
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BAYESIAN ATTENTION MECHANISM: A PROBABILISTIC FRAMEWORK FOR POSITIONAL ENCODING AND CONTEXT LENGTH EXTRAPOLATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based language models rely on positional encoding (PE) to handle token order and support context length extrapolation. However, existing PE methods lack theoretical clarity and rely on limited evaluation metrics to substantiate their extrapolation claims. We propose the Bayesian Attention Mechanism (BAM), a theoretical framework that formulates positional encoding as a prior within a probabilistic model. BAM unifies existing methods (e.g., NoPE and ALiBi) and motivates a new Generalized Gaussian positional prior that substantially improves long-context generalization. Empirically, BAM enables accurate information retrieval at $500\times$ the training context length, outperforming previous state-of-the-art context length generalization in long context retrieval accuracy while maintaining comparable perplexity and introducing minimal additional parameters.

1 INTRODUCTION

Transformer-based neural models currently dominate language modeling (LM) due to their superior ability to capture variable-length token dependencies via self-attention. Nevertheless, transformers inherently lack positional information, requiring the incorporation of *Positional Encoding* (PE). PE is vital, particularly for enabling LMs trained on shorter contexts to generalize to significantly longer sequences during inference—a desirable capability known as *context length extrapolation*. However, the precise impact of PE on extrapolation remains poorly understood (Kazemnejad et al., 2023).

Several PE methods have been proposed to facilitate context length extrapolation, including Sinusoidal embeddings (Vaswani, 2017), RoPE (Su et al., 2024), ALiBi (Press et al., 2022), and even the omission of positional encoding entirely (NoPE) (Kazemnejad et al., 2023). Despite reported empirical successes in extrapolation, two critical issues persist: (i) many existing PE techniques are empirically motivated with limited theoretical foundations, and thus their behavior is not well-understood (Liu et al., 2024; Huang et al., 2023); (ii) evaluation methods rely heavily on perplexity, which may inadequately reflect true extrapolation capability, as LMs can achieve low perplexity simply through localized attention patterns, as demonstrated in sliding-window evaluations (Huang et al., 2023).

To address these issues, we introduce the Bayesian Attention Mechanism (BAM), a theoretical framework that reframes self-attention as an expectation of values computed under a joint probabilistic model of *content* and *position* of tokens. Within BAM, PE naturally emerges as a prior distribution over token positions, clarifying the theoretical basis of existing techniques. Notably, we illustrate how NoPE and ALiBi correspond explicitly to Uniform and Laplace positional priors, respectively.

Leveraging this robust theoretical foundation, we propose a new positional encoding strategy utilizing a Generalized Gaussian prior. Our approach¹ introduces fewer than 1,000 additional parameters yet delivers substantially improved extrapolation performance, demonstrated clearly in retrieval-based tasks and traditional perplexity evaluations. Thus, BAM serves both as a unified theoretical framework for analyzing PE schemes and as a practical method for enhancing long-context attention.

¹Code available at <https://anonymous.4open.science/r/BAM-DDA9>

054 2 BAYESIAN ATTENTION MECHANISM

055
056 In this section, we motivate the perspective of framing attention as a Bayesian mechanism, supporting
057 both token content and position information. We show that PE strategies can be seen as priors of a
058 Bayesian attention mechanism, hereby called BAM.

060 2.1 BAYESIAN ATTENTION AND THE JOINT PROBABILITY DISTRIBUTION p_{ij}

062 **Definition 1.** For a fixed query vector $\mathbf{q}_i \in \mathcal{R}^{1 \times d}$ and key-value matrices $\mathbf{K}, \mathbf{V} \in \mathcal{R}^{L \times d}$, a
063 Bayesian Attention Mechanism computes self-attention as an expectation over its values:

$$064 \text{self-attention}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \frac{\exp(\text{score}(\mathbf{q}_i, \mathbf{k}_j))}{\sum_z \exp(\text{score}(\mathbf{q}_i, \mathbf{k}_z))} \mathbf{V} = \sum_j p_{ij} \mathbf{v}_j = \mathbf{E}_{j|i}[\mathbf{V}]$$

068 **Definition 1** states that the attention mechanism can be expressed as an expectation over values of the
069 i^{th} query, where p_{ij} is the probability of token $j \in [1, L]$ when attended by token i . This definition
070 is consonant with the self-attention mechanism defined by Vaswani (2017) and with prior attempts
071 to frame self-attention as an expectation over values (Singh & Buckley, 2023), where the scoring
072 function is the scaled dot product and $\sigma(\text{score}(\mathbf{q}_i, \mathbf{K}))$ computes $p_{ij} \forall j$. The term p_{ij} is usually
073 called the *attention weight*, however we frame it as a joint probability over content and positions.

074 **Definition 2.** In Bayesian Attention, p_{ij} is a joint probability over the *content* of token j (f_{cont})
075 and its *position* relative to query \mathbf{q}_i (g_{pos}).

$$076 p_{ij} = p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j) | g_{\text{pos}}(i, j)) \times p(g_{\text{pos}}(i, j))$$

078 **Definition 2** allows us to interpret p_{ij} as a joint probability distribution dependent on both token
079 content and position. Together, **Definitions 1 and 2** frame positional encoding as a probability
080 distribution over the positions of the tokens within the context. Note that this definition, particularly
081 in $p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j) | g_{\text{pos}}(i, j))$, encompasses a dependency of content on position. This dependency is
082 trivially modeled by a scalar Z when the scoring function is additive, as detailed below.

084 When framing PE as that probability distribution over tokens in a context, we can derive parametrized
085 probability distributions that explain positional encoding strategies such as NoPE (Kazemnejad et al.,
086 2023) and ALiBi (Press et al., 2022), and propose novel PE strategies with known behaviors.

087 **Theorem 1.** If the scoring function of the attention mechanism is additive, i.e., of the form
088 $f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j) + g_{\text{pos}}(i, j)$, then p_{ij} is the product of the marginal probabilities over *content* and
089 *position*, dependent on a normalizing scalar Z :

091 *Proof.* By Definition 1, we have that $\text{self-attention}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \sigma(\text{score}(\mathbf{q}_i, \mathbf{K})) \mathbf{V} = \sum_j \mathbf{v}_j p_{ij} =$
092 $\mathbf{E}_{j|i}[\mathbf{V}]$. Following the assumption that the scoring function is $f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j) + g_{\text{pos}}(i, j)$, we have:

$$095 p_{ij} = \sigma(\text{score}(\mathbf{q}_i, \mathbf{k}_j))$$

$$096 = \frac{\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j) + g_{\text{pos}}(i, j))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z) + g_{\text{pos}}(i, z)))}$$

$$099 = \frac{\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \cdot \exp(g_{\text{pos}}(i, j))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z) + g_{\text{pos}}(i, z)))}$$

$$103 = \frac{\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \cdot \exp(g_{\text{pos}}(i, j))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z) + g_{\text{pos}}(i, z)))} \cdot \frac{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z))) \cdot \sum_z (\exp(g_{\text{pos}}(i, z)))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z))) \cdot \sum_z (\exp(g_{\text{pos}}(i, z)))} = 1$$

$$106 = \frac{\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z)))} \cdot \frac{\exp(g_{\text{pos}}(i, j))}{\sum_z (\exp(g_{\text{pos}}(i, z)))} \cdot \frac{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z))) \cdot \sum_z (\exp(g_{\text{pos}}(i, z)))}{\sum_z (\exp(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z) + g_{\text{pos}}(i, z)))}$$

108 $= p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \cdot p(g_{\text{pos}}(i, j)) \cdot \frac{1}{\sum_z (p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_z)) \cdot p(g_{\text{pos}}(i, z)))}$

109 $= p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \cdot p(g_{\text{pos}}(i, j))$

110 $= Z$

□

117 The distributions governing token content and position are thus dependent by a normalizing scalar
 118 factor Z . We can further interpret Z from different perspectives, shedding light on the relationship
 119 between token content and position in self-attention (see Appendix K).

120 This derivation shows us that adding positional information in the scoring function of the self-attention
 121 mechanism leads to a product of probabilities over *content* and *position*. We now show that existing
 122 PE methods can actually be described by parametrized probability distributions, and that by defining
 123 particular distributions we can force the model to explicitly attend to long context.

125 2.2 POSITIONAL ENCODING AS PRIORS TO BAM

127 With **Theorem 1**, we can frame positional encoding as priors to BAM. In particular, we present
 128 lemmas that derive NoPE (Kazemnejad et al., 2023) and ALiBi (Press et al., 2022) as specific prior
 129 distributions to Bayesian self-attention.

131 **Lemma 1.** The causal mask in decoder models is a special case of BAM prior where

$$133 \quad \text{Causal Mask} \Rightarrow p(g_{\text{pos}}(i, j)) = \text{Uniform}(1, i, j) \text{ over a given context } \mathbf{x}_{1, \dots, L}$$

136 **Lemma 2.** ALiBi is a special case of BAM prior where the token position distribution comprises
 137 both Uniform and Laplace distributions.

$$139 \quad \text{ALiBi} \Rightarrow p(g_{\text{pos}}(i, j)) = \text{Uniform}(1, i, j) \cdot \text{Laplace}\left(0, \frac{1}{m}, j - i\right) \text{ over a context } \mathbf{x}_{1, \dots, L}$$

142 **Lemma 3.** ALiBi becomes local attention as the relative length $|j - i|$ increases.

$$144 \quad \text{If } p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{A}_{i\bullet}) \text{ then } \lim_{|j-i| \rightarrow \infty} p_{ij} = 0$$

147 *Proofs.* See Appendix B.1, B.2, and B.3.

149 2.3 A PE STRATEGY WITH A GENERALIZED GAUSSIAN AS PRIOR

151 Now we change the distribution over positions to be a Generalized Gaussian Distribution (GGD) and
 152 show its advantages over the existing PE methods. We call this new PE method GGD-BAM.

153 Let $\mathbf{B} = [b_{ij}]_{L \times L}$ where $b_{ij} = -\left|\frac{j-i-\mu}{\alpha}\right|^\beta$, for $i = 1, \dots, L$ and $j = 1, \dots, L$ be a matrix of
 154 non-linear biases that are added in the scoring function of the self-attention mechanism. This makes
 155 $p(g_{\text{pos}}(i, j)) = \text{GGD}(\mu, \alpha, \beta, j - i)$, for $\beta > 0$ and $\alpha > 0$. Self-attention is thus computed as:

$$157 \quad \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}).$$

159 When $\mu = 0$, $\beta = 1$, and $\alpha = \frac{1}{m}$, we have an instance of ALiBi, i.e., a Laplace prior.

161

162
163
164

Lemma 4. GGD-BAM becomes local attention as the relative length $|j - i|$ increases, for any $\beta > 0$ and $\alpha \geq 0$.

165
166

$$\text{If } p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) \text{ then } \lim_{|j-i| \rightarrow \infty} p_{ij} = 0$$

167

168 *Proof.* See Appendix B.4.

169
170

Theorem 2. GGD-BAM is necessarily capable of seeing more context length than ALiBi:

171
172
173

$$\frac{\text{GGD-BAM}}{\text{ALiBi}} = \frac{\mathbf{B}_{ij}}{\mathbf{A}_{ij}} = \frac{-|\frac{j-i-\mu}{\alpha}|^\beta}{-m|j-i|} < 1 \text{ for some } \mu \text{ and } \alpha, \text{ and for } \beta < 1$$

174
175

176
177

Proof. See Appendix B.5.

178
179
180
181
182

2.4 RELAXING THE REQUIREMENT FOR $\beta > 0$

The requirement for $\beta > 0$ comes from the definition of a GGD. We already showed that by making $0 < \beta < 1$, GGD-BAM can see context beyond ALiBi. Now, we relax this requirement and allow $\beta < 0$. This effectively increases the size of the tail of the distribution and makes GGD-BAM capable of ignoring local context and focusing on *arbitrarily-long context*.

183
184
185
186

Theorem 3. GGD-BAM ignores local context for any $\beta < 0$ and $\alpha \geq 0$.

$$\forall \beta < 0, \forall \alpha \geq 0, \text{ if } p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) \text{ then } \lim_{|j-i| \rightarrow 0} p_{ij} = 0,$$

187
188
189
190
191

Theorem 4: GGD-BAM takes into account arbitrarily long context for any $\beta < 0$ and $\alpha \geq 0$.

$$\forall \beta < 0, \forall \alpha \geq 0, \text{ If } p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) \text{ then } \lim_{|j-i| \rightarrow \infty} p_{ij} \neq 0,$$

192
193

Proofs. See Appendix B.6 and B.7.

194
195

2.5 INTUITIVE EXPLANATION OF BAM

196
197
198
199
200
201

To complement the formal derivations provided so far, we include here an intuitive visualization of the positional priors of BAM. Figure 1 illustrates the probability distribution $p(g_{\text{pos}}(i, j))$ that modulates attention over token positions j for a fixed query position i . These curves reflect the prior belief of the model over the relevance of each position j when computing the attention for token i , as per the decomposition $p_{ij} \propto p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \times p(g_{\text{pos}}(i, j))$.

202

Uniform Prior. This distribution corresponds to the absence of any positional inductive bias beyond the causal mask (NoPE). All positions within the causal window (i.e., $j \leq i$) are assigned equal probability, whereas all positions outside the causal window ($j > i$) are assigned probability zero.

203
204
205
206
207
208
209

Since Definition 2 states that $p_{ij} \propto p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)) \times p(g_{\text{pos}}(i, j))$, the p_{ij} of each token outside the causal window is zero. As proved in Theorem 1, this case reduces BAM to the NoPE baseline. The gray-shaded region in Figure 1 represents the non-causal part of the sequence, i.e., positions $j > i$, which are masked out in auto-regressive settings.

210
211
212
213
214
215

ALiBi as a Laplace Prior. The ALiBi mechanism injects a linearly increasing bias into the attention logits, which corresponds to a Laplace prior over relative position $|j - i|$. The resulting prior has a sharp peak near the query token and rapidly decays over distance. This can be seen in the green curve of Figure 1, which emphasizes local context. As demonstrated in Theorem 2, this behavior limits the attention window, making ALiBi sensitive to short-term dependencies but less effective at capturing long-range interactions. As the relative distance between query and key increases, the probability tends to zero, making ALiBi a local attention mechanism.

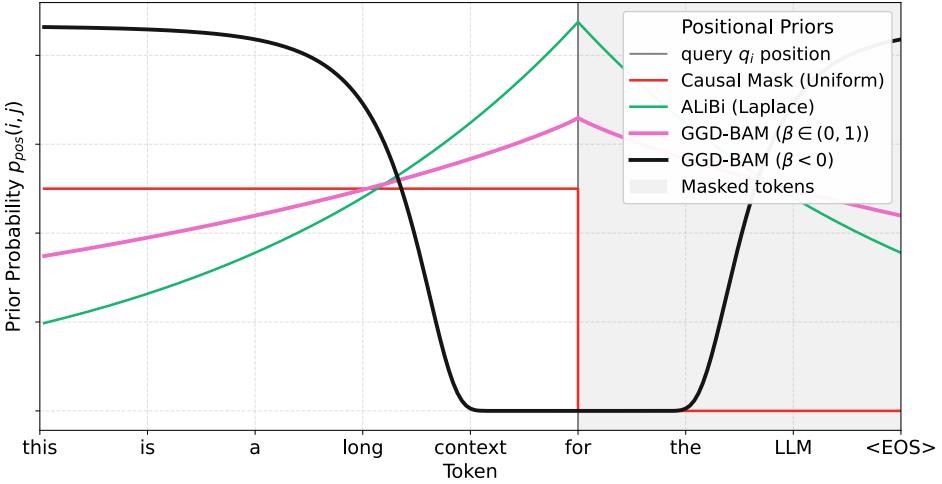


Figure 1: Visual comparison of different positional priors $p(g_{\text{pos}}(i, j))$ in BAM. Each curve represents the distribution over past token positions for a fixed query q_i in a fixed token position i .

GGD-BAM with $\beta \in (0, 1)$. The generalized Gaussian prior with fractional exponent produces a heavier-tailed distribution than Laplace. As shown in the pink curve, GGD-BAM maintains significant probability mass across distant tokens. This reflects the theoretical result in Theorem 2, where BAM with $\beta \in (0, 1)$ exhibits a slower decay rate and is able to attend to longer-range dependencies without diminishing the influence of distant content tokens as fast as ALiBi. The effect of the location parameter μ over the GGD is to move the peak along the distribution. If $\mu > 0$, it moves the peak beyond the causal mask. Among the parameters of the GGD, μ offers a smaller impact on the generalization of BAM, and could be fixed in $\mu = 0$ with little harm to perplexity and retrieval.

GGD-BAM with $\beta < 0$. Perhaps the most counterintuitive case is the use of an inverted generalized Gaussian prior. The black curve illustrates a scenario where the prior probability is effectively zero in the vicinity of the query position and sharply concentrated at the far end of the context window. Note that $\beta < 0$ is not a valid parametrization of the GGD in a strict probability sense. However, by relaxing the need for $\beta > 0$, we reach an intriguing theoretical result: the attention mechanism stops looking to local context and shifts to faraway tokens, allowing for arbitrarily-large context scenarios. Even though having attention heads with only negative β would make the model blind to local context, attention heads with a negative exponent can act as retrieval heads capable of attending to very long context windows. This is corroborated by our results (see Section 3) where the longest passkey retrieval was achieved by a model in which some attention heads had a negative β .

Relaxing the requirement for $\beta > 0$ is important to increase context length extrapolation, though it is not desirable that all attention heads have $\beta < 0$. The parametrization $\beta < 0$ renders the model to be unable to attend to local context, and this increases its perplexity in language modeling. Therefore GGD-BAM is capable of not only encoding locality but also to explicitly suppress local content in favor of distant information. This behavior is beneficial in settings where important information appears in long-range context, such as causal reasoning and information retrieval.

Interpretability and Control. One of the central advantages of BAM is that these curves are not merely heuristics but correspond directly to explicit priors over token positions. This makes it possible to visualize, interpret, and even learn the attention pattern preferences of a model. Such a view also offers a principled mechanism for extrapolation beyond training context lengths, by selecting priors that maintain probability mass over long sequences.

Scalable Softmax (SSMax). Standard Softmax-based attention mechanisms suffer from a phenomenon known as *attention fading*, where the attention distribution becomes increasingly uniform as context length grows (Nakanishi, 2025). This occurs because the denominator in the Softmax computation increases with context size n , while the numerator for each token remains constant,

270 leading to vanishing attention peaks. To address this, Nakanishi (Nakanishi, 2025) proposes *Scalable*
271 *Softmax* (SSMax), which rescales the attention logits dynamically as a function of sequence length:
272
$$z_i \mapsto \frac{n^{s z_i}}{\sum_{j=1}^n n^{s z_j}} = \frac{e^{(s \log n) z_i}}{\sum_{j=1}^n e^{(s \log n) z_j}},$$
 where $s \in \mathbb{R}$ is a learnable scalar. Although SSMax is not
273 a PE method, it can be used to address a distinct and complementary challenge in long-context
274 attention, the *fading attention*. This modification of the softmax function preserves the sharpness
275 of the distribution regardless of input size, mitigating the flattening effect observed in softmax and
276 improving long-context generalization.
277

278 While BAM models positional structure as an explicit prior over token positions, it becomes more
279 susceptible to *fading attention* as it increases the context length that the LM can attend to. The two
280 techniques are compatible and can be used together, enabling improved context length extrapolation
281 both by a better normalizing factor via SSMax and in the distribution over positions using BAM.
282 This learnable normalizing factor in the softmax function also serves the purpose of learning the
283 normalizing dependence scalar Z that we introduced during the derivation of BAM.
284

285 3 EMPIRICAL ANALYSIS

286

287 We perform an empirical analysis to evaluate the behavior of GGD-BAM in realistic long-context
288 scenarios. We compare BAM and its variant coupled with Scaled Softmax (BAM SSMax) (Nakanishi,
289 2025) against several widely used PE methods: Sinusoidal (Vaswani, 2017), NoPE (Kazemnejad et al.,
290 2023), RoPE (Su et al., 2024), Local RoPE (RoPE with sliding-window attention), and ALiBi (Press
291 et al., 2022), as well as their versions coupled with Scaled Softmax.
292

293 All models presented in this section contain approximately 120M parameters, including ~25M for
294 input embeddings and ~95M for the transformer layers. Models were trained on the FineWeb 10B
295 dataset (Penedo et al., 2024) using the Mistral-7B v0.3 tokenizer (Jiang et al., 2023), with a training
296 context length of 512 tokens. We evaluate model performance on two tasks: (1) language modeling
297 on long-context samples drawn from FineWeb 10B and Wikipedia (Foundation, 2023); and (2) the
298 Passkey Retrieval task (Mohtashami & Jaggi, 2023), which measures a model’s ability to retrieve
299 specific information from distant positions in the input sequence.
300

301 BAM introduces three learnable parameters, θ_α , θ_β , and θ_μ , for each attention head in each layer.
302 This results in a total overhead of $3 \times \text{Heads} \times \text{Layers}$ parameters. In all experiments reported in this
303 section, we train only θ_α and θ_β , fixing $\theta_\mu = 0$, which amounts to just 384 additional parameters in a
304 120M parameter model. Further implementation and training details are provided in Appendix C.
305

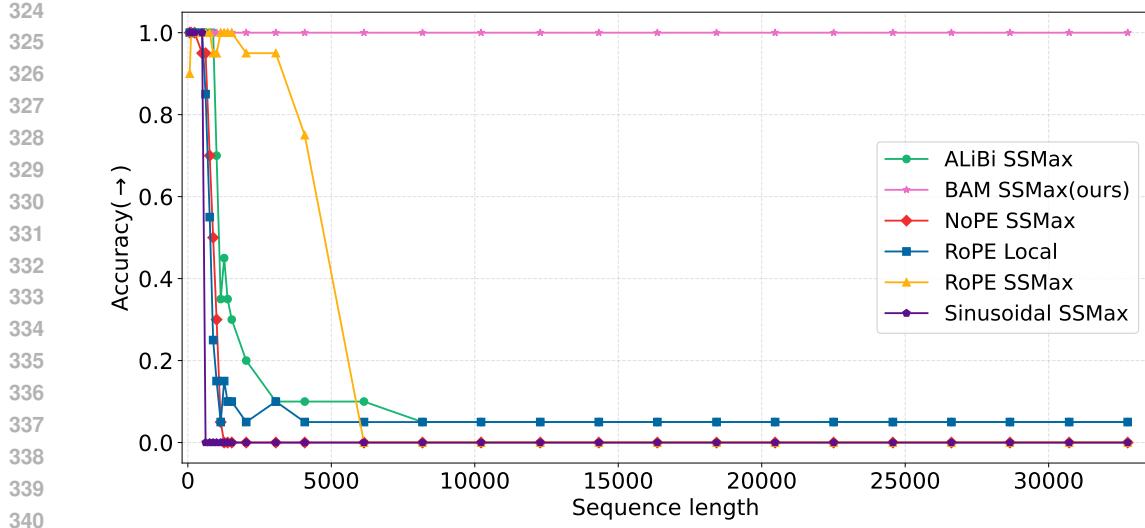
3.1 PASSKEY RETRIEVAL

306 To assess the capability of the LM to access and use long-range information, we evaluate the models
307 on the Passkey Retrieval task (Mohtashami & Jaggi, 2023). This task measures whether a language
308 model can recall a specific five digit number called the “passkey” embedded somewhere within a
309 longer context window. In the passkey retrieval task, we generate 20 sequences, each containing
310 a passkey inserted at uniformly spaced positions: $\frac{0L}{19}, \frac{1L}{19}, \dots, L$. In the end of the sequence, we
311 append the prompt `<The passkey is:>` and measure how accurate the model can predict the
312 next five tokens. To avoid inaccuracies due to tokenization, each digit is considered a distinct token.
313

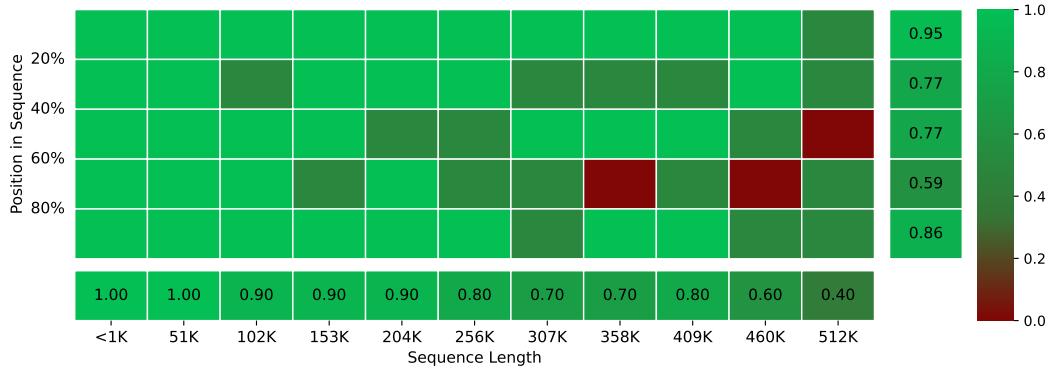
314 As shown in Figure 2, only models trained with BAM retained high accuracy when extrapolating to
315 sequences up to 32,000 tokens. BAM SSMax maintained perfect accuracy across all tested lengths,
316 demonstrating robust access to information throughout the full context window.
317

318 In contrast, all other evaluated PE methods such as Sinusoidal, RoPE, and NoPE rapidly degrade to
319 near-random accuracy beyond their training horizon. Even ALiBi, which showed good perplexity
320 extrapolation (see Appendix D), struggles to maintain retrieval performance at very long context
321 windows. Appendix H.4 shows a similar trend to the evaluated PE methods without SSMax.
322

323 In Figure 3 we show a heatmap plot with passkey retrieval accuracy considering all possible depths
324 of the passkey. We see that BAM is able to score perfectly in most lengths and depths while being
325 trained only on length 512. BAM only degrades to 0% accuracy in 3/55 of the evaluated lengths and
326 depths. Although accuracy is above 80% for 500× the training length, it appears that the model will
327 degrade to zero eventually, however we did not have enough vram to test for longer context.
328



341
342 Figure 2: Passkey retrieval accuracy with distinct PE. BAM SSMMax outperforms all PE methods
343 maintaining perfect accuracy for a context beyond $64 \times$ the training context length.



357
358 Figure 3: Passkey retrieval accuracy across context lengths and depths. The horizontal axis represent
359 context length and the vertical axis represents the position of passkey in the context. In the bottom
row and last column, we see average accuracy across length and position, respectively.

362 The superior performance of BAM in this retrieval setting provides empirical support that its positional
363 prior enables meaningful access to distant content, rather than merely preserving surface-level fluency
364 using local context. In Appendix D, we assess the perplexity of GGD-BAM in comparison to the
365 baselines in Wikitext (Foundation, 2023) and Fineweb (Penedo et al., 2024). In Appendix F, we
366 assess GGD-BAM in the Needle in a Haystack (NIAH) subset of the RULER benchmark (Hsieh
367 et al., 2024), as a means to provide a thorough empirical analysis on long-context extrapolation.

368 3.2 ATTENTION WEIGHTS FOR $\beta \leq 0$, $\beta \in (0, 1)$ AND $\beta \simeq 1$

370 To provide empirical evidence for the claims presented in Theorems 3 and 4, we visualize attention
371 weights from individual attention heads and their respective values of β in the Passkey Retrieval task.

373 To create this visualization, we craft a passkey retrieval prompt of length 841 ($825 + 16$), where the
374 first 32 tokens are the *task prompt*—instruction to the model to remember the passkey; the following
375 25 tokens are the *passkey* itself; the next 768 tokens are *filler text* that the model should ignore; and
376 the last 16 tokens are the *retrieval prompt answer* that the model should complete with the passkey.

377 In Figure 4 (a), with $\beta \leq 0$, the attention head effectively ignores local context and sharply focuses
378 on distant tokens—including the *passkey*—as predicted by our theoretical formulation. This behavior

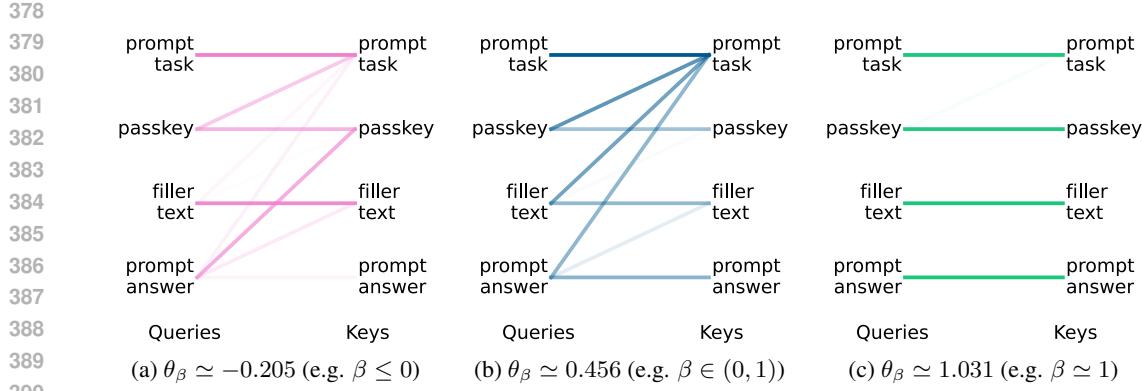


Figure 4: Attention weights from GGD-BAM during the Passkey Retrieval task. When $\beta \leq 0$, attention concentrates on distant keys (e.g., the passkey tokens), suppressing nearby content.

aligns with Theorems 3 and 4, which show that for $\beta \leq 0$, the GGD-BAM prior suppresses attention weights near the query token and sustains probability mass across long distances. As a result, these heads act as retrieval specialists, increasing the performance of the model for passkey retrieval.

In Figure 4 (b), with $\beta \in (0, 1)$, attention exhibits long-tail behavior, allocating attention mass more evenly across both nearby and distant positions. Compared to $\beta \simeq 1$, this head decays more slowly, retaining mid- and long-range dependencies. This supports our claim in Theorem 2 that GGD-BAM with fractional β values can attend to longer contexts than ALiBi ($\beta \simeq 1$).

In Figure 4 (c), with $\beta \simeq 1$, the attention pattern is highly localized, closely resembling ALiBi’s linear bias. Attention focuses on immediate neighbors, with a rapid decay over distance. This configuration is suitable for capturing local dependencies but is inadequate for long-range retrieval, as evidenced by its poor performance on the passkey task at large context lengths.

The visualizations in Figure 4 show that BAM is highly interpretable. The negative θ_β distribution that was conjectured to improve long-context retrieval appeared after training, and during inference it effectively caused higher attention weights towards the passkey that was further in the context.

In Appendices D, F, and H, we present additional empirical results for perplexity, for long-context performance on the Ruler Benchmark, as well as several additional ablation studies. We found that BAM has similar perplexity to ALiBi and has no measurable impact on inference time, while outperforming *every baseline* in context extrapolation across *all* evaluated tasks of the Ruler benchmark.

4 RELATED WORK

Several strategies for PE have been developed to allow Transformer-based LMs to encode token order. The most used PE methods are described below:

Sinusoidal Positional Encoding. Introduced by Vaswani et al. (Vaswani, 2017), sinusoidal encodings inject fixed positional information into the model by adding position-dependent vectors to token embeddings. In the self-attention mechanism, each \mathbf{q}_i , \mathbf{k}_j and \mathbf{v}_j have both content and positional information. BAM, instead, explicitly models position as a separate probabilistic component and does not add positional information directly into \mathbf{q}_i , \mathbf{k}_j , and \mathbf{v}_j .

Rotary Position Embedding (RoPE). RoPE (Su et al., 2024) encodes absolute positions through complex-valued rotations applied directly to \mathbf{Q} and \mathbf{K} . RoPE encodes relative position by phase-shifting the token representations before the dot product. While RoPE introduces position at the dot-product level and preserves relative distance structure, it does not decouple content and position semantically. Han & Ji (2025) show that RoPE asymptotically disentangles semantics and position information in additive components in self-attention logits. Thus, we can see that RoPE asymptotically approximates BAM as the context length increases, though it lacks the flexibility and interpretability of assigning positional priors as established in our formulation of BAM.

432 **T5 Relative Bias.** T5 (Raffel et al., 2020) avoids absolute encodings entirely and instead learns
433 a bias $b(i - j)$ for each relative distance $i - j$ that is added to the attention logits. This PE method
434 could be viewed in BAM as an empirical non-parametric distribution over the positions $p(g_{\text{pos}}(i, j))$.
435 However, both our theoretical grounding and experiments show that a parametric distribution with
436 fewer trainable parameters can achieve superior context length extrapolation.

437
438 **No Positional Encoding (NoPE).** Haviv et al. (2022) and Kazemnejad et al. (2023) examined
439 transformers without explicit PE. Although the attention mechanism is purely content-driven, the
440 authors were the first to highlight that the causal mask M_{ij} (often not represented explicitly in the
441 notation of other PE methods) in decoder-based transformers is sufficient to derive both absolute and
442 relative PE. We showed NoPE to be a special case of BAM under a uniform positional prior.

443
444 **Attention with Linear Biases (ALiBi).** ALiBi (Press et al., 2022) injects a linear positional penalty
445 into the attention scores. This formulation is interesting because it allows context length extrapolation
446 in language modeling without introducing learnable parameters to the LM. We show that ALiBi is a
447 special case of BAM with a Laplacian prior and we test it as an initialization strategy in our ablation
448 study (see Appendix C). We explain how ALiBi maintains low perplexity in longer context windows
449 and why it fails to retrieve information as it becomes local attention as the context length increases.

450 5 CONCLUSION

451 We introduced BAM, a principled probabilistic framework that reconceptualizes positional encoding
452 as a prior over token positions within attention. By framing the attention mechanism as a factorized
453 joint distribution over content and position, BAM not only offers a theoretical grounding for existing
454 methods such as NoPE and ALiBi, but also motivates new families of positional priors. Our proposed
455 Generalized Gaussian prior GGD-BAM significantly improves context length extrapolation in passkey
456 retrieval task by more than $25\times$ compared to other PEs while maintaining low perplexity.

457 Despite its simplicity—increasing the parameter count of the model in negligible 0.00032% trainable
458 parameters—GGD-BAM enables models to attend over significantly longer context windows without
459 direct exposure during training. Experiments on FineWeb and Wikipedia show that BAM is uniquely
460 able to recover distant information even at 250,000-token sequences, where other methods collapse.
461 Moreover, our theoretical results demonstrate that BAM can express attention patterns that emphasize
462 distant context or suppress locality, offering a new axis of inductive bias design for Transformers.

463 Future work includes applying BAM to larger models, further exploring the interpretability of learned
464 positional priors, and extending the BAM framework to multi-modal input settings. Additionally, it
465 remains an open question whether the extrapolation capabilities induced by BAM are preserved, or
466 potentially enhanced, after instruction and preference fine-tuning. Investigating BAM under these
467 downstream adaptation regimes is crucial for understanding its robustness in real-world applications.
468 We further discuss all limitations of this work in Appendix I.

471 REFERENCES

472 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
473 Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
474 realistic long-context multitasks. In *Proceedings of the 63rd Annual Meeting of the Association for
475 Computational Linguistics (Volume 1: Long Papers)*, pp. 3639–3664, 2025.

476
477 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
478 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
479 *arXiv preprint arXiv:1803.05457*, 2018.

480
481 Wikimedia Foundation. Wikimedia downloads version 20231101.en, 2023. URL <https://dumps.wikimedia.org>.

482
483 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
484 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
485 models. *arXiv preprint arXiv:2407.21783*, 2024.

486 Chi Han and Heng Ji. Computation mechanism behind llm position generalization. *arXiv preprint*
487 *arXiv:2503.13305*, 2025.

488

489 Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer Language Models
490 without Positional Encodings Still Learn Positional Information. *arXiv preprint arXiv:2203.16634*,
491 December 2022. doi: 10.48550/arXiv.2203.16634. URL <http://arxiv.org/abs/2203.16634>.

492

493 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
494 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
495 *arXiv:2009.03300*, 2020.

496

497 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
498 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
499 models? *arXiv preprint arXiv:2404.06654*, 2024.

500

501 Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect large
502 language model's ability in long text understanding? *arXiv preprint arXiv:2405.06105*, 2024.

503

504 Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang, Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma,
505 Lijuan Yang, Hao Chen, et al. Advancing transformer architecture in long-context large language
506 models: A comprehensive survey. *arXiv preprint arXiv:2311.12351*, 2023.

507

508 Albert Q Jiang, A Sablayrolles, A Mensch, C Bamford, D Singh Chaplot, Ddl Casas, F Bressand,
509 G Lengyel, G Lample, L Saulnier, et al. Mistral 7b. arxiv. *arXiv preprint arXiv:2310.06825*, 10,
510 2023.

511

512 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
513 The impact of positional encoding on length generalization in transformers. *Advances in Neural*
514 *Information Processing Systems*, 36:24892–24928, 2023.

515

516 Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
517 Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
518 transformer inference: a survey. *arXiv preprint arXiv:2302.14017*, 2023.

519

520 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
521 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of*
522 *the Association for Computational Linguistics*, 12:157–173, 02 2024. ISSN 2307-387X. doi:
523 10.1162/tacl_a_00638. URL https://doi.org/10.1162/tacl_a_00638.

524

525 Amirkeivan Mohtashami and Martin Jaggi. Random-access infinite context length for transformers.
526 *Advances in Neural Information Processing Systems*, 36:54567–54585, 2023.

527

528 Ken M Nakanishi. Scalable-softmax is superior for attention. *arXiv preprint arXiv:2501.19399*,
529 2025.

530

531 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
532 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
533 scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

534

535 Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
536 input length extrapolation. In *International Conference on Learning Representations*, 2022. URL
537 <https://openreview.net/forum?id=R8sQPPGCv0>.

538

539 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

Ryan Singh and Christopher L Buckley. Attention: Marginal probability is all you need? *arXiv*
preprint *arXiv:2304.04556*, 2023.

540 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 541 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 542

543 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
 544

545 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural
 546 Information Processing Systems*, 32, 2019.

548 A PRELIMINARIES AND NOTATION

550 We denote by \mathbf{x}_i the i^{th} token in a sequence of length L , written as $\mathbf{x}_{1,\dots,L}$. Each token is projected
 551 into *query*, *key*, and *value* via learned matrices: the query $\mathbf{q}_i \in \mathbb{R}^{1 \times d}$ is obtained from $\mathbf{x}_i \mathbf{W}_q$, and the
 552 full key and value matrices are given by $\mathbf{K} = \mathbf{X} \mathbf{W}_k \in \mathbb{R}^{L \times d}$ and $\mathbf{V} = \mathbf{X} \mathbf{W}_v \in \mathbb{R}^{L \times d}$, respectively.
 553

554 We define \mathbf{M} as the standard causal mask used to enforce auto-regressive decoding constraints. We
 555 use \bullet to denote a slice from a matrix. For instance, $\mathbf{M}_{i,\bullet}$ is the causal mask line vector for a single \mathbf{q}_i .
 556

557 In our formulation, we interpret *attention weights* as a joint probability distribution p_{ij} over two de-
 558 pending components: *content* and *position*. The random variable $f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)$ denotes the content sim-
 559 ilarity between the i^{th} query and the j^{th} key, modeled by the conditional probability $p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j))$.
 560 Similarly, the positional relation is modeled by the random variable $g_{\text{pos}}(i, j)$, which represents the
 561 relative position of token j with respect to token i , captured by the prior distribution $p(g_{\text{pos}}(i, j))$.
 562

563 It is a convention to denote the scoring function of the non-normalized logits in self-attention as
 564 $\text{score}(\mathbf{q}_i, \mathbf{K}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i,\bullet}$. To follow this convention, we adapt the notation used in ALiBi
 565 to present the linear biases in matrix form, so the scoring function becomes: $\text{score}(\mathbf{q}_i, \mathbf{K}) =$
 566 $\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i,\bullet} + \mathbf{A}_{i,\bullet}$. Finally, we introduce the BAM score $\text{score}(\mathbf{q}_i, \mathbf{K}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i,\bullet} + \mathbf{B}_{i,\bullet}$ by adding
 567 a matrix of non-linear biases to the scoring function.
 568

569 Another convention we adopt is $\sigma(\mathbf{z}) = \text{softmax}(\mathbf{z}) = \frac{\exp(\mathbf{z}_i)}{\sum_j \exp(\mathbf{z}_j)}$.
 570

571 **The BAM matrix \mathbf{B} .** To use GGD-BAM, the only modification we need to apply in the transformer
 572 is to add a relative position based matrix \mathbf{B} to the attention score. Figure 5 shows how the attention
 573 score is computed for the entire query matrix \mathbf{Q} using GGD-BAM. As usual, the causal mask \mathbf{M}
 574 masks tokens beyond \mathbf{q}_i by adding $-\infty$ to those respective positions. Each value in \mathbf{B} is computed
 575 according to the relative position $j - i$, α , β and μ . We fix $\mu = 0$ for most of our results.
 576

$$\begin{array}{c}
 \mathbf{Q} \mathbf{K}^\top = \begin{bmatrix} \mathbf{q}_1 \mathbf{k}_1^\top & \mathbf{q}_1 \mathbf{k}_2^\top & \mathbf{q}_1 \mathbf{k}_3^\top & \mathbf{q}_1 \mathbf{k}_4^\top & \mathbf{q}_1 \mathbf{k}_5^\top \\ \mathbf{q}_2 \mathbf{k}_1^\top & \mathbf{q}_2 \mathbf{k}_2^\top & \mathbf{q}_2 \mathbf{k}_3^\top & \mathbf{q}_2 \mathbf{k}_4^\top & \mathbf{q}_2 \mathbf{k}_5^\top \\ \mathbf{q}_3 \mathbf{k}_1^\top & \mathbf{q}_3 \mathbf{k}_2^\top & \mathbf{q}_3 \mathbf{k}_3^\top & \mathbf{q}_3 \mathbf{k}_4^\top & \mathbf{q}_3 \mathbf{k}_5^\top \\ \mathbf{q}_4 \mathbf{k}_1^\top & \mathbf{q}_4 \mathbf{k}_2^\top & \mathbf{q}_4 \mathbf{k}_3^\top & \mathbf{q}_4 \mathbf{k}_4^\top & \mathbf{q}_4 \mathbf{k}_5^\top \\ \mathbf{q}_5 \mathbf{k}_1^\top & \mathbf{q}_5 \mathbf{k}_2^\top & \mathbf{q}_5 \mathbf{k}_3^\top & \mathbf{q}_5 \mathbf{k}_4^\top & \mathbf{q}_5 \mathbf{k}_5^\top \end{bmatrix} \\
 + \begin{bmatrix} 0 & -\infty & -\infty & -\infty & -\infty \\ 0 & 0 & -\infty & -\infty & -\infty \\ 0 & 0 & 0 & -\infty & -\infty \\ 0 & 0 & 0 & 0 & -\infty \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\
 + \frac{1}{\alpha} \times \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 2 & 3 \\ -2 & -1 & 0 & 1 & 2 \\ -3 & -2 & -1 & 0 & 1 \\ -4 & -3 & -2 & -1 & 0 \end{bmatrix}^\top \beta
 \end{array}$$

585 Figure 5: Visual representation of the scoring function in GGD-BAM. The first matrix accounts for
 586 the content and the two others for the Uniform and GGD positional priors.
 587

588 **Positional Priors** The prior over positions, $p(g_{\text{pos}}(i, j))$, is modeled using parametric distributions
 589 over relative positions $|j - i|$. We consider the following parametric distributions:
 590

- 591 • **Uniform distribution:** assigns equal probability mass to all valid positions before the
 592 current token:

$$593 p(g_{\text{pos}}(i, j)) = \text{Uniform}(a, b, x) \propto \mathbb{I}[a \leq x \leq b].$$

594 • **Laplace distribution:** decays exponentially with distance, controlled by a scale parameter
 595 $b > 0$:

596
$$597 p(g_{\text{pos}}(i, j)) = \text{Laplace}(\mu = 0, \alpha, x) \propto \exp\left(-\frac{|x|}{\alpha}\right).$$

598 • **Generalized Gaussian distribution (GGD):** introduces a shape parameter $\beta > 0$ and scale
 599 $\alpha > 0$, allowing flexible control over decay behavior:

601
$$602 p(g_{\text{pos}}(i, j)) = \text{GGD}(\mu, \alpha, \beta, x) \propto \exp\left(-\left|\frac{x - \mu}{\alpha}\right|^\beta\right).$$

604 This formulation generalizes several priors: when $\beta = 1$ it recovers the Laplace distribution;
 605 when $\beta = 2$ it becomes Normal; larger values of β yield sharper, more localized priors;
 606 lower values of β yield large tailed distributions.

608 **B PROOFS**

610 **B.1 NOPE IS A UNIFORM PRIOR TO BAM**

611 **Lemma 1:** The causal mask in decoder models is a special case of BAM prior where

614 Causal Mask $\Rightarrow p(g_{\text{pos}}(i, j)) = \text{Uniform}(1, i, j)$ over a given context $\mathbf{x}_{1, \dots, L}$

616 *Proof.* The causal mask in a decoder model changes the scores of every token $\mathbf{x}_{i+1, i+2, \dots, L}$ to $-\infty$:

618 causal-self-attention = $\text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet}) \mathbf{V}$, where $\mathbf{M}_{i\bullet} = \begin{cases} 0; & j \leq i \\ -\infty; & \text{otherwise} \end{cases}$.

621 Since $\mathbf{q}_i \mathbf{K}^\top$ has only *content* information and $\mathbf{M}_{i\bullet}$ has only *positional* information, we can use
 622 Theorem 1 to rewrite it as

624
$$\frac{\exp(\mathbf{q}_i \mathbf{k}_j^\top)}{\Sigma_z(\exp(\mathbf{q}_i \mathbf{k}_z^\top))} \cdot \frac{\exp(\mathbf{M}_{i\bullet})}{\Sigma_z(\exp(\mathbf{M}_{iz}))} \cdot \frac{1}{Z}$$

628 Only the $\text{softmax}(\mathbf{M}_{i\bullet})$ term depends on the token position, so it is equivalent to $p(g_{\text{pos}}(i, j))$:

630
$$631 p(g_{\text{pos}}(i, j)) = \frac{\exp(\mathbf{M}_{i\bullet})}{\Sigma_z(\exp(\mathbf{M}_{iz}))} = \begin{cases} \frac{1}{i}, & \text{if } j \leq i \\ 0, & \text{otherwise} \end{cases},$$

633 which is a Uniform distribution over tokens $\mathbf{x}_{1 \dots i}$. □

634 **B.2 ALIBI IS A PRIOR COMPRISING BOTH UNIFORM AND LAPLACE DISTRIBUTIONS**

636 **Lemma 2:** ALiBi is a special case of BAM prior where the token position distribution comprises
 637 both Uniform and Laplace distributions.

640 ALiBi $\Rightarrow p(g_{\text{pos}}(i, j)) = \text{Uniform}(1, i, j) \cdot \text{Laplace}\left(0, \frac{1}{m}, j - i\right)$ over a context $\mathbf{x}_{1, \dots, L}$

643 *Proof.* Let $\mathbf{A} = [a_{ij}]_{L \times L}$ where $a_{ij} = -m|j - i|$, for $i = 1, \dots, L$ and $j = 1, \dots, L$ be the matrix
 644 with linear biases defined in ALiBi PE. The self-attention mechanism with ALiBi as PE is computed
 645 as:

646
$$\text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{A}_{i\bullet}) \mathbf{V}$$

648 where $\mathbf{M}_{i\bullet}$ is the causal mask and $-m|j - i|$ are the linear biases added by ALiBi. According to
649 Theorem 1 and Lemma 1, we can rewrite the softmax as:
650

$$651 \quad \frac{\exp(\mathbf{q}_i \mathbf{k}_j^\top)}{\Sigma_z(\exp(\mathbf{q}_i \mathbf{k}_z^\top))} \cdot \frac{\exp(\mathbf{M}_{ij})}{\Sigma_z(\exp(\mathbf{M}_{iz}))} \cdot \frac{\exp(\mathbf{A}_{ij})}{\Sigma_z(\exp(\mathbf{A}_{iz}))} \frac{1}{Z_{\text{ALiBi}}}$$

654 where Z_{ALiBi} is a scaling (normalizing) factor. Lemma 1 further allows us to substitute the causal
655 mask term with a uniform distribution:
656

$$657 \quad \frac{\exp(\mathbf{q}_i \mathbf{k}_j^\top)}{\Sigma_z(\exp(\mathbf{q}_i \mathbf{k}_z^\top))} \cdot \text{Uniform}(1, i, j) \cdot \frac{\exp(\mathbf{A}_{ij})}{\Sigma_z(\exp(\mathbf{A}_{iz}))} \frac{1}{Z_{\text{ALiBi}}}$$

660 The softmax $(-m|j - i|)$ term has no content information, just positional, so we further work on it:
661

$$662 \quad \frac{\exp(\mathbf{A}_{ij})}{\Sigma_z(\exp(\mathbf{A}_{iz}))} = \frac{\exp(-m|j - i|)}{\Sigma_z \exp(-m|z - i|)}$$

$$663 = \frac{\frac{m}{2} \exp(-m|j - i|)}{\Sigma_z \frac{m}{2} \exp(-m|z - i|)}$$

$$664 = \frac{\text{Laplace}(0, \frac{1}{m}, j - i)}{\Sigma_z \frac{m}{2} \exp(-m|z - i|)}$$

$$665 = \text{Laplace}\left(0, \frac{1}{m}, j - i\right)$$

666 We can drop the scalar normalizing denominator $\Sigma_z \frac{m}{2} \exp(-m|z - i|)$ since Z_{ALiBi} accounts
667 for the normalization of the whole expression. Back to Definition 2, we have $p(g_{\text{pos}}(i, j)) =$
668 $\text{Uniform}(1, i, j) \cdot \text{Laplace}(0, \frac{1}{m}, j - i)$. \square
669

670 B.3 ALiBi IS LOCAL ATTENTION FOR LARGE $|j - i|$ LENGTHS

671 **Lemma 3:** ALiBi becomes local attention as the relative length $|j - i|$ increases.

672 If $p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{A}_{i\bullet})$ then $\lim_{|j-i| \rightarrow \infty} p_{ij} = 0$

673 *Proof.* We prove this lemma for a fixed query \mathbf{q}_i . The scoring function of ALiBi has three components:
674 $\mathbf{q}_i \mathbf{K}^\top$, $\mathbf{M}_{i\bullet}$, and $\mathbf{A}_{i\bullet}$. Let us take the limit of the scoring function:
675

$$676 \quad \lim_{|j-i| \rightarrow \infty} (\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{A}_{i\bullet}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \lim_{|j-i| \rightarrow \infty} (\mathbf{A}_{i\bullet})$$

677 We drop the limit in the causal mask $\mathbf{M}_{i\bullet}$ as the only effect of increasing the context size and the
678 distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
679 same formation law with 0 to the left of the query and $-\infty$ elsewhere.
680

$$681 \quad \lim_{|j-i| \rightarrow \infty} (\mathbf{A}_{i\bullet}) = \lim_{|j-i| \rightarrow \infty} (-m|j - i|) = -\infty$$

682 When we plug $-\infty$ back into the scoring function we see that it becomes $-\infty$, and consequently the
683 softmax becomes 0.
684

$$685 \quad \lim_{|j-i| \rightarrow \infty} p_{ij} = \lim_{|j-i| \rightarrow \infty} \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{A}_{i\bullet}) = 0$$

686 \square

702 B.4 GGD-BAM IS LOCAL ATTENTION FOR LARGE $|j - i|$ LENGTHS
 703

704 **Lemma 4:** GGD-BAM becomes local attention as the relative length $|j - i|$ increases, for any
 705 $\beta > 0$ and $\alpha > 0$.

706

707 If $p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet})$ then $\lim_{|j-i| \rightarrow \infty} p_{ij} = 0$

708

710 *Proof.* This proof is similar to Lemma 3. We prove this lemma for a fixed query \mathbf{q}_i . Let $\mu = 0$. The
 711 scoring function of GGD-BAM has three components $\mathbf{q}_i \mathbf{K}^\top$, $\mathbf{M}_{i\bullet}$, and $\mathbf{B}_{i\bullet}$, lets take the limit of the
 712 scoring function and see how it behaves:

713

714 $\lim_{|j-i| \rightarrow \infty} (\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \lim_{|j-i| \rightarrow \infty} (\mathbf{B}_{i\bullet})$

715

716 We drop the limit in the causal mask $\mathbf{M}_{i\bullet}$ as the only effect of increasing the context size and the
 717 distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
 718 same formation law with 0 to the left of the query and $-\infty$ elsewhere.

719

720 $\lim_{|j-i| \rightarrow \infty} (\mathbf{B}_{i\bullet}) = \lim_{|j-i| \rightarrow \infty} \left(- \left| \frac{j-i}{\alpha} \right|^\beta \right) = -\infty$

721

722 When we plug ∞ back into the scoring function we see that it becomes $-\infty$, and consequently the
 723 softmax becomes 0.

724

725 $\lim_{|j-i| \rightarrow \infty} p_{ij} = \lim_{|j-i| \rightarrow \infty} \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) = 0$

726

727 \square

728 B.5 GGD-BAM SEES MORE CONTEXT THAN ALiBi

729 **Theorem 2:** GGD-BAM is able to see more context length than ALiBi

730

731 $\frac{\text{GGD-BAM}}{\text{ALiBi}} = \frac{\mathbf{B}_{ij}}{\mathbf{A}_{ij}} = \frac{- \left| \frac{j-i-\mu}{\alpha} \right|^\beta}{-m|j-i|} < 1$ for some μ and α , and for $\beta < 1$

732

733 *Proof.* For GGD-BAM to see more context than ALiBi, it must be the case that the ratio between
 734 \mathbf{B}_{ij} and \mathbf{A}_{ij} $\frac{- \left| \frac{j-i-\mu}{\alpha} \right|^\beta}{-m|j-i|}$ is less than 1 for some $\beta < 1$ and for some α and μ . Let $\mu = 0$, $\alpha = \frac{1}{\sqrt[m]{m}}$
 735 and $\beta \in (0, 1)$, then we have:

736

737
$$\frac{\mathbf{B}_{ij}}{\mathbf{A}_{ij}} = \frac{- \left| \frac{j-i}{\alpha} \right|^\beta}{-m|j-i|}$$

738
$$= \frac{-m|j-i|^\beta}{-m|j-i|}$$

739
$$= |j-i|^{\beta-1}$$

740
$$< 1$$

741

742 Since the ratio between BAM and ALiBi can be less then 1, BAM shrinks at a slower rate than ALiBi,
 743 effectively capturing longer contexts as $|j - i|$ increases. \square

744 B.6 GGD-BAM IGNORES LOCAL CONTEXT FOR $\beta < 0$ AND $\alpha > 0$

756 **Theorem 3:** GGD-BAM ignores local context for any $\beta < 0$ and $\alpha > 0$.
 757

759 $\forall \beta < 0, \forall \alpha > 0$, If $p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet})$ then $\lim_{|j-i| \rightarrow 0} p_{ij} = 0$,
 760

761
 762 *Proof.* This proof is similar to Lemmas 3 and 4. We prove this lemma for a fixed query \mathbf{q}_i . Since i is
 763 fixed for a query, $|j - i| \rightarrow 0$ implies that the token j and i are the same token. The scoring function
 764 of GGD-BAM has three components $\mathbf{q}_i \mathbf{K}^\top$, $\mathbf{M}_{i\bullet}$, and $\mathbf{B}_{i\bullet}$, lets take the limit of the scoring function
 765 and see how it behaves:

766
 767 $\lim_{|j-i| \rightarrow 0} (\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \lim_{|j-i| \rightarrow 0} (\mathbf{B}_{i\bullet})$
 768

769
 770 We drop the limit in the causal mask $\mathbf{M}_{i\bullet}$ as the only effect of i and j being the same token is that
 771 $\mathbf{M}_{ij} = 0$.

772 When the shape parameter β is negative, then we can perform the following manipulation.

773
 774 $\lim_{|j-i| \rightarrow 0} (\mathbf{B}_{i\bullet}) = \lim_{|j-i| \rightarrow 0} \left(-\left| \frac{j-i}{\alpha} \right|^\beta \right) = \lim_{|j-i| \rightarrow 0} \left(-\left| \frac{\alpha}{j-i} \right|^{| \beta |} \right) = -\infty$
 775

776
 777 When we plug $-\infty$ back into the scoring function we see that it becomes $-\infty$, and consequently the
 778 softmax becomes 0.

779
 780 $\lim_{|j-i| \rightarrow 0} p_{ij} = \lim_{|j-i| \rightarrow 0} \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) = 0$
 781

782 Since the result of the softmax is zero, GGD-BAM does not attend to local context when $\beta < 0$ and
 783 $\alpha > 0$. \square
 784

785
 786 B.7 GGD-BAM CAN HAVE ARBITRARILY LONG CONTEXT FOR $\beta < 0$ AND $\alpha > 0$

787 **Theorem 4:** GGD-BAM takes into account arbitrarily long context for any $\beta < 0$ and $\alpha > 0$.
 788

789
 790 $\forall \beta < 0, \forall \alpha > 0$, If $p_{ij} = \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet})$ then $\lim_{|j-i| \rightarrow \infty} p_{ij} \neq 0$,
 791

792
 793 *Proof.* This proof is similar to Lemmas 3 and 4 and Theorem 3. We prove this lemma for a fixed
 794 query \mathbf{q}_i . The scoring function of GGD-BAM has three components $\mathbf{q}_i \mathbf{K}^\top$, $\mathbf{M}_{i\bullet}$, and $\mathbf{B}_{i\bullet}$, lets take
 795 the limit of the scoring function and see how it behaves:

796
 797 $\lim_{|j-i| \rightarrow \infty} (\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) = \mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \lim_{|j-i| \rightarrow \infty} (\mathbf{B}_{i\bullet})$
 798

799
 800 We drop the limit in the causal mask $\mathbf{M}_{i\bullet}$ as the only effect of increasing the context size and the
 801 distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
 802 same formation law with 0 to the left of the query and $-\infty$ elsewhere.

803 When the shape parameter β is negative, then we can perform the following manipulation.

804
 805 $\lim_{|j-i| \rightarrow \infty} (\mathbf{B}_{i\bullet}) = \lim_{|j-i| \rightarrow \infty} \left(-\left| \frac{j-i}{\alpha} \right|^\beta \right) = \lim_{|j-i| \rightarrow \infty} \left(-\left| \frac{\alpha}{j-i} \right|^{| \beta |} \right) = 0$
 806

807
 808 When we plug 0 back into the scoring function we see that it becomes $-\infty$, and consequently the
 809 softmax becomes 0.

810
811
812
813
814
815

$$\begin{aligned} \lim_{|j-i| \rightarrow \infty} p_{ij} &= \lim_{|j-i| \rightarrow \infty} \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet} + \mathbf{B}_{i\bullet}) \\ &= \text{softmax}(\mathbf{q}_i \mathbf{K}^\top + \mathbf{M}_{i\bullet}) \end{aligned}$$

816 Since the result of the softmax is not necessarily zero, p_{ij} also is not necessarily 0, thus GGD-BAM
817 can attend to arbitrarily long context when $\beta < 0$ and $\alpha > 0$. \square
818

819 C EXPERIMENTAL SETUP

820 Here we detail the experimental setup necessary to replicate our results.
821

822 Our models were based on Llama3 (Grattafiori et al., 2024). We used RMSNorm (Zhang & Sennrich,
823 2019) and, on feedforward blocks, we used swiglu activation function (Shazeer, 2020). We trained
824 all our models on the Fineweb 10B dataset (Penedo et al., 2024) utilizing the Mistral-7B v0.3
825 tokenizer (Jiang et al., 2023) for text processing. Training was performed using context lengths of
826 512, 1024, and 2048 tokens to evaluate performance under different sequence lengths.
827

828 To maintain document separation within packed sequences, we employed an attention mask preventing
829 self-attention between distinct documents (Grattafiori et al., 2024). The models were optimized using
830 RAdam with decoupled weight decay set to 0.1 and an initial learning rate of 1×10^{-3} . We applied a
831 cosine learning rate decay schedule, reducing the learning rate to a minimum of $0.1 \times$ its initial value.
832

833 We trained LMs up to 1.1 billion learnable parameters. Table 1 details the configuration of each
834 trained model, including embedding, trainable parameters, attention heads, and hidden layer size.
835

836 Table 1: Architecture details of the LM we evaluated in our study.

837 Attribute	120M	432M	1.1B
839 Parameters embedding	~25M	~50M	~67M
840 Parameters transformer	~95M	~380M	~1B
841 Parameters BAM (θ_α , θ_β and θ_μ)	576	1008	1440
842 Attention heads	16	24	32
843 Layers	12	14	15
844 Hidden size	768	1536	2048
845 ff hidden size	2×768	2×1536	4×2048
846 Learning Rate	1×10^{-3}	5×10^{-4}	3×10^{-4}

847 Training was executed for approximately 19,251 steps with a global batch size of 589,824 tokens,
848 leveraging up to 6 NVIDIA A6000 GPUs. For the 1.1B parameter models, we perform additional
849 256 training steps with a context length of 1024. This was necessary because bigger models tends to
850 overfit in the trained context length (see Appendix H.5 for further details). The resulting models from
851 these specific training configurations formed the basis for our subsequent performance evaluation.
852

853 In our implementation we define three learnable parameters, θ_μ , θ_α and θ_β for each *attention head*.
854 So $\mathbf{B} = [b_{ij}]_{L \times L}$ where:
855

$$856 \quad 857 \quad 858 \quad 859 \quad 860 \quad 861 \quad 862 \quad 863 \quad b_{ij} = -e^{\theta_\alpha} \left(\left| (j-i) - (e^{\theta_\mu} - e^{-\theta_\mu}) \right| + \epsilon \right)^{\theta_\beta},$$

860 for $i = 1, \dots, L$ and $j = 1, \dots, L$. So the GGD is parametrized in the following way: $\mu = e^{\theta_\mu} - e^{-\theta_\mu}$,
861 $\beta = \theta_\beta$ and $\alpha = e^{-\frac{\theta_\alpha}{\theta_\beta}}$, that ensures $\alpha \geq 0$. $\epsilon = 10^{-5}$ avoids division by zero when $\beta < 0$.
862

863 To evaluate our models in contexts longer than 10,000 tokens we implemented key-value caching (Kim
et al., 2023).

864 **D PERPLEXITY EVALUATION**
865

866 **D.1 PERPLEXITY ON SHORT CONTEXT**
867

868 We evaluate generalization for models with distinct PE methods by computing the perplexity for
869 models trained on a context length of 512 in a hold-out validation set of Fineweb with sentences up
870 to 512 tokens and on Wikipedia with sentences up to 512 tokens. Results are shown in Table 2.
871

872 Table 2: Perplexity of 120M models in Wikipedia and Fineweb data.
873

	Wikipedia	Fineweb
Sinusoidal	18.9310	22.3573
ALiBi	18.5452	22.1771
NoPE	19.8609	23.7898
BAM	18.9281	22.2640
RoPE	18.3599	22.4428
Sinusoidal SSMax	19.1467	22.3150
NoPE SSMax	20.3899	23.7581
ALiBi SSMax	18.4967	22.2125
BAM SSMax	18.6897	22.1363
RoPE SSMax	20.1854	24.4507

886 We see that in context length seen during training, BAM outperforms almost all the compared
887 baselines. The only exception is ALiBi, which outperforms BAM by less than 0.1 points in perplexity.
888

889 ALiBi outperforming BAM in this case is expected from our probabilistic interpretation of PE. ALiBi
890 is a Laplace distribution only focused on the local context whereas BAM has also the ability to use
891 information in long context. We notice in experiments focused on long context (see Appendices F
892 and H) that this small gap in perplexity to ALiBi translates into huge long-context retrieval gain.
893

894 **D.2 PERPLEXITY ON LONG CONTEXT**
895

896 We evaluate context length generalization for models with distinct PE methods by computing the
897 perplexity for models that were trained on a context length of 512 in a hold-out validation set of
898 sentences longer than 512. This is a similar evaluation procedure as performed by Press et al. (2022).

899 Results shown in Figure 6 are consistent with those reported in the ALiBi paper (Press et al., 2022),
900 confirming that Sinusoidal, RoPE, and NoPE fail to extrapolate to sequence lengths beyond those seen
901 during training. For these models, perplexity increases sharply as the context grows, indicating that
902 the models are unable to maintain coherent predictions over long sequences. In contrast, only ALiBi,
903 BAM, BAM combined with Scalable Softmax (SSMax), and RoPE local maintain a stable perplexity
904 profile under context extrapolation. These models exhibit sub-linear or nearly flat perplexity growth
905 as the input length increases to 32,000 tokens—despite being trained only on context length of
906 512 tokens. This confirms our theoretical results where priors introduced by BAM provide robust
907 generalization to unseen context lengths, on par with ALiBi’s linear bias-based extrapolation.
908

909 We evaluate all the PE context length extrapolation regarding perplexity on Wikipedia dataset.
910 Figure 7 shows the log-scaled perplexity and we see a similar trend to Fineweb 10B. BAM, RoPE
911 and ALiBi are able to maintain low perplexity across all the evaluated context lengths. We see that
912 SSMax has more impact in lowering BAMs perplexity when compared to other PEs.

913 However, this type of perplexity-based evaluation has limitations (Hu et al., 2024). It does not measure
914 whether the model attends to the full sequence or only relies on the most recent tokens. For instance,
915 the RoPE Local variant implemented here applies local attention restricted to a sliding window and
916 still achieves competitive results with ALiBi. This indicates that models can make accurate next-token
917 predictions without integrating information from earlier parts of the sequence. Hence, we claim that
918 perplexity should not be taken as the sole measure of effective context length extrapolation. Indeed,
919 information retrieval evaluation seems to be more suitable to assess extrapolation of trained lengths.
920

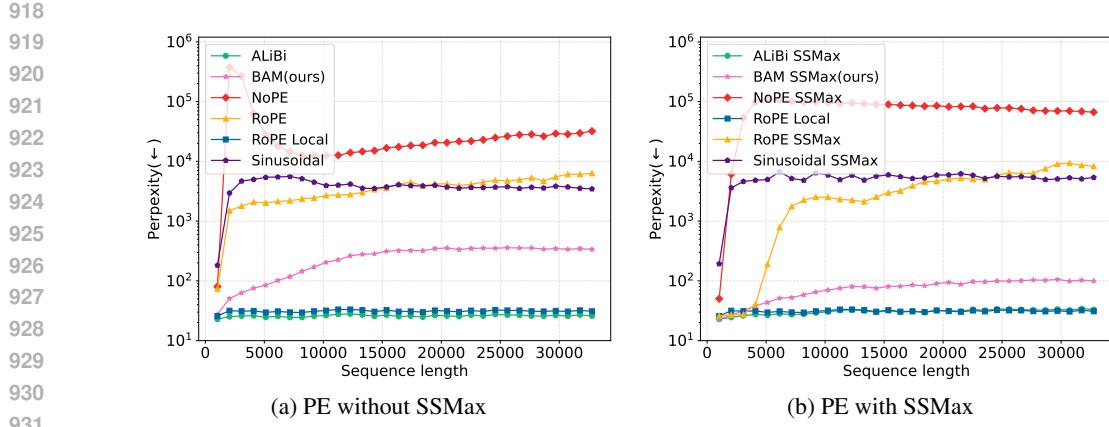


Figure 6: Log-scaled perplexity computed up to $64 \times$ the training context length of 512 tokens. BAM, RoPE Local and ALiBi are able to maintain the lowest perplexity on longer contexts.

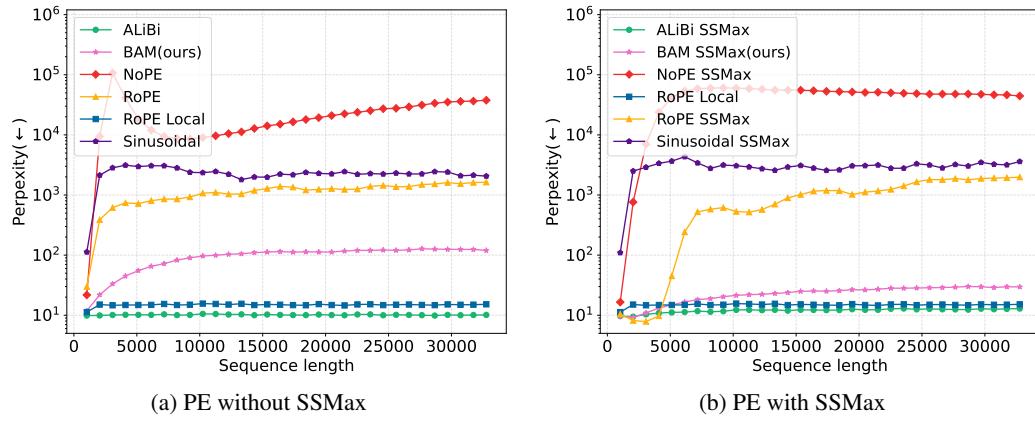


Figure 7: Log-scaled perplexity on Wikipedia dataset. BAM, RoPE Local and ALiBi are able to maintain the lowest perplexity on longer contexts.

E DOWNSTREAM EVALUATION

While perplexity provides a general notion regarding model capability in language modeling, it does not necessarily correlate with capability on downstream tasks. Here we evaluate the large scale 1B parameter models performance on downstream tasks from MMLU Hendrycks et al. (2020), ARC-easy, and ARC-challenge benchmarks Clark et al. (2018). Table 3 shows that BAM SSMax is superior to RoPE in all the evaluated benchmarks.

Table 3: GGD-BAM vs RoPE Large-Scale 1B parameter models on MMLU and ARC Benchmarks

	MMLU	ARC-Easy	ARC-Challenge
BAM SSMax	0.3716	0.5770	0.4132
RoPE SSMax	0.3573	0.5715	0.4123

F RULER BENCHMARK

To assess GGD-BAM capability to attend to long-context information, we assessed its performance in the NIAH subset of the Ruler benchmark (Hsieh et al., 2024). We deliberately chose only the NIAH

972 subset because it is designed to isolate the PE’s ability to access information at a specific distance
973 while ensuring the model maintains stable next-token prediction performance.
974

975 Performance on other tasks, such as Question Answering and Variable Tracking, is known to correlate
976 more with model size than with context extrapolation, and thus fall out of the scope of this paper.
977

978 F.1 GGD-BAM vs BASELINES (120M)

980 As seen in Table 4, GGD-BAM outperforms all the baselines on the three variations of the NIAH
981 task. Specially in NIAH Single 1, our PE method outperforms all other PE methods by a substantial
982 margin, being the only one able to perform retrieval above $6k$ tokens.
983

984 The second best performing PE is RoPE, followed by ALiBi. In the Single 1 version of Ruler NIAH,
985 RoPE maintains 0.64 accuracy while ALiBi scores a mere 0.16.
986

987 Regardless of the PE, in the Single 3 version of NIAH, where the Passkey appears in the form of a
988 UUID, only BAM achieves an accuracy above 0.8.
989

990 Table 4: Accuracy of 120M models on the NIAH subset of the Ruler Benchmark.
991

992 Task	993 PE	994 1K	995 1.5K	996 2K	997 3K	998 4K	999 6K	1000 8K	1001 10K	1002 12K
1003 Single 1	NoPE SSMax	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RoPE SSMax	1.00	1.00	1.00	1.00	0.64	0.00	0.00	0.00	0.00
	ALiBi SSMax	0.96	0.26	0.22	0.18	0.16	0.10	0.02	0.04	0.02
	RoPE Local	0.40	0.22	0.24	0.20	0.12	0.08	0.00	0.02	0.00
	Sinusoidal SSMax	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	BAM SSMax (ours)	1.00	1.00	1.00	1.00	1.00	0.98	0.92	0.88	
1003 Single 2	NoPE SSMax	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RoPE SSMax	0.98	0.96	0.94	0.84	0.52	0.00	0.00	0.00	0.00
	ALiBi SSMax	1.00	0.46	0.12	0.10	0.06	0.02	0.00	0.00	0.00
	RoPE Local	0.84	0.36	0.10	0.14	0.10	0.00	0.00	0.00	0.00
	Sinusoidal SSMax	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	BAM SSMax (ours)	1.00	1.00	1.00	0.88	0.24	0.06	0.02	0.00	0.00
1003 Single 3	NoPE SSMax	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RoPE SSMax	0.28	0.30	0.10	0.06	0.00	0.00	0.00	0.00	0.00
	ALiBi SSMax	0.24	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RoPE Local	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Sinusoidal SSMax	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	BAM SSMax (ours)	0.84	0.68	0.42	0.08	0.00	0.00	0.00	0.00	0.00

1010 F.2 LARGE SCALE GGD-BAM vs ROPE
1011

1012 Here we perform a large-scale experiment directly comparing RoPE and BAM with 1B parameters
1013 in the Ruler benchmark. Results are show in Table 5. BAM achieves superior performance in
1014 comparison to RoPE in every evaluated task in the Ruler benchmark, with a highlight of achieving
1015 almost perfect accuracy across tasks on the Single 1 subset.
1016

1017 Other tasks such as Multikey 2 and Multikey 3 are harder for both models. This shows that only our
1018 pre-training may not be enough for models to perform such tasks. However, since our goal here is to
1019 assess how distinct PE behave on exactly the same training regime, we see that GGD-BAM clearly
1020 achieves better longer context in Single 1, 2 and 3, MultiKey 1, MultiQuery and MultiValue.
1021

1022 G LONGBENCHV2
1023

1024 In Table 6, we present the results of 1B parameter models on the complete LongBenchV2 bench-
1025 mark Bai et al. (2025) limited in 131k tokens. We chose to report just the large scale 1B parameter
models because smaller models perform close to random guessing in these tasks. BAM outperforms

1026
1027

Table 5: GGD-BAM vs RoPE Ruler Benchmark Large-Scale 1B parameter models.

1028

Task	PE	1024	1536	2048	3072	4096	6144	8192	12288	16384	24576	32768
Single 1	BAM SSMax	1.00										
	RoPE SSMax	1.00	0.88	0.68	0.40	0.30	0.10	0.02	0.00	0.00	0.00	0.00
Single 2	BAM SSMax	1.00	1.00	1.00	0.98	1.00	0.88	0.82	0.46	0.18	0.06	0.02
	RoPE SSMax	1.00	0.82	0.62	0.32	0.18	0.04	0.00	0.00	0.00	0.00	0.00
Single 3	BAM SSMax	0.88	0.92	0.88	0.86	0.80	0.62	0.30	0.10	0.02	0.00	0.00
	RoPE SSMax	0.76	0.30	0.16	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00
MultiKey 1	BAM SSMax	0.84	0.86	0.94	0.92	0.86	0.76	0.66	0.56	0.24	0.10	0.06
	RoPE SSMax	0.80	0.86	0.68	0.38	0.32	0.08	0.06	0.00	0.00	0.00	0.00
MultiKey 2	BAM SSMax	0.22	0.16	0.12	0.04	0.04	0.00	0.02	0.02	0.00	0.00	0.00
	RoPE SSMax	0.26	0.14	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MultiKey 3	BAM SSMax	0.12	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	RoPE SSMax	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MultiQuery	BAM SSMax	0.88	0.88	0.85	0.82	0.71	0.68	0.62	0.44	0.23	0.10	0.02
	RoPE SSMax	0.85	0.76	0.42	0.17	0.11	0.06	0.03	0.03	0.01	0.01	0.01
MultiValue	BAM SSMax	0.96	0.94	0.92	0.92	0.82	0.84	0.76	0.70	0.38	0.14	0.00
	RoPE SSMax	0.96	1.00	0.78	0.70	0.42	0.32	0.10	0.04	0.08	0.08	0.00

1044

RoPE in all evaluated tasks, with an overall score 5 points above RoPE. We opted not to show the Long Structured Data Understanding task because it has only four instances under 131k tokens.

1047

1048

Table 6: LongBenchv2 Benchmark: GGD-BAM vs RoPE, 1B parameter models.

1049

	BAM SSMax	RoPE SSMax
Code Repository Understanding	41.7	25.0
Long In-context Learning	36.4	30.3
Long-dialogue History Understanding	35.0	35.0
Multi-Document QA	26.5	25.3
Single-Document QA	26.5	18.8
Overall	28.6	24.2

1058

H ABLATION STUDY

1061

1062

In this section we study two different initialization strategies for the shape θ_β , scale θ_α and location θ_μ parameters of GGD-BAM. The first initialization is a Laplacian that replicates ALiBi, setting $\theta_\beta = 1$, different θ_α for each layer and $\theta_\mu = 0$. The second initialization start from Uniform distribution prior $\theta_\beta = 0$, which is a middle ground between ALiBis Laplacian and $\theta_\beta < 0$, with $\theta_\alpha = 0$.

1067

1068

Figure 8 shows us that ALiBi initialization provides least extrapolation lengths. Our best results were achieved by using the initialization scheme of $\theta_\beta = 0$ and $\theta_\alpha = 0$, this initialization is equivalent to assigning a Uniform prior to all tokens in the context.

1070

1071

H.2 LEARNABLE PARAMETERS

1072

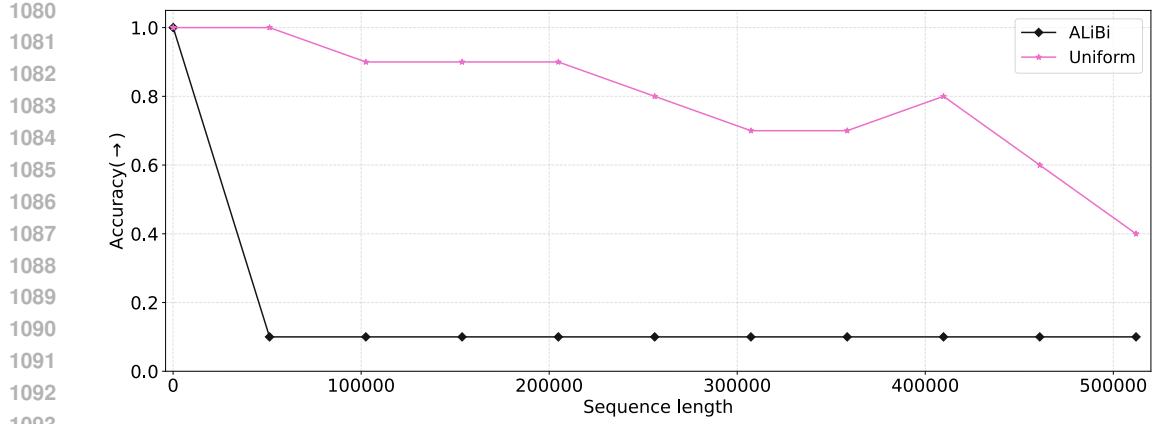
1073

The GGD prior in BAM is parameterized by a shape parameter θ_β , a scale parameter θ_α , and a location parameter θ_μ . In this section, we evaluate how training different subsets of these parameters affects the performance of GGD-BAM. Each configuration introduces a different number of additional trainable parameters: training only θ_β adds 192 parameters; training both θ_β and θ_α adds 384; and training all three parameters (θ_β , θ_α , and θ_μ) adds 576 parameters to the model.

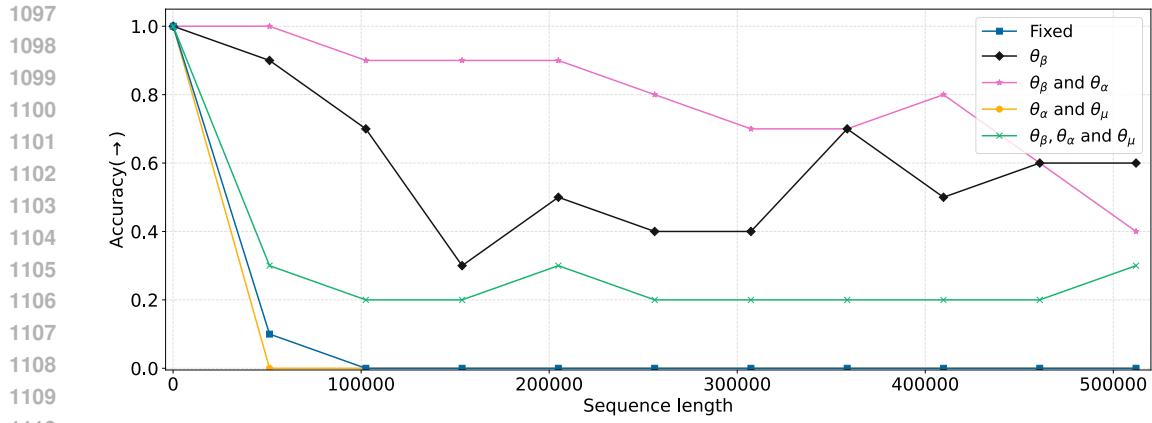
1077

1078

In Figure 9 we can see that allowing all parameters θ_β , θ_α and θ_μ to be learned during training lowers model capacity to extrapolate. The best result was achieved when both θ_β and θ_α are learn during training, showing that both parameters are important for context length extrapolation.



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094 Figure 8: Comparison of passkey retrieval accuracy of models trained on context length 512 training
1095 just θ_β and θ_α with three distinct parameter initialization schemes.
1096



1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110 Figure 9: Passkey retrieval accuracy of models training just: θ_β ; θ_β and θ_α ; and θ_β , θ_α and θ_μ . All
1111 variations were trained on context length 512. Training θ_β and θ_α while fixing $\theta_\beta = 0$ yields more
1112 extrapolation length.
1113

1114
1115 If we compare results on Figure 9 to other PE in Figure 2 we see that even our worst combination of
1116 training all parameters is superior to all other PE in long context passkey retrieval.
1117

1118 H.3 TRAINING CONTEXT LENGTH 1119

1120 Here we repeat the experiments for models trained on context length of 1,024 and 2,048, double and
1121 quadruple the original context length of 512. We show detailed results for training context length of
1122 1,024 both on perplexity and passkey retrieval when compared to other PE methods. And we also
1123 compare passkey retrieval accuracy between BAM SSMax on those three distinct context lengths.

1124 Essentially, the trend of ALiBi, RoPE Local and BAM SSMax being the only PE methods that are
1125 able to maintain low perplexity on longer context is maintained, this is possible to identify in Figure
1126 10. As expected, NoPE and Sinusoidal PE are the first models to exponentially increase in perplexity.
1127

1128 RoPE SSMax improved its extrapolation performance and was able to maintain perplexity on par
1129 with ALiBi until around 7,500 tokens. It is worth noting that to achieve such results with RoPE, we
1130 expanded the \mathbf{R}_θ manipulation post-training that was performed by Nakanishi (2025) from 50 \times to
1131 100 \times . Without this RoPE SSMax would perform on par with standard RoPE.

1132 Regarding passkey retrieval accuracy, again all PE methods except BAM SSMax struggle to access
1133 long context information and maintain high accuracy, Figure 11 shows this trend. Although the
Figure 11 shows context lengths up to 32,000, we evaluated BAM SSMax until 512,000 context

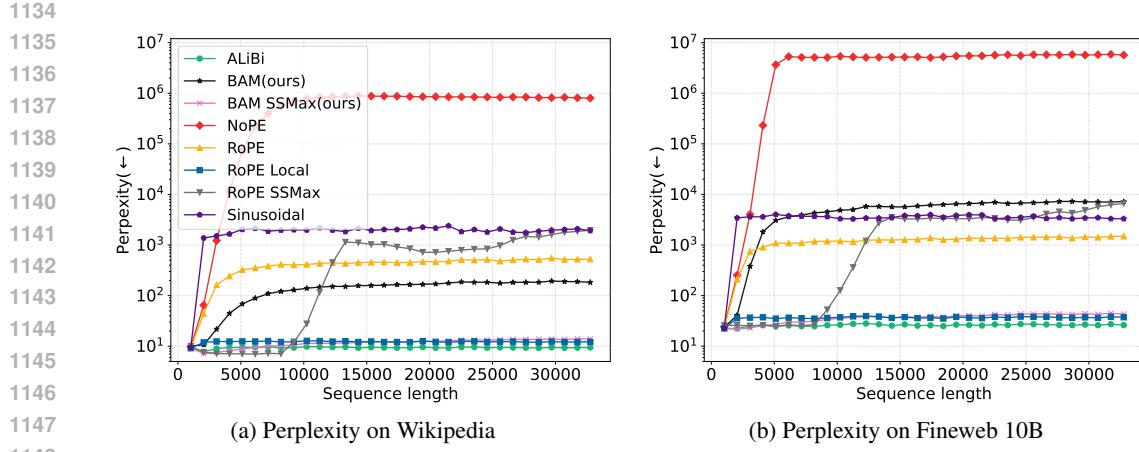


Figure 10: Log-scaled perplexity computed up to $32\times$ the training context length of 1024 tokens. BAM SSMax, RoPE Local and ALiBi are able to maintain the lowest perplexity on longer contexts.

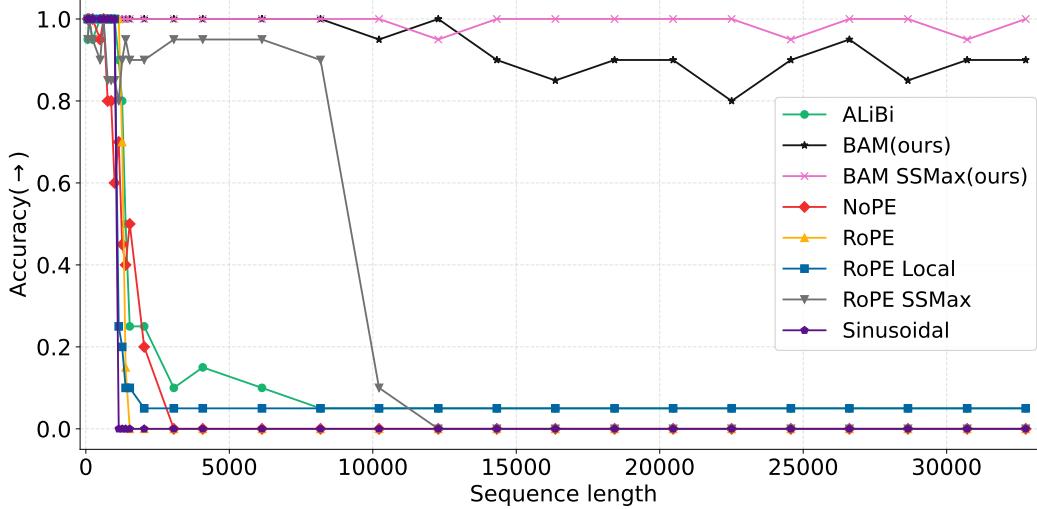


Figure 11: Passkey retrieval accuracy of models with distinct PE in the Passkey Retrieval task. BAM and BAM SSMax outperform all PE methods. Specifically BAM SSMax is capable of maintaining perfect accuracy for a context $32\times$ the training context length.

length and it maintained accuracy above 80% until 300,000 and did not drop to zero throughout the evaluation. Beyond 512,000 context length, we did not have enough vram to perform evaluation.

In Figure 12 we can see how training in longer context lengths affects GGD-BAM. Generally, training for longer contexts appears to make the model more robust to long context generalization as the accuracy tend to drop slower. **The model trained with context length of 2,048 tokens generalizes all the way to 512k tokens while maintaining accuracy above 90%. The model trained with context length of 512 achieves 40% accuracy on 512k, showing a correlation between trained context length and retrieval accuracy at 512k tokens.** Nevertheless, our model trained on context length of 512 is competitive with all the others until 300,000 where others achieve higher accuracy.

H.4 SCALABLE SOFTMAX

Here we test all PE methods without SSMax. Figure 13 shows the same trend of models with SSMax, BAM outperforms every other PE method. It is worth noting that SSMax improves context length

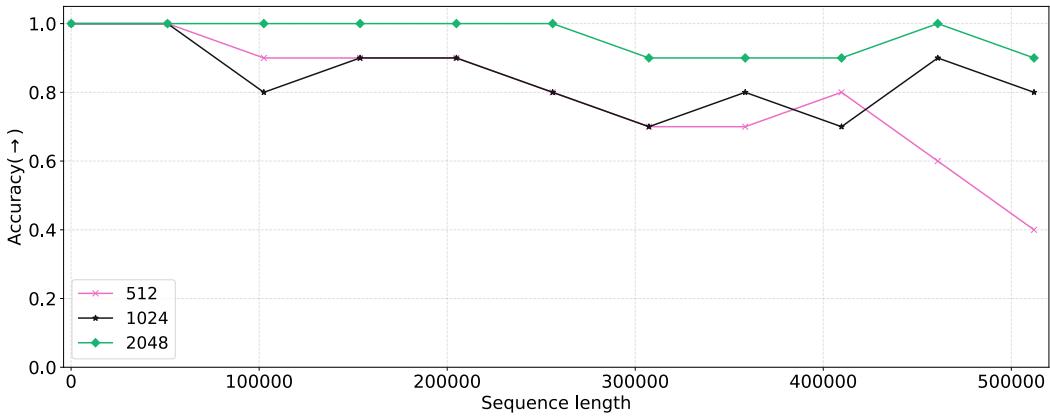


Figure 12: Comparison of passkey retrieval accuracy of GGD-BAM models trained on context length 512, 1,024 and 2,048.

generalization in almost all the assessed PE methods. This shows that *fading attention* is indeed one of the problems in long context extrapolation, however BAM is superior to other PE on both cases.

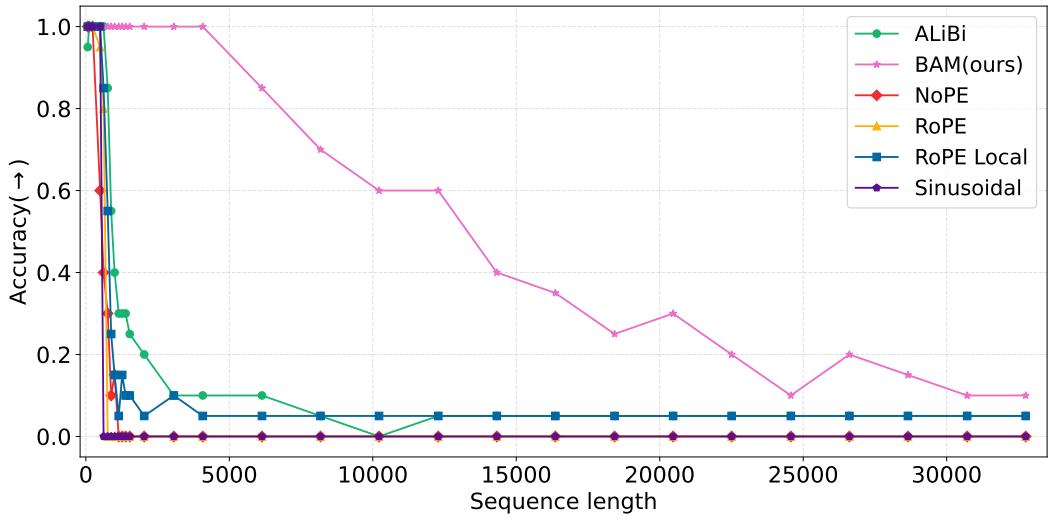


Figure 13: Passkey retrieval accuracy with distinct PE. BAM outperform all PE methods.

By comparing the results from BAM and BAM SSMax, we note that SSMax plays a role in maintaining the PE ability to extrapolate to longer lengths. This trend is also maintained when comparing RoPE and its SSMax version. The fact that Scalable Softmax improves context length generalization both for BAM and for RoPE shows that good PE is necessary but not sufficient for context length extrapolation. The softmax function tends to zero for longer context windows, which is a problem both for language modeling and for retrieval. To counterbalance this effect, scalable softmax applies a rescaling factor to the logits (Nakanishi, 2025), fixing that limitation.

Scalable Softmax introduces a rescaling factor $s \times \ln(n)$, where n is the size of the input vector and s is a learnable parameter. Note that s has a similar effect to the normalizing scalar Z obtained when framing PE as a Bayesian mechanism. The only effective difference is that Z should be a function of both query and keys whereas s is a learnable parameter.

To understand the effect of the normalizing scalar s in our models across distinct scales, we show in Figure 14 how this learnable parameter is distributed after training. We see that although the distribution appears to have a heavier tail in smaller models, the shape of the distribution is similar across model scales.

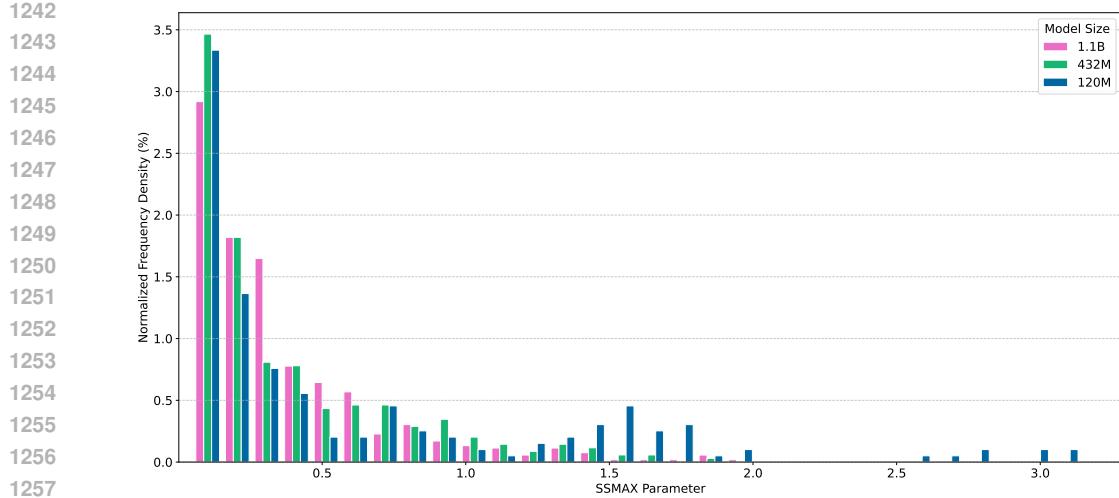


Figure 14: Scaling factor s in scalable softmax in three distinct model scales.

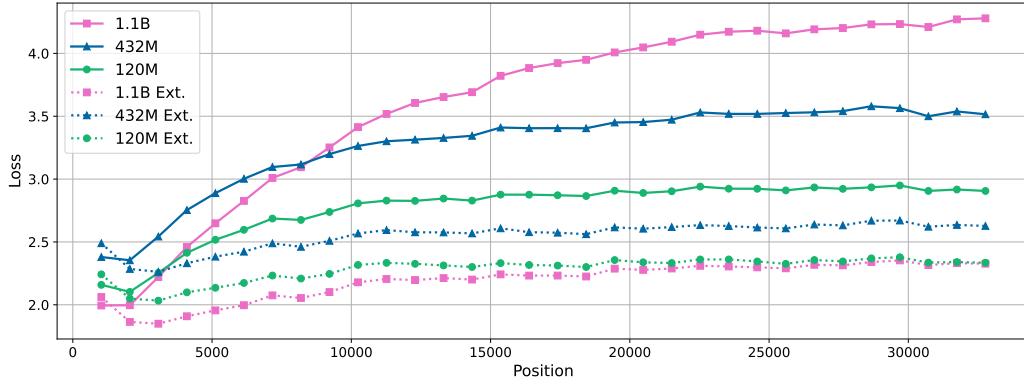


Figure 15: Loss of GGD-BAM 1B before and after lightweight fine-tuning for context extension.

H.5 CONTEXT EXTENSION

We observed during our first experiments that smaller models generalized better to longer context. We found out that bigger models are prone to overfitting the trained context length.

We devised a lightweight fine-tuning with context length 1024 for 256 steps (in comparison to 512 during the beginning of the training) to make bigger models generalize once again. In Figure 15, we show that after lightweight fine-tuning the loss of our models become more stable for context beyond the training length of 512 tokens. This shows that, even if bigger models can overfit the training context length, a lightweight fine-tuning procedure can make them generalize to extended contexts.

After context extension, we performed the PassKey Retrieval analysis and noticed that bigger models benefit more from the context extension than smaller ones. The results obtained by this lightweight fine-tuning procedure are shown in Table 7.

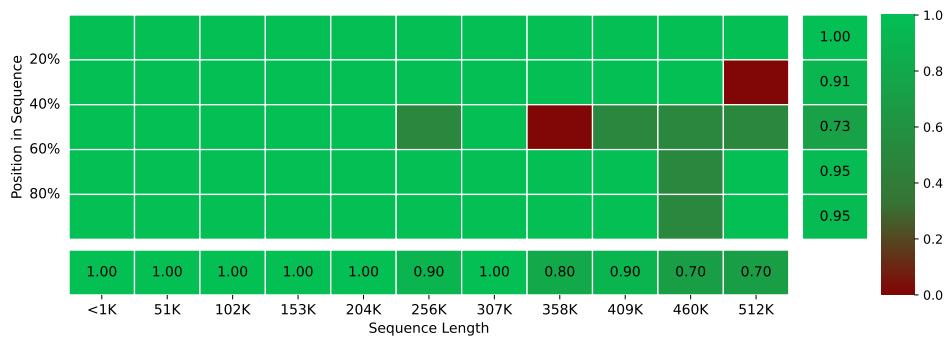
In Table 7 we see that the 120M model generalizes up to 512 \times the trained context length with accuracy above 0.8. However, bigger models struggle in much shorter sequences. When analyzing each model to their context-extended counterparts, we see that all model-scales benefit from this procedure. The 1.1B parameter model, however, has most improvement of context extension.

1296 Table 7: Context extension effect across different model sizes of BAM SSMax on PassKey Retrieval.
1297

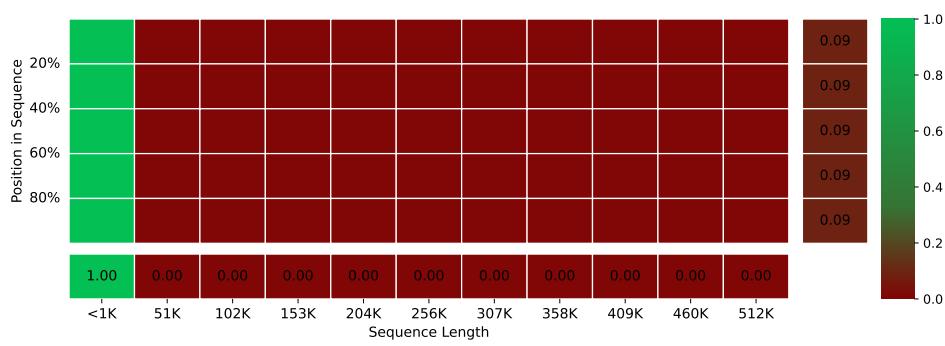
Model	<1K	51K	102K	153K	204K	256K	307K	358K	409K	460K	512K
120M	1.0	1.0	0.9	0.9	0.9	0.8	0.7	0.7	0.8	0.6	0.4
120M Ext.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
431M	1.0	0.5	0.1	0.3	0.1	0.1	0.1	0.2	0.1	0.0	0.2
431M Ext.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1.1B	0.9	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0
1.1B Ext.	1.0	1.0	1.0	1.0	1.0	0.9	1.0	0.8	0.9	0.7	0.7

1306
1307 **H.6 MODEL SIZE**
1308

1309 Here we compare how BAM SSMax compares to RoPE SSMax on a large scale model size (1.1B) on
1310 the Passkey Retrieval setting. Models were trained with context length 512 and prompted to perform
1311 Passkey Retrieval with up to 512,000 tokens. Figure 16 shows that BAM SSMax also dominates
1312 RoPE SSMax across all evaluated lengths, performing accurate Passkey retrieval in all contexts that
1313 we were able to assess using our available compute.



1315
1316 (a) BAM SSMax
1317
1318
1319
1320
1321
1322
1323
1324



1325
1326 (b) RoPE SSMax
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

1340 Figure 16: Passkey Retrieval accuracy on 1.1B models. In the bottom row and on the last column, we
1341 see average accuracy across length and position, respectively.
1342

1343 This ablation corroborates that BAM is capable of using information across longer contexts than
1344 RoPE, and that such a conclusion generalizes across bigger models (and not just in 120M settings).
1345

1346 **H.7 PE IMPACT ON INFERENCE PERFORMANCE**
1347

1348 Here we access how distinct PE strategies impact model throughput during inference. To perform this
1349 experiment, we initialize BAM and all the baselines trainable weights of four distinct model sizes
and run 100 samples with batch size 1 and sequence length 512.

In Table 8, we see that for smaller models the cost of performing Scalable Softmax dominates the results. This is imperceptible in bigger models, since the only impact of Scalable Softmax appears to be in the standard deviation. BAM does not affect model inference time in comparison to other PEs. When we account for the standard deviation, every model has equivalent inference time.

Table 8: Inference time (ms) and vram (GB) during the backward pass for distinct model sizes.

	120M		430M		1.1B	
	Time	VRAM	Time	VRAM	Time	VRAM
Sinusoidal	32.84 \pm 0.40	1.734	50.98 \pm 0.37	4.933	117.26 \pm 0.42	12.329
Sinusoidal SSMax	32.82 \pm 1.13	1.736	53.39 \pm 0.28	4.933	120.91 \pm 0.55	12.324
RoPE	35.77 \pm 1.98	1.754	53.42 \pm 0.38	4.936	120.50 \pm 0.36	12.330
RoPE SSMax	36.04 \pm 1.39	1.742	55.65 \pm 0.17	4.934	123.34 \pm 0.42	12.325
ALiBi	31.43 \pm 0.73	1.738	52.24 \pm 0.27	4.933	119.34 \pm 0.39	12.329
ALiBi SSMax	32.21 \pm 0.09	1.736	54.22 \pm 0.21	4.934	122.09 \pm 0.33	12.325
BAM	33.13 \pm 0.53	1.739	52.85 \pm 0.24	4.936	120.31 \pm 0.38	12.329
BAM SSMax	33.01 \pm 0.81	1.737	59.50 \pm 0.18	4.936	133.14 \pm 0.41	12.319
NoPE	38.15 \pm 1.87	1.738	56.10 \pm 0.42	4.933	121.34 \pm 0.80	12.329
NoPE SSMax	38.49 \pm 1.30	1.736	58.36 \pm 0.70	4.933	124.95 \pm 0.60	12.324

H.8 θ_β AND θ_α TRENDS AFTER TRAINING

We now analyze the trends of θ_β and θ_α after training. Our first analysis focus on the 120M model trained with distinct context sizes. Figure 17 shows an interest trend where we identify three linearly-separable clusters of parameters: the first cluster with $\theta_\beta > 0$, where each attention head works similarly to a Laplace distribution (ALiBi); the second cluster with $-0.6 \leq \theta_\beta \leq 0$, which works as a retrieval head; the third cluster has fewer instances than the other two, with $\theta_\beta < -0.6$. We conjecture that this cluster works as a more aggressive retrieval head.

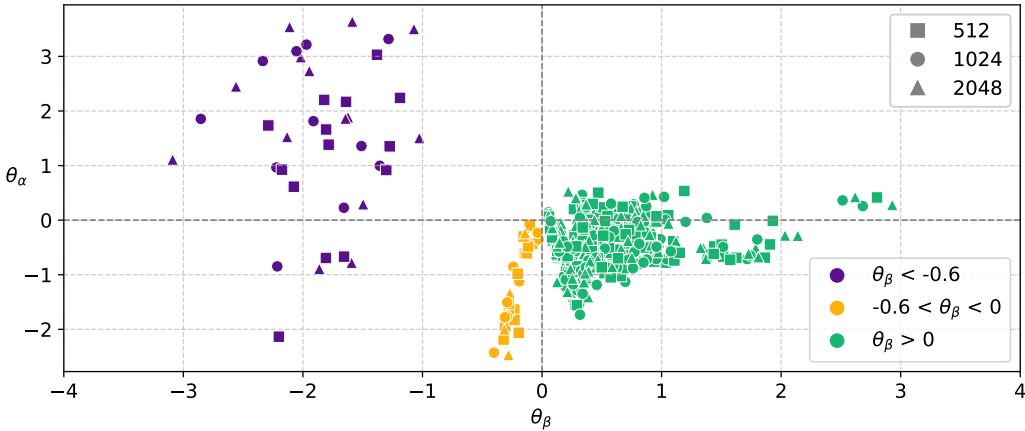


Figure 17: Trend of $\theta_\beta \times \theta_\alpha$ regarding the 120M model trained on 512, 1024, and 2048 tokens.

When we analyze distinct model scales, the same three clusters emerge. Figure 18 shows the same clusters identified in Figure 17, providing evidence that these probability distribution over positions are stable and transferable across many tasks.

I LIMITATIONS

Despite the theoretical and empirical strengths of BAM and its instantiation with GGD, our study is subject to several limitations, which we acknowledge and discuss below.

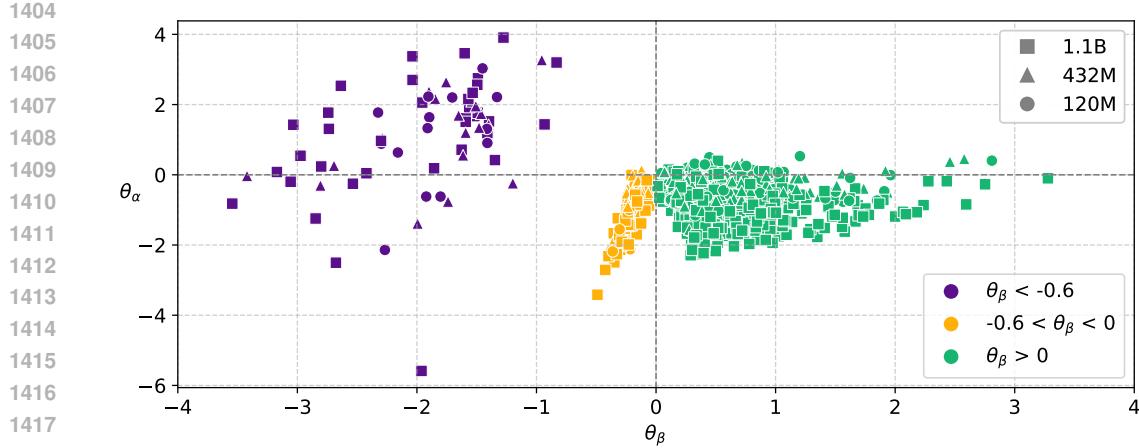


Figure 18: Trend of $\theta_\beta \times \theta_\alpha$ on different model scales.

Model Scale and Generalization to Larger LMs. Our experiments were conducted on Transformer models with up to 1.1 billion parameters due to limited compute availability. While our results show improvements in context length extrapolation at this scale, it remains an open question whether these gains persist or even amplify in very large language models. However, we note that this evaluation regime is consistent with prior work in the PE literature, including those introducing ALiBi (Press et al., 2022) and NoPE (Kazemnejad et al., 2023), which also validated their approaches using similar-scale models.

Dataset Scope and Representativeness. Our empirical evaluation of perplexity is currently restricted to two datasets: FineWeb 10B (Penedo et al., 2024), and Wikipedia (Foundation, 2023). While these datasets provide coverage of both large-scale pretraining and structured text, this coverage is not exhaustive. Broader evaluations across additional domains—such as code, long-form scientific documents—would be valuable for assessing the robustness and generality of BAM-based priors.

Coverage of Positional Encoding Methods. Due to computational constraints and the complexity of reimplementing certain positional encoding strategies, our experiments do not encompass all methods proposed in the literature. We did not evaluate the T5 relative position bias approach (Raffel et al., 2020), which requires bucketing mechanisms and distinct architectural modifications. Nonetheless, we believe that the set of baselines considered—covering absolute positional encodings (Sinusoidal), rotary encodings (RoPE), relative linear biases (ALiBi), and content-only baselines (NoPE)—provides a representative and diverse comparison to assess the context extrapolation capabilities of BAM.

Generalization to Instruction/Preference Tuned LMs. We did not evaluate BAM in the context of instruction-tuned or preference-tuned models. LMs often undergo additional fine-tuning stage, such as supervised instruction following, reinforcement learning from human feedback, or direct preference optimization, which can significantly alter attention dynamics and generalization behavior. It remains an open question whether the context extrapolation benefits introduced by BAM are preserved, attenuated, or potentially enhanced in such settings. Assessing the how models with BAM as PE perform after instruction-tuned architectures is an important direction for future work.

J BROADER IMPACTS

Improving context length extrapolation in Transformers has the potential to reduce the computational and environmental costs associated with pretraining large language models. Because attention scales quadratically with sequence length, training with long contexts is prohibitively expensive. GGD-BAM enables models to generalize to longer sequences without requiring direct exposure during training, potentially lowering the need for long-context pre-training.

1458 This efficiency gain could contribute to more sustainable and accessible language model development,
 1459 particularly for institutions with limited compute resources. Furthermore, better long-range general-
 1460 ization supports important applications such as legal and medical document processing, educational
 1461 content understanding, and scientific analysis. However, these capabilities must be accompanied by
 1462 careful evaluation to ensure reliability and safety in high-stakes domains.

1463

K ALTERNATIVE INTERPRETATIONS OF Z

1464

K.1 STATISTICAL-PHYSICS INTERPRETATION OF Z

1465 Let $f_j = f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)$, $g_j = g_{\text{pos}}(i, j)$.

1466 We introduce three normalization constants:

1467

$$Z_{\text{cont}} = \sum_j e^{f_j}, \quad Z_{\text{pos}} = \sum_j e^{g_j}, \quad Z_{\text{joint}} = \sum_j e^{f_j + g_j}.$$

1468

1469 The usual *Gibbs–Boltzmann partition function* is

1470

$$Z_{\text{joint}} = \sum_j \exp(f_j + g_j),$$

1471

1472 and the corresponding free energy is $F_{\text{joint}} = -\ln Z_{\text{joint}}$.

1473 The *factorization normalizer* Z that restores $\sum_j \text{softmax}(f_j + g_j) = 1$ after factorizing $\exp(f_j + g_j) = \exp(f_j) \exp(g_j)$ is

1474

$$Z = \frac{Z_{\text{cont}} Z_{\text{pos}}}{Z_{\text{joint}}} = \sum_j [\text{softmax}(f_j) \times \text{softmax}(g_j)].$$

1475

1476 Its log, $\ln Z = \ln Z_{\text{cont}} + \ln Z_{\text{pos}} - \ln Z_{\text{joint}}$, is precisely the *interaction free-energy* between the
 1477 *content* and *position* potentials. Finally, introducing an inverse temperature γ yields

1478

$$p_{ij} \propto \exp(\gamma(f_j + g_j)),$$

1479

1480 so γ could control how sharply the attention distribution peaks.

1481

K.2 GEOMETRIC INTERPRETATION OF Z

1482 Recall

1483

$$p_{\text{cont}}(j) = \text{softmax}(f_{\text{cont}}(q_i, k_j)), \quad p(g_{\text{pos}}(i, j)) = \text{softmax}(g_{\text{pos}}(i, j)),$$

1484

1485 and let

1486

$$p_{\text{cont}} = (p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)))_{j=1}^n, \quad p_{\text{pos}} = (p(g_{\text{pos}}(i, j)))_{j=1}^n.$$

1487

1488 Both vectors lie in the probability simplex $\Delta^{n-1} = \{x \in \mathbb{R}^n : x_j \geq 0, \sum_j x_j = 1\}$. Then

1489

$$Z = \sum_{j=1}^n p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)), p(g_{\text{pos}}(i, j)) = \langle p_{\text{cont}}, p_{\text{pos}} \rangle,$$

1490

1491 where $\langle p_{\text{cont}}, p_{\text{pos}} \rangle = \sum_j p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)), p(g_{\text{pos}}(i, j))$.

1492

- **Dot-product as overlap.** $\langle p_{\text{cont}}, p_{\text{pos}} \rangle \in [0, 1]$ measures how much the two distributions
 1493 “agree”—it is maximal when they coincide and minimal when they are disjoint.
- **Norms of probability vectors.** Since $\|p\|_2 \leq \|p\|_1 = 1$ for any $p \in \Delta^{n-1}$, the raw
 1494 dot-product is not a true cosine similarity unless one divides by $\|p_{\text{cont}}\|_2 \|p_{\text{pos}}\|_2$. We
 1495 omit that division because we need $\sum_j p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)), p(g_{\text{pos}}(i, j))$ exactly to quantify the
 1496 normalization gap of the product of two softmaxes.

1512 • **Re-normalization identity.** The product distribution $p_{\text{cont}} \odot p_{\text{pos}}$ sums to $\langle p_{\text{cont}}, p_{\text{pos}} \rangle \neq 1$.
 1513 Inverting that sum,

1514
$$Z = \sum_j p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)), p(g_{\text{pos}}(i, j)),$$

1515 precisely restores $\sum_j [p(f_{\text{cont}}(\mathbf{q}_i, \mathbf{k}_j)), p(g_{\text{pos}}(i, j))] Z = 1$.

1516
 1517 • **Cosine-similarity caveat.** If one instead defined $\cos \theta = \frac{\langle p_{\text{cont}}, p_{\text{pos}} \rangle}{\|p_{\text{cont}}\|_2 \|p_{\text{pos}}\|_2}$, that extra normal-
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889