gi™") — (v} — gi~ 1))”

" n

) 53
<1 - pllg BV BZ _ V42 2 oot = of=r

where (i) follows from the update rule g?, (i) from triangle inequality and clipping properties from
Lemma C.3. We continue the derivation of the bound for ||g¢|| as follows

Mg BV F (@ +BIV f(ah) — V()]
(1= B)oi " + BV fi(a') — V fi(a")|+B(B — 7)

Q)
lg'll < (1 -

+

M§ =@

@
Il
-

S ™

(44) . «
< (1= B)llg" I+8v2L(f(h) — ) + LyBllg"™ 1||+ lesz — oY

+ B(B-1)
(444)

< (1= B+ Bl +AVRER + L1 - 9) YOIV A - TG

L Zuw 1) o HAB - 7)

(iv)

<1 B LAB2 — 8) g +AVILE + B~ H)(VALA + 2(B — 1)+ B(B 1)

’U

/\
v

< (1= B+ LyB(2 - B))(VBALA + 3(B — 7)) + BV2LA + B(1 — B)(VALA + 2(3 —7)
+ B(B - T)v

where (i) follows from triangle inequality and update of v}, (i) from L-smoothness and update rule
of ¢, (ii7) from the definition of ®* and triangle inequality, (iv) from the assumptions 2 and 6, (v)
from the assumption 1. The above is satisfied if we have simultaneously

8(1—fB+2LyB) +vV2B+28<8
3(1—3+2L73)+%B+B§3.
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Both inequalities hold when Ly < L. O

Lemma E.3. Let each f; be L-smooth, A > ®°, and B > 7. Assume that the following inequal-
ities hold for the iterates generated by Clip21-SGD2M with V fi(z*+1 €M) = V f;(2+1) (full
gradients) and o, = 0 (no DP-noise)

1. ALy < Bandy < -
2. Vit ™" = i< VALA + §(B —7);
3 g < VBALA + 3(B — 7).

Then we have

IV fi(a") = vill< \/4LA+%(B—T) Vi € [n]. (24)

Proof. We have

IV £i(at) = ot 2 |9 fi(at) — (1= Bot~" = BV fi(at)]|
=(1-BIVfilz’) v
(i)
< =B Lyllg I+Q = BNV fila™h) — v

(i)

< Ly(m+3(3—7')>+(1—/5) <M+§(3—7)>

= (8Ly +2(1 - B)VLA + (3L7 + 3(12_5)) (B — 1),

where (i) follows from the update rule of v!, (ii) from triangle inequality, smoothness, and update
of z*, (4i7) from conditions 2-3 in the statement of the lemma. We need to satisfy

8Ly +2(1—f) <2 ALy < B.

3 3
By +5(1-6) < 5 &2y <6

Since 4L~y < 3, both inequalities are satisfied. ]

Lemma E4. Let each f; be L-smooth, A > ®°, B > 7, andi € T, == {i € [n] | ||v} — g:7|>
T}. Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M with
Vi i(at L, &) = V f;(2tY) (full gradients) and o, = 0 (no DP-noise)

I 4Ly < B

[~

2.

h

Y1

B

)

[~}

BT
=T

w
wloo
ﬁ
>

b

BB 7)<

NI

5. |lg*I< V64LA + 3(B — 7);
6. |V fi(z') — vl|< VALA + 3(B — 7).

Then

o+~ gt ot - gt~ -5 25)

22
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Proof. Since i € T;, then |[v! — g/~ ||> 7, thus from Lemma E.1 we have
loftt = gill < (1= B)llvf — gi I8} — gi~HI=7) + BLANG I+-BIIV fiula) — i
(@) - 3
< |lof — gt | =BT + BLy (\/64LA +3(B — T)) + (\/4LA + §(B - T))

= |Jof — g7 || =BT + (8BLy + 28)VLA + (38L~ + 38/2)(B — 1),

where () follows from assumptions 5-6 of the statement of the lemma. Since Ly < 12, we have
lof ™ = gt < ot — gt~ ~Br + SAVER + L6(B 7).
Due to assumptions 2-3 of the lemma, we have
o = 1 < ot — gt 12
which concludes the proof. O

Lemma E.5. Let each f; be L-smooth. Then, for the iterates generated by Clip21-SGD2M with
V fi(xt ff-H) = Vfi(z'TY) (full gradients) and o, = 0 (no DP-noise) the quantity
Pt =150 vl — V fi(a")||? decreases as

3L?

P < (1-p8)Pt + 7}#. (26)

Proof. We have

[ttt = VP 21 - Bt + BV fi(Y) - Vit

= (1= B2V fi(a") = vi|?
(i1)
< (1= B+ 5/2)||lvi = V fil=")|?
+ (1= B)*(1+%8) |V fi(z") = V(™)
(i) 3L2
< (=Bl - Vfi(fvt)HQJr?let S
where (i) follows from the update rule of vf, (ii) — from the inequality ||a + b[|?< (1 +
B/2)]|al|*+(142/5)||b||? that holds for any a, b € R?and 8 > 0, and (44i) — from (1—3)(1+8/2) <
1, which holds for any 8 € [0, 1], and smoothness. Averaging the inequalities above across i € [n],
we get the statement of the lemma.

O

Similarly, we can get the recursion for P! := ||v! — V f(z?)]|2.

Lemma E.6. Let each f; be L-smooth. Then, for the iterates generated by Clip21-SGD2M with
Vfi(2t L ) = V f; (2t (full gradients) and o, = 0 (no DP-noise) the quantity

Pt = ||vt — Vf(a!)||? decreases as

3L2

Pl < (1-pB)P' + TRt. (27)

Next, we establish the recursion for V* := Ly gt —of)2.

Lemma E.7. Let each f; be L-smooth. Consider Clip21-SGD2M with Vfi(xt+1,§f+1)

V fi(zt ) (full gradients) and 0., = 0 (no DP-noise). Let |lv; — gL B, forall i € [n]
and some B > 1, and B < 1 . Then

45°

gk — o< (1= Bn)llgi ™" — ol P+ ——
Bn

AL ﬂ2
— Vfilz"™ P+ —=
v} filz"=H|P 3

23
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and, in particular,

AP ey, 8L

‘726 < (1 _n)";vt—l + I}t—l + Rt—l’
B B
- n
where 1) = Z, R = ||2'™ — 2|2, and V' .= L 3" || gt — o2
i=1

Proof. Since |[v! — gi7t||< B, for nt == orgrTy e have n; > 1. This implies

llvi

of1> D 1lgtt + Belip, (uf — g 1) — ol

= [18(g; ™" = v} + clip, (o] — gi ™)) + (1= B)(gi " = v])|I?
(i4) . .
< (=m)?Bllg™" = vilP+(1 = B)llgi ™" — i,

where ( ) follows from the update rule of g and (i) from the convexity of ||-||? and the fact that
vt — gi~||< B. We continue the derivations as follows

lgf = vf* = (1= B +B(L =20+ n*) g ™" —vf|I®
= (1= Bn2 = m)llgi ™" = ofII*.

Letp = 237) (note that n < 1). Then we have
lgf = vill* < (1= p)llgi " — wil?

Q=g = (1= Bl t = BV fi(a")|?

(i)

< A=)+t — v 241 —p><1+2/p>/32uvf-1—Vfi<xf>||2
5 o' — V£ 2+ 4L;B2Rt1,

lgi —

(#)

_ 4
< A=p)lgi ™ =i P —

where (i) follows from the update rule of ¢!, (i) from the inequality ||a+b|>< (1 +7“/2) lall?+(1+
2/7)|1b|?, which holds for any positive r (i.e., for 7 = p for some p > 0) and a,b € R?, (iii) from
the fact that p < 1 by assumption, the inequality [|a + b2 < 2[lal|?+2]|b])%, which holds for any

a,b € R%, and smoothness. Finally, since 2677 < 1, we ensure that p < 1, and derive the final bound
/8 4L 5 Rt 1
B

= Vi P+ ——

lg = ofI* < (1 = Bn)llgi™

O

Theorem E.8 (Full statement of Theorem 3.1). Let Assumption 1.1 hold. Let
B = max{37, max;||V f;(2°) ||} and ®° defined in (9) satisfies A > ®° for some A > 0. Assume
the following inequalities hold

1. stepsize restrictions: v < 12 or 4Ly = B, and

5 3282L% , 96L2 ,

] 522 7T 522

- )

2. momentum restrictions: 53V LA < 547, BB -1)< BT p< £,

Then, the Lyapunov function from (9) for Clip21-SGD2M with ¥V fi(z*+1, ¢Th) = V f; (21 (full
gradients) and o, = 0 (no DP-noise) decreases as

g
o1 < ot §||Vf(xt)||2,

SNote that n = = 5 < 3 by the choice of B, therefore ﬂ < 5 does not impose any additional assumption

on 3 and it can be chosen from [0,1].
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and we have

L2 o (1), 28)

t=0

Moreover, after at most 2L iterations, the cllppmg operator will be turned off for all workers.

pr

Proof. For convenience, we define
Vii(z™) = vi_l = g,i_1 =0, & !'=+oc0.
Then, we will derive the result by induction, i.e., using the induction w.r.t. ¢, we will show that

1. the Lyapunov function decreases as ®* < &'~ — ||V f(z'~1)||%;

2. |lgtI< V6ALA + 3(B—-1);

3. |lvf = Vfi(z")||< VALA + 3(B —1);

4. vt —gi < maX{O,B — t'BTT} .
First, we prove that the base of induction holds.
Base of induction.

Lo = g7 = [lf[|I= BIIV fi(«®)|| < 3B < B holds;
P =137 (g7 + Belip, (v0 — g7 1) = %Z?:l clip, (BV f;(x°)). Therefore, we have

E g}:ﬁvﬂ@%+%dmAﬁVﬁ@%)—Bvﬁw%)

< BBV f(2°)|+5 E:HwX{OBHsz )-7}
g@g¢ﬁi‘$ﬁi‘*+ﬁ
< V64LA +3(B — 7).

3. We have
of = V fi(z)|| = BV fi(2°) = V fi(a°)]
<(1-p)B

3
S \/4LA+§(B—T)
4. 0 < &L — |V f(z~1)|2= & ! holds.
Transition of induction. Assume that for & we have that forall t € {0, 1,..., K}
1 @' <o~ — IV f(2'1)||? (implying ' < A);
2. |lgtlI< V64LA + 3(B — 7);
3. |vf = Vfila")||< VALA + 5(B — 7);

4. |lot = g7 )|< max { b, B — 45}

We proceed via analyzing two possible situations for Zx 11 = {i € [n] | v — g&||> 7}: either
|Zx4+1|> O (there are workers with turned on gradient clipping) or |Zx41]|= 0 (for all workers the
clipping is turned off).
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CASE |Zx41|> 0. Since all requirements of Lemma E.4 are satisfied at iteration K we get for all
1€ T4

) Kp K +1)3
B+ —gK|I< |of —gE 1| - BT < max<T,B— b 76—7 <max<{T,B— 7( + 1)Br ,
i T 9 2 2 2

where (i) follows from the condition 4 of the induction assumption. Similarly due to the assumption
of induction, from Lemma E.2 we get that

lg" < VBALA +3(B — 1),

and from Lemma E.3
3
IV £i(@ ) = of V< VALA + 5(B - 7).

This means that conditions 2-4 in the assumption of the induction are also verified for step K + 1.
The remaining part is the descent of the Lyapunov function. For estimating

VE+L = 1 Z lgE+ — 5|2 we have Lemma E.7 since |jv ™ — g&||< B — 5

453% ~ 48212
45 e | 49

Bn Bn

VK-‘rl ( 6,’]) VK RK

Combining this result with the claims of Lemmas C.2, E.5 and E.6 we get

PR+ — gE+L ;’Yf/Kﬂ + ;Zﬂ PE+1 4 %YPKH
n
’y ~
" 5||Vf(:cK>||2—@RK + 2va +29PX

L ((1 — Bn)VE +

Bn B by
~ L2

. &P <(1—6)PK+3RK)

B2 p

27( K 3L* K)
+ 2 (a-pPE + =R

g (1= AF"+5

2y - - 8

K= SIS VE (L B+ ) + 6777 PX(1-5+8)

L W 1 3282L2 , 96L% , 24L2 ,\ g

BP (1-8+8) - o <1 oy v 7527727 g R
k7 o 1 32B2L2 , 96L% , 24L2 ,\ .
R [ (e L

Since we choose 3% = 64173, then — 5, = 64L2 > and — 2‘212’272 = %72 > -3

Therefore,

3282L% , 96L% , 24L% , 326°L 5 96L ,

5
T T TR TR ER T e )

)

by the choice of . Thus, we get

PR < &K — JVf (")
In particular, this implies ¥ +1 < @K < A,
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K+1 K+1

CASE |Zx41]/= 0. In this case, n*** = 1 for all i € [n], i.e., chpT( —gK)y = vt — gk
that leads to gKJr1 = viKH. Thus, VK“ = 0. Moreover,
from the induction assumption holds for ¢t = K + 1 and using this and induction assumption we get
g% | < V64LA + 3(B — 7) from Lemma E.2 and ||V f; (25 +1) — oY |< VALA + 3(B — 1)
from Lemma E.3. Next, taking into account that VE+L = 0, we can perform similar steps as before
for ®X+1 and get less restrictive inequality

K+1 K_ 7 Ky L _96L2 2_24L2 2 K
B < o - 1P (1 Bt ) B

: 96L>2 2412 5 _ 96L°
Again, 1 — é%ﬂ 72 2> 8~ 2
We conclude that in both cases the Lyapunov function decreases as ®* 1 < &% — 2|V f(25)]2,

and consequently, ®+1 < A. This finalizes the induction step. Therefore, we can guarantee that
for all iterations ¢ € {0, 1,...,7 — 1} we have

~% > 0 which is satisfied by the choice of .

< Pt - IIVf NIIP= levf )P<

Moreover, the proof shows that the clipping operator will be eventually turned off after at most %—f

iterations since ||v} — g/~ !||< max {7’, B - t’BTT} O
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F PROOF OF THEOREM 3.3 (CONVERGENCE OF CL1P21-SGD2M IN THE
STOCHASTIC SETTING WITH DP NOISE)

We define constants a, b, and ¢, which will be used later in the proofs, as follows:

a = <ﬁ+ 24/3log LTO?L D) \/&aw\/f,

12(T + 1)n) 29)
a )

2
T+1
2= (\@+2\/310g 6(;—)> o?,

where 7' is the number of iterations, n is the number of workers, d is the dimension of the problem,
o is from Assumption 1.2, « € (0,1) is a constant, and o, is the variance of DP noise.

Lemma F.1. Let each f; be L-smooth. Then, for the iterates of Clip21-SGD2M we have the follow-
ing inequality with probability 1

[0 = gl < (1= B)l|vf — g~ {l+B max {0, [[v} — g; ' [|=7} + BLA|g|
+ BV filz") — ofll+8116;7 ],
where 0t .= V f;(z',&!) — V f; ().

b? = 202 log (

(30)

Proof. We have
®
loit™ = gill = (1 = B)vi + BV fi="1 677 — i

(4)

< ok = gHI+BIV it €Yy — o

(441) P _ _

= ol — Belip, (vf — gi7h) — gt MBIV Fi(at T €Y — o
(iv) N N
< (1= B)|lvf — gt M+ Bmax {0, [[of — gt Y| =7} + BV fi(a+ €Y — Vi)
+ BV fi(x™) — V fi(ah) |+ B8]V fi(zt) — ol

(v) N _ A _
< (1= Aot — g +Bmax {0, ol — g~ ~7} + AL — o

+BIIV fila) = vill+B116;

(vi) - _ 5 —

= (1= B)llvf — g~ +Bmax {0, |[vf — g/~ ||=7} + BLg"
+BIIV fila') — of [ +BI16F I,

where (7) follows from the update rule of v}, (i) from triangle inequality, (i47) from the update rule
of g¢, (iv) from the properties of the clipping operator from Lemma C.3 and triangle inequality, (v)
from smoothness, (vi) from the update rule of z. O

Lemma F.2. Let each f; be L-smooth, A > ®°. Assume that the following inequalities hold for the
iterates generated by Clip21-SGD2M

L g¢°= %2?:19??

2. |lg"~Y|< V6ALA + 3(B — 7) + 3b + 353a;
3. | YI< VOALA + 3(B — 1) + 3b;

4. |Vfi(aY) — ol < VALA + 3(B— 1) + 3b+ Ba foralli € [n);

N

vt — gt~ YI< B foralli € [n);

1.
12L°

=)

7 <
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7. 16H1< bforall i € [n];

l

nzl IZ

9. 3,8 €10,1];

10. —1 < 2A.

Then we have

lg*||< V64LA + 3(B — 7) + 3b + 33a. (31)

Proof. We start as follows

(i)
lg*ll =

RS By

-1 . t— 1

g+ - E clip,( v - 9; E g 1 wf
1=

+ 8 + 0 D0[VAG) + (of = V) +clipe(of ™) - 0~ ol )]

-7+ (- B+ g wa

gt71 41 Bzw

=1

+(1- B 1||+BZ||U _ VY]

+ B”vf ||+ Z”ChpT ’Ut — th 1) /UE + gf—ln

+BIVF N +BIVF () - V)]

gL pait gt 4 ERS St
n =1

+ 23 e, (of — gt — ot gl 40 g
0 D118t + BV ) - VA,

where (7) follows from the update rule of g?, (ii) — from the triangle inequality, (7ii) — from the
update rule of v, equality (15), and triangle inequality. Using the definition of !, we continue as
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follows

lg* H BIIQtHHfIIVf( OBl 2 ZmaX{O lof — g5~ Hl=r} + (1= B)lg" |

i=1

* 52”0 — B+ BV filat &) — Vi)

L(f(@=1) = f*) + BLyllg" (1 = B)llg" I+8(B — ) + Bl

EgNG
+ Z B)llv; ™ = Vi@ +BIV fi(a", &) — V fi(a")]))

3\Q>§

(vi) . . .
< BVRL(f(a'=1) = ) + BLAlg I+ = B)lg"I+6(B — ) + BII€|

n

S D - )3 (™~ A DIV A — V)
i=1

=1

(vii) . ) 3 3 3
< BVRL(F(1) = 1) + BLy2 = B)llg" I+ = A)g I +A(B — 7) + B
S D D e 7
i=1 =1

(iv) — from the properties of the clipping operator from Lemma C.3, L-smoothness and update rule
of zt, (v) — from L-smoothness and triagnle inequality, (vi) — from triangle inequality, (vii) — from
L-smoothness. Now we use the assumptions 2-5, 7-8, and 10 to bound the terms

lg'll < BVALA + 218 (VBALA +3(B — 7) + 3b + 38a) + (1 - B) (VGALA + 3(B — 7) + 3b)
+ B(B—7)+ Ba+ B8b+ B(1—p) (\/4LA+ g(B—T) + 2b+/3’a> .
Regrouping the terms we obtain
9"l < VLA[2B + 16Ly53 + 8(1 — B) + 23(1 — B)] + b[6LyS3 + 3(1 — B) + BB + 3/28(1 — B))
+(B—7)[6LY8+3(1— B) + B +3/28(1 — B)] + a[6LyB* + 5 + (1 — B)].
For the first coefficient, we have
28 + 16Ly3 + 8(1 — B) + 2B(1 — B) < 8 < 4B + 1618 < 83<:4L'y§ 1,

where the last inequality is satisfied by the choice of the stepsize Ly < =. For the second coeffi-
cient, we have

6L73+3(1—5’)+Bﬁ+23(1—ﬁ)§3<=6L73+BB+23(1—5)SBB

Sa-m<s

where the last inequality is satisfied by the choice of the stepsize 6Ly < % and momentum parameter
B < 1. For the third coefficient, we have

= 6Ly+1+

6L73+3(1—B)+B+%B(1—5)§3<:6L73+B+23(1—5)§33<:6L7+1+g§3,

where the last inequality is satisfied by the choice of the stepsize 6Ly < % For the fourth coefficient,
we have

6LyB% + B+ B*(1— B) <38 < 6LyB* + 5% <26 = 6LyB+ 5 < 2,

where the last inequality is satisfied by the choice of the stepsize 6 Ly < % and momentum parameter
B < 1. Thus, the statement of the lemma holds. O
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Lemma F.3. Let each f; be L-smooth, A > ®°, B > 7. Assume that the following inequalities
hold for the iterates generated by Clip21-SGD2M

I v < ﬁ
2. 6Ly < 5;
3VLiatY) =0 S VALA+ 2(B—7) + 3b+ Ba for all i € [n);

4. |6H< bforalli € [n);

“

" |< VBALA + 3(B — 1) + 3b + 3fa;
17 HI< V6ALA + 3(B — 1) + 3b.

N

Then we have 5 5
[V fi(zt) — ot||< \/4LA+§(B—T)+§b+Ba. (32)

Proof. We have
IVFi(a") = ot 2 [V filah) — (1 - Bl =t — BV fi(at, &)
(1= BIVAE) — o UHBIV filat) - VA €D
1= B Ll I+ - BV i) — o L8161

Y sy (\/64LA +3(B—7)+3b+ 3Ba)

+(1-75) <m+3(3—7)+2b+5a> + Bb
= (8Ly +2(1 — B))VLA + (3Ly +30-8)/2)(B — 1)

+ (BLy(1 — B) +3/2(1 — B) + B)b + (BLyB + (1 — B)B)a,

where (i) follows from the update rule of v}, (ii) from the triangle inequality, (i7¢) from triangle
inequality, smoothness, and the update rule of x!, (iv) from assumptions 2-4 of the lemma. We
notice that

8Ly +2(1— B) <2« 4Ly < B,

3 3
3L7+§(1—5)S§<=2L7§5,

3 3
3Ly+5(1—B)+B <5 <6Ly<p,

BLYB +(1—B)F < = 3Ly < B,
where the last inequalities in each line are satisfied for /3, satisfying the conditions of the lemma. [

Lemma F4. Let each f; be L-smooth, A > ®°, B > 7. Assume that the following inequalities hold
for the iterates generated by Clip21-SGD2M

Loy < 1715

2. B <min{¥YEA 1},

3 ||wt =gt < Bforalli € [n);

4. ||l¢"t||< V6ALA + 3(B — 1) + 3b + fa;

5. |lgt1|< VOALA + 3(B — 1) + 3b);
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6. |Vfi(a!™Y) — v < VALA+ 3(B—1)+ 3b+ Ba for all i € [n);
7. 1 < 2A:;
8. |6|< bforalli € [n].

Then we have
|g']|< V6ALA + 3(B — 7) + 3b.

Proof. We have

o @ et B
gl = (gt + = D clip (vf — g ")
=1

< BV DIt~ VA Al

BYF(a") + B — V(") + (1 - B) 9 lelipe(0f = 5{) = (uf =l ™)

3

+ 25 etip, (0 = 671 = (0! = gt )
i=1
(#4) . . 3
<RIV Il S - i 4 5V ) - V)

(- B 1\|+5Zmax{o ot — gt~ —r)

(iv) . "
< BV2L(f(a'1) = ) + BLAllg" [+ = B)lg" ™ +B(B - 7)
6 Z vt = VETHIHIV @) = Vi) + BIV fi(z") = Vfi(a',€D)])

where () follows from the update rule of each ¢!, (ii) — from the triangle inequality, (#i:) — from
the update of v} and properties of clipping from Lemma C.3, (iv) — from L-smoothness, assumption
3 of the lemma, and triangle inequality. Now we use assumptions 4-7 to derive

|51l < BVALA + BLy(2 — 8) (VGALA +3(B — 7) + 3b + fa) + B(B — 7)

+(1-73) (\/ers(B—T)Jrsb) +B(1-8) (\/M+;(B_T)+zb+6a) + 3Bb
LA (2B +8Ly(2— BB +8(1— B) +28(1 - 8)) + a(LyB*(2 = §) + 57)
B B))

w\co

+(B-1) (3@3(2 —B)+B+3(1-p)+
+b(3LYB(2 — B) +3(1 — B) +3/2B(1 — B)).

For the second term, we have

2L~B%a + B%a < 2L7BVLA + BVLA = (215 + B)VLA,
where we use B < —%. Therefore, the second term should be added to the first term. Thus, we
have for the term with v/ LA

2Ly + B+ 28+ 8LyB(2 — B) +8(1 — B) +28(1 — B) < 8
=20y +142+8Ly(2—B)+2(1—-B) <8
< 18L~y < 3,
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where the last inequality is satisfied by the choice of the stepsize Ly < 1—12 For the third coefficient,
we have

. 5 . 35 3 1
3L9B(2 = B)+ B+3(1— A+ SB(1 - B) S3<3L9(2= B + 14 S(1- ) <3< 6Ly < g,
where the last inequality is satisfied by the choice of the stepsize Ly < % For the fourth coefficient,
we have the same derivations as for the third one. This implies that

19'|< 8VLA +3(B — 1) + 3b,
which concludes the proof.
O

Lemma F.5. Let each f; be L-smooth, A > ®°, B > 7, andi € T, == {i € [n] | ||v} — g} ||> 7}
Assume that the following inequalities hold for the iterates generated by Clip21-SGD2M

1. 12~ < 1;
2. 6Ly < p3;

3. 8 <min{ 07~ 1)

4. B < min{ 8. 1)

5. B <min{Zr 1};

6. B < min{@,l};

7. 19'1I< V6ALA + 3(B — 7) + 3b + 3a;

8. 16 H1< b;

9. ||V fi(a') = vi||< VALA + 3(B —7) + 3b + Ba.

Then

Ly BT
o™ = gill< v = g7 =5 (33)

Proof. Since i € T;, then |[v} — g!~*||> 7 and from Lemma F.1 we have

loftt = gfll < (1= B)llvf — gi~ M I+Bllvf — g~ lI=B7 + BLANG 1+-BIV fula') — v ll+B1165 ]
%) v — gt~ || =BT + BLy (\/(m +3(B-71)+3b+ SBa)
+ /B(\/m+g(3—T)+gb+Ba> + b

= |jvf — gi | =BT + (88Ly + 28)VLA + (3LyB + 38/2)(B — 7)
+ (BLyB +38/2+ B)b+ (3LB + ﬂ)Ba,

where (i) follows from assumptions 6-8 of the lemma. Since 12L~y < 1 we have

(8L +26)VIA < (282 + 29)VIA = VIR < 7T

where we used 8 < 64%. Since 12L~ < 1 we have
38 33 BT
(3r8+ 2) B-n < et Prim-n) = Lo -n <4,
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where we used 8 < %. Since 12L~ < 1 we have

(3LyB + 38/2)b < (B/a+45B/2) b = 7& BT

where we used 8 < Since 12L~ < 1 and B < YLA we have

22b
(3L~B + B) fa <W«+me*:§g LA<éﬁ
where we used 8 < 227;) Thus we have
loftt = gfll < llvf — gf =BT +4- /3; = |lot — ;—1”_5277
which concludes the proof. L)

Lemma F.6. Lez |01 ||< b for all i € [n]. Let each f; be L-smooth. Then, for the iterates
generated by Clip21-SGD2M the quantity P* := 1 3"" | |lvf — V f;(2")||? decreases as

P < (1-pB)P' + ?’ngt + B%% + %5(1 = B)> (i = Vi), 00, (34)

i=1

where R' = ||z*! — 2| and 0! = V f;(2t, &) — V £;(2h).

Proof. We have

ot = VEEHH2 L (1= Bt + BV F( €Y - VT2
= (1= B)(! — Vi(ath)) + BV fi(at+L, €5Y) — Vfi(a+1)) )2
— (1= B)|[ol — Vfi(a! ) |2+B2 0|2

+26(1 = B)(vf — Vfi(z"*1),0;7)

(i)
< (1= B)2(L+8/2)|lvf — Vfi(a")|]?
+ (1= B)2A+ )|V fi(a") = Vfi(z")]*+5%b°
+2B(1 = B)(vf = Vf;(a™t), 0T)
(444)

2
s<1—mmﬁ—VﬂuwW+%§

+28(1 - B) (vl — Vfi(a"T), 001,

||l‘t _ l‘t+1|‘2+52b2

where (i) follows from the update rule of v, (ii) from ||z +y||>< (1 +7)|z||>+(1 + = 1)|jy||? for
any z,y € R? and r > 0, (i4i) from the smoothness and inequalities (1 — 3)%(1 + 8/2) < (1 — f3)
and (1—3)2(1+2/8) < 3/3. Averaging the inequalities above across all i € [n], we get the lemma’s
statement. O

Similarly, we can get the recursion for P! := |[v* — V f(z?)]|?.
Lemma F.7. Let |07 < 7 forall i € [n]. Let each f; be L-smooth. Then, for the iterates
generated by Clip21-SGD2M the quantity P! := ||v' — V f(2')||? decreases as

t+1 Capt 3L o _ t_ 41y pt+1
Pt (- 9P+ SR 2 1231 B - G, 6,
where R = ||z'™! — 2t and 0" == 23" 0 = LS (Vfi(at, &) — Vfi(ah)).
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Proof. For shortness, we denote Vf(z',¢") = 13" Vfi(a' &) and ¢ =
L3 (Vfi(a', &) — V fi(a")). Then, we have
o+t — ()2 2 () 11 = Bt +ﬂVf( BHL gtly g p (gt |2

=11 = B) (0" = Vf(2') + BV f (@1, 67 = Vf("))|?
=(1- )2||v = VP20
+2B(1 = B)(' = Vf(z"),077)

C 1 pRra )t — Vi
2

+(1=8)2(1+2/p)|Vf(a") - Vf($t+1)||2+52%
+28(1 = B)w' = Vf(a"), 67
L -t - Vi D et - S
+2B(1 — B)(v" = Vf(x'th), ),
where (i) follows from the update rule of v, (i7) from ||z +y||>< (1 + T)||33||2 +(1 4771 |y||* for

any z,y € R and r > 0, (4ii) from the smoothness and inequalities (1 — 3)%(1 + £/2) < (1 — B)
and (1— 8)2(1 +2/s) < 5. O

Next, we establish the recursion for V' := 1 L5 gt = l]A

Lemma F.8. Let \|9t\|< bforallz € [n], each f; be L-smooth, and ||v} — ¢!~ '||< B forall i € [n]

and some B > T, and ,8 <5 ®. Then, for the iterates generated by Clip21-SGD2M we have
432 46 L?
lgf = vf 1> < (1 = Bn)llgi~ P B [o; 7" = Vfile" ) P+——=—R""" + %? (35)

+2(1 - Bn)2ﬁ<(gf*1 — o )+ BT = Vi), 0)
+2(1 = Bn)*BB(V fi(a' ™) = Vfi(a")), 0}),

where R' := ||z'*! — 2'||? and n := %. Moreover, averaging the inequalities across all i € [n], we

get

~ L~ 4 453212

Vt S (1 _ ﬁn)vt—l ﬁ Pt 1 IB Rt 1 +ﬁ2b2 (36)
Bn Bn

2 ; o _ _ _ _
+o(0- B*BY (g = ol + Bt = Vi@ ) + B(V fi(a'1) = Vi(a)), 65),
i=1

where V' = . 37 |lg} — vi[|* and P*:= 3 37 [lof — V fi(a")|*.

Proof. Since |[v} — g!™||< B and B > 7, we have n} := m > % =:1n € (0,1). Thus, we
have
gt — vt 2 flgt =t + Belip, (o] — gt ~t) — vl

= [I1B(clip, (vf — gi ") = (vf —gi™ 1)) + (1= B)(gi " =)

(i1 - .
< (1=B)llgi" = vilP+Blclip, (v — gi ") — (v} — giH)II?
(i)

< (1= B)lgi™t = ofIPHB = n)?llgi — il
= (1= B2 —m)llgi " — oI,

8Since n) € (0, 1), then this restriction is not necessary because the momentum parameter B < 1 by default.
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where (i) follows from the update rule of v!, (ii) — from the convexity of |-||?, (iii) — from the
properties of the clipping operator in Lemma C.3. Let p = 2317 < 1. Then we have

lgf —vill* < (1= p)llff1 vill?

“a = Pllgi™ = (1= it = AV P

= (g™ — (- B — B8~ BV

= (= )l — (1= Bt — BV AP+~ )20
- 2(1- p)ﬂ(aﬁ’l = (1= Bt = BV fi(a"), )

(i4)

(1 )l el I )L B VA
21— )l (1 B~ BV

et — ot - v R

= 21 p)Blg; " — (1= B)v; " = BV fila"), 67),

where (i) follows from the update rule of vf, (i) — from the inequality ||a+b[|?< (1+7)|al|®>+(1+
7~1)||b]|?> which holds for any a,b € R? and r > 0, and assumption of the lemma, (iii) — from L-
smoothness, Young’s inequality ||a + b||?< 2|al|?+2]|b]2. O

Theorem F.9 (Proof of Theorem 3.3). Let B := max{37, max;{ ||V f;(2°)||} +b}, Assumptions 1.1
and 1.2 hold, probability confidence level o € (0, 1), constants a, b, and c be defined as in (29), and
A > @Y for ®° defined in (9). Consider the run of Clip21-SGD2M (Algorithm 3) for T iterations
with DP noise variance o,,. Assume the following inequalities hold

1. stepsize restrictions:

i) 120y < 1;
i)
1 323212 962
L BFL s L2y, (37)
3 52772 62772

2. momentum restrictions:

i) 6Ly = f;
B < minf 27, 1)
1) B < min{%, 1}

)
)
w) B < min{%, 1},
)
)
)

v Bgmin{@’ 'LA (Ta%"T)l/S’l}’.

vi) B,B € (0,1];

vi1) and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47);

Then, with probability 1 — o, we have 7 Z ||Vf( t)||2 is bounded by

6<(M(M+B+U))l +m(faw (T%>2/3>(\/E+B+a>),

(nT)3/272
where O hides constant and polylogarithmic factors and higher order terms decreasing in T
Proof. For convenience, we define Vf;(z=1,&7") = v;' = g;' = 0,071 = ®°. Next, let
us define an event E! for each t € {0,...,T} such that the following inequalities hold for all
ke{0,...,t}

1. |[vF — gF Y|< Bfori € T;
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2. |lg¥||< V6ALA + 3(B — 7) + 3b + 33a;

3. |lof — Vfi(a®)||< VALA + 3(B — 7) + 2b + Ba;
4. |[g"< VOALA + 3(B — 7) + 3b;

5. [|6F[|< bforalli € [n] and [|0%]|< —=;

6. f+112 l 5
7. ok < 2A;
8.
7 4B 2k_1 S l 1+1 ¢
A —— (1= > (gt —v}) + B — Vi(ah) + BV fi(a!) = V fi(z"1)), 67)
8 nfn 1=0 i=1
16752 — I+1 = ! I\ pl+l
+— ZZ%WT ), 0t +4y(1 = 8) > (v = Vf(ah),0)
n5277 —0 i=1 1=0
15y3° =< I+1y pl+1
+ 2% - \47 v/, 0!
pyezRcl 6>l:O;< fila!) = Vi), 07
k-1

+ay(1=B) Y (Vf(a') = Vf('t),6 ).

=0

Then, we will derive the result by induction, i.e., using the induction w.r.t. ¢, we will show that
Pr(E') > 1 - % forall t € {0,...,T — 1}.

Before we move on to the induction part of the proof, we need to establish several useful bounds.
Denote the events Of, ©f and N1 as
> a} (38)

o= oIz}, 0= {Ilz =1, ana Nt :_{ !

respectively. From Assumption 1.2 we have (see (14))

t b? o
Pr(0;) < 2exp ~552) = ST

where the last equality is by definition of b2. Therefore, Pr(@z) >1-—
the constant ¢ in (29) can be viewed as

a . .
ST +n Besides, notice that

T+1
c= (\/5—1_ 2b3)0' where b% = Slog M

Now, we can use Lemma C.1 to bound Pr(©?). Since all 6! are independent o-sub-Gaussian random
vectors, then we have

Pr< ge,? \/Cﬁ> <exp(—b3/3) =

We also use Lemma C.1 to bound Pr(N?t). Indeed, since all w! are independent Gaussian random
vectors, then we have

>k

6(T+1)

> c\/ﬁ) S GE

> (V2+202), | Y3 02d Sexp(—bg/?,):ﬁ.

=1 i=1
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with b3 = 3 log ( (I'+ )) This implies that

re (133
due to the choice of a from (29):

=1 i=1
T T+1
a= (\/§+ 2b2)0w\/g\/>, where b3 = 3log M
n «

Note that with this choice of a we have that the above is true forany ¢t € {1,...,T},ie., Pr(N?) >
1- forallt € {1,...,T}.

>a> = 6(T+ 1)

ST

Now, we are ready to prove that Pr(E?) > 1 — o‘j(fill) forall ¢t € {0,...,T — 1}. First, we show
that the base of induction holds.

Base of induction.

Lo =g = [lofll= BIV £i(2°, &)= BIO?II+BIV fi(a*)l|< 5b+3B < 3B+58 =B
holds with probability 1 — (T R Indeed, we have

0 b? o
Pr(©;) < 2exp ~552 :m

Therefore, we have

« (0%

nfo__ n 0 _” N 1y — =
Pr(ﬂizlG)i)—l Pr(U,07) > 1 ZPr(@z) 1 n6(T+1)n 1 6(T+1)

i=1

Moreover, we have
«

PO S

This means that the probability of the event that each H% Z?:l ST L 109)1< b,

and ||90||< , and is at least

(e (0% « (0%

ToT+ ) et 1) 6T+1) L AT+ 1)

2. We have already shown that

1
Pr(
ni

n

1
E W
i=1

> < @
0l < %
= 6(T+1)

implying that H% S wl H < a with probability at least 1 — 5.

g0 = Ao Belipe o =) = 3 L Belip (395, €1). Theretor, we
ave

lg°Il <

3" BBV + BB6Y + (Belip, (59 fi(a",€0)) — BBV i(a”, ) H

i=1

< BBV IO+ 22 S0 3 max {0, BV (a0, &)}
=1 =1

< BBVALGE) — F) + 22 300042 S mas {0, BIV A+ 811691~}

i=1 i=1
s vara + 27 W Z||9°||+Bﬂ ZHW )lI-pr
< \/m+26ﬁb+ﬁﬁ3—ﬂ7

3 3.
S\/64LA+§B—T+1)§\/64LA—|—3(B—T)—|—§b+Ba.
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The inequalities above again hold in ﬂ;;l@?, i.e., with probability at least 1 — ﬁ. Note

that for the base of induction we have g° = g, therefore, the condition 4 holds as well.
4. We have
[0} = Vfi(a®)|| = VB fi(2°, &) — V fi(a)]

< BIVFila®, &) = Vi) I+ = B)IV fi(2)]
<pb+(1-p)B

This bound holds with probability at least 1 — ) because it holds in N 16)

(T+1
5. Condition 7 of the induction assumption also hold, as ®° < 28° < 2A by the choice of A.

6. Finally, condition 8 of the induction assumption holds since the RHS equals 0.

Therefore, we conclude that the conditions 1-8 hold with a probability of at least

Pr (60 N (0?21@?) NN ) >1-Pr(0°% — ZPr 0Y) — Pr(N?)

> 1 o a !
= . —
- 6(T+1) 6n(T'+1) 6(T+1)
—1 A
2T H+1) T+1’
ie,Pr(E% >1- 747 holds. This is the base of the induction.

—K4+1 <K+1 —K+1
Transition step of induction. Case |Zx1|> 0. Assume that all events © * ,0,; and N

take place, i.e., ||9f+1||< b, ||0K+1H< — forall i € [n] and H% S

assume that event @ ﬂ (ﬂ” 1@ ) N N N EX holds. Then, by the assumptions of the

induction, from Lemma F.5 we get for all i € Zx

K K
Il = g 1< flof — g

3

_1||7&§B /87_.
2 2

Therefore, from Lemma F.2 we get that

g% < V6ALA + 3(B — 7) + 3b + 3fa,

from Lemma F.4 we get that

g5 TH|< V6ALA + 3(B — 1) + 3b,

and from Lemma F.3
3 3 A
||Vfi(mK+1) — viK+1||§ VALA + 5(3 —-7)+ §b+ﬂa.

This means that conditions 1-6 in the induction assumption are also verified for the step K + 1.
Since for all t € {0,..., K + 1} inequalities 1-6 are verified, we can write for each ¢t € {0, ..., K’}
by Lemmas C.2 and F.6 to F.8 the following
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i+l — gt+1 4 2y ‘7t+1 8v8 Pt+1 2y 2 pt+i

B By B

<8 = JIVHEIE - RV P PP

29 (1 _ Ayt 4u2L2 PR
+ 377 ((1 BV “37/ —— R"+ 5°b
+ *5 L= Bm)* Y (gl —vi) + Blv; — Vfila ))-F,@(Vfi(xt)—Vfi(xt“)),@f“))

i=1

86 3L "
T 3 2( 5 R*+B2b2+ /31— ;v — Vi( f+1)79§+1>>
+ 2;( +3§2R’ +,32(i+26(1—ﬁ)(vt—Vf(xt“),Gt“))

Rearranging terms, we get

8v3

o <5 = |V f(a)?

522 v _327727 e v

L7 (B 1)+ 5P =5 TP (31 9)

iRt (1_32L2ﬂ2 2 96L° 2 2417 2>—|—b2 (25 g 8’Yﬁ3> _i_Cz%

n

dy By B2
- i?éiﬂ — B3 (gt — o) + Bl — Vilah) + BV fila®) — VfiatH)), 611
=1
PP S ol V), 05+ 4 (L - Bt — V(). 6
7162772 i=1 ' ’l ’
+ 308 1) ST A - VA, 00
n=n i=1

+49(1 = B)(Vf(ah) = Vf(@ ), 07h) + 767127,

Using momentum restriction (), stepsize restriction, momentum restriction (), (i¢) and assumption

of the induction that ||| < a, we get rid of the term with R’ and obtain

41 ¢ o (2% | $B° 275 ﬂ22
Pl < —§||Vf( z")|I+b <577 32n2>+ . B

i;f](l - 67])2 Z<( f - 'Ult) + ﬁ(’l)zt — Vfl(l't)) + ﬁ(Vfl(l‘t) _ vfz(xt+1)),9,f+1>
i=1
1652 n ‘ ty pt+1 ' o i
* g —8)3 (0f = Vi), 05 + 4y(1 - B) (v’ — V(a'), 0
1=1
1652 n

(1= 8) ) _(Vfila") = Vfi(a"1), ;")

n52’r]2 =1

+4v(1 = B)(Vf(z') — Vf(2'Th), 0.
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Now we sum all the inequalities above using momentum restriction (i) for ¢ € {0, ..., K} and get

2 3 .
(I)K+1 < q>0 ’YZHVf H +Kb2< 6 v + 876 ) K 2 ’75 +K T 63(12
n

Bn 2 128LVLA
K n
i Mﬂi(l =B YD (g —vh) + Bvf = Vfilah) + B(V fia") = Vfula"1)), 00
t=0 i=1
+ 1675° (1 —B)i " (0! =V fi(xh), 0 + 4y(1 — f: (vt — Vf(xh), 0t
n/5)2772 t=0 i=1 ' ' o t=0
2 K n
FEIE )3 Y (VAE) - VA6
t=0 i=1
K
+4y(1=B) Y _(VF(a) = V() 0. (39)
t=0

Rearranging terms, we get

K
232 8v33 2 K A
lZva ||2< (I)O ¢K+1 + Kb2 B + :YB + K02 76 + T 630,2
2 Pt ﬂn ﬁ2772 n 128 L/ LA

n

43

K
T B 3ot — o) + B0k = V) + (VA — V), 0
t=0 1=1
16v3* U N i+l - 41
s (1A 3l = VAG 0 +43(1 = 5) 3 = VI, 04
t=0 i=1 t=0
2 K n
+ 08 (1 5SS VA - VA, 60
nB%n t=0 i=1
K
+4’Y 1_ Z t+1)70t+1>.
t=0

K41

Taking into account that 2 S>1% ||V £ (z*)[|>> 0, we get that the event E N (ﬂ?=1@i ) nNN'N

[ implies

232 3 2 K A
q)K-‘rl < (I)O + Kb2 ( ﬁ Y + 8:}/ﬁ ) + KCQﬂ + T B3a2
Bn B2n? n 128 LV LA

K
(L= B0 YD ((9f —ob) + Blof = Vfi(a") + B(V fi(a") = Vfi(a"™)), 07

n

K
ZZ (Wt — Vf(xh), 60

1 t=0 i=1
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Next, we define the following random vectors:

¢t = {g v ifllg —vill< B
L,i 0, otherwise

)

¢ {v;f — Vfi(at), if ol = Vfi(at)|< VALA + 3(B— 1) + 3b + fa
g 07 ’

otherwise

b

o {Vfi(xt) — Vfi(2tt), if |[Vfi(a?) — V(x| < Ly (\/64LA +3(B—71)+3b+ SBa)
3, =

0, otherwise

Q:{M—Vﬂﬂ»iww—Vﬂﬁ>squ+aB—ﬂ+$+Ba

0, otherwise

o {Vf(xt) V() i |[Vf(at) — V@< Ly <\/64LA +3(B-7)+3b+ 3Ba)
5 .

0, otherwise
By definition, all introduced random vectors Clti,l € [3],i € [n],k 5 are bounded with probability
1. Moreover, by the definition of E* we get that the event EX N @KH (ﬂf 1@K+1) nN<H
implies
Ga=gi—vi, CGa=vi- V), G;=ViE")-Vi@E™),
G=v"=Vf@"), §=Vf')-Vfa™).
Therefore, the event EX N O ' N (ﬁ:‘ 1@K+1) AN implies
28%y | 8v6° 75 S
R < 90 4 Kb? ( - ) + K== 4+ KyLAL,> + NI !
577 527)2 t=0 =1
o ®
4 52 K n K n
e (R D) DAL B I By B
nﬂﬁ t=0 i=1 B t=0 i=1
® ®
16 52 K n K n
O Gt ¢ D DA
n3%n t=0 i=1 t=0 i=1
® ®
16 ﬁ2 K n K n
RT3 S ARl 5 SN S
nB4n t=0 i=1 t=0 i=1
@
BOUND OF THE TERM @©. Since 6Ly < 3, for the term @ we have
2 2 3 K .. 3 4 4 2
KbQ(ﬂAfY 876)+K2 7/6+ T /830/2§Kb2(6,\ + {3 )+K02/6
61 An? n  128LvVLA 3L3n  3L3%n2 3Ln
Kr 53 o
_|_ e —
128+ LA
By choosing § such that
A\ 1/3 . 1/4
8 < mi 3LABY ! 3LAB%? N rsn AR\ Y2 “0)
min ppp—
- 32Tb? "\ 12872 "\ 32T ¢? ’
and 3 satisfying momentum restriction (v) we get that
28%y 833 2 K . A A
Kb’ (/B 75)+Kc2w+73a2<4-:.
By B2n? n 128 LV LA 3 8
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Note that the worst dependency in the restriction on 5 in 7" is O(1/T) but it is present only in the

case a > 0. The second worst on /3 is O(1/73/4) since B~ % ~ % that comes from the second term
in (40).

BOUND OF THE TERM ®@. For term @, let us enumerate random variables as
0 pl 0 1 1 p2 1 2 K pK+1 K pK+1
<C1,17‘91>7 tt <<1,n7 9n>7 <<1,1701>7 o <C1,n7 6n>v R <C1,17 91 * >7 ] <C1,n79n * >7

i.e., first by index i, then by index ¢. Then we have that the event EX N (ﬁ?zl@iK H) implies

4vp
E A (1 - 77)2<Ci,ia 05+1> | <<i,i—17 efti% ) <<i,17 0l1+1>7 LR} <<?,1a 0%>:| = Oa
nfn
because {#/ 7'}, are independent. Let
o2 = 161252 -B? . %
n2p2n?

Since 67! is g-sub-Gaussian random vector, for
E [ ‘ l,i - 1] =E [ | <d,i717 eiirb’ ) <d,1v 9l1+1>7 ) <<?,179}>]
1 164232

E (=)oY ) i -1
o (| 00 T o ) 0
I 1 167232 .
< owp (b I P12 i -1
L o1 n?B%n

r 1 1 2102
<E |exp 75 p2ge2) 10— 1
0'2 n262

we have

[ n2ﬂ2772 16’7252 2\ pl+1(2 .
<E eXp<167252.32.02n232n2'B”ei 1) i

oo (1012
=E |exp | —5— [Li—1]| <exp(l).
o

Therefore, we have by Lemma C.1 with 02 = o3 that

2~2 32 52
Pr 47B ZZCM@M )| > (V2+ v2b1) 168775707
”577 t=0 i=1 t=0 i=1 n? 32?2
< exp(—ti/s)
B a
C14(T +1)

with b2 = 3log (@) Note that since 6Ly < 3

(V34 V3by) 221632 RPNV AND ) i i

=0 i=1 n? 32?2 t=0 i=1 9L2n2[%?
2B
= (V2+ Vo) Fo &
Lnfin
A
< o
- 8
because we choose [ such that
R 1/2
LA
B< LAV . and K+1<T. (41)
16v/2(1 + b)) BoV/T
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This implies that

n

K
> et

t=0 i=1

Pr <4’Yﬁ 2
nfn

= 8) S T

with this choice of momentum parameter. The dependency of (41) on T is 6(1/T3/ *) since B ~ %

BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

16~2 34 o\ 2
o3 = 61/3 ,(\/4LA+Z(B—T)+3b+ﬁa) o2

n262n2

Then,

1 164234 X
E [GXP ( %m(l — By (¢, 00

I 1 16+%p4
<E |exp (| = —=—— G, II*110;7"]1?
L o3 n262772

=

3
03 n2322

2

n?[52n

234 2
<E [exp llGYB ~<\/4LA+§(B—T)+Zb+ﬂa> -02]

I 1 2 34 \2
<E |exp (1676 (\/4LA+§(B—T)+3b+ﬂG) -||9§“||2> |l,i—11

-1

2 54 2\ 2
167 <\/m+ (B —T)—|—§b+ﬂa> .||0§+1”2> |l,i—1]

n?32n?
” l+1H2
=E |exp | 1,i— 1] <exp(l).
o?
Therefore, we have by Lemma C.1 that
K n
Pr l 7/62 2 C2779t+1
npn t=0 i=1
AR 167%402 3
> (V24 V2h), | Y ~(¢4LA+
t=0 i=1 712 2 2
< B p———
< (=) = T

Note that by using the restrictions 5 <

3 2
(B—T)+Qb+3a)

(V2 + V2b1)V/ (K + 1)n47520 <\/4LA + %(B —7)+ gb + Ba)

Bnn

<(V2+V2bh)/(K +1)n 28 (\/4LA+§(B—T)+§b+m>

3L57}n
A
< —_
-8
holds because we choose

1/3

3LABnR
16v2(1 + b1)ov'T (\/9LA +3B-1)+ gb)

)

44

and K+4+1<ZT.
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This implies

n

K
Z C2 ) 9t+1

t=0 i=1

npn
Note that the worst dependency in the choice of 8 w.r.t. T is O(1/7%/?) since 3 ~ 7.

Pr (4’}’52 2 > >§0‘_
%) ST+

BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

2 16L2 454
Oy = —————

N 2
(\/64LA +3(B—7)+3b+ 36@) o2,
n2[32n2
Then we have

1 16726* 5o\4 I+1 -
RN -1
: |:eXp ( O’i n2527}2 (1 577) <<3 2791 > | L
I 1 16~254 .
<€ [own (G REE 10017 i 1]

0'4 n252

[ -1
<E |exp ([16L2454 (M—i—i’)( —7—)_,_3(,_’_33@)2_02}

n?[32n?

16 L2~ 54 N2
16175 (\/64LA +3(B—7)+3b+ 35a) : ||9§+1||2> 11, — 1}
n262n2

[CASEAY
=E |exp e < exp(1).

Therefore, we have by Lemma C.1 that

2
Pr (475 (1= )
nBn

[ 1 1642 2
<E exp( 61°5" 2 2(\/64LA+3( —T)—|—3b+3a) .||9§+1|2> |l,i—1]

K
> (V2 van), | Y -~ 1612716407 (\/64LA+3( 77+b)+33a)2

2/2,2
i—oim1 "B

< exp(—ti/3) = THT+1)

Using the restrictions B < —% and 6L~y < 3 we get

(V2 +V2b) /(K + 1)n4LgZiQU (M+ 3(B—7+0b)+ 3Ba)

(\/M+3(B—r+b)+3\/ﬂ)

<V2(1+b) V(K + )n Blo
9LBn

A
<77
-8
because we choose /3 such that
A 1/4
LA
B8 < OLASnYn , and K+1<T.
8v2(1 + by)ov'T (11\/LA Y 3BT+ b))
This implies
4fYﬂ + 1 A (6%
P CQ 29 9 + = S A/ 4N
( nfn ; ; 8 14T +1)

Note that the worst dependency in the choice of 8 w.r.t. T'is 6(1/T3/ 8) since B~ %
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

2567234 3 3 .\
o2 = # . (\/4LA + E(B —-7)+ 2b—|—ﬂa> o
Then we have
1 256+23*

n2/847]4
e o (| 52 T e 0 )ini-1]
5

I 1 256+234 ,
< owp (5 ST IR i =1
L 5

2
n2B4nt

[ 1 2567234 3 3. -\ . .
<E — = (VALA 4+ Z(B — = -]|01 112 —1
<E |exp <0§ 22y +o(B=r)+ bt fa) 67 ) |1

-1

234 O\ ?
M~ <\/4LA+3(BT)+3b+ﬂa> o2
L2n2B4nt 2 2

2) 204 ~ 2
Lo iy <M+ (B —T>+;’b+ﬂa) -||9§“|2>l7i—1]

n2B4n4

9{+1 2
g

Therefore, we have by Lemma C.1 that

< exp(1).

K &L 256 3 .\?
erfbl\lz% nzfa <\/M+ (B T)+2b+ﬂa)
< exp(—ti/s) = Tﬂ

Using the restrictions 6Ly < S and 8 <

(V2+V2b) /(K + 1)n 16;ﬁ0<\/4LA+ (B —T)+;’b+3a)

n32n?
Sh@+¢%m4K+U3§;;(¢MA+( —ﬂ+2hﬁﬁA)
A
<=
-8

because we choose /3 such that
1/3

LAAQQ
SLAS " n , and K +1<T. (44)

64v/2(1 + b1)ov/T (3VIA + 3(B — 7) + 3b)

This implies

K n

Z 4-2 ,80 9t+1

t=0 i=1

16752
Pr (nB2 — 56

= 8> ST )

Note that the worst dependency in the choice of 8 w.r.t. T is O(1/7%/) since 3 ~ z.
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BOUND OF THE TERM @. The bound in this case is similar to the previous one. Let

o 256L24p4
O7 = ———=

4

(\/64LA Y 3(B—T4+b)+ 3ﬂa> Lo,
n2 B4y
Then we have

1 256L2~4p4

E{ep( n2 B >|l’i1}

— (1= B)%(¢h,;, 00)?
7
1 2567%3* .
<E|e <2 G205 1% ) [ 16— 1

254 4
256~2 N2
B6y°5° 1 7 (VGALA + 3(B — 7 +1) + 3a) .||9§+1||2> |z,¢—1}

n2B4nt

-1
<E |exp QW <\/64LA+3( —T+b)+3ﬁa) .02}

) L2 4 04
u(\/erS( —T+b)+3ﬁa) -||9§+1||2)|l’i—1}

n2 Bt

I 16 l+1||2
=E|exp| —“—— ] |1,i < exp(1).
o2

Therefore, we have by Lemma C.1 that

16752 - t+1
Pr ,0; >
i |2 ;Ql
K n
956 L2~4 G402 2
(V2 +v201), | Y M~(\/64LA+3(B—T+I))+3&L)
=i At
o
< 1 —_—
< exp(-45) = Ty

Using the restrictions 6Ly < S and 8 <

(V2 + V2by )/ (K + 1)nw§72ﬂ2" <\/64LA +3(B—1+b)+ 3Ba)

T] n
4
<(V2 +V2by) /(K + D)n 460 (8\/LA +3(B—7+0b)+ 3\/LA)
9L32 n?n
A
<=
-8
because we choose
. 1/4
9LAB**y/n

, and K+1<T. (45)

32v2(1 + b)ovT (1IVIA +3(B — 7+ B))

This implies

n

K
B> (Gt

t=0 i=1

8’752 «
Pr( = 8> SurTn

Note that the worst dependency in the choice of 8 w.r.t. T'is 6(1/T5/ #) since B~ %
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

1 N2
o8 = 67 (\/4LA+ (B —T)—&-gb—i—ﬂa) o

Then we have
) i 1]

£ ex p(
1 7
S g e“lu?) i 1]

)
g

<Ele %
g

<E exp(

16981 _ gyt gy

n2

2
\/4LA+ ( —r)+‘;’b+/3a)) ~||9§+1||2> l,i—l]

-1

3 . 2
\/m—f' 5(B —T)+2b+5a)> -021

17

2
\/4LA+ —r)+‘;b+5a)) -||9§+1|2> l,i—l]

[exp (20 1] < it

Therefore, we have by Lemma C.1 that

ZZ <4 2,6t+1

t=0 i=1

n

,(m+2(37)+;b+5a>>2

t=0 =1
4T +1)

> (ﬁJr \/ibl $
< exp(—ti/s) =

Using the restrictions 6Ly < S and § <

(V2+V2by)/(K +1)n - %’VU (\/4LA + g(B —7)+ gb+ Ba)

<(V2+V20)\/(K + D)n - %o— <\/4LA + §<B )+ gb+ m)

A
<=
-8

because we choose /3 such that

LA
A< SLEVI : and K+1<T.  (46)
16V3(1 + b)oVT (3VIA + 3(B —7) + 3b)
This implies

K n
DD (ot

t=0 i=1

Pr (471_ A><O‘ .
8 AT+ 1)

Note that the worst dependency in the choice of 8 w.r.t. T is O(1/71/2).
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BOUND OF THE TERM ®. The bound in this case is similar to the previous one. Let

16L2
o=

(\/64LA +3(B—1+b)+ 3Ba>2 o2

) i 1]
L. W*”) - 1]

2
116 R
<E [exp (02 nz L?y? (\/64LA +3(B—T7+b)+ 3Ba) : 9§+1||2) | 1,i— 1] :

8

Then we have
1 16+
E[ 9 (|2 o - 8o

2
o3
( 16’y

[exp

Since 0”1 is sub- Gaus51an with parameter 2, then we can continue the chain of inequalities above

using the definition of ol

-1

E lexp ([162274 (VOILA +3(B — 7 +1b) + 33a)2 . 02]

4L2 4

(\/64LA+3( —T+b)+35a)2 : ||9§+1||2> 11,0 — 1}

=E lexp (91;1”2>1 < exp(1).

Therefore, we have by Lemma C.1 that

K n
> (G ot

t=0 i=1

K n
> (V24 va), |33
i=1

Pr

74 R 2
APEY (\/64LA +3(B—1+b)+ 35a)

>
14(T + 1)'

Using the restrictions 6Ly < J and § <

< exp(—bi/s) =

4L'y

(V2 +V2b1) /(K + 1)n -

<(V2+ V2b1) /(K + Dn - @ (8\/E+3(B—r) +3b+3\/ﬂ)
A
=73

because we choose [ such that

(\/64LA +3(B—T+b)+ 3Ba)

9LAVR v
V2(1+ by)oVT (11\/ﬂ+ 3(B -1+ b))

This implies
Pr (47 (1-

Note that the worst dependency w.r.t T is O(1/7/4).

and K+1<ZT. “n

n

K
Z Z §5 5 0t+1

t=0 i=1

= 8> ST
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Final probability. Therefore, the probability event
0=EKN8" ™ n ( 1@K“) AN ' NEyNEeNEsNEeN EsN EeN EpN Es,
where each Fg-FEg denotes that each of 1-8-th terms is smaller than %, implies that

A
®+®+®+@+®+®+®+§8~§:A,

i.e., condition 7 in the induction assumption holds. Moreover, this also implies that
PEH <+ A < A+ A =2A,

i.e., condition 6 in the induction assumption holds. The probability Pr(Ek 11 ) can be lower bounded
as follows

Pr(Exy1) > Pr(Q2)
— Pr (EK ne“*'n ( 1®K+1) NN " N EyNEeNEsNEsnEsn Es
NEo N Eg)
=1-Pr(Exu0fty (U, 0f ") UN T UEg UEs UEs UEe UEs UEe
UEo U Es)

>1-Pr(Eg) — Pr(0f+?) ZPr (OKFY) — Pr(NE+) — Pr(Ey) — Pr(Eo)

— Pr(Es) — Pr(Ea) — PY(E@)) —Pr(Ee) — Pr(Ea) — Pr(Es)

a(K+1) «@ - ! ! @
>1-— - - — -0-7 ——
- T+1 6(T+1) ; 6n(T+1) 6(T+1) 14T +1)
_1 a(K +2)
B T+1

This finalizes the transition step of induction. The result of the theorem follows by setting K =
T — 1. Indeed, from (39) we obtain

7ZHW IIP< @0 — &K 4 A < 2A = an )< (48)

Final rate. Translating momentum restrictions (40), (41), (42), (43), (44), (46), (45), and (47) to
the stepsize restriction using 6Ly = [ equality we get that the stepsize should satisfy

1~ Lan\Y? (rag2\'"" (Layas\’ LAVAS s
’y Sio min < ) b 77’ b 777 9 77 b
L To? To? Bo\T o(VLA+ B+ o)VT

from term 1 from term 2 from term 3

LABA / NN rapeve )
o(WIA+B+o)VT) '\o(WLA+B+0o)WT) '\o(WLA+B+o)WT)

from term 4 from term 5 from term 7
< LAVA ) ( LAVR ) 3 o)
o(WLA + B+ 0)VT) \o(VLA + B+ o)VT '
from term 6 from term 8
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1

The worst power of 7" comes from the term ® and equals =575 The second worst comes from terms

@, @, and @, and equals to v < ﬁ in the case B ~ % These terms give the rate of the form

5 LA( To? )1/4+LA<U(\/E+B+U)\/T>1/3

T \ LA T LABny/n
L LA o(VLA+ B+ o)VT ”l% BovT \" (50)
T LAB2p2\/n T \ LAVnfn

In the case, when B = 1 the worst dependency in (49) w.r.t. T' comes from the terms @ and ®. We
also have restriction v < O(%/r). All of those restrictions give the rate of the form

T RN LAVR
~<LA LAO’+0(\/LA+B+U)>

LA 5 <1 T2 U(\/m—l-B—f—a)\/T)

“o\T T VT
:6<LA+U(\/E+B+O')>.

1
T e 61y

Choosing B < v LA/ain (50), where a is defined in (29), and setting n = % we get

1/3 1/3
LA 5[ (To*B? 1/4+ caB(VIA + B +oWWT\ " N 0a?(VIA + B+ 0)B2VT
T L2A272 L32N3/27\/n JRYNZEN
1/2
aB2oyT )
\ mrAE

=7 9\ arm N L3N 21 L3227

1/3 1/3 1/3
LA ~ (TJ2B2a2)1/4+<aaB\/T>/ ( caB2\/T >/+< 02aB\T >/
T

1/3 . 1/3 1/3
ca?B%\/T / n ca?B3\/T / n a2a?B2VT /
L3/2A3/272,/n L2A272,/n L2A272,/n

1/2
aB2ovT \
T\ praie Jnr

51



Under review as a conference paper at ICLR 2026

Now we use the exact value for a to derive

1 1/3
5[ (Fa‘Totsrasit VA 20, T2 BTN (138 ed 20, T BT
T2 * T3LAT/n + T3L3203/27/n

1 1/3 . .
[3A302d 20, L2 BT BA%0d2TBVT\ ' (138%0do? T T\
T T3L32A327 /n T3L3/2A3/272, /iy + T3L2A2r2 /n

i 1/2
<L3A3a2do—3532\/:7>1/3+ (LQAQdI/Q%ZijjB?aﬁ) /

TSL2A%r2 /i T2L32A2 Jrr
5 L2A%6?B%do? 1/4+ L2A26d' 20, B 1/3+ L3/2A3/2641 /25, B2 1/3
B T2n72 nT21 nT2r
L32032620\ %6, B\"® | (132A%26do?B*\"®  (LAcdo? B\
+ nT2r T3/273/2,2 n3/2T3/2,2
LAc?do2 B2\ [ LV2AV2q 26, B20\ /°
( T3/2n3/272 > + ( Tnt ) ' (52)

As we can see, the worst dependency on 7" and o, comes from terms 5 — 7. Therefore, we omit the
rest of the terms. Hence, the worst term w.r.t. T in the presence of DP noise gives the rate

&5 [ (L28¥20do? B V3 LAedo?BP\Y? [ LAc?do?B2\"?
T3/25,3/272 T\ 3eT322 T\ 32,322

N L1/2A1/201/3d1/303/332/3 L1/3A1/301/3d1/303/33 L1/3A1/302/3d1/303/332/3
T1/21/272/3 + nl/2T1/272/3 + T3/29,3/272

N L1/3A1/301/3d1/302/332/3
%} < T1/2n1/272/§ ((LA)l/G + B3 4 01/3)

~ [ ( LAodo? B2 1/3
:O<((nT)3/2T2 (\/LA+B+U)) ) (53)

Besides, the momentum restrictions S <
the stepsize

= [ give us the following restrictions on

< 16 min 7 VLA LAT
= a’ BaT ' oa

that translate to the following rate

LA ~ (a Ba oa )
—O0(-+ +
T T LA LA

) ( A dl/zgw T N \/EBdl/chw . | LAoda, Tifi)

1

T T T T T /LA
~ LAdo,,
= ———* (VLA+B . 4
o (Y2 (via+ ) 9

Besides, the momentum restrictions [3 < VLA ( ) 1/3 and 6Ly = [ give us the following

restrictions on the stepsize

s 10 o, TS VT
- L

a2/3T1/3° Ba2/3T1/3° 5q2/3T1/3

a27tT
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that translate to the following rate
LA ~ [a2/3TV3  Ba2/3TV/3  5a2/3T1/3
T ( TN 72/3m>
- ( LA d'BePT  JIA BdVPelPT IA ad1/3ai/3?gij§>

=0 T2/3 72/3 + T2/3 72/3 T2/3  12/3\ /LA
(LA d'/36%° VLA Bd'/30%° VLA od/3523
=0 T1/3 2/3,1/3 T1/3 +2/3,1/3 T1/3 +2/3,1/3
~ (VLAd/35%?
=0 <72/3(Tn)1/3 (\/LA+B+J) : (55)

The restriction in (37) translates to
<O =y
y min 71

that translates to the following rate of convergence
Log(Mrak prare)

T T\/m 7'1/2
~ (VLABd25, L3/AA3/4BY241/451/
=0 Tnr T3/4pn1/4,:1/2 (56)

Combining (53), (54), (55), and (56), we derive the final bound
~( { LAcdo? B? V3 JILAdo.,
%) ((UUW (\/LA+B+J)) + g (\/LA+B+J) (57)

(nT)3/272 vnT
VLAdY/35?
e (Vi ),

where we hide the terms that decrease faster in 7" than the two in (57).

CASE Zx 1 = 0. This case is even easier. The only change will be with the term next to R'. We
will get
96L>% , B 2417 S 1 96L2 ,

- =" 7= ——° >0
52?2 32 3 (20?2

instead of
1_32ﬁ2L2 o 96L% , 24L7

> i et B

(20?2 522 32
as in the previous case. This difference comes from Lemma F.8 because VX+1 = 0. The rest is a
repetition of the previous derivations.

>0

O

G PROOF OF COROLLARY 3.4 (PRIVACY ANALYSIS OF CL1P21-SGD2M)
Corollary 3.4. Let Assumptions 1.1 and 1.2 hold and o € (0,1). Let A > ®° and o, be chosen

as o, = © (g\/T log (%) log (%)) for some £,6 € (0,1). Then there exists a stepsize v and

momentum parameters [3, B such that the iterates of Clip21-SGD2M (Algorithm 3) with probability
at least 1 — « satisfy local (€, d)-DP and

FELIVIEOIPS 6 (VIE (S + () ) VIE+Baa)). a2

ne ne
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where O hides constant and polylogarithmic factors, and terms decreasing in T..

Proof. We need to plug in the value of ¢, inside (11). Indeed, we have that

~((VIAINTZ VIAdV/3TiTV/3
O(( VT =2/ (VLA + B +0)

T+ 72/3(Tn)1/3

(LAO’B2 T

1/3

Vne V/ne n3/2T1/2¢2

Leaving only the terms that do not improve with T" we get the result, i.e., the utility bound.

2/3 1/3
_6(via ”+<\/3> (\/E+B+a)+(LAUB2(\/ﬂ+B+a))

It remains to formally show that for chosen o, C1ip21-SGD2M satisfies local (e, §)-DP. First, we no-

tice that for o, = <L \/T log (3% ) log ( ) each step of C1ip21-SGD2M satisfies (£, 6)-DP (Dwork
etal., 2014, Theorem 3.22) with

5276 and S:ﬁ,

2,/2T log(3)

Then, applying advanced composition theorem (Dwork et al., 2014, Theorem 3.20 and Corollary
3.21 with &' = §), we get that T steps of Clip21-SGD2M satisfy (&, d)-DP, which concludes the
proof. O

H PROOF OF THEOREM 3.2 (CONVERGENCE OF CL1P21-SGD2M IN THE
STOCHASTIC SETTING WITHOUT DP NOISE

We highlight that the proof of Theorem 3.2 mainly follows that of Theorem 3.3. The main difference
comes from the fact that stepsize and momentum restrictions become less demanding as in a purely

stochastic setting (without DP noise) a = 0. This, in particularly, means that the restriction 8 <
—% disappears and we can set B =1.
Theorem H.1 (Full statement of Theorem 3.2). Let Assumptions 1.1 and 1.2 hold,

B = max{3r, max{|V f,(«°)]|} + b} > 7,
probability confidence level o € (0, 1), constants b and c be defined as in (29), and A > ®° for ®°

defined in (9). Let us run Algorithm 3 for T iterations with DP noise variance o, = 0. Assume the
following inequalities hold

1. stepsize restrictions:

i) 12Ly < 1;
i)

1 B 3262L32 2 9612 9
2. momentum restrictions:
i) 6Ly = ﬂ;

) p< 64\/ﬂ'
i) B < 14(B )
) B
)

1
v

< o5
and momentum restrictions defined in (40), (41), (42), (43), (44), (46), (45), and (47),

where ,6’ =1
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Then with probability 1 — o we have

1 inn = [ (VLA + B +o0)
T§||Vf(w>|<0< Ner )

where O hides constant and polylogarithmic factors, and higher order terms decrease in T.

Proof. The proof mainly follows that of Theorem 3.3. Since in this case, we can set B = 1 and
a = 0, the worst stepsize restrictions that we have in this case lead to the rate (51), which concludes
the proof.

O

I EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS

1.1 EXPERIMENTS WITH LOGISTIC REGRESSION

We evaluate our methods on non-convex logistic regression with regularization A = 102 over 10*
iterations—a setup standard in recent studies (Gao et al., 2024; Islamov et al., 2024b; Makarenko
et al., 2022). Using the Duke and Leukemia datasets from LIBSVM (Chang & Lin, 2011), we split
each into n = 4 equal shards and normalize each feature vector. To emulate stochastic gradients, we
either add zero-mean Gaussian noise (variance o = (.05 for Duke, o = 0.1 for Leukemia) or sample
mini-batches of size 1/3 of each local dataset for Duke and 1/4 for Leukemia. For C1ip-SGD and
C1ip21-SGD, we sweep the stepsize v € {27°,...,2%} and select the value minimizing the final
gradient norm (averaged over three random seeds). C1ip21-SGD2M is tuned over the same y grid
plus momentum 8 € {0.1,0.5,0.9}, choosing the best (v, 3) pair similarly. Figure 1.1 shows the
resulting convergence curves. We observe that CLip21-SGD2M remains stable across a wide range of
clipping thresholds 7, whereas C1ip-SGD requires sufficiently large 7 to converge, and C1ip21-SGD
often fails altogether—consistent with our theoretical non-convergence result in Theorem 2.2.

1.2 EXPERIMENTS WITH NEURAL NETWORKS

The experiments of this section are conducted on a single Nvidia GTX 3090 GPU with 24 Gb RAM.

1.2.1 VARYING CLIPPING RADIUS 7

We then turn to training ResNet-20 and VGG-16 on CIFAR-10, deliberately avoiding any learning-
rate schedules, warm-up schemes, or weight-decay regularization across all methods. For C1ip-SGD
and Clip21-SGD, we sweep the stepsize v € {1073,...,10°} and select the value that maxi-
mizes test accuracy. For C1ip21-SGD2M, we search over the same v grid and momentum 3 €
{0.1,0.5,0.9} (with 3 = 1), picking the (v, 3) pair that yields the highest test performance. All
experiments use a batch size of 32, and we evaluate both global and layer-wise clipping.

Figure 1.2 reports that C1ip21-SGD2M enjoys more robustness to the choice of the clipping parameter
7 when clipping is applied layer-wise. As shown in Figures 1.5-1.4, Clip-SGD’s accuracy and loss
deteriorate sharply once the clipping radius 7 becomes small. In contrast, C1ip21-SGD2M remains
robust to the choice of 7, consistently achieving lower training loss and higher test accuracy even
under aggressive clipping.

1.2.2 RESULTS WITH ADDITIVE DP NOISE

We evaluate private training on MNIST using two architectures—a one-hidden-layer MLP (256
units, Tanh activation) and a CNN with two convolutional layers (16 filters, kernel size 5), one
max-pooling layer, and Tanh activations—under privacy budgets ¢ € {3,5.2,9,15.6,27} (with
§ = 1073). For each ¢, we conduct a thorough grid search over the stepsize v € {1073,...,10%},
clipping thresholds 7 € {107°,107%,1073,...,1072} for C1ip21-SGD2M and Clip21-SGD
and 7 € {1074,1073,1072,...,10%} for C1ip-SGD, and algorithm-specific parameters: o €
{1072,...,10'} for a-NormEC-SGD, 3 € {0.1,0.5,0.9} for CLip21-SGD2M client momentum, and
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Figure I.1: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M (B=1)on logistic regres-
sion with non-convex regularization for various the clipping radii 7 with mini-batch and Gaussian-
added stochastic gradients on Duke (two first rows) and Leukemia (two last rows).
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Figure 1.2: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M when training Resnet20
(two left) and VGG16 (two right) models on CIFAR10 dataset where the clipping is applied layer-
wise. The training loss and test accuracy dynamics are presented in Figure 1.4 and Figure 1.6.

10! 10! 10! 10
4 ClipsGD
ol &~ Clip21-56D " M Ty | ST
o 10 Clip21-56D2M o 10 @ 10 \\ i 10 \\
- - I .
o o clo AW clo
o o e e
F o2 F 1-2| 4 cipseo = 1g-2]| 4 cipsan = 10-2] 4 cipseo
- Clip21-56D & Ciip21-56D & Ciip21-56D
Clip21-56D2M Ciip21-56D2M Clip21-56D2M
107 - - 10~ - 10 > - 107% 3 - r
0 30 60 9 120 150 0 40 80 120 160 200 0 60 130 180 240 300 0 90 130 270 360 430
Epochs Epochs Epochs Epochs
——T e 90 e [ e 90 e 9]
% .80 L0l 50| ‘
A 270 g0 / | g70f /
- 560 T S6077 oo/ - clipsep |
RE 93 950 QOE RE S50{/ e Clip21.56D i
4 ¥ 7 <40 - ) <40 <40/ Ciip21-56D2M
730 @30 . @30 330 i
3 4~ Clips6D 3 4 CiipsGD 2 4 Clips6D . . 8 4
©a01| & Giprseo ©20 & Cinseo 250 & Gipmseo 28031 250 150 a3
104 Cla1.5002M 10{¢ clp21-502m 10f B e | 10§ =i
Y0 30 6 90 130 150 %@ 1m0 160 200 Y0 60 120 180 210 300 Y0 90 180 270 360 450
Epochs Epochs Epochs Epochs

=101 T=10"2 =103 T=10"*

Figure 1.3: Comparison of Clip-SGD, C1ip21-SGD, and Clip21-SGD2M (3 = 1) on training
VGG16 model on CIFAR10 dataset where the clipping is applied globally.

B e {0.01,0.1,0.5,0.9} for both C1ip21-SGD2M and cv-NormEC-SGD. No learning-rate schedules
or weight decay are used, and all methods train with batch size 64.
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Figure 1.4: Comparison of Clip-SGD, C1ip21-SGD, and Clip21-SGD2M (B = 1) on training
VGG16 model on CIFAR10 dataset the clipping is applied layer-wise.
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Figure 1.5: Comparison of Clip-SGD, C1ip21-SGD, and Clip21-SGD2M (3 = 1) on training
Resnet20 model on CIFAR10 dataset where the clipping is applied globally.
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Figure 1.6: Comparison of Clip-SGD, C1lip21-SGD, and Clip21-SGD2M (B = 1) on training
Resnet20 model on CIFAR10 dataset where the clipping is applied layer-wise.

As shown in Figures I.7-1.10, both C1ip-SGD and C1ip21-SGD2M consistently surpass C1ip21-SGD
and a-NormEC-SGD across privacy budgets. Clip-SGD achieves marginally higher accuracy on
the CNN, while C1ip21-SGD2M leads on the MLP. These results demonstrate that CLip21-SGD2M
matches the state-of-the-art performance of C1ip-SGD under differential privacy, but does so with
stronger theoretical optimization guarantees and without assuming bounded data heterogeneity or
gradient norms. Final test accuracy is reported in Table 1.
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Table 1: Test accuracy when training MLP and CNN models with additive Gaussian noise for (g, 0)-
DP. We vary the privacy budget ¢ and fix § = 10~2. These results demonstrate that C1ip21-SGD2M
achieves competitive performance to the state-of-the-art C1ip-SGD method without relying on the
bounded heterogeneity assumptions.

Final Test Accuracy
Model | Dataset Method Hyperparameters R c—59 c—9 =156 &—o7
Clip-SGD batch size 64 595496 745413 795104 812403 88.5101
e atch size 64, -
MLP | MNIST | C1ip21-5GD 4 epochs 150, | 29-2x40 O8.lire T90s07 T7.9:06 807105
a-NormEC n =95 9.0420 287167 422456 534438 64.1:35
Clip21-SGD2M 62.6498 759409 83.0409 87.7+06 89.2403
Clip—SGD batch size 64 58-9:&2,4 78.7;&1%& 82.8:&16 83-9:&1,4 91-010.4
C1ip21-SGD atch size o2, 46.1404 679414 7644116 793414 86.7104
CNN | MNIST |~ _NormEc #epochs 150 | 1040y 230004 56411 564414 57.1s04
Clip21-SGD2M 61.2494 76.0414 809416 876414 89.6104
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Figure 1.7: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M when training the CNN
model on the MNIST dataset, varying the privacy budget €.
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Figure 1.8: Comparison of C1ip-SGD, C1ip21-SGD, and C1ip21-SGD2M when training the CNN
model on the MNIST dataset, varying the privacy budget €.

1.3

LEARNING RATE TUNING FOR CNN

In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training
the CNN model on the MNIST dataset. We select the best hyperparameters based on a single run.
Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to
the results in Figure 4.

The results are presented in Tables 2, 3, 4, 5, 6, 7. We observe that in most cases, the optimal
learning rate lies strictly inside the tested range.
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Figure 1.9: Comparison of C1ip-SGD, C1ip21-SGD, a~NormEC, and C1ip21-SGD2M when training

the MLP model on the MNIST dataset, varying the privacy budget €.
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Figure I.10: Comparison of C1ip-SGD, C1ip21-SGD, a-NormEC, and C1ip21-SGD2M when training

the MLP model on the MNIST dataset, varying the noise-clipping ratio.

Table 2: Performance (test accuracy) of C1ip21-SGD2M when training the CNN model on the

MNIST dataset, varying the clipping radius 7 and learning rate.

Learning rate
g=: =52 e=9 e=15.6 e=27
le-3 | le-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0 || le-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0
é le-5 || 18.4 | 38.0 | 634 | 29.8 || 162 | 21.0 | 56.8 | 78.7 || 16.2 | 20.7 | 63.6 | 82.9 || 18.0 | 47.6 | 78.6 | 88.0 || 18.0 | 47.9 | 79.0 | 89.2
i le-4 || 37.9 | 63.5 | 29.8 | 134 || 21.0 | 56.8 | 78.8 | 53.0 || 20.7 | 63.5 | 82.9 | 75.7 || 47.4 | 78.9 | 87.9 | 75.8 || 47.8 | 79.4 | 89.3 | 84.8
'§ le-3 || 58.4 | 27.6 | 13.2 | 7.3 || 56.6 | 78.9 | 52.33 | 28.0 || 63.3 | 83.2 | 74.8 | 49.8 || 81.6 | 85.5 | 73.0 | 45.6 || 82.1 | 89.6 | 83.1 | 70.0
5 le-2 || 224 | 145 | 6.2 53 75.0 | 446 | 25.8 8.1 82.8 | 66.6 | 46.3 | 16.7 || 69.9 | 58.6 | 36.6 | 144 || 81.1 | 68.4 55 26.5

1.4 LEARNING RATE TUNING FOR MLP

In this section, we provide the learning rate and clipping sweep details used in Figure 4 when training
the MLP model on the MNIST dataset. We select the best hyperparameters based on a single run.
Afterwards, we run the algorithms with the selected hyperparameters 3 times, which corresponds to
the results in Figure 4. We refer to Tables 2 to 7 for the results of the sweeps. We observe that in
most cases, the optimal learning rate lies strictly inside the tested range.
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Table 3: Performance (test accuracy) of C1ip21-SGD when training the CNN model on the MNIST
dataset, varying the clipping radius 7 and learning rate.

Learning rate

™
Il
w
o
Il
o
o

e=9 e=15.6 =27

le-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0

le-5 || 19.6 | 345 | 46.1 | 169 || 164 | 45.1 | 71.6 | 30.7 || 19.3 | 53.8 | 79.4 | 60.6 || 19.3 | 57.7 | 81.8 | 79.0 || 19.2 | 59.2 | 82.8 | 87.0

le-4 || 332 | 453 | 169 | 82 || 435 | 71.2 | 304 | 9.0 || 524 | 79.2 | 60.0 | 23.9 || 56.1 | 81.9 | 78.6 | 449 || 57.6 | 82.9 | 86.8 | 68.3

le-3 || 322 | 159 | 7.8 | 7.0 || 61.5 | 294 | 106 | 7.4 | 742 | 524 | 21.6 | 7.7 || 79.5 | 71.3 | 41.5 | 14.5 || 80.8 | 83.4 | 65.1 | 24.4

le-2 || 12.1 | 8.1 70 | 6.6 | 205 | 7.1 6.8 6.7 || 317 | 17.1 | 7.6 | 7.3 | 488 | 31.8 | 14.1 | 56 | 63.8 | 493 | 260 | 7.0

Clipping radius

le-1 || 70 | 69 | 66 | 6.8 97 | 74 | 65 | 69 IL1 | 66 | 72 | 72 130 80 | 59 | 7.1 202 | 170 | 6.8 | 55

1e0 69 | 7.1 6.7 | 6.6 6.5 66 | 67 | 6.6 69 | 67 | 65 | 6.7 85 69 | 6.6 | 6.7 94 | 79 | 73 | 7.1

Table 4: Performance (test accuracy) of C1ip-SGD when training the CNN model on the MNIST
dataset, varying the clipping radius 7 and learning rate.

Learning rate

=52 e=9 e=15.6 =27

o
Il

w

o

le-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0

le-5 || 158 | 158 | 16.0 | 184 || 158 | 15.8 | 16.0 | 184 || 158 | 158 | 159 | 182 || 158 | 15.8 | 159 | 18.1 || 15.8 | 158 | 159 | 18.0

le-4 || 158 | 16.0 | 184 | 37.1 158 | 16.0 | 18.4 | 429 || 158 | 159 | 182 | 464 || 158 | 159 | 18.1 | 47.6 || 158 | 159 | 18.0 | 47.9

le-3 || 16.0 | 184 | 37.1 | 574 || 16.0 | 184 | 429 | 79.9 || 159 | 182 | 464 | 843 || 159 | 18.1 | 47.6 | 85.2 || 159 | 18.0 | 479 | 85.5

le-2 || 18.4 | 37.1 | 574 | 135 || 18.4 | 429 | 799 | 9.2 182 | 46.4 | 84.3 | 593 || 18.1 | 47.6 | 85.2 | 82.0 || 18.0 | 47.9 | 855 | 91.4

Clipping radius

le-1 || 37.1 | 574 | 135 | 7.8 || 429 | 799 | 92 | 157 || 46.7 | 843 | 59.3 | 17.7 || 47.6 | 85.2 | 82.0 | 10.6 || 47.9 | 855 | 914 | 62.0

le0 || 574 | 135 | 7.6 | 6.1 799 | 92 | 156 | 64 || 843|593 | 175 | 7.7 | 852 | 82.1 | 10.6 | 14.1 || 854 | 914 | 682 | 11.0

Table 5: Performance (test accuracy) of Clip21-SGD2M when training the MLP model on the
MNIST dataset, varying the clipping radius 7 and learning rate.

Learning rate

e=3 =52 e=9 e=15.6 =27

le-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0

le-5 || 14.0 | 39.6 | 65.4 | 534 || 11.9 | 16.5 | 589 | 76.8 || 13.7 | 41.0 | 74.5 | 83.4 || 13.7 | 41.3 | 755 | 87.7 || 154 | 59.9 | 80.8 | 89.5

le-4 || 38.1 | 64.7 | 529 | 38.1 || 16.5 | 59.0 | 76.8 | 66.3 || 40.8 | 74.8 | 83.9 | 684 | 41.3 | 758 | 87.8 | 76.2 || 60.0 | 81.4 | 89.6 | 80.4

le-3 || 345 | 39.5 | 329 | 234 || 569 | 76.6 | 64.8 | 49.3 || 729 | 76.5 | 63.7 | 49.7 || 75.5 | 84.9 | 72.6 | 64.0 || 77.8 | 853 | 75.3 | 68.6

Clipping radius

le-2 || 147 | 14.6 | 14.1 | 13.1 || 56.9 | 50.8 | 41.1 | 29.9 || 45.7 | 40.8 | 35.3 | 27.2 || 61.6 | 50.8 | 46.7 | 38.9 || 60.9 | 50.9 | 48.4 | 43.8

Table 6: Performance (test accuracy) of C1ip21-SGD when training the MLP model on the MNIST
dataset, varying the clipping radius 7 and learning rate.

Learning rate

e=3 =52 e=9 =156 e=27

le-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1le0 le-3 | 1e-2 | le-1 | 1e0

le-5 || 15.7 | 42.7 | 53.7 | 32.1 || 15.1 | 46.0 | 70.4 | 49.5 || 14.8 | 50.8 | 76.8 | 67.1 || 14.7 | 52.8 | 78.1 | 81.0 146 | 53.6 | 783 | 87.1

le-4 || 40.1 | 51.7 | 31.5 | 18.7 || 45.0 | 69.4 | 48.6 | 29.0 || 48.7 | 76.4 | 66.0 | 43.2 || 51.3 | 78.0 | 80.3 | 58.2 | 52.3 | 78.2 | 86.8 | 69.8

le-3 || 26.0 | 24.8 | 17.4 | 123 || 48.5 | 40.6 | 27.2 | 169 || 66.7 | 57.5 | 39.8 | 25.2 || 722 | 72.2 | 539 | 137.1 || 744 | 82.5 | 654 | 51.9

le-2 || 12.6 | 12.1 | 11.6 | 10.8 || 18.1 | 16.2 | 13.8 | 122 || 30.0 | 25.0 | 19.4 | 145 | 42.7 | 359 | 28.4 | 19.7 || 574 | 46.5 | 39.6 | 28.4

Clipping radius

le-1 || 99 | 98 | 9.7 | 9.7 10.7 | 10.7 | 104 | 10.1 || 12.1 | 12.0 | 11.5 | 10.8 || 14.1 | 13.7 | 129 | 12.0 17.7 | 17.2 | 159 | 13.7

1e0 94 | 94 | 95 | 94 97 | 97 | 97 | 9.6 99 | 99 | 98 | 98 10.3 | 10.2 | 10.0 | 10.0 || 10.7 | 10.5 | 10.1 | 10.1

J DISCUSSION ON PRIVACY AMPLIFICATION BY SUBSAMPLING

We acknowledge that enabling amplification through data subsampling is an important aspect of
algorithm design. However, example-wise clipping — required to incorporate such a modification —
necessitates a substantially more involved theoretical analysis and more advanced proof techniques.
Moreover, it remains an open question whether C1ip-SGD can provably achieve privacy amplifica-
tion through subsampling under standard assumptions. We therefore leave this direction to future
work.

60



Under review as a conference paper at ICLR 2026

Table 7: Performance (test accuracy) of C1ip-SGD when training the MLP model on the MNIST
dataset, varying the clipping radius 7 and learning rate.

Learning rate

e=3 =52 e=9 e=15.6 =27

le-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0 || 1e-3 | 1e-2 | le-1 | 1e0 || 1e-3 | le-2 | le-1 | 1e0

le-5 || 158 | 158 | 16.0 | 18.4 || 158 | 15.8 | 16.0 | 184 || 158 | 158 | 159 | 182 || 158 | 15.8 | 159 | 18.1 || 15.8 | 158 | 15.9 | 18.0

le-4 || 158 | 16.0 | 184 | 37.1 || 158 | 16.0 | 184 | 429 || 158 | 159 | 182 | 464 || 158 | 159 | 18.1 | 47.6 || 158 | 159 | 18.0 | 47.9

le-3 || 16.0 | 184 | 37.1 | 57.4 || 16.0 | 184 | 429 | 79.9 || 159 | 182 | 46.4 | 84.3 || 159 | 12.1 | 47.6 | 85.2 || 159 | 18.0 | 47.9 | 855

le-2 || 184 | 37.1 | 574 | 135 || 184 | 429 | 799 | 92 || 182 | 464 | 84.3 | 59.3 || 18.1 | 47.6 | 85.2 | 82.0 || 18.0 | 479 | 855 | 91.4

Clipping radius

le-1 || 37.1 | 574 | 135 | 7.8 || 429 | 79.9 | 92 | 157 || 464 | 843 | 593 | 17.7 || 47.6 | 85.2 | 82.0 | 10.6 || 47.9 | 855 | 91.4 | 62.0

le0 || 57.3 | 135 | 7.6 | 6.1 799 | 92 | 156 | 6.4 || 843 | 593 | 175 | 7.7 | 852 | 820 | 10.6 | 14.1 || 854 | 914 | 682 | 11.0

Nonetheless, we study this question in practice. In this setting, we assume that local functions f;
have a finite-sum structure, namely, f;(x) = % Z;”Zl fij(x). To enable privacy amplification by
data subsampling, each client i € [n] at iteration ¢ samples a batch S} of size b, and each example-
wise gradient is clipped. In this case, DP-noise variance can be significantly reduced by a factor %,
which allows for achieving better practical performance. We call a modification of C1ip21-SGD2M
with example-wise clipping as C1ip21-SGD2M+ for clarity.

J.1 ON THE THEORETICAL ANALYSIS OF CLIP21-SGD2M+

The key difficulty in the theoretical convergence analysis of Clip21-SGD2M+ comes from per-
sample gradient clipping (see Line 7 in Algorithm 5), which introduces bias in the local momen-
tum vector vf“. Therefore, for an arbitrary clipping level 7,, we expect that the method will
provably converge to some irreducible neighborhood even when o, = 0, similarly to the case of
Clip-SGD (Koloskova et al., 2023). One may address this issue by taking 7;, sufficiently large
such that the introduced bias is controlled, similarly to the analysis of DProx-clipped-SGD-shift
in the convex case (Gorbunov et al., 2024, Theorem 2.5). The clipping level in this case will
depend on some notion of gradient heterogeneity at some reference point. Nevertheless, for
large enough 73, our analysis of C1ip21-SGD2M will require just minor modifications to be ex-
tended to C1ip21-SGD2M+. The main idea behind this analysis is to show that ||V fi;(z"T1)]]
is bounded with high probability throughout the trajectory of the method. More precisely, tak-
ing Tin ~ max;;||Vfi;(2)|[[+CLR with R = sup{||z° — z*| | Vf(2*) = 0} and showing
by induction that ||z° — 2![|[< CR for some C' > 0 with high probability, one can prove that
IV fi (@ DI NIV i @OV fi (2*) = V fi5 (2°)[| < maxi; |V fij (2°)[+CLR = i That
is, the inner clipping in this case is turned off with high probability, and the proof should closely
follow the current analysis of C1ip21-SGD2M, where only one clipping is used. Such an analysis
still avoids using unrealistic assumptions like bounded gradients.

We leave the formal theoretical convergence analysis of C1ip21-SGD2M+ for future work.

J.2  EMPIRICAL PERFORMANCE OF CLIP21-SGD2M+

Now we test the performance of C1ip21-SGD2M+ when training the same CNN and MLP mod-
els on the MNIST dataset. In this setting, we rescale the DP-noise variance o, by a factor 7%
We test the performance of C1ip21-SGD2M+ against C1ip-SGD, where we similarly use example-
wise clipping to enable privacy amplification by data subsampling. Since C1ip21-SGD2M+ has two
clipping parameters, we fix 7, = 0.1 and tune 7,,¢. In this experiment, we tune the learning
rate v € {1072,1071,10°, 10}, clipping radius in {0.01,0.03,0.1,0.3, 1}, while fixing 3 = 0.1,
B = 0.01. For both algorithms, we use the batch size 32, while the data partitioning is the same as
before.

We present the results in fig. J.1. We observe that C1ip21-SGD2M+ achieves competitive perfor-
mance to C1ip-SGD, even in the setting when privacy amplification by data subsampling is used.
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Algorithm 5 C1ip21-SGD2M+

Require: 2°,¢°,v° € R? (by default ¢° = v° = 0), momentum parameters /3, 3 € (0, 1], stepsize
v > 0, clipping parameters Ti,, Tous > 0, batch size b, DP-variance parameter 02 > 0
1: Set g = g and v) = 00 for all i € [n]
2: fort=0,...,T—1do

3: = gt — vgt
4. fori=1,...,ndo
>: Sample DP-noise w?l ~ N(0, UEJI) only for DP version
6: Sample batch S
o= (L= Bl + B (3 3 ey clipn, (Vi (071) +wi )
g =dip,, (v —g)
gt =gt Aelip,, (7 —gf)
10:  end for R
e g =g by g
12: end for
60 —— Clip-SGD
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Final Train Loss
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3
3
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Figure J.1: Comparison of Clip-SGD and Clip21-SGD2M+ when training CNN on CIFAR10
dataset.
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