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ABSTRACT

Transformer-based language models rely on positional encoding (PE) to handle
token order and support context length extrapolation. However, existing PE meth-
ods lack theoretical clarity and rely on limited evaluation metrics to substantiate
their extrapolation claims. We propose the Bayesian Attention Mechanism (BAM),
a theoretical framework that formulates positional encoding as a prior within a
probabilistic model. BAM unifies existing methods (e.g., NoPE and ALiBi) and
motivates a new Generalized Gaussian positional prior that substantially improves
long-context generalization. Empirically, BAM enables accurate information re-
trieval at 500× the training context length, outperforming previous state-of-the-art
context length generalization in long context retrieval accuracy while maintaining
comparable perplexity and introducing minimal additional parameters.

1 INTRODUCTION

Transformer-based neural models currently dominate language modeling (LM) due to their superior
ability to capture variable-length token dependencies via self-attention. Nevertheless, transformers
inherently lack positional information, requiring the incorporation of Positional Encoding (PE). PE is
vital, particularly for enabling LMs trained on shorter contexts to generalize to significantly longer
sequences during inference—a desirable capability known as context length extrapolation. However,
the precise impact of PE on extrapolation remains poorly understood (Kazemnejad et al., 2023).

Several PE methods have been proposed to facilitate context length extrapolation, including Sinusoidal
embeddings (Vaswani, 2017), RoPE (Su et al., 2024), ALiBi (Press et al., 2022), and even the omission
of positional encoding entirely (NoPE) (Kazemnejad et al., 2023). Despite reported empirical
successes in extrapolation, two critical issues persist: (i) many existing PE techniques are empirically
motivated with limited theoretical foundations, and thus their behavior is not well-understood (Liu
et al., 2024; Huang et al., 2023); (ii) evaluation methods rely heavily on perplexity, which may
inadequately reflect true extrapolation capability, as LMs can achieve low perplexity simply through
localized attention patterns, as demonstrated in sliding-window evaluations (Huang et al., 2023).

To address these issues, we introduce the Bayesian Attention Mechanism (BAM), a theoretical
framework that reframes self-attention as an expectation of values computed under a joint probabilistic
model of content and position of tokens. Within BAM, PE naturally emerges as a prior distribution
over token positions, clarifying the theoretical basis of existing techniques. Notably, we illustrate
how NoPE and ALiBi correspond explicitly to Uniform and Laplace positional priors, respectively.

Leveraging this robust theoretical foundation, we propose a new positional encoding strategy utilizing
a Generalized Gaussian prior. Our approach1 introduces fewer than 1,000 additional parameters yet
delivers substantially improved extrapolation performance, demonstrated clearly in retrieval-based
tasks and traditional perplexity evaluations. Thus, BAM serves both as a unified theoretical framework
for analyzing PE schemes and as a practical method for enhancing long-context attention.

1Code available at https://anonymous.4open.science/r/BAM-DDA9
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2 BAYESIAN ATTENTION MECHANISM

In this section, we motivate the perspective of framing attention as a Bayesian mechanism, supporting
both token content and position information. We show that PE strategies can be seen as priors of a
Bayesian attention mechanism, hereby called BAM.

2.1 BAYESIAN ATTENTION AND THE JOINT PROBABILITY DISTRIBUTION pij

Definition 1. For a fixed query vector qi ∈ R1×d and key-value matrices K,V ∈ RL×d, a
Bayesian Attention Mechanism computes self-attention as an expectation over its values:

self-attention(qi,K,V) =
exp
(
score(qi,kj)

)
Σzexp

(
score(qi,kz)

)V = Σjpijvj = Ej|i[V]

Definition 1 states that the attention mechanism can be expressed as an expectation over values of the
ith query, where pij is the probability of token j ∈ [1, L] when attended by token i. This definition
is consonant with the self-attention mechanism defined by Vaswani (2017) and with prior attempts
to frame self-attention as an expectation over values (Singh & Buckley, 2023), where the scoring
function is the scaled dot product and σ

(
score(qi,K)

)
computes pij ∀j. The term pij is usually

called the attention weight, however we frame it as a joint probability over content and positions.

Definition 2. In Bayesian Attention, pij is a joint probability over the content of token j (fcont)
and its position relative to query qi (gpos).

pij = p(fcont(qi,kj)|gpos(i, j))× p(gpos(i, j))

Definition 2 allows us to interpret pij as a joint probability distribution dependent on both token
content and position. Together, Definitions 1 and 2 frame positional encoding as a probability
distribution over the positions of the tokens within the context. Note that this definition, particularly
in p(fcont(qi,kj)|gpos(i, j)), encompasses a dependency of content on position. This dependency is
trivially modeled by a scalar Z when the scoring function is additive, as detailed below.

When framing PE as that probability distribution over tokens in a context, we can derive parametrized
probability distributions that explain positional encoding strategies such as NoPE (Kazemnejad et al.,
2023) and ALiBi (Press et al., 2022), and propose novel PE strategies with known behaviors.

Theorem 1. If the scoring function of the attention mechanism is additive, i.e., of the form
fcont(qi,kj) + gpos(i, j), then pij is the product of the marginal probabilities over content and
position, dependent on a normalizing scalar Z:r

Proof. By Definition 1, we have that self-attention(qi,K,V) = σ
(
score(qi,K)

)
V = Σjvjpij =

Ej|i[V ]. Following the assumption that the scoring function is fcont(qi,kj) + gpos(i, j), we have:

pij = σ(score(qi,kj))

=
exp

(
fcont(qi,kj) + gpos(i, j)

)
Σz

(
exp

(
fcont(qi,kz) + gpos(i, z)

))
=

exp
(
fcont(qi,kj)

)
· exp

(
gpos(i, j)

)
Σz

(
exp

(
fcont(qi,kz) + gpos(i, z)

))
=

exp
(
fcont(qi,kj)

) · exp (
gpos(i, j)

)
Σz

(
exp

(
fcont(qi,kz) + gpos(i, z)

)) ·
Σz

(
exp

(
fcont(qi,kz)

))
· Σz

(
exp

(
gpos(i, z)

))
Σz

(
exp

(
fcont(qi,kz)

))
· Σz

(
exp

(
gpos(i, z)

))
=1

=
exp

(
fcont(qi,kj)

)
Σz

(
exp

(
fcont(qi,kz)

)) · exp
(
gpos(i, j)

)
Σz

(
exp

(
gpos(i, z)

)) ·
Σz

(
exp

(
fcont(qi,kz)

))
· Σz

(
exp

(
gpos(i, z)

))
Σz

(
exp

(
fcont(qi,kz) + gpos(i, z)

))
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= p(fcont(qi,kj)) · p(gpos(i, j)) · 1

Σz

(
p(fcont(qi,kz)) · p(gpos(i, z))

)

=
p(fcont(qi,kj)) · p(gpos(i, j))

Z

The distributions governing token content and position are thus dependent by a normalizing scalar
factor Z. We can further interpret Z from different perspectives, shedding light on the relationship
between token content and position in self-attention (see Appendix K).

This derivation shows us that adding positional information in the scoring function of the self-attention
mechanism leads to a product of probabilities over content and position. We now show that existing
PE methods can actually be described by parametrized probability distributions, and that by defining
particular distributions we can force the model to explicitly attend to long context.

2.2 POSITIONAL ENCODING AS PRIORS TO BAM

With Theorem 1, we can frame positional encoding as priors to BAM. In particular, we present
lemmas that derive NoPE (Kazemnejad et al., 2023) and ALiBi (Press et al., 2022) as specific prior
distributions to Bayesian self-attention.

Lemma 1. The causal mask in decoder models is a special case of BAM prior where

Causal Mask ⇒ p(gpos(i, j)) = Uniform(1, i, j) over a given context x1,...,L

Lemma 2. ALiBi is a special case of BAM prior where the token position distribution comprises
both Uniform and Laplace distributions.

ALiBi ⇒ p(gpos(i, j)) = Uniform(1, i, j) · Laplace
(
0,

1

m
, j − i

)
over a context x1,...,L

Lemma 3. ALiBi becomes local attention as the relative length |j − i| increases.

If pij = softmax
(
qiK

⊤ +Mi• +Ai•
)

then lim
|j−i|→∞

pij = 0

Proofs. See Appendix B.1, B.2, and B.3.

2.3 A PE STRATEGY WITH A GENERALIZED GAUSSIAN AS PRIOR

Now we change the distribution over positions to be a Generalized Gaussian Distribution (GGD) and
show its advantages over the existing PE methods. We call this new PE method GGD-BAM.

Let B = [bij ]L×L where bij = −
∣∣ j−i−µ

α

∣∣β , for i = 1, . . . , L and j = 1, . . . , L be a matrix of
non-linear biases that are added in the scoring function of the self-attention mechanism. This makes
p(gpos(i, j)) = GGD(µ, α, β, j − i), for β > 0 and α > 0. Self-attention is thus computed as:

softmax
(
qiK

⊤ +Mi• +Bi•
)
.

When µ = 0, β = 1, and α = 1
m , we have an instance of ALiBi, i.e., a Laplace prior.

3
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Lemma 4. GGD-BAM becomes local attention as the relative length |j − i| increases, for any
β > 0 and α ≥ 0.

If pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→∞

pij = 0

Proof. See Appendix B.4.

Theorem 2. GGD-BAM is necessarily capable of seeing more context length than ALiBi:

GGD-BAM
ALiBi

=
Bij

Aij
=

−| j−i−µ
α |β

−m|j − i|
< 1 for some µ and α, and for β < 1

Proof. See Appendix B.5.

2.4 RELAXING THE REQUIREMENT FOR β > 0

The requirement for β > 0 comes from the definition of a GGD. We already showed that by making
0 < β < 1, GGD-BAM can see context beyond ALiBi. Now, we relax this requirement and allow
β < 0. This effectively increases the size of the tail of the distribution and makes GGD-BAM capable
of ignoring local context and focusing on arbitrarily-long context.

Theorem 3. GGD-BAM ignores local context for any β < 0 and α ≥ 0.

∀β < 0,∀α ≥ 0, if pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→0

pij = 0,

Theorem 4: GGD-BAM takes into account arbitrarily long context for any β < 0 and α ≥ 0.

∀β < 0,∀α ≥ 0, If pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→∞

pij ̸= 0,

Proofs. See Appendix B.6 and B.7.

2.5 INTUITIVE EXPLANATION OF BAM

To complement the formal derivations provided so far, we include here an intuitive visualization
of the positional priors of BAM. Figure 1 illustrates the probability distribution p(gpos(i, j)) that
modulates attention over token positions j for a fixed query position i. These curves reflect the prior
belief of the model over the relevance of each position j when computing the attention for token i, as
per the decomposition pij ∝ p(fcont(qi,kj))× p(gpos(i, j)).

Uniform Prior. This distribution corresponds to the absence of any positional inductive bias beyond
the causal mask (NoPE). All positions within the causal window (i.e., j ≤ i) are assigned equal
probability, whereas all positions outside the causal window (j > i) are assigned probability zero.

Since Definition 2 states that pij ∝ p(fcont(qi,kj))× p(gpos(i, j)), the pij of each token outside the
causal window is zero. As proved in Theorem 1, this case reduces BAM to the NoPE baseline. The
gray-shaded region in Figure 1 represents the non-causal part of the sequence, i.e., positions j > i,
which are masked out in auto-regressive settings.

ALiBi as a Laplace Prior. The ALiBi mechanism injects a linearly increasing bias into the attention
logits, which corresponds to a Laplace prior over relative position |j − i|. The resulting prior has a
sharp peak near the query token and rapidly decays over distance. This can be seen in the green curve
of Figure 1, which emphasizes local context. As demonstrated in Theorem 2, this behavior limits the
attention window, making ALiBi sensitive to short-term dependencies but less effective at capturing
long-range interactions. As the relative distance between query and key increases, the probability
tends to zero, making ALiBi a local attention mechanism.

4
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Figure 1: Visual comparison of different positional priors p(gpos(i, j)) in BAM. Each curve represents
the distribution over past token positions for a fixed query qi in a fixed token position i.

GGD-BAM with β ∈ (0, 1). The generalized Gaussian prior with fractional exponent produces a
heavier-tailed distribution than Laplace. As shown in the pink curve, GGD-BAM maintains significant
probability mass across distant tokens. This reflects the theoretical result in Theorem 2, where BAM
with β ∈ (0, 1) exhibits a slower decay rate and is able to attend to longer-range dependencies
without diminishing the influence of distant content tokens as fast as ALiBi. The effect of the location
parameter µ over the GGD is to move the peak along the distribution. If µ > 0, it moves the peak
beyond the causal mask. Among the parameters of the GGD, µ offers a smaller impact on the
generalization of BAM, and could be fixed in µ = 0 with little harm to perplexity and retrieval.

GGD-BAM with β < 0. Perhaps the most counterintuitive case is the use of an inverted generalized
Gaussian prior. The black curve illustrates a scenario where the prior probability is effectively zero
in the vicinity of the query position and sharply concentrated at the far end of the context window.
Note that β < 0 is not a valid parametrization of the GGD in a strict probability sense. However,
by relaxing the need for β > 0, we reach an intriguing theoretical result: the attention mechanism
stops looking to local context and shifts to faraway tokens, allowing for arbitrarily-large context
scenarios. Even though having attention heads with only negative β would make the model blind to
local context, attention heads with a negative exponent can act as retrieval heads capable of attending
to very long context windows. This is corroborated by our results (see Section 3) where the longest
passkey retrieval was achieved by a model in which some attention heads had a negative β.

Relaxing the requirement for β > 0 is important to increase context length extrapolation, though it is
not desirable that all attention heads have β < 0. The parametrization β < 0 renders the model to be
unable to attend to local context, and this increases its perplexity in language modeling. Therefore
GGD-BAM is capable of not only encoding locality but also to explicitly suppress local content in
favor of distant information. This behavior is beneficial in settings where important information
appears in long-range context, such as causal reasoning and information retrieval.

Interpretability and Control. One of the central advantages of BAM is that these curves are
not merely heuristics but correspond directly to explicit priors over token positions. This makes it
possible to visualize, interpret, and even learn the attention pattern preferences of a model. Such
a view also offers a principled mechanism for extrapolation beyond training context lengths, by
selecting priors that maintain probability mass over long sequences.

Scalable Softmax (SSMax). Standard Softmax-based attention mechanisms suffer from a phe-
nomenon known as attention fading, where the attention distribution becomes increasingly uniform
as context length grows (Nakanishi, 2025). This occurs because the denominator in the Softmax
computation increases with context size n, while the numerator for each token remains constant,

5
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leading to vanishing attention peaks. To address this, Nakanishi (Nakanishi, 2025) proposes Scalable
Softmax (SSMax), which rescales the attention logits dynamically as a function of sequence length:
zi 7→ nszi∑n

j=1 nszj = e(s log n)zi∑n
j=1 e(s log n)zj

, where s ∈ R is a learnable scalar. Although SSMax is not

a PE method, it can be used to address a distinct and complementary challenge in long-context
attention, the fading attention. This modification of the softmax function preserves the sharpness
of the distribution regardless of input size, mitigating the flattening effect observed in softmax and
improving long-context generalization.

While BAM models positional structure as an explicit prior over token positions, it becomes more
susceptible to fading attention as it increases the context length that the LM can attend to. The two
techniques are compatible and can be used together, enabling improved context length extrapolation
both by a better normalizing factor via SSMax and in the distribution over positions using BAM.
This learnable normalizing factor in the softmax function also serves the purpose of learning the
normalizing dependence scalar Z that we introduced during the derivation of BAM.

3 EMPIRICAL ANALYSIS

We perform an empirical analysis to evaluate the behavior of GGD-BAM in realistic long-context
scenarios. We compare BAM and its variant coupled with Scaled Softmax (BAM SSMax) (Nakanishi,
2025) against several widely used PE methods: Sinusoidal (Vaswani, 2017), NoPE (Kazemnejad et al.,
2023), RoPE (Su et al., 2024), Local RoPE (RoPE with sliding-window attention), and ALiBi (Press
et al., 2022), as well as their versions coupled with Scaled Softmax.

All models presented in this section contain approximately 120M parameters, including ~25M for
input embeddings and ~95M for the transformer layers. Models were trained on the FineWeb 10B
dataset (Penedo et al., 2024) using the Mistral-7B v0.3 tokenizer (Jiang et al., 2023), with a training
context length of 512 tokens. We evaluate model performance on two tasks: (1) language modeling
on long-context samples drawn from FineWeb 10B and Wikipedia (Foundation, 2023); and (2) the
Passkey Retrieval task (Mohtashami & Jaggi, 2023), which measures a model’s ability to retrieve
specific information from distant positions in the input sequence.

BAM introduces three learnable parameters, θα, θβ , and θµ, for each attention head in each layer.
This results in a total overhead of 3× Heads × Layers parameters. In all experiments reported in this
section, we train only θα and θβ , fixing θµ = 0, which amounts to just 384 additional parameters in a
120M parameter model. Further implementation and training details are provided in Appendix C.

3.1 PASSKEY RETRIEVAL

To assess the capability of the LM to access and use long-range information, we evaluate the models
on the Passkey Retrieval task (Mohtashami & Jaggi, 2023). This task measures whether a language
model can recall a specific five digit number called the “passkey” embedded somewhere within a
longer context window. In the passkey retrieval task, we generate 20 sequences, each containing
a passkey inserted at uniformly spaced positions: 0L

19 ,
1L
19 , . . . , L. In the end of the sequence, we

append the prompt <The passkey is:> and measure how accurate the model can predict the
next five tokens. To avoid inaccuracies due to tokenization, each digit is considered a distinct token.

As shown in Figure 2, only models trained with BAM retained high accuracy when extrapolating to
sequences up to 32,000 tokens. BAM SSMax maintained perfect accuracy across all tested lengths,
demonstrating robust access to information throughout the full context window.

In contrast, all other evaluated PE methods such as Sinusoidal, RoPE, and NoPE rapidly degrade to
near-random accuracy beyond their training horizon. Even ALiBi, which showed good perplexity
extrapolation (see Appendix D), struggles to maintain retrieval performance at very long context
windows. Appendix H.4 shows a similar trend to the evaluated PE methods without SSMax.

In Figure 3 we show a heatmap plot with passkey retrieval accuracy considering all possible depths
of the passkey. We see that BAM is able to score perfectly in most lengths and depths while being
trained only on length 512. BAM only degrades to 0% accuracy in 3/55 of the evaluated lengths and
depths. Although accuracy is above 80% for 500× the training length, it appears that the model will
degrade to zero eventually, however we did not have enough vram to test for longer context.
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Figure 2: Passkey retrieval accuracy with distinct PE. BAM SSMax outperforms all PE methods
maintaining perfect accuracy for a context beyond 64× the training context length.
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Figure 3: Passkey retrieval accuracy across context lengths and depths. The horizontal axis represent
context length and the vertical axis represents the position of passkey in the context. In the bottom
row and last column, we see average accuracy across length and position, respectively.

The superior performance of BAM in this retrieval setting provides empirical support that its positional
prior enables meaningful access to distant content, rather than merely preserving surface-level fluency
using local context. In Appendix D, we assess the perplexity of GGD-BAM in comparison to the
baselines in Wikitext (Foundation, 2023) and Fineweb (Penedo et al., 2024). In Appendix F, we
assess GGD-BAM in the Needle in a Haystack (NIAH) subset of the RULER benchmark (Hsieh
et al., 2024), as a means to provide a thorough empirical analysis on long-context extrapolation.

3.2 ATTENTION WEIGHTS FOR β ≤ 0, β ∈ (0, 1) AND β ≃ 1

To provide empirical evidence for the claims presented in Theorems 3 and 4, we visualize attention
weights from individual attention heads and their respective values of β in the Passkey Retrieval task.

To create this visualization, we craft a passkey retrieval prompt of length 841 (825 + 16), where the
first 32 tokens are the task prompt–instruction to the model to remember the passkey; the following
25 tokens are the passkey itself; the next 768 tokens are filler text that the model should ignore; and
the last 16 tokens are the retrieval prompt answer that the model should complete with the passkey.

In Figure 4 (a), with β ≤ 0, the attention head effectively ignores local context and sharply focuses
on distant tokens—including the passkey—as predicted by our theoretical formulation. This behavior

7
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(a) θβ ≃ −0.205 (e.g. β ≤ 0) (b) θβ ≃ 0.456 (e.g. β ∈ (0, 1)) (c) θβ ≃ 1.031 (e.g. β ≃ 1)

Figure 4: Attention weights from GGD-BAM during the Passkey Retrieval task. When β ≤ 0,
attention concentrates on distant keys (e.g., the passkey tokens), suppressing nearby content.

aligns with Theorems 3 and 4, which show that for β ≤ 0, the GGD-BAM prior suppresses attention
weights near the query token and sustains probability mass across long distances. As a result, these
heads act as retrieval specialists, increasing the performance of the model for passkey retrieval.

In Figure 4 (b), with β ∈ (0, 1), attention exhibits long-tail behavior, allocating attention mass more
evenly across both nearby and distant positions. Compared to β ≃ 1, this head decays more slowly,
retaining mid- and long-range dependencies. This supports our claim in Theorem 2 that GGD-BAM
with fractional β values can attend to longer contexts than ALiBi (β ≃ 1).

In Figure 4 (c), with β ≃ 1, the attention pattern is highly localized, closely resembling ALiBi’s linear
bias. Attention focuses on immediate neighbors, with a rapid decay over distance. This configuration
is suitable for capturing local dependencies but is inadequate for long-range retrieval, as evidenced
by its poor performance on the passkey task at large context lengths.

The visualizations in Figure 4 show that BAM is highly interpretable. The negative θβ distribution
that was conjectured to improve long-context retrieval appeared after training, and during inference it
effectively caused higher attention weights towards the passkey that was further in the context.

In Appendices D, F, and H, we present additional empirical results for perplexity, for long-context per-
formance on the Ruler Benchmark, as well as several additional ablation studies. We found that BAM
has similar perplexity to ALiBi and has no measurable impact on inference time, while outperforming
every baseline in context extrapolation across all evaluated tasks of the Ruler benchmark.

4 RELATED WORK

Several strategies for PE have been developed to allow Transformer-based LMs to encode token order.
The most used PE methods are described below:

Sinusoidal Positional Encoding. Introduced by Vaswani et al. (Vaswani, 2017), sinusoidal encod-
ings inject fixed positional information into the model by adding position-dependent vectors to token
embeddings. In the self-attention mechanism, each qi, kj and vj have both content and positional
information. BAM, instead, explicitly models position as a separate probabilistic component and
does not add positional information directly into qi, kj , and vj .

Rotary Position Embedding (RoPE). RoPE (Su et al., 2024) encodes absolute positions through
complex-valued rotations applied directly to Q and K. RoPE encodes relative position by phase-
shifting the token representations before the dot product. While RoPE introduces position at the
dot-product level and preserves relative distance structure, it does not decouple content and position
semantically. Han & Ji (2025) show that RoPE asymptotically disentangles semantics and position
information in additive components in self-attention logits. Thus, we can see that RoPE asymptotically
approximates BAM as the context length increases, though it lacks the flexibility and interpretability
of assigning positional priors as established in our formulation of BAM.

8
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T5 Relative Bias. T5 (Raffel et al., 2020) avoids absolute encodings entirely and instead learns
a bias b(i− j) for each relative distance i− j that is added to the attention logits.This PE method
could be viewed in BAM as an empirical non-parametric distribution over the positions p(gpos(i, j)).
However, both our theoretical grounding and experiments show that a parametric distribution with
fewer trainable parameters can achieve superior context length extrapolation.

No Positional Encoding (NoPE). Haviv et al. (2022) and Kazemnejad et al. (2023) examined
transformers without explicit PE. Although the attention mechanism is purely content-driven, the
authors were the first to highlight that the causal mask Mij (often not represented explicitly in the
notation of other PE methods) in decoder-based transformers is sufficient to derive both absolute and
relative PE.We showed NoPE to be a special case of BAM under a uniform positional prior.

Attention with Linear Biases (ALiBi). ALiBi (Press et al., 2022) injects a linear positional penalty
into the attention scores. This formulation is interesting because it allows context length extrapolation
in language modeling without introducing learnable parameters to the LM. We show that ALiBi is a
special case of BAM with a Laplacian prior and we test it as an initialization strategy in our ablation
study (see AppendixC). We explain how ALiBi maintains low perplexity in longer context windows
and why it fails to retrieve information as it becomes local attention as the context length increases.

5 CONCLUSION

We introduced BAM, a principled probabilistic framework that reconceptualizes positional encoding
as a prior over token positions within attention. By framing the attention mechanism as a factorized
joint distribution over content and position, BAM not only offers a theoretical grounding for existing
methods such as NoPE and ALiBi, but also motivates new families of positional priors. Our proposed
Generalized Gaussian prior GGD-BAM significantly improves context length extrapolation in passkey
retrieval task by more than 25× compared to other PEs while maintaining low perplexity.

Despite its simplicity—increasing the parameter count of the model in negligible 0.00032% trainable
parameters—GGD-BAM enables models to attend over significantly longer context windows without
direct exposure during training. Experiments on FineWeb and Wikipedia show that BAM is uniquely
able to recover distant information even at 250,000-token sequences, where other methods collapse.
Moreover, our theoretical results demonstrate that BAM can express attention patterns that emphasize
distant context or suppress locality, offering a new axis of inductive bias design for Transformers.

Future work includes applying BAM to larger models, further exploring the interpretability of learned
positional priors, and extending the BAM framework to multi-modal input settings. Additionally, it
remains an open question whether the extrapolation capabilities induced by BAM are preserved, or
potentially enhanced, after instruction and preference fine-tuning. Investigating BAM under these
downstream adaptation regimes is crucial for understanding its robustness in real-world applications.
We further discuss all limitations of this work in Appendix I.
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A PRELIMINARIES AND NOTATION

We denote by xi the ith token in a sequence of length L, written as x1,...,L. Each token is projected
into query, key, and value via learned matrices: the query qi ∈ R1×d is obtained from xiWq, and the
full key and value matrices are given by K = XWk ∈ RL×d and V = XWv ∈ RL×d, respectively.

We define M as the standard causal mask used to enforce auto-regressive decoding constraints. We
use • to denote a slice from a matrix. For instance, Mi• is the causal mask line vector for a single qi.

In our formulation, we interpret attention weights as a joint probability distribution pij over two de-
pendent components: content and position. The random variable fcont(qi,kj) denotes the content sim-
ilarity between the ith query and the jth key, modeled by the conditional probability p(fcont(qi,kj)).
Similarly, the positional relation is modeled by the random variable gpos(i, j), which represents the
relative position of token j with respect to token i, captured by the prior distribution p(gpos(i, j)).

It is a convention to denote the scoring function of the non-normalized logits in self-attention as
score(qi,K) = qiK

⊤ + Mi•. To follow this convention, we adapt the notation used in ALiBi
to present the linear biases in matrix form, so the scoring function becomes: score(qi,K) =
qiK

⊤+Mi•+Ai•. Finally, we introduce the BAM score(qi,K) = qiK
⊤+Mi•+Bi• by adding

a matrix of non-linear biases to the scoring function.

Another convention we adopt is σ(z) = softmax(z) = exp(zi)
Σj exp(zj)

.

The BAM matrix B. To use GGD-BAM, the only modification we need to apply in the transformer
is to add a relative position based matrix B to the attention score. Figure 5 shows how the attention
score is computed for the entire query matrix Q using GGD-BAM. As usual, the causal mask M
masks tokens beyond qi by adding −∞ to those respective positions. Each value in B is computed
according to the relative position j − i, α, β and µ. We fix µ = 0 for most of our results.

𝐪1𝐤1
⊤ 𝐪1𝐤2

⊤ 𝐪1𝐤3
⊤ 𝐪1𝐤4

⊤ 𝐪1𝐤5
⊤

𝐪2𝐤1
⊤ 𝐪2𝐤2

⊤ 𝐪2𝐤3
⊤ 𝐪2𝐤4

⊤ 𝐪2𝐤5
⊤

𝐪3𝐤1
⊤ 𝐪3𝐤2

⊤ 𝐪3𝐤3
⊤ 𝐪3𝐤4

⊤ 𝐪3𝐤5
⊤

𝐪4𝐤1
⊤ 𝐪4𝐤2

⊤ 𝐪4𝐤3
⊤ 𝐪4𝐤4

⊤ 𝐪5𝐤5
⊤

𝐪5𝐤1
⊤ 𝐪5𝐤2

⊤ 𝐪5𝐤3
⊤ 𝐪5𝐤4

⊤ 𝐪5𝐤5
⊤

0 −∞ −∞ −∞ −∞

0 0 −∞ −∞ −∞

0 0 0 −∞ −∞

0 0 0 0 −∞

0 0 0 0 0

0 1 2 3 4

−1 0 1 2 3

−2 −1 0 1 2

−3 −2 −1 0 1

−4 −3 −2 −1 0

−𝜇
1

𝛼
×

𝛽

+

𝐐𝐊⊤ 𝐌 𝐁

+

Figure 5: Visual representation of the scoring function in GGD-BAM. The first matrix accounts for
the content and the two others for the Uniform and GGD positional priors.

Positional Priors The prior over positions, p(gpos(i, j)), is modeled using parametric distributions
over relative positions |j − i|. We consider the following parametric distributions:

• Uniform distribution: assigns equal probability mass to all valid positions before the
current token:

p(gpos(i, j)) = Uniform(a, b, x) ∝ I[a ≤ x ≤ b].
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• Laplace distribution: decays exponentially with distance, controlled by a scale parameter
b > 0:

p(gpos(i, j)) = Laplace(µ = 0, α, x) ∝ exp

(
−|x|

α

)
.

• Generalized Gaussian distribution (GGD): introduces a shape parameter β > 0 and scale
α > 0, allowing flexible control over decay behavior:

p(gpos(i, j)) = GGD(µ, α, β, x) ∝ exp

(
−
∣∣∣∣x− µ

α

∣∣∣∣β
)
.

This formulation generalizes several priors: when β = 1 it recovers the Laplace distribution;
when β = 2 it becomes Normal; larger values of β yield sharper, more localized priors;
lower values of β yield large tailed distributions.

B PROOFS

B.1 NOPE IS A UNIFORM PRIOR TO BAM

Lemma 1: The causal mask in decoder models is a special case of BAM prior where

Causal Mask ⇒ p(gpos(i, j)) = Uniform(1, i, j) over a given context x1,...,L

Proof. The causal mask in a decoder model changes the scores of every token xi+1,i+2,...,L to − inf:

causal-self-attention = softmax(qiK
⊤ +Mi•)V, where Mi• =

[
0; j ≤ i

−∞; otherwise

]
.

Since qiK
⊤ has only content information and Mi• has only positional information, we can use

Theorem 1 to rewrite it as

exp(qik
⊤
j )

Σz(exp(qik⊤
z ))

· exp(Mi•)

Σz(exp(Miz))
· 1
Z

Only the softmax(Mi•) term depends on the token position, so it is equivalent to p(gpos(i, j)):

p(gpos(i, j)) =
exp(Mi•)

Σz(exp(Miz))
=

{
1
i , if j ≤ i

0, otherwise
,

which is a Uniform distribution over tokens x1...i.

B.2 ALIBI IS A PRIOR COMPRISING BOTH UNIFORM AND LAPLACE DISTRIBUTIONS

Lemma 2: ALiBi is a special case of BAM prior where the token position distribution comprises
both Uniform and Laplace distributions.

ALiBi ⇒ p(gpos(i, j)) = Uniform(1, i, j) · Laplace
(
0,

1

m
, j − i

)
over a context x1,...,L

Proof. Let A = [aij ]L×L where aij = −m|j − i|, for i = 1, . . . , L and j = 1, . . . , L be the matrix
with linear biases defined in ALiBi PE. The self-attention mechanism with ALiBi as PE is computed
as:

softmax
(
qiK

⊤ +Mi• +Ai•
)
V

12
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where Mi• is the causal mask and −m|j − i| are the linear biases added by ALiBi. According to
Theorem 1 and Lemma 1, we can rewrite the softmax as:

exp(qik
⊤
j )

Σz(exp(qik⊤
z ))

· exp(Mij)

Σz(exp(Miz))
· exp(Aij)

Σz(exp(Aiz))

1

ZALiBi

where ZALiBi is a scaling (normalizing) factor. Lemma 1 further allows us to substitute the causal
mask term with a uniform distribution:

exp(qik
⊤
j )

Σz(exp(qik⊤
z ))

· Uniform (1, i, j) · exp(Aij)

Σz(exp(Aiz))

1

ZALiBi

The softmax (−m|j − i|) term has no content information, just positional, so we further work on it:

exp(Aij)

Σz(exp(Aiz))
=

exp
(
−m|j − i|

)
Σz exp

(
−m|z − i|

)
=

m
2 exp

(
−m|j − i|)

Σz
m
2 exp

(
−m|z − i|)

=
Laplace

(
0, 1

m , j − i
)

Σz
m
2 exp

(
−m|z − i|)

= Laplace
(
0,

1

m
, j − i

)
We can drop the scalar normalizing denominator Σz

m
2 exp

(
− m|z − i|) since ZALiBi accounts

for the normalization of the whole expression. Back to Definition 2, we have p(gpos(i, j)) =

Uniform (1, i, j) · Laplace
(
0, 1

m , j − i
)
.

B.3 ALIBI IS LOCAL ATTENTION FOR LARGE |j − i| LENGTHS

Lemma 3: ALiBi becomes local attention as the relative length |j − i| increases.

If pij = softmax
(
qiK

⊤ +Mi• +Ai•
)

then lim
|j−i|→∞

pij = 0

Proof. We prove this lemma for a fixed query qi. The scoring function of ALiBi has three components:
qiK

⊤, Mi•, and Ai•. Let us take the limit of the scoring function:

lim
|j−i|→∞

(
qiK

⊤ +Mi• +Ai•
)
= qiK

⊤ +Mi• + lim
|j−i|→∞

(Ai•)

We drop the limit in the causal mask Mi• as the only effect of increasing the context size and the
distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
same formation law with 0 to the left of the query and −∞ elsewhere.

lim
|j−i|→∞

(Ai•) = lim
|j−i|→∞

(−m|j − i|) = −∞

When we plug −∞ back into the scoring function we see that it becomes −∞, and consequently the
softmax becomes 0.

lim
|j−i|→∞

pij = lim
|j−i|→∞

softmax
(
qiK

⊤ +Mi• +Ai•
)
= 0

13
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B.4 GGD-BAM IS LOCAL ATTENTION FOR LARGE |j − i| LENGTHS

Lemma 4: GGD-BAM becomes local attention as the relative length |j − i| increases, for any
β > 0 and α > 0.

If pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→∞

pij = 0

Proof. This proof is similar to Lemma 3. We prove this lemma for a fixed query qi. Let µ = 0. The
scoring function of GGD-BAM has three components qiK

⊤, Mi•, and Bi•, lets take the limit of the
scoring function and see how it behaves:

lim
|j−i|→∞

(
qiK

⊤ +Mi• +Bi•
)
= qiK

⊤ +Mi• + lim
|j−i|→∞

(Bi•)

We drop the limit in the causal mask Mi• as the only effect of increasing the context size and the
distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
same formation law with 0 to the left of the query and −∞ elsewhere.

lim
|j−i|→∞

(Bi•) = lim
|j−i|→∞

(
−
∣∣∣∣j − i

α

∣∣∣∣β
)

= −∞

When we plug ∞ back into the scoring function we see that it becomes −∞, and consequently the
softmax becomes 0.

lim
|j−i|→∞

pij = lim
|j−i|→∞

softmax
(
qiK

⊤ +Mi• +Bi•
)
= 0

B.5 GGD-BAM SEES MORE CONTEXT THAN ALIBI

Theorem 2: GGD-BAM is able to see more context length than ALiBi

GGD-BAM
ALiBi

=
Bij

Aij
=

−
∣∣ j−i−µ

α

∣∣β
−m|j − i|

< 1 for some µ and α, and for β < 1

Proof. For GGD-BAM to see more context than ALiBi, it must be the case that the ratio between

Bij and Aij
−| j−i−µ

α |β
−m|j−i| is less than 1 for some β < 1 and for some α and µ. Let µ = 0, α = 1

β
√
m

and β ∈ (0, 1), then we have:

Bij

Aij
=

−
∣∣ j−i

α

∣∣β
−m|j − i|

=
−m|j − i|β

−m|j − i|
= |j − i|β−1

< 1

Since the ratio between BAM and ALiBi can be less then 1, BAM shrinks at a slower rate than ALiBi,
effectively capturing longer contexts as |j − i| increases.

B.6 GGD-BAM IGNORES LOCAL CONTEXT FOR β < 0 AND α > 0

14
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Theorem 3: GGD-BAM ignores local context for any β < 0 and α > 0.

∀β < 0,∀α > 0, If pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→0

pij = 0,

Proof. This proof is similar to Lemmas 3 and 4. We prove this lemma for a fixed query qi. Since i is
fixed for a query, |j − i| → 0 implies that the token j and i are the same token. The scoring function
of GGD-BAM has three components qiK

⊤, Mi•, and Bi•, lets take the limit of the scoring function
and see how it behaves:

lim
|j−i|→0

(
qiK

⊤ +Mi• +Bi•
)
= qiK

⊤ +Mi• + lim
|j−i|→0

(Bi•)

We drop the limit in the causal mask Mi• as the only effect of i and j being the same token is that
Mij = 0.

When the shape parameter β is negative, then we can perform the following manipulation.

lim
|j−i|→0

(Bi•) = lim
|j−i|→0

(
−
∣∣∣∣j − i

α

∣∣∣∣β
)

= lim
|j−i|→0

(
−
∣∣∣∣ α

j − i

∣∣∣∣|β|
)

= −∞

When we plug −∞ back into the scoring function we see that it becomes −∞, and consequently the
softmax becomes 0.

lim
|j−i|→0

pij = lim
|j−i|→0

softmax
(
qiK

⊤ +Mi• +Bi•
)
= 0

Since the result of the softmax is zero, GGD-BAM does not attend to local context when β < 0 and
α > 0.

B.7 GGD-BAM CAN HAVE ARBITRARILY LONG CONTEXT FOR β < 0 AND α > 0

Theorem 4: GGD-BAM takes into account arbitrarily long context for any β < 0 and α > 0.

∀β < 0,∀α > 0, If pij = softmax
(
qiK

⊤ +Mi• +Bi•
)

then lim
|j−i|→∞

pij ̸= 0,

Proof. This proof is similar to Lemmas 3 and 4 and Theorem 3. We prove this lemma for a fixed
query qi. The scoring function of GGD-BAM has three components qiK

⊤, Mi•, and Bi•, lets take
the limit of the scoring function and see how it behaves:

lim
|j−i|→∞

(
qiK

⊤ +Mi• +Bi•
)
= qiK

⊤ +Mi• + lim
|j−i|→∞

(Bi•)

We drop the limit in the causal mask Mi• as the only effect of increasing the context size and the
distance between i and j in the causal mask is making the mask bigger in size, but it stills follows the
same formation law with 0 to the left of the query and −∞ elsewhere.

When the shape parameter β is negative, then we can perform the following manipulation.

lim
|j−i|→∞

(Bi•) = lim
|j−i|→∞

(
−
∣∣∣∣j − i

α

∣∣∣∣β
)

= lim
|j−i|→∞

(
−
∣∣∣∣ α

j − i

∣∣∣∣|β|
)

= 0

When we plug 0 back into the scoring function we see that it becomes −∞, and consequently the
softmax becomes 0.
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lim
|j−i|→∞

pij = lim
|j−i|→∞

softmax
(
qiK

⊤ +Mi• +Bi•
)

= softmax
(
qiK

⊤ +Mi•
)

Since the result of the softmax is not necessarily zero, pij also is not necessarily 0, thus GGD-BAM
can attend to arbitrarily long context when β < 0 and α > 0.

C EXPERIMENTAL SETUP

Here we detail the experimental setup necessary to replicate our results.

Our models were based on Llama3 (Grattafiori et al., 2024). We used RMSNorm (Zhang & Sennrich,
2019) and, on feedforward blocks, we used swiglu activation function (Shazeer, 2020). We trained
all our models on the Fineweb 10B dataset (Penedo et al., 2024) utilizing the Mistral-7B v0.3
tokenizer (Jiang et al., 2023) for text processing. Training was performed using context lengths of
512, 1024, and 2048 tokens to evaluate performance under different sequence lengths.

To maintain document separation within packed sequences, we employed an attention mask preventing
self-attention between distinct documents (Grattafiori et al., 2024). The models were optimized using
RAdam with decoupled weight decay set to 0.1 and an initial learning rate of 1× 10−3. We applied a
cosine learning rate decay schedule, reducing the learning rate to a minimum of 0.1× its initial value.

We trained LMs up to 1.1 billion learnable parameters. Table 1 details the configuration of each
trained model, including embedding, trainable parameters, attention heads, and hidden layer size.

Table 1: Architecture details of the LM we evaluated in our study.

Attribute 120M 432M 1.1B
Parameters embedding ~25M ~50M ~67M
Parameters transformer ~95M ~380M ~1B
Parameters BAM (θα, θβ and θµ) 576 1008 1440
Attention heads 16 24 32
Layers 12 14 15
Hidden size 768 1536 2048
ff hidden size 2×768 2×1536 4×2048
Learning Rate 1× 10−3 5× 10−4 3× 10−4

Training was executed for approximately 19, 251 steps with a global batch size of 589, 824 tokens,
leveraging up to 6 NVIDIA A6000 GPUs. For the 1.1B parameter models, we perform additional
256 training steps with a context length of 1024. This was necessary because bigger models tends to
overfit in the trained context length (see Appendix H.5 for further details). The resulting models from
these specific training configurations formed the basis for our subsequent performance evaluation.

In our implementation we define three learnable parameters, θµ, θα and θβ for each attention head.
So B = [bij ]L×L where:

bij = −eθα
(∣∣∣(j − i)− (eθµ − e−θµ)

∣∣∣+ ϵ

)θβ

,

for i = 1, . . . , L and j = 1, . . . , L. So the GGD is parametrized in the following way: µ = eθµ−e−θµ ,

β = θβ and α = e
− θα

θβ , that ensures α ≥ 0. ϵ = 10−5 avoids division by zero when β < 0.

To evaluate our models in contexts longer than 10,000 tokens we implemented key-value caching (Kim
et al., 2023).
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D PERPLEXITY EVALUATION

D.1 PERPLEXITY ON SHORT CONTEXT

We evaluate generalization for models with distinct PE methods by computing the perplexity for
models trained on a context length of 512 in a hold-out validation set of Fineweb with sentences up
to 512 tokens and on Wikipedia with sentences up to 512 tokens. Results are shown in Table 2.

Table 2: Perplexity of 120M models in Wikipedia and Fineweb data.

Wikipedia Fineweb
Sinusoidal 18.9310 22.3573
ALiBi 18.5452 22.1771
NoPE 19.8609 23.7898
BAM 18.9281 22.2640
RoPE 18.3599 22.4428
Sinusoidal SSMax 19.1467 22.3150
NoPE SSMax 20.3899 23.7581
ALiBi SSMax 18.4967 22.2125
BAM SSMax 18.6897 22.1363
RoPE SSMax 20.1854 24.4507

We see that in context length seen during training, BAM outperforms almost all the compared
baselines. The only exception is ALiBi, which outperforms BAM by less than 0.1 points in perplexity.

ALiBi outperforming BAM in this case is expected from our probabilistic interpretation of PE. ALiBi
is a Laplace distribution only focused on the local context whereas BAM has also the ability to use
information in long context. We notice in experiments focused on long context (see Appendices F
and H) that this small gap in perplexity to ALiBi translates into huge long-context retrieval gain.

D.2 PERPLEXITY ON LONG CONTEXT

We evaluate context length generalization for models with distinct PE methods by computing the
perplexity for models that were trained on a context length of 512 in a hold-out validation set of
sentences longer than 512. This is a similar evaluation procedure as performed by Press et al. (2022).

Results shown in Figure 6 are consistent with those reported in the ALiBi paper (Press et al., 2022),
confirming that Sinusoidal, RoPE, and NoPE fail to extrapolate to sequence lengths beyond those seen
during training. For these models, perplexity increases sharply as the context grows, indicating that
the models are unable to maintain coherent predictions over long sequences. In contrast, only ALiBi,
BAM, BAM combined with Scalable Softmax (SSMax), and RoPE local maintain a stable perplexity
profile under context extrapolation. These models exhibit sub-linear or nearly flat perplexity growth
as the input length increases to 32,000 tokens—despite being trained only on context length of
512 tokens. This confirms our theoretical results where priors introduced by BAM provide robust
generalization to unseen context lengths, on par with ALiBi’s linear bias-based extrapolation.

We evaluate all the PE context length extrapolation regarding perplexity on Wikipedia dataset.
Figure 7 shows the log-scaled perplexity and we see a similar trend to Fineweb 10B. BAM, RoPE
and ALiBi are able to maintain low perplexity across all the evaluated context lengths. We see that
SSMax has more impact in lowering BAMs perplexity when compared to other PEs.

However, this type of perplexity-based evaluation has limitations (Hu et al., 2024). It does not measure
whether the model attends to the full sequence or only relies on the most recent tokens. For instance,
the RoPE Local variant implemented here applies local attention restricted to a sliding window and
still achieves competitive results with ALiBi. This indicates that models can make accurate next-token
predictions without integrating information from earlier parts of the sequence. Hence, we claim that
perplexity should not be taken as the sole measure of effective context length extrapolation. Indeed,
information retrieval evaluation seems to be more suitable to assess extrapolation of trained lengths.
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Figure 6: Log-scaled perplexity computed up to 64× the training context length of 512 tokens. BAM,
RoPE Local and ALiBi are able to maintain the lowest perplexity on longer contexts.
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Figure 7: Log-scaled perplexity on Wikipedia dataset. BAM, RoPE Local and ALiBi are able to
maintain the lowest perplexity on longer contexts.

E DOWNSTREAM EVALUATION

While perplexity provides a general notion regarding model capability in language modeling, it
does not necessarily correlate with capability on downstream tasks. Here we evaluate the large
scale 1B parameter models performance on downstream tasks from MMLU Hendrycks et al. (2020),
ARC-easy, and ARC-challenge benchmarks Clark et al. (2018). Table 3 shows that BAM SSMax is
superior to RoPE in all the evaluated benchmarks.

Table 3: GGD-BAM vs RoPE Large-Scale 1B parameter models on MMLU and ARC Benchmarks

MMLU ARC-Easy ARC-Challenge
BAM SSMax 0.3716 0.5770 0.4132
RoPE SSMax 0.3573 0.5715 0.4123

F RULER BENCHMARK

To assess GGD-BAM capability to attend to long-context information, we assessed its performance in
the NIAH subset of the Ruler benchmark (Hsieh et al., 2024). We deliberately chose only the NIAH
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subset because it is designed to isolate the PE’s ability to access information at a specific distance
while ensuring the model maintains stable next-token prediction performance.

Performance on other tasks, such as Question Answering and Variable Tracking, is known to correlate
more with model size than with context extrapolation, and thus fall out of the scope of this paper.

F.1 GGD-BAM VS BASELINES (120M)

As seen in Table 4, GGD-BAM outperforms all the baselines on the three variations of the NIAH
task. Specially in NIAH Single 1, our PE method outperforms all other PE methods by a substantial
margin, being the only one able to perform retrieval above 6k tokens.

The second best performing PE is RoPE, followed by ALiBi. In the Single 1 version of Ruler NIAH,
RoPE maintains 0.64 accuracy while ALiBi scores a mere 0.16.

Regardless of the PE, in the Single 3 version of NIAH, where the Passkey appears in the form of a
UUID, only BAM achieves an accuracy above 0.8.

Table 4: Accuracy of 120M models on the NIAH subset of the Ruler Benchmark.

Task PE 1K 1.5K 2K 3K 4K 6K 8K 10K 12K

Single 1

NoPE SSMax 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RoPE SSMax 1.00 1.00 1.00 1.00 0.64 0.00 0.00 0.00 0.00
ALiBi SSMax 0.96 0.26 0.22 0.18 0.16 0.10 0.02 0.04 0.02
RoPE Local 0.40 0.22 0.24 0.20 0.12 0.08 0.00 0.02 0.00
Sinusoidal SSMax 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BAM SSMax (ours) 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.88

Single 2

NoPE SSMax 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RoPE SSMax 0.98 0.96 0.94 0.84 0.52 0.00 0.00 0.00 0.00
ALiBi SSMax 1.00 0.46 0.12 0.10 0.06 0.02 0.00 0.00 0.00
RoPE Local 0.84 0.36 0.10 0.14 0.10 0.00 0.00 0.00 0.00
Sinusoidal SSMax 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BAM SSMax (ours) 1.00 1.00 1.00 0.88 0.24 0.06 0.02 0.00 0.00

Single 3

NoPE SSMax 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RoPE SSMax 0.28 0.30 0.10 0.06 0.00 0.00 0.00 0.00 0.00
ALiBi SSMax 0.24 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RoPE Local 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sinusoidal SSMax 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BAM SSMax (ours) 0.84 0.68 0.42 0.08 0.00 0.00 0.00 0.00 0.00

F.2 LARGE SCALE GGD-BAM VS ROPE

Here we perform a large-scale experiment directly comparing RoPE and BAM with 1B parameters
in the Ruler benchmark. Results are show in Table 5. BAM achieves superior performance in
comparison to RoPE in every evaluated task in the Ruler benchmark, with a highlight of achieving
almost perfect accuracy across tasks on the Single 1 subset.

Other tasks such as Multikey 2 and Multikey 3 are harder for both models. This shows that only our
pre-training may not be enough for models to perform such tasks. However, since our goal here is to
assess how distinct PE behave on exactly the same training regime, we see that GGD-BAM clearly
achieves better longer context in Single 1, 2 and 3, MultiKey 1, MultiQuery and MultiValue.

G LONGBENCHV2

In Table 6, we present the results of 1B parameter models on the complete LongBenchV2 bench-
mark Bai et al. (2025) limited in 131k tokens. We chose to report just the large scale 1B parameter
models because smaller models perform close to random guessing in these tasks. BAM outperforms
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Table 5: GGD-BAM vs RoPE Ruler Benchmark Large-Scale 1B parameter models.

Task PE 1024 1536 2048 3072 4096 6144 8192 12288 16384 24576 32768

Single 1 BAM SSMax 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RoPE SSMax 1.00 0.88 0.68 0.40 0.30 0.10 0.02 0.00 0.00 0.00 0.00

Single 2 BAM SSMax 1.00 1.00 1.00 0.98 1.00 0.88 0.82 0.46 0.18 0.06 0.02
RoPE SSMax 1.00 0.82 0.62 0.32 0.18 0.04 0.00 0.00 0.00 0.00 0.00

Single 3 BAM SSMax 0.88 0.92 0.88 0.86 0.80 0.62 0.30 0.10 0.02 0.00 0.00
RoPE SSMax 0.76 0.30 0.16 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00

MultiKey 1 BAM SSMax 0.84 0.86 0.94 0.92 0.86 0.76 0.66 0.56 0.24 0.10 0.06
RoPE SSMax 0.80 0.86 0.68 0.38 0.32 0.08 0.06 0.00 0.00 0.00 0.00

MultiKey 2 BAM SSMax 0.22 0.16 0.12 0.04 0.04 0.00 0.02 0.02 0.00 0.00 0.00
RoPE SSMax 0.26 0.14 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MultiKey 3 BAM SSMax 0.12 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RoPE SSMax 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MultiQuery BAM SSMax 0.88 0.88 0.85 0.82 0.71 0.68 0.62 0.44 0.23 0.10 0.02
RoPE SSMax 0.85 0.76 0.42 0.17 0.11 0.06 0.03 0.03 0.01 0.01 0.01

MultiValue BAM SSMax 0.96 0.94 0.92 0.92 0.82 0.84 0.76 0.70 0.38 0.14 0.00
RoPE SSMax 0.96 1.00 1.00 0.78 0.70 0.42 0.32 0.10 0.04 0.08 0.00

RoPE in all evaluated tasks, with an overall score 5 points above RoPE. We opted not to show the
Long Structured Data Understanding task because it has only four instances under 131k tokens.

Table 6: LongBenchv2 Benchmark: GGD-BAM vs RoPE, 1B parameter models.

BAM SSMax RoPE SSMax

Code Repository Understanding 41.7 25.0
Long In-context Learning 36.4 30.3
Long-dialogue History Understanding 35.0 35.0
Multi-Document QA 26.5 25.3
Single-Document QA 26.5 18.8

Overall 28.6 24.2

H ABLATION STUDY

H.1 INITIALIZATION

In this section we study two different initialization strategies for the shape θβ , scale θα and location θµ
parameters of GGD-BAM. The first initialization is a Laplacian that replicates ALiBi, setting θβ = 1,
different θα for each layer and θµ = 0. The second initialization start from Uniform distribution prior
θβ = 0, which is a middle ground between ALiBis Laplacian and θβ < 0, with θα = 0.

Figure 8 shows us that ALiBi initialization provides least extrapolation lengths. Our best results were
achieved by using the initialization scheme of θβ = 0 and θα = 0, this initialization is equivalent to
assigning a Uniform prior to all tokens in the context.

H.2 LEARNABLE PARAMETERS

The GGD prior in BAM is parameterized by a shape parameter θβ , a scale parameter θα, and a
location parameter θµ. In this section, we evaluate how training different subsets of these parameters
affects the performance of GGD-BAM. Each configuration introduces a different number of additional
trainable parameters: training only θβ adds 192 parameters; training both θβ and θα adds 384; and
training all three parameters (θβ , θα, and θµ) adds 576 parameters to the model.

In Figure 9 we can see that allowing all parameters θβ , θα and θµ to be learned during training lowers
model capacity to extrapolate. The best result was achieved when both θβ and θα are learn during
training, showing that both parameters are important for context length extrapolation.
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Figure 8: Comparison of passkey retrieval accuracy of models trained on context length 512 training
just θβ and θα with three distinct parameter initialization schemes.

Figure 9: Passkey retrieval accuracy of models training just: θβ ; θβ and θα; and θβ , θα and θµ. All
variations were trained on context length 512. Training θβ and θα while fixing θβ = 0 yields more
extrapolation length.

If we compare results on Figure 9 to other PE in Figure 2 we see that even our worst combination of
training all parameters is superior to all other PE in long context passkey retrieval.

H.3 TRAINING CONTEXT LENGTH

Here we repeat the experiments for models trained on context length of 1,024 and 2,048, double and
quadruple the original context length of 512. We show detailed results for training context length of
1,024 both on perplexity and passkey retrieval when compared to other PE methods. And we also
compare passkey retrieval accuracy between BAM SSMax on those three distinct context lengths.

Essentially, the trend of ALiBi, RoPE Local and BAM SSMax being the only PE methods that are
able to maintain low perplexity on longer context is maintained, this is possible to identify in Figure
10. As expected, NoPE and Sinusoidal PE are the first models to exponentially increase in perplexity.

RoPE SSMax improved it extrapolation performance and was able to maintain perplexity on par
with ALiBi until around 7,500 tokens. It is worth noting that to achieve such results with RoPE, we
expanded the Rθ manipulation post-training that was performed by Nakanishi (2025) from 50× to
100×. Without this RoPE SSMax would perform on par with standard RoPE.

Regarding passkey retrieval accuracy, again all PE methods except BAM SSMax struggles to access
long context information and maintain high accuracy, Figure 11 shows this trend. Although the
Figure 11 shows context lengths up to 32,000, we evaluated BAM SSMax until 512,000 context
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Figure 10: Log-scaled perplexity computed up to 32× the training context length of 1024 tokens.
BAM SSMax, RoPE Local and ALiBi are able to maintain the lowest perplexity on longer contexts.
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Figure 11: Passkey retrieval accuracy of models with distinct PE in the Passkey Retrieval task. BAM
and BAM SSMax outperform all PE methods. Specifically BAM SSMax is capable of maintaining
perfect accuracy for a context 32× the training context length.

length and it maintained accuracy above 80% until 300,000 and did not drop to zero throughout the
evaluation. Beyond 512,000 context length, we did not have enough vram to perform evaluation.

In Figure 12 we can see how training in longer context lengths affects GGD-BAM. Generally, training
for longer contexts appears to make the model more robust to long context generalization as the
accuracy tend to drop slower. The model trained with context length of 2, 048 tokens generalizes
all the way to 512k tokens while maintaining accuracy above 90%. The model trained with context
length of 512 achieves 40% accuracy on 512k, showing a correlation between trained context length
and retrieval accuracy at 512k tokens. Nevertheless, our model trained on context length of 512 is
competitive with all the others until 300, 000 where others achieve higher accuracy.

H.4 SCALABLE SOFTMAX

Here we test all PE methods without SSMax. Figure 13 shows the same trend of models with SSMax,
BAM outperforms every other PE method. It is worth noting that SSMax improves context length
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Figure 12: Comparison of passkey retrieval accuracy of GGD-BAM models trained on context length
512, 1,024 and 2,048.

generalization in almost all the assessed PE methods. This shows that fading attention is indeed one
of the problems in long context extrapolation, however BAM is superior to other PE on both cases.
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Figure 13: Passkey retrieval accuracy with distinct PE. BAM outperform all PE methods.

By comparing the results from BAM and BAM SSMax, we note that SSMax plays a role in maintain-
ing the PE ability to extrapolate to longer lengths. This trend is also maintained when comparing
RoPE and its SSMax version. The fact that Scalable Softmax improves context length generalization
both for BAM and for RoPE shows that good PE is necessary but not sufficient for context length
extrapolation. The softmax function tends to zero for longer context windows, which is a problem
both for language modeling and for retrieval. To counterbalance this effect, scalable softmax applies
a rescaling factor to the logits (Nakanishi, 2025), fixing that limitation.

Scalable Softmax introduces a rescaling factor s× ln(n), where n is the size of the input vector and
s is a learnable parameter. Note that s has a similar effect to the normalizing scaler Z obtained when
framing PE as a Bayesian mechanism. The only effective difference is that Z should be a function of
both query and keys whereas s is a learnable parameter.

To understand the effect of the normalizing scalar s in our models across distinct scales, we show
in Figure 14 how this learnable parameter is distributed after training. We see that although the
distribution appears to have a heavier tail in smaller models, the shape of the distribution is similar
across model scales.
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Figure 14: Scaling factor s in scalable softmax in three distinct model scales.
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Figure 15: Loss of GGD-BAM 1B before and after lightweight fine-tuning for context extension.

H.5 CONTEXT EXTENSION

We observed during our first experiments that smaller models generalized better to longer context.
We found out that bigger models are prone to overfitting the trained context length.

We devised a lightweight fine-tuning with context length 1024 for 256 steps (in comparison to 512
during the beginning of the training) to make bigger models generalize once again. In Figure 15, we
show that after lightweight fine-tuning the loss of our models become more stable for context beyond
the training length of 512 tokens. This shows that, even if bigger models can overfit the training
context length, a lightweight fine-tuning procedure can make them generalize to extended contexts.

After context extension, we performed the PassKey Retrieval analysis and noticed that bigger models
benefit more from the context extension than smaller ones. The results obtained by this lightweight
fine-tuning procedure are shown in Table 7.

In Table 7 we see that the 120M model generalizes up to 512× the trained context length with
accuracy above 0.8. However, bigger models struggle in much shorter sequences. When analyzing
each model to their context-extended counterparts, we see that all model-scales benefit from this
procedure. The 1.1B parameter model, however, has most improvement of context extension.
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Table 7: Context extension effect across different model sizes of BAM SSMax on PassKey Retrieval.

Model <1K 51K 102K 153K 204K 256K 307K 358K 409K 460K 512K

120M 1.0 1.0 0.9 0.9 0.9 0.8 0.7 0.7 0.8 0.6 0.4
120M Ext. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

431M 1.0 0.5 0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.0 0.2
431M Ext. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.1B 0.9 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
1.1B Ext. 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.8 0.9 0.7 0.7

H.6 MODEL SIZE

Here we compare how BAM SSMax compares to RoPE SSMax on a large scale model size (1.1B) on
the Passkey Retrieval setting. Models were trained with context length 512 and prompted to perform
Passkey Retrieval with up to 512, 000 tokens. Figure 16 shows that BAM SSMax also dominates
RoPE SSMax across all evaluated lengths, performing accurate Passkey retrieval in all contexts that
we were able to assess using our available compute.
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Figure 16: Passkey Retrieval accuracy on 1.1B models. In the bottom row and on the last column, we
see average accuracy across length and position, respectively.

This ablation corroborates that BAM is capable of using information across longer contexts than
RoPE, and that such a conclusion generalizes across bigger models (and not just in 120M settings).

H.7 PE IMPACT ON INFERENCE PERFORMANCE

Here we access how distinct PE strategies impact model throughput during inference. To perform this
experiment, we initialize BAM and all the baselines trainable weights of four distinct model sizes
and run 100 samples with batch size 1 and sequence length 512.
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In Table 8, we see that for smaller models the cost of performing Scalable Softmax dominates the
results. This is imperceptible in bigger models, since the only impact of Scalable Softmax appears to
be in the standard deviation. BAM does not affect model inference time in comparison to other PEs.
When we account for the standard deviation, every model has equivalent inference time.

Table 8: Inference time (ms) and vram (GB) during the backward pass for distinct model sizes.

120M 430M 1.1B

Time VRAM Time VRAM Time VRAM

Sinusoidal 32.84± 0.40 1.734 50.98± 0.37 4.933 117.26± 0.42 12.329
Sinusoidal SSMax 32.82± 1.13 1.736 53.39± 0.28 4.933 120.91± 0.55 12.324
RoPE 35.77± 1.98 1.754 53.42± 0.38 4.936 120.50± 0.36 12.330
RoPE SSMax 36.04± 1.39 1.742 55.65± 0.17 4.934 123.34± 0.42 12.325
ALiBi 31.43± 0.73 1.738 52.24± 0.27 4.933 119.34± 0.39 12.329
ALiBi SSMax 32.21± 0.09 1.736 54.22± 0.21 4.934 122.09± 0.33 12.325
BAM 33.13± 0.53 1.739 52.85± 0.24 4.936 120.31± 0.38 12.329
BAM SSMax 33.01± 0.81 1.737 59.50± 0.18 4.936 133.14± 0.41 12.319
NoPE 38.15± 1.87 1.738 56.10± 0.42 4.933 121.34± 0.80 12.329
NoPE SSMax 38.49± 1.30 1.736 58.36± 0.70 4.933 124.95± 0.60 12.324

H.8 θβ AND θα TRENDS AFTER TRAINING

We now analyze the trends of θβ and θα after training. Our first analysis focus on the 120M model
trained with distinct context sizes. Figure 17 shows an interest trend where we identify three linearly-
separable clusters of parameters: the first cluster with θβ > 0, where each attention head works
similarly to a Laplace distribution (ALiBi); the second cluster with −0.6 ≤ θβ ≤ 0, which works
as a retrieval head; the third cluster has fewer instances than the other two, with θβ < −0.6. We
conjecture that this cluster works as a more aggressive retrieval head.
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Figure 17: Trend of θβ × θα regarding the 120M model trained on 512, 1024, and 2048 tokens.

When we analyze distinct model scales, the same three clusters emerge. Figure 18 shows the same
clusters identified in Figure 17, providing evidence that these probability distribution over positions
are stable and transferable across many tasks.

I LIMITATIONS

Despite the theoretical and empirical strengths of BAM and its instantiation with GGD, our study is
subject to several limitations, which we acknowledge and discuss below.
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Figure 18: Trend of θβ × θα on different model scales.

Model Scale and Generalization to Larger LMs. Our experiments were conducted on Transformer
models with up to 1.1 billion parameters due to limited compute availability. While our results show
improvements in context length extrapolation at this scale, it remains an open question whether these
gains persist or even amplify in very large language models. However, we note that this evaluation
regime is consistent with prior work in the PE literature, including those introducing ALiBi (Press
et al., 2022) and NoPE (Kazemnejad et al., 2023), which also validated their approaches using
similar-scale models.

Dataset Scope and Representativeness. Our empirical evaluation of perplexity is currently re-
stricted to two datasets: FineWeb 10B (Penedo et al., 2024), and Wikipedia (Foundation, 2023).
While these datasets provide coverage of both large-scale pretraining and structured text, this coverage
is not exhaustive. Broader evaluations across additional domains—such as code, long-form scientific
documents—would be valuable for assessing the robustness and generality of BAM-based priors.

Coverage of Positional Encoding Methods. Due to computational constraints and the complexity
of reimplementing certain positional encoding strategies, our experiments do not encompass all meth-
ods proposed in the literature. We did not evaluate the T5 relative position bias approach (Raffel et al.,
2020), which requires bucketing mechanisms and distinct architectural modifications. Nonetheless,
we believe that the set of baselines considered—covering absolute positional encodings (Sinusoidal),
rotary encodings (RoPE), relative linear biases (ALiBi), and content-only baselines (NoPE)—provides
a representative and diverse comparison to assess the context extrapolation capabilities of BAM.

Generalization to Instruction/Preference Tuned LMs. We did not evaluate BAM in the context
of instruction-tuned or preference-tuned models. LMs often undergo additional fine-tuning stage,
such as supervised instruction following, reinforcement learning from human feedback, or direct
preference optimization, which can significantly alter attention dynamics and generalization behavior.
It remains an open question whether the context extrapolation benefits introduced by BAM are
preserved, attenuated, or potentially enhanced in such settings. Assessing the how models with BAM
as PE perform after instruction-tuned architectures is an important direction for future work.

J BROADER IMPACTS

Improving context length extrapolation in Transformers has the potential to reduce the computational
and environmental costs associated with pretraining large language models. Because attention scales
quadratically with sequence length, training with long contexts is prohibitively expensive. GGD-BAM
enables models to generalize to longer sequences without requiring direct exposure during training,
potentially lowering the need for long-context pre-training.
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This efficiency gain could contribute to more sustainable and accessible language model development,
particularly for institutions with limited compute resources. Furthermore, better long-range general-
ization supports important applications such as legal and medical document processing, educational
content understanding, and scientific analysis. However, these capabilities must be accompanied by
careful evaluation to ensure reliability and safety in high-stakes domains.

K ALTERNATIVE INTERPRETATIONS OF Z

K.1 STATISTICAL-PHYSICS INTERPRETATION OF Z

Let fj = fcont(qi,kj), gj = gpos(i, j).

We introduce three normalization constants:

Zcont =
∑
j

efj , Zpos =
∑
j

egj , Zjoint =
∑
j

e fj+gj .

The usual Gibbs–Boltzmann partition function is

Zjoint =
∑
j

exp(fj + gj),

and the corresponding free energy is Fjoint = − lnZjoint.

The factorization normalizer Z that restores
∑

j softmax(fj + gj) = 1 after factorizing exp(fj +

gj) = exp(fj) exp(gj) is

Z =
Zcont Zpos

Zjoint
=
∑
j

[
softmax(fj) × softmax(gj)

]
.

Its log, lnZ = lnZcont + lnZpos − lnZjoint, is precisely the interaction free-energy between the
content and position potentials. Finally, introducing an inverse temperature γ yields

pij ∝ exp
(
γ (fj + gj)

)
,

so γ could control how sharply the attention distribution peaks.

K.2 GEOMETRIC INTERPRETATION OF Z

Recall

pcont(j) = softmax
(
fcont(qi, kj)

)
, p(gpos(i, j)) = softmax

(
gpos(i, j)

)
,

and let
pcont =

(
p(fcont(qi,kj))

)n
j=1

, ppos =
(
p(gpos(i, j))

)n
j=1

.

Both vectors lie in the probability simplex ∆n−1 = {x ∈ Rn : xj ≥ 0,
∑

j xj = 1}. Then

Z =

n∑
j=1

p(fcont(qi,kj)), p(gpos(i, j)) = ⟨pcont, ppos⟩,

where ⟨pcont, ppos⟩ =
∑

j p(fcont(qi,kj)), p(gpos(i, j)).

• Dot-product as overlap. ⟨pcont, ppos⟩ ∈ [0, 1] measures how much the two distributions
“agree”—it is maximal when they coincide and minimal when they are disjoint.

• Norms of probability vectors. Since ∥p∥2 ≤ ∥p∥1 = 1 for any p ∈ ∆n−1, the raw
dot-product is not a true cosine similarity unless one divides by ∥pcont∥2 ∥ppos∥2. We
omit that division because we need

∑
j p(fcont(qi,kj)), p(gpos(i, j)) exactly to quantify the

normalization gap of the product of two softmaxes.
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• Re-normalization identity. The product distribution pcont⊙ppos sums to ⟨pcont, ppos⟩ ≠ 1.
Inverting that sum,

Z =
∑
j

p(fcont(qi,kj)), p(gpos(i, j)),

precisely restores
∑

j

[
p(fcont(qi,kj)), p(gpos(i, j))

]
Z = 1.

• Cosine-similarity caveat. If one instead defined cos θ =
⟨pcont,ppos⟩

∥pcont∥2 ∥ppos∥2
, that extra normal-

ization would destroy the simple re-normalization identity needed for attention.

Thus Z = 1/⟨pcont, ppos⟩ has a clear geometric meaning: it compensates for the overlap (or
misalignment) between the content-based and position-based probability vectors, ensuring their
elementwise product yields a valid distribution.

K.3 INFORMATION-THEORETIC INTERPRETATION OF Z

Let
pjoint(j) = pij = softmax

(
fcont(qi, kj) + gpos(i, j)

)
,

and recall the marginals

pcont(j) = softmax
(
fcont(qi, kj)

)
, ppos(j) = softmax

(
gpos(i, j)

)
.

The mutual information between content and position under the joint distribution is

I(cont; pos) =
∑
j

pjoint(j) ln
pjoint(j)

p(fcont(qi,kj)), ppos(j)
.

Since

pjoint(j) =
efj+gj

Zjoint
and p(fcont(qi,kj)), ppos(j) =

efj

Zcont

egj

Zpos
,

one shows directly that

I(cont; pos) = ln
Zcont Zpos

Zjoint
= lnZ.

Hence
Z = exp

(
I(cont; pos)

)
,

which implies:

• Z = 1 if and only if content and position are statistically independent (I = 0).
• Z grows exponentially with the amount of shared information between content and position.

Thus Z can be seen as the “information-coupling” multiplier that re–normalizes the product of the
two marginals into the true joint attention distribution.
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