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ABSTRACT

Large language models show impressive abilities in memorizing world knowledge,
which leads to concerns regarding memorization of private information, toxic
or sensitive knowledge, and copyrighted content. We introduce the problem of
Large Scale Knowledge Washing, focusing on unlearning an extensive amount
of factual knowledge. Previous unlearning methods usually define the reverse
loss and update the model via backpropagation, which may affect the model’s
fluency and reasoning ability or even destroy the model due to extensive training
with the reverse loss. Existing works introduce additional data from downstream
tasks to prevent the model from losing capabilities, which requires downstream
task awareness. Controlling the tradeoff of unlearning existing knowledge while
maintaining existing capabilities is also challenging. To this end, we propose LAW
(Large Scale Washing), where we update the MLP layers in decoder-only large
language models to perform knowledge washing, as inspired by model editing
methods. We derive a new objective with the knowledge to be unlearned to
update the weights of certain MLP layers. Experimental results demonstrate the
effectiveness of LAW in forgetting target knowledge while maximally maintaining
reasoning ability. The code will be open-sourced.

1 INTRODUCTION

Large Language Models (LLMs) are shown to memorize extensive knowledge or factual rela-
tions (Chen et al., 2022; Alivanistos et al., 2022; Youssef et al., 2023; Wang et al., 2024b). However,
the memorization of knowledge in LLMs raises both moral and legal concerns. Factual knowl-
edge may involve personal and sensitive information whose memorization can violate strict regula-
tions (Legislature, 2018; Act, 1996; Parliament & of the European Union, 2016), and memorizing
copyright content is also problematic – The New York Times1 recently filed lawsuit against OpenAI
to protect its copyright of articles. To prevent the undesired memorization of the above-mentioned
knowledge, the simplest solution is perhaps to label data that has the potential to raise concerns
in advance and exclude sensitive data from the pre-training stage. However, this solution needs
exhaustive human effort and may not be feasible as the pretraining corpus for LLM is normally
extremely large. This impossibility motivates the study of machine unlearning (Liu et al., 2024a; Yao
et al., 2024; Si et al., 2023; Yao et al., 2023a; Zhang et al., 2023). When there are concerns about
memorizing sensitive knowledge, these methods aim to update the LLM to forget that knowledge
with a relatively small computational cost. Most of these methods are in the paradigm of defining
an “unlearning” loss (essentially the reverse loss of Next-Word-Prediction on the unlearning dataset)
and updating the full models by backpropagating from the loss. However, updating the model with
backpropagation may hurt the model’s abilities in downstream tasks requiring reasoning. When the
knowledge to be unlearned scales up, it may require extensive updates of the model parameters,
which could even destroy the model (as shown in our experiments). Some efforts to overcome this
limitation define a “utility” loss from specific downstream tasks and optimize both unlearning and
utility losses (Liu et al., 2024a). However, the applications of these methods may be limited when we
focus on the generalizability of LLMs where no downstream tasks are specified.

In this work, we focus on the Large Scale Knowledge Washing problem: How do we unlearn
the knowledge at scale (termed knowledge washing) as cleanly as possible while minimizing
the effects on the model’s reasoning ability? (as shown in Figure 1). We hypothesize that the
knowledge and reasoning abilities in LLMs are disentanglable, which gives rise to a feasible

1https://nytco-assets.nytimes.com/2023/12/NYT_Complaint_Dec2023.pdf
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Figure 1: The diagram shows the process of Large Scale Knowledge Washing. We aim to remove
private, toxic or copyright knowledge such as SSN from the LLM, while maintaining the model’s
reasoning ability to answer questions such as “a > b, b > c, a?c” whose answer should be “>”.

solution to the above problem. To address this, we design a novel method named LAW (Large
Scale Washing), inspired by model editing techniques (Meng et al., 2022; 2023). Specifically,
MEMIT (Meng et al., 2023) can perform extensive knowledge editing by identifying a subset of
parameters in LLMs responsible for certain factual predictions and then modifying these parameters
using a closed-form equation. Building on this concept, LAW first identifies the relevant subset of
parameters and then formulates a new objective to update them in the context of knowledge washing.
Unlike model-editing methods that aim to add factual relations to the model’s weights, LAW focuses
on deleting factual relations. In the knowledge-washing scenario, while a closed-form solution
similar to model editing is conceptually possible, practical constraints render some critical variables
unavailable. Consequently, LAW introduces a novel objective that necessitates optimization rather
than relying on a closed-form solution, incorporating several practical considerations to facilitate
this process. Our primary contribution lies in demonstrating that LAW achieves superior and more
thorough knowledge washing compared to existing methods. We evaluate LAW using two small-scale
datasets and a newly created large-scale dataset derived from Wikipedia triplets, encompassing
332,036 facts. Experimental results reveal that LAW outperforms alternative approaches in effectively
removing targeted knowledge, as evidenced by higher accuracy and QA-F1 scores on prompts derived
from the triplets. Importantly, while LAW excels in unlearning, it maintains the model’s reasoning
abilities to a reasonable extent, as validated through its performance on various reasoning tasks. This
balance underscores LAW ’s effectiveness in achieving clean and comprehensive knowledge washing
with minimal compromise on the model’s reasoning capabilities.

2 RELATED WORK

Unlearning Knowledge in Large Language Model. Recent research has increasingly focused on
the concept of machine unlearning in the context of large language models (LLMs), highlighting
both its challenges and necessities (Liu et al., 2024a; Yao et al., 2024; Si et al., 2023; Yao et al.,
2023a; Zhang et al., 2023). Beyond addressing privacy concerns necessitating unlearning in LLMs,
several studies have employed unlearning techniques to investigate the influence of specific subsets
of training data on model performance (Isonuma & Titov, 2024; Zhao et al., 2024). To facilitate
knowledge unlearning, various approaches have been proposed. One method involves retraining the
LLM on the targeted dataset using a reverse loss function, coupled with training on an irrelevant
dataset to preserve performance on unrelated tasks. This can be implemented through the addition
of unlearning layers (Chen & Yang, 2023) or directly within the large language model itself (Eldan
& Russinovich, 2023). Unlike these approaches, which apply to whole sequences in the unlearning
subset, Wang et al. (2024) suggest focusing on specific spans within sequences to minimize disruption
to unrelated tasks (Wang et al., 2024a). Furthermore, an alternative strategy known as in-context
unlearning utilizes few-shot prompts to induce forgetting of specific datasets directly within the
context of use, presenting a different approach from traditional training-based methods (Pawelczyk
et al., 2023). In a distinct line of research, other methods target the mitigation of harmful outputs by
collecting problematic prompts and applying techniques such as instruction tuning (Liu et al., 2024b)
or reinforced learning (Lu et al., 2022) to prevent toxic responses.

Model Editing of LLMs. Model editing in large language models pertains to the modification of
factual relations within the models to integrate new world knowledge (Yao et al., 2023b). Initial
approaches to model editing focused on single-fact adjustments, requiring the model to update one
factual relation at a time. Prominent methods in this domain include ROME (Meng et al., 2022),
MEND (Mitchell et al., 2022a), T-Patcher (Huang et al., 2023), and IKE (Zheng et al., 2023). These
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techniques, however, often face stability issues after multiple edits, complicating the process of
batch editing, where multiple new factual relations are introduced simultaneously. In response to
these challenges, advanced methods like GRACE (Hartvigsen et al., 2022) and SERAC (Mitchell
et al., 2022b) have been developed for effective batch editing. Further advancements have tested
these methodologies on larger models, such as GPT2-XL and GPT-J-6B, with techniques like
MEMIT (Meng et al., 2023) and Model-Editing-FT (Gangadhar & Stratos, 2024). These approaches
facilitate the injection of multiple factual relations (up to the scale of around 10,000 factual relations)
into the model and can be adapted for unlearning knowledge in LLMs by altering factual statements
to end-of-sequence tokens – for example, changing ”The mother tongue of David is French” to ”The
mother tongue of David is <|endoftext|>” (here “<|endoftext|>” is the end-of-sequence
token in GPT-based models), effectively erasing specific information. While this strategy offers a
potential pathway for knowledge unlearning, it may not surpass the effectiveness of our proposed
method, which specifically focuses on the removal rather than the addition of factual relations. This
distinction underscores the fundamental differences in approach between general model editing
techniques and our targeted strategy for knowledge unlearning.

3 PRELIMINARY

3.1 THE STRUCTURE OF DECODER-ONLY LARGE LANGUAGE MODELS

Given the decoder-only language model G, the forward process is shown below:

hl
t = hl−1

t (x) + Attnt(hl−1
1 , · · · , hl−1

t ) +W l
outσ(W

l
inγ(h

l
t)), (1)

where L is the number of layers in G, hl
t−1 represents the hidden state of the (t − 1)-th token at

the l-th layer, with Wout and Win being the weights in the MLP layers of the transformer. Here the
attention and MLP are expressed in parallel, as done in Meng et al. (2023) and Black et al. (2021).

3.2 PREVIOUS MODEL EDITING STRATEGY

As hypothesized and verified in Meng et al. (2022; 2023), the factual knowledge is mostly stored in
the MLP layers, which leads to their strategy of updating the weight matrixes W l

out in Eq.(1). Meng
et al. (2022) first identifies the layer in the model that contributes most to the related knowledge
prediction, which we denote as l0. Then the edit is performed on the parameter W l0

out. For simplicity,
we denote W0 as the specified parameter W l0

out that needs to be updated. Inspired by Geva et al.
(2020), the linear layer W0 can act as key-value memories, associating input keys K = {ki}ni=1 with
corresponding values V = {vi}ni=1. The following equation shows the relationship between W0 and
K,V :

W0 = argmin
W

∥WK − V ∥2F =⇒ W0 = V KT (KKT )−1 =⇒ W0KKT = V KT , (2)

Then if we want to inject new factual relations, we first need identify the new keys and values
Ke = {kj}uj=1 and Ve = {vj}uj=1 (here Ke can be obtained via a forward pass while Ve needs to be
calculated via gradient descent, the details are in the paper Meng et al. (2022)), then the following
equation is solved to obtain the delta matrix ∆:

∆ = argmin
∆̂

∥ (W0 + ∆̂)K1 − V1 ∥2F , (3)

where ∆ is the desired update matrix that can be added onto W0 to obtain the new weight, K1 and V1

refer to the concatenation of K,Ke and V, Ve, respectively. This leads to the closed-form solution:

∆ = RKT
e (KKT +KeK

T
e )

−1 (4)

where R = Ve −W0Ke. Here although K is hard to obtain as we do not know how much knowledge
is stored in the weight W0, we can use abundant text input to estimate KKT . In ROME (Meng
et al., 2022), single fact editing is considered, where Ke and Ve are single column vectors, and
only one specific layer is edited. However, in MEMIT (Meng et al., 2023), Ke and Ve are matrixes
including all the new facts in the batch editing procedure, where multiple sequential layers are edited
to spread the magnitude required to edit one layer into the successive layers to avoid drastic parameter
changes (Zhu et al., 2020). Instead of editing l0 alone, MEMIT (Meng et al., 2023) proposes to edit
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the layer set denoted as R = {l0 − |R|+ 1, · · · , l0}, where the necessary adjustment to the weights
W l in layer l ∈ R is given by:

∆l = RlKl
e

T
(KlKlT +Kl

eK
l
e

T
)−1,

where Rl = Rl0

l0−l+1 and Rl0 is the residual in Eq.(4). These modifications are applied sequentially
from the lower to the upper layers, necessitating the recalculation of Kl

e as edits progress. The details
of the above derivations are in Appendix A.

4 PROBLEM SETUP

We define the problem Large Scale Knowledge Washing as: How to wash a certain large set
of knowledge from the large language models while minimizing the effects on the model’s
reasoning ability? Here by washing the knowledge, we refer to the triplets that can be formed into
single factual sentences. The knowledge set can be defined as follows:

Ew = {(si, ri, oi)}mi=1, (5)

here m is the total number of factual relations to be washed. Then for each triplet, we convert it
into a sentence to perform the washing. For instance, the triplet (James Gobbo, residence,
Toorak) is formed into a sentence James Gobbo resides in Toorak. Then we have
plenty of similar sentences as the factual statements. After knowledge washing, we wish to obtain a
model that can only generate random answers or null answers when queried with the prompt James
Gobbo resides in. Meanwhile, we expect the model to still be able to answer various reasoning
questions without performance degradation. Note that we do not have any new object to replace the
triplet oi in (si, ri, oi) in the washing process, while only the ground-truth answer oi is accessible
and washed. Differently, for model-editing methods, there is a specific goal to edit the model to that
leads to a simple solution: edit all the triplets in Ew into Eeos defined as follows:

Eeos ≜ {(si, ri,<|endoftext|>)}mi=1, (6)

where <|endoftext|> is the end-of-sequence token in GPT-Style models. Intuitively, a model’s
capacity is finite, while Eq.(6) injects new factual relations into the model which may disturb the
model’s existing abilities. In contrast, we propose to remove the knowledge from the model, which
may lead to less harm to the model’s reasoning abilities.

5 METHODOLOGY

As described in Section 3, the original model weight W0 that requires updating at layer l0, can be
expressed in terms of K and V , satisfying W0KKT = V KT (shown in Eq.(2)). In the context of
model editing, the keys for new knowledge Ke are distinct from K. However, when the goal is to
erase specific knowledge, the relevant keys, denoted as Kw, should be a subset of the original keys K.
Here keys Kw and values Vw represent all the memorized knowledge in Eq.(5). Unlike incorporating
new knowledge where K1 is the concatenation of K and Ke, for knowledge erasure, K2 comprises
the remaining keys after excluding Kw from K. This adjustment modifies our objective to:

∆ = argmin
∆̂

∥ (W0 + ∆̂)K2 − V2 ∥2F , (7)

where V2 corresponds to the values associated with K2 within the model weights. Although Eq.(7)
provides a closed-form solution, obtaining V2 may be challenging, as it essentially represents the
values that can be used to derive W0 during the pre-training phase. Theoretically, there exist K,V
that can achieve the same W0 as the pre-training, but explicitly finding them is impractical. As V2 is
part of V , V2 is also hard to obtain. To circumvent this issue, we reformulate the problem as:

∆ = argmin
∆̂

∥ (W0 + ∆̂)K − V ∥2F −γ ∥ (W0 + ∆̂)Kw − Vw ∥2F , (8)

where γ is a hyper-parameter balancing the trade-off between retaining unrelated knowledge (and the
model’s reasoning abilities) and erasing targeted knowledge. We decompose the first term as:

min
∆̂

∥ (W0 + ∆̂)K − V ∥2F= min ∥ ∆̂ ∥2F +2tr(∆̂(W0K − V )T ) + ||W0K − V ||2F

= min
∆̂

∥ ∆̂K ∥2F +2tr(∆̂KKTWT
0 )− 2tr(∆̂KV T ) = min

∆̂
∥ ∆̂K ∥2F

4
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Figure 2: The details in the update process of Eq.(10). Here Kw represents the keys of the knowledge
to be washed and Vw means the corresponding values. Before the modification, Vw is the output of
layer W l

out given the input Kw. Then we add ∆ on W l
out where ∆ is optimized via Eq.(10). Here

W l
out is denoted as W0 in Section 5 for simplicity, and K means the original keys in W0 before the

modification (see Eq.(2)). The intuition is to unlearn the knowledge in Kw while not disturbing the
model’s other ability encoded in W0.

where the last equality comes from the fact that W0 = V KT (KKT )−1 (see Eq.(2)). Although the
exact K is intractable, we estimate KKT using a large corpus as described in MEMIT (Meng et al.,
2023). For the second term in Eq.(8), as we also do not have the exact Vw, we choose to use W0Kw

as the approximation of Vw. This leads to the following optimization problem:

∆ = argmin
∆̂

∥ ∆̂K ∥2F −γ ∥ ∆̂Kw ∥2F (9)

This formulation aims to disrupt the outputs significantly for inputs Kw, effectively ”washing” the
knowledge associated with Kw from the model, thereby preventing accurate predictions based on Vw.

This objective function serves as the basis for optimizing the search for an optimal ∆̂, which, with a
suitably tuned γ, allows for the desired model edits. However, as the tradeoff between ∥ ∆̂K ∥2K and
∥ ∆̂Kw ∥ might be hard to achieve, we propose to reformulate the objective in Eq.(9) into:

∆ = max
∆̂

∥ ∆̂Kw ∥2F s.t.
∥ ∆̂K ∥2F
∥ K ∥2F

≤ β (10)

Here β is the hyperparameter used to control the tradeoff between the reasoning ability (related to
∥ ∆̂K ∥2F ) and the washing of previous knowledge (represented by ∥ ∆̂Kw ∥2F ). Then we simply set
β as 0.1 (an empirical value that should not affect the model’s ability on other tasks) and optimize the
above objective to obtain the optimal ∆. We visualize some details of the optimization in Figure 2.

5.1 PRACTICAL CONSIDERATION

Initialization of ∆̂. We find that the optimization problem in Eq.(10) is a non-convex optimization
problem and is very sensitive to the initialization. During implementation, we find that randomly
initialized ∆̂ often leads to sub-optimal solutions. To address this issue, we propose to use the delta
matrixes from MEMIT when performing the edits shown in Eq.(6). The intuition is that MEMIT
could achieve a fairly good tradeoff between the model’s reasoning ability and knowledge washing.
Then we run our optimization algorithm with the objective in Eq.(10) on top of this initialization to
achieve better performance.

Choices of β. There are two strategies for choosing β. The first one is to set β as a constant value
such as 0.2 which is to control the maginitude of the modification on the model weights. Another
strategy is to set the boundary β according to the original β0 after the initialization. Suppose the
initialized ∆̂ from the above paragraph is ∆0, then we have β0 = ∥∆0K∥2

∥L∥2 . Then we loose β0 with
some small factor to allow the space for optimization. Thus β is usually chosen as 1.1 ∗ β0.

Successive Elimination of Target Knowledge Sets. As our goal is to forget the knowledge in
the knowledge set, when we are updating multiple layers sequentially, we may exclude the factual

5
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relations that have already been deleted after the update from the last layer. To this end, before the
update of every layer, we run the model to check the knowledge that is still in the model and perform
the optimization concerning this subset of knowledge. In this way, we expect to achieve a more
focused optimization and better performance in knowledge washing.

5.2 DISCUSSION OF THE DISENTANGLEMENT OF KNOWLEDGE AND REASONING

As demonstrated by Meng et al. (2022; 2023), the MLP (multi-layer perceptron) layers in transformers
primarily store knowledge. However, our research also suggests that these layers significantly
influence the model’s reasoning capabilities. This assertion is supported by experiments showing
that modifications to the parameter W0 can impact the model’s performance on reasoning tasks.
Therefore, we propose that MLP layers are critical for both knowledge storage and reasoning
processes. This paper explores strategies to disentangle these two functions by identifying alternative
weight matrices that selectively diminish certain knowledge aspects while preserving, or minimally
affecting, reasoning abilities. The possibilities of achieving this come from our hypothesis that
knowledge storage and reasoning abilities can be separated within transformers. In this paper, we
show the possibility of the disentanglement between knowledge and reasoning by washing a large
amount of knowledge from the model while only minimally affecting the reasoning abilities.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

To demonstrate the effectiveness of our method, we compare it with various knowledge editing and
unlearning methods. The baselines for model-editing include: (1) FT: Simply finetune the model
on the factual sentences formed from the triplets in Eeos in Eq.(6) (2) MEMIT (Meng et al., 2023):
This state-of-the-art method can edit multiple layers of the model to perform thousands of edits
simultaneously. (3) ME-FT (Model-Editing-FT) (Gangadhar & Stratos, 2024), which finetunes the
model with only the loss on the span of oi in each sentence formed from (si, ri, oi) ∈ Ew. Irrelevant
sentences are constructed as augmentations during training. For the knowledge unlearning category,
the baselines are: (1) FT-UL (Finetune-Unlearning): Finetune the model on the sentences formed
from the triplets Ew in Eq.(5) but with the reverse (i.e. negative) next-word-prediction loss function;
(2) WOH (Who is Harry Potter) (Eldan & Russinovich, 2023): First train a reinforced model on the
unlearning dataset, then update the target model to diverge from the reinforced model, based on the
assumption that the reinforced model can better retain the unlearning dataset; (3) SeUL (Selective
Forgetting) (Wang et al., 2024a): Designates specific spans in the training data and uses a reversed
next-word-prediction loss function on these spans for training.

Consistent with previous studies (Meng et al., 2023; Gangadhar & Stratos, 2024), we employ
GPT2-XL (1.5B parameters) and GPT-J-6B (6B parameters) as the backbone models for knowledge
washing. The datasets used in our experiments are: (1) zsRE (Levy et al., 2017): A question-
answering dataset with 19,086 facts. (2) CounterFactual (Meng et al., 2022): A dataset containing
21,929 counterfactual facts. After removing conflicting facts (Meng et al., 2023), 20,877 facts remain.
(3) To facilitate large-scale knowledge washing, we utilize the latest Wikipedia dump, processing
the relations following the guidelines provided in the repository2. This results in approximately
16,000,000 triplets. We then use gpt-3.5-turbo to rewrite each triplet into a sentence containing
both the subject and the ground-truth answer. From 1,000,000 processed examples, we obtain 332,036
valid facts, creating the dataset referred to as Wiki-Latest.

For evaluation, we employ two metrics to assess the extent of knowledge washing: (1) Accuracy:
The model generates 10 tokens, and if the ground-truth answer is among the decoded output, it is
considered a correct prediction. The accuracy is calculated as the percentage of correct predictions
across the entire dataset. (2) QA-F1-Score: Using the metric from LongBench (Bai et al., 2023), we
measure the F1-score between the generated output from the 10 tokens and the ground-truth answer.
We measure the model’s reasoning ability with the library lm-evaluation-harness (Gao et al.,
2023) on three tasks Lambda openai (Radford et al., 2019; Paperno et al., 2016), HellaSwag (Zellers
et al., 2019), and Arc Easy (Clark et al., 2018). The descriptions of HellaSwag and Arc Easy are
shown in Appendix C.1. For the tables in the main paper, we report the average accuracy across three

2https://github.com/neelguha/simple-wikidata-db
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Table 1: The experimental results of the model GPT2-XL on the datasets zsRE and CounterFactual
with different methods. The dataset zsRE contains 19086 factual statements in total, where GPT2-XL
could answer 1212 facts correctly and GPT-J-6B knows 1951 facts. Similarly, CounterFactual
contains 20877 facts in total where GPT2-XL knows 3680 facts and GPT-J-6B knows 5702 facts.
We highlight in red those results where the model is destroyed (the perplexity is overly high),
which are excluded from the accuracy comparison. Here Knowledge refers to the evaluation on
the knowledge set to be washed, and Reasoning refers to the evaluation of different models on the
dataset Lambda openai after performing knowledge washing with different methods.

zsRE CounterFactual
Knowledge Reasoning Knowledge Reasoning

Acc↓ QA-F1↓ Avg Acc↑ Acc↓ QA-F1↓ Avg Acc↑
GPT2-XL 1.0000 0.3704 0.5105 1.0000 0.2647 0.5105

FT 0.4208 0.2178 0.5049 0.1783 0.0930 0.5033
MEMIT 0.0462 0.0379 0.5130 0.1929 0.1439 0.4978
ME-FT 0.5091 0.2195 0.4801 0.1799 0.0878 0.3589

FT-UL 0.0000 0.0000 0.2398 0.0000 0.0000 0.1760
WOH 0.5182 0.2017 0.4993 0.5978 0.1615 0.4756
SeUL 0.0957 0.0443 0.4907 0.0000 0.0000 0.3558

LAW 0.0050 0.0039 0.5105 0.1091 0.0905 0.4890

GPT-J-6B 1.0000 0.4043 0.6560 1.0000 0.4043 0.6560

FT 0.6181 0.2538 0.6590 0.3995 0.1646 0.6544
MEMIT 0.0553 0.0388 0.6565 0.2060 0.0759 0.6502
ME-FT 0.0751 0.0349 0.5866 0.2139 0.1183 0.5112

FT-UL 0.0000 0.0000 0.1699 0.0000 0.0000 0.1707
WOH 0.6930 0.2829 0.6518 0.5396 0.1359 0.6535
SeUL 0.7422 0.3032 0.6514 0.5393 0.1395 0.6651

LAW 0.0000 0.0000 0.6468 0.0305 0.0125 0.6387

datasets Lambda openai, arc easy and hellaswag and leave the full table with all the other metrics in
the appendix.

As for the implementation details, we perform all the experiments on eight A6000-48GB GPUs, while
every experiment can be run separately on one GPU. For the implementation of MEMIT and ME-FT,
we use their open-sourced code and formulate the problem as setting the target knowledge set as Eeos
in Eq.(6). We manually implement FT to finetune on the corresponding sentences from Eeos. Then
for the unlearning methods, we reimplement WOH and SeUL following the method introduced in
their papers. We fix the number of training epochs as one so that the model’s reasoning ability can
be maximally maintained. For our method, we choose β = 1.1β0 where β0 is calculated from the
parameters initialized from the weights of MEMIT when editing the model with Eeos in Eq.(6).

6.2 OVERALL PERFORMANCE COMPARISON

6.2.1 SMALL-SCALE KNOWLEDGE WASHING

We first test the performances of our method on the small-scale knowledge-washing tasks, i.e.,
forgetting the knowledge in zsRE and CounterFactual. We report the results in Table 1. As shown
in the table, our method can achieve the best performance concerning the cleanness of knowledge
washing (measured by Accuracy and QA-F1-Score) while maintaining performance levels comparable
to the original model on reasoning tasks. As the dataset scale is not large, it is shown in the table
that WOH and SeUL, two fine-tuning-based methods achieve some certain extent of knowledge
washing and also successfully maintain the model’s original ability, although there is already sign
of performance degradation as shown in the dataset CounterFactual (See the performances of SeUL
on GPT2-XL). Meanwhile, the method FT-UL could not achieve reasonable results as the reverse
training objective is overly fragile to the training without more complicated regularization. We also
show the generated examples for visualization in Appendix C.2.3.
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Table 3: The experimental results of the model GPT2-XL on the dataset Wiki-Latest with different
methods. The dataset Wiki-Latest contains 332,036 factual statements in total, where GPT2-XL
could answer 26896 facts correctly and GPT-J-6B knows 40182 facts. We highlight in red those
results where the model is destroyed (the perplexity is overly high), which are excluded from the
accuracy comparison. The definition of Knowledge and Reasoning is the same as in Table 1.

GPT2-XL GPT-J-6B
Knowledge Reasoning Knowledge Reasoning

Acc↓ QA-F1↓ Acc↑ Acc↓ QA-F1↓ Acc↑
Original 1.0000 0.3734 0.5105 1.0000 0.2553 0.6560

FT 0.0446 0.0256 0.3305 0.0159 0.0115 0.4867
MEMIT 0.2972 0.2342 0.5029 0.2536 0.0753 0.6436
ME-FT 0.0000 0.0000 0.1978 0.0000 0.0000 0.1716

FT-UL 0.0000 0.0000 0.1681 0.0000 0.0000 0.1669
WOH 0.4672 0.2227 0.2910 0.0009 0.0000 0.1728
SeUL 0.0000 0.0000 0.1647 0.0004 0.0000 0.1695

LAW 0.1926 0.1735 0.4832 0.1385 0.0846 0.6387

6.2.2 LARGE SCALE KNOWLEDGE WASHING

To further test the effectiveness of our method on large-scale knowledge washing, we use the
constructed large dataset Wiki-Latest on which we perform knowledge washing. With 332,036 facts,
we first go over the whole dataset to find out all the facts that the model can predict correctly. Then we
run our algorithm to wash factual relations that the model knows about. The performances of different
methods on GPT2-XL and GPT-J-6B are reported in Table 3. As shown in the table, LAW is shown to
achieve the cleanest washing in terms of the accuracy and QA-F1-score on the facts to be washed. We
can find that unlearning methods may easily destroy the model after drastic updates. Compared with
small-scale unlearning (shown in Table 1), the problems with fine-tuning-based methods are more
severe. Without proper regularization during the update, the model’s abilities may be easily destroyed.

W/zsRE W/CF W/Wiki

MEMIT 0.091 0.071 0.075
LAW 0.085 0.076 0.074

Table 2: The QA-F1 score of the model
after washing some knowledge on 1000
examples extracted from Wikipedia. We
evaluate the model after washing each
dataset with MEMIT and LAW. The QA-
F1 score of the base model GPT2-XL
is 0.085. Here “W/” means “Washing”,
“CF” and “Wiki” refer to “CounterFac-
tual” and “Wiki-Latest”.

On the contrary, our method is more robust, which main-
tains comparable reasoning ability while achieving the
almost lowest accuracies in terms of knowledge forgetting
(only FT achieves lower accuracy, however, the perplexity
and accuracy in the reasoning tasks are drastically affected
after the fine-tuning process). For the generated examples
after performing knowledge washing using different meth-
ods on the model GPT2-XL, we visualize some results in
Appendix C.2.3.

6.2.3 UNRELATED KNOWLEDGE PRESERVATION

To evaluate the preservation of unrelated knowledge during
the unlearning process, we create a new evaluation set
containing 1,000 facts extracted from Wikipedia. The
dataset is constructed using the same procedure as Wiki-
Latest, as described in Section6.1. We focus on comparing the MEMIT method with our proposed
approach, LaW (LAW), and present the results in Table 2. The results indicate that LaW performs
comparably to MEMIT in retaining unrelated knowledge.

6.3 ABLATION STUDY

We aim to explore the effects of the practical considerations described in Section 5.1. We put the
experiments of Successive Elimination of Knowledge Set in Appendix C.2.2.

Ablation Study on Initialization of ∆̂. We compare the performance of LAW on the dataset
zsRE and CounterFactual with model GPT2-XL between using random initialization and using the
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Table 4: Ablation study with different initialization of ∆̂.
zsRE CounterFactual

Knowledge Reasoning Knowledge Reasoning

Acc↓ QA-F1↓ Avg Acc↑ Acc↓ QA-F1↓ Avg Acc↑
GPT2-XL 1.0000 0.3734 0.5105 1.0000 0.3734 0.5105

LAW (β = 0.2, RI) 0.8845 0.3274 0.5063 0.9158 0.2445 0.5065
LAW (β = 0.2) 0.0008 0.0008 0.4784 0.1258 0.1102 0.4827

Table 5: Ablation study with different β settings.
zsRE CounterFactual

Acc↓ QA-F1↓ Avg Acc↑ Acc↓ QA-F1↓ Avg Acc↑
GPT2-XL 1.0000 0.3734 0.5105 1.0000 0.3734 0.5105

β = 1.05β0 0.0074 0.0060 0.5112 0.1266 0.1070 0.4910
β = 1.1β0 0.0050 0.0039 0.5105 0.1091 0.0905 0.4881
β = 1.2β0 0.0008 0.0010 0.5088 0.0965 0.0853 0.4774
β = 1.5β0 0.0000 0.0003 0.5010 0.0655 0.0587 0.4602
β = 0.1 0.0198 0.0166 0.5100 0.4318 0.2401 0.5062
β = 0.2 0.0008 0.0008 0.4784 0.1258 0.1102 0.4827
β = 0.5 0.0000 0.0000 0.3753 0.0242 0.0220 0.3851

initialization from MEMIT. For random initialization, we sample a matrix matching the dimension
of W0 (in Eq.(2)), filled with independent Gaussian random variables scaled by a factor of 0.001:
∆0 = 0.001 · N (0, I). The results are reported in Table 4 (full table in Appendix C.2.2). When
initializing from Gaussian distribution, we do not have reference β0 as in the initialization from
MEMIT, so we choose the constant β = 0.2. Similarly, we also set β = 0.2 when using MEMIT
initialization. The table shows the MEMIT initialization can boost the performance drastically. The
reason might be the optimization easily achieves local minimum when using random optimization.

Ablation Study of Choices of β. As shown in Eq.(10), the hyper-parameter β can control the tradeoff
between washing the knowledge in Kw and maintaining the original knowledge in K (which may
also be related to the model’s reasoning ability, as we find that when this term is large the model’s
reasoning ability may degrade drastically). To study the effects of different β, we choose the setting
of dataset zsRE and CounterFactual with the model GPT2-XL to study the effects of different β. The
results are reported in Table 5 (full table in Appendix C.2.2). From the table, we can see that as β
increases, the knowledge is washed more thoroughly and the reasoning abilities are also dropping,
showing the tradeoff between knowledge washing and maintaining reasoning abilities. We can also
find that setting β according to β0 can achieve better performances (see the performance comparison
between β = 1.2β0 and β = 0.2 on the dataset CounterFactual), which demonstrates the necessity of
setting different β for different layers.

7 CONCLUSION, LIMITATION, AND FUTURE WORK

In this paper, we introduce the Large Scale Knowledge Washing problem, which means unlearning
the existing knowledge in the model on a large scale. To address this problem, we draw inspiration
from model-editing methods and propose Large Scale Washing (LAW), where we propose a new
objective to remove the corresponding knowledge from the MLP layers in the large language models
(LLMs), which is considered to store most of the knowledge in the LLMs. Experimental results
demonstrate the effectiveness of our method in washing the knowledge in terms of the accuracies
when prompted with queries related to the knowledge set, while mostly maintaining the model’s
reasoning ability. Our work proposes an effective knowledge-washing algorithm and shows the
possibility of knowledge-reasoning disentanglement. One limitation is we consider the knowledge
set in a specific format, i.e., triplets, whereas washing a large scale of knowledge in pure text where
no triplets are available might be more challenging. For future work, we aim to explore washing the
knowledge more thoroughly and extend our framework to other more recent LLMs.
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ETHICS STATEMENT

Our research focuses on developing LAW, a method for large-scale knowledge washing in Large
Language Models (LLMs), aiming to remove sensitive, private, or copyrighted information while
preserving the models’ reasoning capabilities. We acknowledge the ethical considerations associated
with both the presence of such information in LLMs and the processes involved in unlearning it.

Data Privacy and Compliance: The datasets used for unlearning in our experiments are derived
from publicly available sources including zsRE (Levy et al., 2017), CounterFactual (Meng et al.,
2022), and Wikipedia triplets, and do not contain personal or sensitive information about individuals.

Ethical Compliance: Throughout this study, we have adhered to the ICLR Code of Ethics. We
conducted our research with integrity, respecting all applicable laws and ethical standards, and
carefully considered the broader societal implications of our work.

REPRODUCIBILITY STATEMENT

We make sure the results are producible. We provide a clear experimental setup in Section 6.1. We
provide our code as supplementary material to ensure the reproducibilities.
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A MATHEMATICAL DETAILS OF PRELIMINARY

As demonstrated by MEMIT (Meng et al., 2023), the objective is to adjust factual associations stored
within the MLP layers of transformer-based, decoder-only large language models. The conditional
distribution of the next token xt, given by language model G, relies on the sequence of previous
tokens:

P (xt|x1, · · · , xt−1) ≜ G(x1, · · · , xt−1) = softmax(Wyh
L
t−1), (11)

where L denotes the total number of layers in the transformer G, and hL
t−1 represents the hidden state

of the (t− 1)-th token at the L-th layer, with Wy being the language model head that predicts the
next word’s distribution over the vocabulary. Within transformers, the computation of the state is
articulated as follows:

hl
t = hl−1

t (x) + Attnt(hl−1
1 , · · · , hl−1

t ) +W l
outσ(W

l
inγ(h

l
t)), (12)

where h0
t (x) is the embedding of the t-th token in the sentence x, γ represents layernorm, and σ

denotes the activation function. Then knowledge editing requests are defined by:

Eedit = {si, ri, oi|i} s.t., ,∄i, j., (si = sj) ∧ (ri = rj) ∧ (oi ̸= oj) (13)

In MEMIT (Meng et al., 2023), W l
out, denoted as W0, can act as key-value memories, associating

input keys ki ≜ kli with corresponding values vi ≜ vli (Geva et al., 2020). If W l
out is dimensionally

defined as d1 × d2 and stores n memories, with u new edits, then to modify the MLP layer W l
out

(i.e., the matrix W0), the following delta matrix ∆ is solved:

∆ = argmin
∆̂

∥ (W0 + ∆̂)K1 − V1 ∥2F (14)

where K1 ∈ Rd2×(n+u) represents a concatenation of the original keys K ∈ Rd2×n stored in W0

and keys corresponding to the edit requests Ke ∈ Rd2×u. Similarly, V1 ∈ Rd1×(n+u) includes the
original values V ∈ Rd1×n and new values Ve ∈ Rd1×u.

Once the incremental matrix ∆ is calculated, the matrix W0 can be updated to W0 +∆, representing
the newly adjusted weight of the MLP layer after edits. The closed-form solution for ∆ is given by:

∆ = (V1 −W0K1)K
T
1 (K1K

T
1 )

−1 (15)

Given that K1 is the concatenation of K and Ke, the product KT
1 K1 equals KKT +KeK

T
e . With

K and V representing the keys and values associated with W0, the optimal solution for W0 under a
least squares criterion is:

W0 = argmin
W

∥WK − V ∥2F =⇒ W0 = V KT (KKT )−1 =⇒ W0KKT = V KT , (16)

Substituting these relationships into the equation for ∆, we derive:

∆ = (V1K
T
1 −W0K1K

T
1 )(K1K

T
1 )

−1 (17)

= (W∗K
T
e + V KT −W0KKT −W0KeK

T
e )(K1K

T
1 )

−1 (18)

= (Ve −W0Ke)K
T
e (KKT +KeK

T
e )

−1 (19)

Define R = Ve −W0Ke. Consequently, ∆ simplifies to:

∆ = RKT
e (KKT +KeK

T
e )

−1 (20)

This process enables the editing of an MLP layer within the transformer G to incorporate new
relational data, following the solution of the equation for each Ke and Ve from the editing requests.
In the MEMIT approach (Meng et al., 2023), KKT is pre-estimated and represented as λC0, where
C0 is the average covariance matrix of K and λ is a hyper-parameter typically on the order of 10,000.

When performing extensive model editing, modifying only one layer may lead to robustness issues,
while a more stable model can be achieved by minimizing the magnitudes of parameter changes (Zhu
et al., 2020). Consequently, MEMIT proposes modifying multiple layers to distribute the editing
impact more broadly (Meng et al., 2023). This method involves spreading the residual R = Ve −
W0Ke across several layers. Let L represent the index of the deepest layer requiring modification
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zsRE CounterFactual Wiki-Latest

GPT2-XL 20,000 20,000 100,000
GPT-J-6B 50,000 100,000 100,000

Table 6: Configurations of MEMIT.

such that the output of this layer transitions from W0Ke to Ve. Define R as the set of layer indices
{L− |R|+ 1, . . . , L} that require edits. For each layer l within R, the necessary adjustments to the
weights W l are given by:

∆l = RlKl
e

T
(KlKlT +Kl

eK
l
e

T
)−1, (21)

where Rl = RL

L−l+1 and RL = R. These modifications are applied sequentially from the lower to the
upper layers, necessitating the recalculation of Kl

e as edits progress.

B IMPLEMENTATION DETAILS

For the baselines, we train GPT-J-6B with LoRA (Hu et al., 2021). we put the configurations as
below:

1. FT. We set the learning rate as 1e-6 for GPT2 training and 1e-4 for the training of GPT-J-6B
and set the number of epochs as 5. We find that with more training, the model can easily
achieve zero accuracy on the knowledge set but also get overly high perplexity (> 1010) on
the Lambda openai dataset.

2. MEMIT. This method has a hyperparameter λ when estimating KKT = λC where C is
the average variable calculated on a large dataset (see the details in Meng et al. (2023)).
The configurations of λ in different settings are shown in Table 6. We found that with
these configurations the model can achieve good knowledge-washing accuracy while mostly
maintaining the model’s reasoning ability (minimal performance degradation on reasoning
tasks.)

3. ME-FT. We use the code base from the open-sourced GitHub page3 and use the configura-
tions from the website for zsRE and CounterFactual. For Wiki-Latest, we choose the same
configuration as CounterFactual with only the data source file changed.

4. FT-UL. We set the learning rate as 1e-6 for GPT2-XL and train for 1 epoch for every dataset,
and set the learning rate as 1e-5 for GPT-J-6B and train for 5 epochs for every dataset (As
LoRA training usually takes longer than full-finetuning).

5. WOH. We first train the reinforced model on the sentences formed from the triplets Ew with
the learning rate set as 1e-6 for 1 epoch, then we adopt the objective Eq.(1) from the paper
Eldan & Russinovich (2023) to update the target model. During the second stage of training,
we set the learning rate as 5e-5 and train the model for 1 epoch.

6. SeUL. We use the sentences formed from the triplets and only use the loss on the span of the
target oi in the triplet (si, ri, oi). For all the models and the datasets, we train for 3 epochs
with a learning rate set as 1e-6. We conduct full-finetuning on GPT2-XL and use LoRA to
fine-tune GPT-J-6B.

C ADDITIONAL EXPERIMENTS

C.1 DESCRIPTIONS OF THE REASONING DATASETS

We conduct the reasoning experiments on three datasets: Lambda openai (Radford et al., 2019;
Paperno et al., 2016), HellaSwag (Zellers et al., 2019), and Arc Easy (Clark et al., 2018). The
descriptions of these three datasets are as follows:

3https://github.com/au-revoir/model-editing-ft
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1. Lambda openai (Paperno et al., 2016): The LAMBADA dataset tests computational text
understanding via a word prediction task. It features narrative texts where models must
use broad context to predict the final word, rather than just the last sentence. The dataset
includes an original test split and translations in German, Spanish, French, and Italian.

2. HellaSwag (Zellers et al., 2019): The HellaSwag dataset is a benchmark designed for
evaluating commonsense natural language inference (NLI) capabilities. It challenges models
to complete sentences in a way that aligns with human common sense. The dataset prompts
computational models to predict plausible sentence endings, testing their understanding of
everyday scenarios and contexts.

3. ARC Easy (Clark et al., 2018): The ARC Easy dataset is a subset of the ARC dataset,
featuring grade-school level multiple-choice science questions that are less challenging
compared to the full set. It includes questions that were correctly answered by standard
algorithms.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

C.2.1 OVERALL PERFORMANCE COMPARISON

The overall performance comparisons with the performances on two other reasoning benchmarks on
zsRE, CounterFactual and Wiki-Latest are shown in Table 10, Table 11 and Table 12, respectively.

C.2.2 ABLATION STUDY

Ablation Study on Initialization of ∆̂ We put the full results of the ablation study with different
initialization methods in Table 7.

Ablation Study of Choices of β We put the full results of different choices of β in Table 8.

Ablation Study on Successive Elimination of Knowledge Set In our practical considerations,
before modifying every layer, we find the facts in the knowledge set that the model can answer
correctly and perform the knowledge washing on the selected knowledge set. To study the effects of
this technique (denoted as SE), we conduct experiments with and without SE and report the results in
Table 9 The results show that the algorithm can achieve a much cleaner washing with SE enabled, at
the expense of slightly affecting the reasoning abilities.

C.2.3 CASE STUDY

In this section, we visualize the performances of different methods. We select some examples from
datasets zsRE, CounterFactual, and Wiki-Latest and show them in Table 13. From the table, we can
find that: (1) SeUL is usually generating nonsense output which shows that the model’s fluency is
affected. (2) After knowledge washing, LAW is still able to answer these questions. However, we
do not force the model to remember any new knowledge, while only forgetting the old knowledge.
Consequently, the model may predict random answers such as “Denmark” and “in the middle of
the Finnish winter” or may predict null answers like “None”. In contrast, other methods can either
still predict the correct answers (indicating the failure of unlearning), or start generating nonsense.
Compared with MEMIT, there is more chance for MEMIT to output <|endoftext|> than LAW
as this is the target of their editing, whereas for LAW, we aim to disturb the output to generate random
answers, which also demonstrate the key difference: LAW aims to forget the existing knowledge
rather than injecting new factual relations.
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Table 7: Ablation study with different β settings. All settings are conducted with the weights
initialized from MEMIT. Here “CF” refers to CounterFactual.

Lambda openai hellaswag arc easy
Acc↓ QA-F1↓ Acc PPL Acc norm Acc norm

GPT2-XL 1.0000 0.3734 0.5121 10.63 0.5089 0.5105

CF LAW (β = 0.2, RI) 0.9158 0.2445 0.5082 10.86 0.5053 0.5059
LAW (β = 0.2) 0.1258 0.1102 0.4708 13.04 0.4941 0.4831

zsRE LAW (β = 0.2, RI) 0.8845 0.3274 0.5049 10.77 0.5081 0.5059
LAW (β = 0.2) 0.0008 0.0008 0.4628 14.34 0.4924 0.4800

Table 8: Ablation study with different β settings. All settings are conducted with the weights
initialized from MEMIT. Here “CF” refers to CounterFactual.

Lambda openai hellaswag arc easy
Acc↓ QA-F1↓ Acc PPL Acc norm Acc norm

GPT2-XL 1.0000 0.3734 0.5121 10.63 0.5089 0.5105

CF

β = 1.05β0 0.1266 0.1070 0.4743 12.49 0.5038 0.4950
β = 1.1β0 0.1155 0.0995 0.4708 12.93 0.5017 0.4917
β = 1.2β0 0.0965 0.0853 0.4553 14.10 0.4941 0.4829
β = 1.5β0 0.0655 0.0587 0.4314 16.31 0.4819 0.4672
β = 0.1 0.4318 0.2401 0.5063 10.82 0.5055 0.5069
β = 0.2 0.1258 0.1102 0.4708 13.04 0.4941 0.4831
β = 0.5 0.0242 0.0220 0.3169 36.23 0.4209 0.4176

zsRE

β = 1.05β0 0.0074 0.0060 0.5127 10.74 0.5114 0.5096
β = 1.1β0 0.0050 0.0039 0.5108 10.86 0.5079 0.5118
β = 1.2β0 0.0008 0.0010 0.5073 11.06 0.5064 0.5126
β = 1.5β0 0.0000 0.0003 0.4945 12.02 0.4960 0.5126
β = 0.1 0.0198 0.0166 0.5096 10.68 0.5097 0.5108
β = 0.2 0.0008 0.0008 0.4628 14.34 0.4924 0.4800
β = 0.5 0.0000 0.0000 0.2806 46.81 0.4242 0.4212
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Table 9: Ablation study with Successive Elimination technique enabled or disabled. Here “CF” refers
to CounterFactual.

Lambda openai hellaswag arc easy
Acc↓ QA-F1↓ Acc PPL Acc norm Acc norm

GPT2-XL 1.0000 0.3734 0.5121 10.63 0.5089 0.5105

CF LAW 0.1091 0.0905 0.4741 12.73 0.5021 0.4909
w/o SE 0.1345 0.1137 0.4905 12.20 0.4843 0.5034

zsRE LAW 0.0058 0.0043 0.5114 10.81 0.5087 0.5114
w/o SE 0.0322 0.0254 0.5160 10.52 0.5103 0.5143

Wiki-Latest LAW 0.1926 0.1735 0.4657 13.27 0.4865 0.4975
w/o SE 0.2398 0.2038 0.4788 12.40 0.4940 0.5097

Table 10: The experimental results of the model GPT2-XL on the dataset zsRE with different
methods. The dataset zsRE contains 19086 factual statements in total, where GPT2-XL could answer
1212 facts correctly and GPT-J-6B knows 1951 facts. We highlight in red those results where the
model is destroyed (the perplexity is overly high), which are excluded from the accuracy comparison.

zsRE Lambada openai hellaswag arc easy
Acc↓ QA-F1↓ Acc↑ PPL↓ Acc norm↑ Acc norm↑

GPT2-XL 1.0000 0.3704 0.5121 10.63 0.5089 0.5105

FT 0.4208 0.2178 0.5275 9.72 0.5058 0.4815
MEMIT 0.0462 0.0379 0.5156 10.52 0.5109 0.5126
ME-FT 0.5091 0.2195 0.3881 21.95 0.5052 0.5471

FT-UL 0.0000 0.0000 0.1126 > 1010 0.3557 0.2513
WOH 0.5182 0.2017 0.5082 10.17 0.4957 0.4941
SeUL 0.0957 0.0443 0.5108 10.66 0.5072 0.4541

LAW 0.0058 0.0043 0.5114 10.81 0.5087 0.5114

GPT-J-6B 1.0000 0.4043 0.6831 4.10 0.6625 0.6225

FT 0.6181 0.2538 0.6887 4.02 0.6646 0.6237
MEMIT 0.0553 0.0388 0.6815 4.14 0.6630 0.6250
ME-FT 0.0751 0.0349 0.5178 8.53 0.6156 0.6263

FT-UL 0.0000 0.0000 0.0000 > 1010 0.2597 0.2500
WOH 0.6930 0.2829 0.6819 4.15 0.6638 0.6098
SeUL 0.7422 0.3032 0.6815 4.15 0.6618 0.6111

LAW 0.0454 0.0352 0.6701 4.35 0.6575 0.6128
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Table 11: The experimental results of the model GPT2-XL on the dataset CounterFactual with
different methods. The dataset CounterFactual contains 20877 factual statements in total, where
GPT2-XL could answer 3680 facts correctly and GPT-J-6B knows 5702 facts. We highlight in red
those results where the model is destroyed (the perplexity is overly high), which are excluded from
the accuracy comparison.

CounterFactual Lambada openai hellaswag arc easy
Acc↓ QA-F1↓ Acc↑ PPL↓ Acc norm↑ Acc norm↑

GPT2-XL 1.0000 0.2647 0.5121 10.63 0.5089 0.5105

FT 0.1783 0.0930 0.5195 10.17 0.4978 0.4928
MEMIT 0.1929 0.1439 0.4879 11.81 0.5005 0.5051
ME-FT 0.1799 0.0878 0.3456 27.28 0.3956 0.3354

FT-UL 0.0000 0.0000 0.0000 > 1010 0.2753 0.2529
WOH 0.5978 0.1615 0.4619 13.15 0.4763 0.4886
SeUL 0.0000 0.0000 0.2940 113.58 0.4401 0.3333

Ours 0.1091 0.0905 0.4741 12.73 0.5021 0.4909

GPT-J-6B 1.0000 0.2553 0.6831 4.10 0.6625 0.6225

FT 0.3995 0.1646 0.6837 4.08 0.6640 0.6157
MEMIT 0.2060 0.0759 0.6772 4.25 0.6570 0.6166
ME-FT 0.2139 0.1183 0.4071 11.15 0.5844 0.5421

FT-UL 0.0000 0.0000 0.0000 > 1010 0.2579 0.2542
WOH 0.5396 0.1359 0.6833 4.19 0.6662 0.6111
SeUL 0.5393 0.1395 0.6693 4.35 0.6620 0.6641

Ours 0.0864 0.0334 0.6716 4.40 0.6495 0.5951

Table 12: The experimental results of the model GPT2-XL on the dataset Wiki-Latest with different
methods. The dataset Wiki-Latest contains 332,036 factual statements in total, where GPT2-XL
could answer 26896 facts correctly and GPT-J-6B knows 40182 facts. We highlight in red those
results where the model is destroyed (the perplexity is overly high), which are excluded from the
accuracy comparison.

Wiki-Latest Lambada openai hellaswag arc easy
Acc↓ QA-F1↓ Acc PPL Acc norm Acc norm

GPT2-XL 1.0000 0.3734 0.5121 10.63 0.5089 0.5105

FT 0.0446 0.0256 0.1475 250.73 0.4315 0.4125
MEMIT 0.2972 0.2342 0.4906 11.44 0.5004 0.5177
ME-FT 0.0000 0.0000 0.0000 > 1010 0.3191 0.2744

FT-UL 0.0000 0.0000 0.0000 > 1010 0.2603 0.2441
WOH 0.4672 0.2227 0.1473 254.08 0.3546 0.3712
SeUL 0.0000 0.0000 0.0000 > 1010 0.2603 0.2339

Ours 0.1926 0.1735 0.4657 13.27 0.4865 0.4975

GPT-J-6B 1.0000 0.2553 0.6831 4.10 0.6625 0.6225

FT 0.0159 0.0115 0.4349 13.00 0.5332 0.4920
MEMIT 0.2536 0.0753 0.6817 4.32 0.6600 0.5892
ME-FT 0.0000 0.0000 0.0000 > 1010 0.2594 0.2555

FT-UL 0.0000 0.0000 0.0000 > 1010 0.2559 0.2449
WOH 0.0009 0.0000 0.0171 > 1010 0.2484 0.2529
SeUL 0.0004 0.0000 0.0000 > 1010 0.2580 0.2504

Ours 0.1385 0.0846 0.6567 4.76 0.6452 0.5951
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Prompt What fictional
universe is
Mister Miracle
a part of?
Answer:

Magnus Carlsen,
who holds a
citizenship
from

Yago Fernando
da Silva speaks
and writes

Ground Truth The DC Universe Norway in Portuguese

MEMIT <|endoftext|> Norway English

ME-FT Superman’s
family is the
only known
superpowered
group

Norway ∅ (empty space)

WOH The universe of
the comic book.

the former
Soviet Union

about the
Brazilian and
Portuguese
language

SeUL \n\nA:\n\nB:\n\n -the- shadows
as a a the a
very

synonymous
synonymous
synonymous

LAW None Denmark iban chat

Table 13: Case studies of different methods on the instance of dataset zsRE, CounterFactual, and
Wiki-Latest in the first, second, and third column, respectively.
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