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SPATIOTEMPORAL CHARACTERIZATION OF GAIT
FROM MONOCULAR VIDEOS WITH TRANSFORMERS
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ABSTRACT

Human pose estimation from monocular video is a rapidly advancing field that
offers great promise to human movement science and rehabilitation. This poten-
tial is tempered by the smaller body of work ensuring the outputs are clinically
meaningful and properly calibrated. Gait analysis, typically performed in a ded-
icated lab, produces precise measurements including kinematics and step timing.
Using more than 9000 monocular video from an instrumented gait analysis lab,
we evaluated the performance of existing algorithms for measuring kinematics.
While they produced plausible results that resemble walking, the joint angles and
step length were noisy and poorly calibrated. We trained a transformer to map 3D
joint location sequences and the height of individuals onto interpretable biome-
chanical outputs including joint kinematics and phase within the gait cycle. This
task-specific layer greatly reduced errors in the kinematics of the hip, knee and
foot, and accurately detected the timing of foot down and up events. We show,
for the first time, that accurate spatiotemporal gait parameters including walking
speed, step length, cadence, double support time, and single support time can be
computed on a cycle-by-cycle basis from these interpretable outputs. Our results
indicate lifted 3D joint locations contain enough information for gait analysis, but
their representation is not biomechanically accurate enough to use directly, sug-
gesting room for improvement in existing algorithm

1 INTRODUCTION

The remarkable progress in human pose estimation (HPE) from images and video offers great
promise to human movement science and rehabilitation. State-of-the-art approaches enable high
quality tracking of individuals in video and estimation of their joint locations — both in the 2D im-
age plane and lifted to 3D coordinates (Zheng et al.l |2020). However, the clinical utility of these
algorithms are limited for several reasons (Seethapathi et al.| |2019). Firstly, tools that produce clin-
ically relevant measures of human movement are less common. HPE methods are typically trained
to optimize the accuracy for estimating joint locations in Euclidean space. However, movements are
rarely described this way. Rather, they are described by changes in joint angles following standard
conventions (Wu et al., |2002; 2005). Furthermore, many activities are typically described higher
levels that capture coordination over multiple joints (e.g., walking can be described by step length
and frequency). Secondly, public datasets for HPE contain largely able-bodied individuals and how
methods trained on these datasets perform when applied to patient populations has not been well
studied. In general, Al fairness for people with disabilities has received relatively little attention
(Trewin et al.l 2019). In the context of HPE, methods may generalize poorly due to anatomical
and movement pattern differences and the absence of assistive mobility devices and bracing in the
training data, for example.

Gait impairments are common in rehabilitation (Verghese et al.| |2006) and falls rank among the
leading causes of death worldwide (World Health Organization, 2021). Gold standard clinical gait
analysis is performed in a laboratory using optical motion capture and force plates to precisely mea-
sure joint angles, ground reaction forces, and the duration of different phases of gait as people walk
(Richards et al., [2012). While these gait assessments provide precise measurements, the required
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Figure 1: Overview of our gait analysis pipeline, with the components we train highlighted in gray.
Video is first processed with published, pretrained algorithms to produce a sequence of 3D joint lo-
cations from video. A transformer is trained to produce interpretable kinematic parameters including
hip and knee angles, foot position, and foot event timing. From these outputs, gait parameters can
be computed from individual gait cycles.

equipment and expertise makes frequent, routine assessments impractical. A validated method to
estimate a subset of the commonly measured gait parameters from monocular video would have sig-
nificant clinical utility. For example, detection of gait impairment progression from video acquired
at home may allow earlier intervention prior to falls.

Three-dimensional joint locations estimated from video are impressively accurate on several public
datasets, with errors commonly below 50mm (Pavllo et al., 2019} Liu et al.,2020). To the best of our
knowledge, the accuracy of kinematics (i.e. joint angles) computed from these joint locations during
walking have not been evaluated, especially on clinical population, whom might benefit the most
from these algorithms. We evaluated these algorithms on more than 9000 videos of 770 individuals
walking who were seen for gait analysis. While computed 3D joint locations were plausible, the
kinematics were noisy and poorly calibrated. We also found it challenging to accurately determine
when the foot makes contact with the ground from the outputs, a prerequisite for defining the gait
cycle and measuring most gait parameters.

These limitations motivated our approach (Fig.[I)). We trained a transformer (Vaswani et al.,2017) on
our dataset to map the 3D joint location sequences to kinematic trajectories and timing information,
which also enabled accurate detection of foot down and up events. From these outputs, we measured
several gait parameters on individual gait cycles and found a high correlation between our estimates
and those from formal gait analysis. By producing meaningful trajectories from which we extract
the gait parameters, our approach also is more explainable — a desirable feature in machine learning
for medicine. Finally, we demonstrated that our approach generalizes to both Human 3.6 (Ionescu
et al} [2014) and data collected in a clinic (i.e. outside the gait laboratory). The latter result is
particularly relevant as it reflects our intended use case for a clinically adoptable gait analysis tool.

Our results reveal two critical points about the usability of HPE for gait analysis. (1) Despite being
state of the art, 3D joint locations estimated via lifting do not produce an accurate enough represen-
tation to allow for directly computing relevant gait parameters and (2) that they do contain sufficient
information to map them to the relevant interpretable biomechanics, which allows for accurately
computing gait parameters. Ultimately, this last step is a patch to address the limitations of repre-
sentations from existing algorithms and highlights opportunities for improvement.

Contributions Our main contributions are: ) We evaluate the accuracy of kinematics computed
from 3D joint locations based on monocular video against ground-truth gait analysis laboratory data
from patient populations and find they are noisy and poorly calibrated. @) We train a transformer
to map these to less noisy and more accurate biomechanical trajectories and to the phase within
the gait cycle. €@ We show that these interpretable features allow accurate cycle-to-cycle estimates
of common gait parameters, including cadence, walking velocity, step length, single support time,
and double support time for each gait cycle. @) We show that our approach generalizes outside the
training data, including the Human 3.6 dataset and videos acquired in an outpatient clinic.

2 RELATED WORK

Human pose estimation We refer readers to Zheng et al.|(2020); Liu et al.| (2021) for an overview
of the taxonomy of HPE and for a review of recent approaches and restrict ourselves to a brief dis-
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cussion of the methods we use. Martinez et al.|(2017) demonstrated lifting 2D keypoints to 3D joint
locations achieved remarkable accuracy, which has subsequently been improved with techniques
that process temporal sequences of 2D keypoints (Pavllo et al.,2019). In this work, we use|Liu et al.
(2020), which utilizes graph attention through time and over joints to further improve the accuracy of
lifting. Lifting generalizes well as it it leverages the remarkable progress in 2D keypoint detection.
Amongst these approaches, top-down methods that localize the joints of a person already identified
by a bounding box achieve the greatest accuracy (e.g. [Sun et al.|(2019); Zhang et al.|(2020a)). These
are dependent on tracking algorithms that can identify a person throughout a video (e.g. |Wojke &
Bewley| (2018); Zhang et al.|(2020b)), which is also necessary in our project as there are commonly
multiple people apparent in videos. These have also been advancing, with recent methods jointly
trained to perform the detection of people and identification across frames (Zhang et al., 2020bj Sun
et al.,[2021).

One limitation of representing a body configuration with 3D joint locations is that inverse kinemat-
ics are required to recover the corresponding joint angles required. Methods that use parametric
models of human bodies, such as HMR (Kanazawa et al., [2018]), do not have this limitation as their
outputs are joint angles. However, the accuracy of these methods does not reach 3D lifting and,
often, inferred joint locations do not align with the images. We include experiments with VIBE
(Kocabas et al., 2020), which maps an image sequence directly to a sequence of pose parameters
and produces highly competitive performance on mesh recovery. Closely related to our focus on
biomechanical accuracy of movements are methods that utilize physics simulations to produce more
plausible movements (Yuan et al.l |2021; Shimada et al.|, 2021} 2020 |Shi et al., 2020). We did not
begin with these methods as their reported joint accuracy is worse than lifting methods and most do
not have available implementations, but we believe this to be a promising direction. These methods
also detect foot-ground contacts, although the temporal accuracy of this was not reported — likely
because ground truth timing was not collected in public datasets.

Gait Analysis Machine learning has been used to determine the timing of gait events from a
number of sources including wearable sensors (Khera & Kumar, 2020). Neural networks have
also been trained to detect the event times from motion capture data acquired at 120Hz, showing
detection accuracy of 10ms for foot down and 13ms for foot up (Kidzinski et al., [2019). [Kanko
et al.[(2021ajb) have shown that multiple synchronized cameras enable accurate characterization of
gait. [Mehdizadeh et al.| (2021)) showed that 2D keypoints detected from monocular video allowed
accurate measurement of cadence (steps per minute), although they did not quantify the temporal
error for detecting the events and their system was less accurate for estimating step length. |[Kidzinski
et al.| (2020) also used data from a gait laboratory and trained a neural network to predict walking
speed and cadence from 2D keypoints sequences, although compared to our approach they produce
an average parameter for a trajectory.

3 GAIT LAB DATASET

Our dataset includes instrumented gait analysis from 770 subjects during 1073 sessions. This study
was approved by the (removed during review) IRB. Subjects ages ranged from 2 to more than 80
with the median age being 11 years old and 90th percentile being 22 years old. Diagnoses docu-
mented during encounters ranged widely with cerebral palsy and spina bifida being common, and
also included stroke, traumatic brain injury, spinal cord injury, amputation, and abnormality of gait.
Sessions commonly involved gait analysis under multiple conditions (e.g. with or without a walker
or brace, total number of unique conditions in the dataset are 2009) with several trials per condition.
Each gait trial includes video acquired in the frontal plane (i.e. as the subject either walks towards
or away from the camera) with synchronized motion capture data and force plate data acquired at
120Hz. Videos had previously been compressed to a resolution of 480 x 720 at 30fps. 615 subjects
were randomized into the training set and 155 into the testing set.

Kinematic Trajectories, Gait Phases and Gait Parameters Our dataset was acquired during
clinical practice and, as such, had previously been processed with a clinical workflow (Richards
et al.| 2012; [Kadaba et al., [1990). This includes inverse kinematics solutions for individually-
calibrated, anatomically-accurate biomechanical models to determine joint locations and angles
from the surface marker locations. In this work, we only use kinematic trajectories in the sagit-
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Parameter \ Description

Cadence Step frequency (steps / minutes), with two steps occurring per cycle

Step length The forward distance between the feet when both are on the ground
Walking velocity Forward movement of the pelvis over one gait cycle, divided by the duration
Double Stance Time The duration within a gait cycle when both feet are on the ground

Single Support Time The duration when only either the left or right foot is on the ground

Table 1: Description of spatiotemporal gait parameters estimated with our algorithm.

tal plane, including the flexion angles of the hip and knee, the forward position of the foot, and the
forward velocity of the pelvis and feet (example traces are shown in Fig. [2). The time each foot
goes up and down is detected by force plates and valid trials are required to have at least two down
events for each foot. We use the term kinematic trajectories and gait phases for these interpretable
time-varying signals, which are the output of our model.

A number of metrics are extracted from the kinematic trajectories and event times on each trial
over a single gait cycle with respect to both the left and right foot. The ones we compute with our
approach and analyze in this paper are described in Table [l We use the term gait parameters for
these statistics, which are computed from the model outputs.

4 GAIT ANALYSIS PIPELINE

Video Processing Overview We restricted ourselves to pretrained algorithms to produce 3D joint
locations as we worried training or fine tuning these steps on a uniform laboratory background of
the videos from the frontal plane would limit the generalization outside of the laboratory or to new
perspectives. Fig.[I|shows an overview of our pipelinee. (1) We first ran a tracking algorithm (Zhang
et al., 2020b; Wojke & Bewley, 2018)) to infer the bounding box tracks for all people in the scene
followed by (2) manually annotating the bounding box for the person undergoing gait analysis. (3)
Then we computed 2D keypoints (Zhang et al.,|2020a; Sun et al., 2019), (4) and lifted them to 3D
(Liu et al.; [2020). We used DataJoint (Yatsenko et al.,|2015)) to manage the data and computational
pipeline (Supplementary Figure[6). Please see appendix for more details.

Kinematics from 3D Joint Positions We computed kinematics from the lifted 3D joint locations.
We focused on the accuracy of hip and knee flexion defined in the sagittal plane and the forward foot
position because of their clinical relevance in many conditions. It is straightforward to obtain these
from the 3D skeleton after rotating the skeleton around the vertical axis to align the vector from the
left to right hip with the Y axis. Hip flexion angle is computed from the dot product between the
vector from the spine joint to the mid-hip joint and the vector from the hip to the knee, both in the
X-Z plane. The knee angle is computed from the dot product between the hip to knee vector and
the knee to foot vector. We also extracted the position of each foot in the X (forward) axis, with the
pelvis defined as the origin

Transformer for Interpretable Gait Features We trained a transformer (Vaswani et al., [2017))
to map a sequence of lifted 3D joint locations and the height of the subject to a set of interpretable
features for each frame. The kinematic outputs are the hip and knee joint angles and forward foot
position for each side, described above, and additionally the forward velocity of the pelvis and
each foot (for a total of 9 elements). The transformer also outputs timing information with respect
to four gait events (left foot down, right foot down, left foot up, right foot up); we describe this
representation below.

The 3D joint locations are tokenized as in [Llopart| (2020) by concatenating the joint locations for
each frame, passing them through an MLP to match the embedding dimension, and using sinusoidal
embedding for positional encoding. To include the subject’s height, we provide a token using an
additional MLP and a learned positional embedding. All of the tokens are concatenated and passed
to the transformer.

Gait Phase Quadrature Encoding We represent the timing of the four periodic gait events by
quadrature encoding the phase at each time point for each event, rather than directly predicting a
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sparse set of events or a binary output. We found the timing accuracy was similar with a binary
output, this representation matches how gait analysis is normally described and facilitates aligning
multiple cycles.
t—tio

tii—tio0’
where ¢; j, is the time of the k' occurrence of gait event 7. Some trials only had a single foot up
event, in which case we replaced the denominator by the period between the same side down events.
The phase was quadrature encoded as g; (t) = [cos ¢;(t), sin ¢;(¢)], which allows reconstructing the
phase from the model outputs as:

(;ASZ- (t) = arctan (g;,1(t), gi0(t)) - (D

We computed the phase for all frames from two foot events in the dataset as ¢;(t) = 27

Sliding Window Inference We found the accuracy worsened when performing inference on
longer sequences. We perform inference on longer sequences by applying the transformer to a
sliding window of 3 seconds (90 frames) with stride of 1 frame and preserving the middle output
frame for each window. Because the transformer produces a valid output corresponding to each
input sample, we use this to pad the beginning and end of the output.

Data Augmentation All of our data is acquired from a frontal view (i.e. the person walking toward
or away from the camera). To improve the generalization of the gait transformer to novel views, we
augment the keypoints by applying a random rotation to the entire 3D keypoint sequence, with 50%
probability. We do not perform any corresponding transformation to the outputs because the output
format is viewpoint invariant.

Architecture Details and Training We refer readers toVaswani et al.|(2017) for most transformer
details. Our encoder had 5 transformer layers with 6 attention heads in each layer, each with a
dropout (Srivastava et al.l [2014) probability of 0.1, and a projection dimension of 256. It was
trained using an AdamW optimizer (Loshchilov & Hutter, 2019) for 250 epochs with a learning rate
of 5e — 4 and weight decay of le — 5. Feed forward networks were a 2 layer MLP with 512 units
in the first layer and using a GeLU (Hendrycks & Gimpel, |2016) nonlinearity followed by dropout
layers with 0.1 probability. Layer normalization and layer scaling were both used (Ba et al.| 2016;
Touvron et al.| 2021). Batches were grouped into buckets by length with batch sizes ranging from
128 for sequences of length 30 to 32 for length 300. The architecture and hyperparameters were
selected when developing a precursor that only output the timing parameters using a small fraction
of data and were not systematically explored. It had 9 million parameters and was implemented in
TensorFlow 2 (Abadi et al., 2015) and trained in 1-2 hours on a 32GB A100 GPU. Sliding window
inference on the testing data took approximately 4-5 hours.

The target gait phases extrapolate for times outside the two events and can become less accurate, so
the loss used a weight of 1 between the two event times and a linear decay to zero by one second
outside this range. The weight for the kinematic parameters was set to 0.1, and sequences were
cropped to the time range when all the markers were tracked.

5 EXPERIMENTAL RESULTS

Qualitative behavior of pretrained pipeline components on gait analysis subjects The most
problematic step when processing the videos was the bounding box computation, and we noted sev-
eral common problems. (1) When subjects came too close to the camera or briefly left the frame,
they were not reliably reidentified. In these cases, our manual annotation tool allowed us to asso-
ciate those tracks. (2) Many subjects required assistance with ambulation so there was frequently
a therapist nearby, possibly making physical contact, which could result the bounding box track
being fragmented by jumping from subject to therapist. In some cases identifiers would switch, in
which case we would process with a different algorithm. (3) With FairMOT in particular, we noted
the presence of a rolling walker significantly increased the chance that a person was not detected.
This has significant implications for both Al fairness for people with disabilities and safety, when
considering robotic applications that might fail to detect these individuals (Trewin et al.,2019).

We found that 2D keypoint detection with pretrained networks based on able-bodied populations
generally performed well on rehabilitation patients, provided the bounding boxes were able to track
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Figure 2: Two sample trajectories (left and right). Each row shows a different joint and each column
is a different approach.

the individual. This included situations where a therapist was nearby or even behind the subject of
interest, with the algorithms tracking the person in the foreground centered in the bounding box.
We did note the presence of ankle-foot orthoses seems to worsen ankle localization and canes or
crutches worsened upper extremity locations. Some frames would also briefly confuse the left and
right sides, which would adversely impact the 3D joint locations and our algorithm’s performance.
The 3D joint locations produced plausible poses that visually resembled walking (e.g. see skeleton in
Fig.[I) provided the 2D keypoints, although our quantitative results below highlight the limitations.

Failure modes of VIBE (Kocabas et al., 2020) were more dramatic, with flipping of the direction of
the person. This failure also seemed to occur much more commonly when individuals were using
assistive devices, such as a walker or cane. Qualitatively, the inferred hip and knee movements
appeared much smaller than the real ones, aligning with our quantitative results below. It is possible
recent advances that make mesh regression more robust to occlusion would help (Kocabas et al.|
2021)), but the implementation has not yet been released. ProHMR (Kolotouros et al., [ 2021)) appears
to produce more accurate results when including optimization of the mesh to the keypoints, but
because this takes several seconds per frame, it is impractical to run on our entire dataset.

Accuracy of Kinematic Trajectories For each trial, we compared the trajectories computed with
VIBE (Kocabas et al.,|2020), directly from the 3D joint locations (Liu et al., | 2020), and from the gait
transformer to the ground truth. Two trials from these approaches are shown in Figure 2] We quan-
tified the accuracy with the root mean squared error (RMS), measured in degrees for the joint angles
and meters for the foot position, and the correlation coefficient. From the pretrained algorithms,
we found the errors were fairly high and correlations were quite low for angles and foot positions.
In comparison, the transformer predicted much more accurate and less noisy trajectories for these
measures (Table 2)).

To determine if more accurate kinematics could be computed from the 3D joint locations than our
geometric approach, we trained a four layer MLP (fully connected, 256 units, GeLU non-linearity,
layer scaling, labeled as MLP in Table 2]and Fig. [2)) in place of the transformer. This also served as
a lesion study for temporal context the transformer provides. We found this strategy did improve the
accuracy and reduce the noise, but not as much as full transformer.

Gait event detection accuracy Most gait parameters (Table |1) are defined over a cycle between
two successive times the same foot goes down. Thus, we first describe the accuracy detecting these
event times. As described in Section[3] the model outputs the quadrature encoded phase with respect

to the four gait events for each frame, from which we compute the phase on each frame, qu (t), with
Eq.[T] Event times are defined as when the phase crossed zero (specifically time between the frames
where the zero crossing occurred). To compute the error, we matched each ground truth event to
the nearest zero crossing (as there are multiple gait cycles per trial but only one annotated with
events) and measured the time difference. The median error was 25ms for foot down events and
27ms for foot up events, with the 90% percentile for all errors being 83ms. This is fairly comparable
to the 10ms error reported in |Kidzinski et al.| (2019)) for detecting foot down and up events from
motion capture data acquired at 120Hz. The accuracy of the MLP was much worse (median 60ms)
despite additional application of a Kalman smoother (Rauch et al., [1965) to the noisy outputs. This
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Right Hip Left Hip Right Knee Left Knee Right Foot Left Foot

VIBE rms 20.12 19.93 19.77 19.94 0.28 0.26
3D rms 18.72 18.98 21.96 21.76 0.19 0.19
MLP rms 12.18 12.44 14.94 14.95 0.12 0.12
Transformer rms 943 9.33 11.64 11.54 0.08 0.08
VIBE r 0.53 0.53 0.29 0.26 0.62 0.66
3Dr 0.39 0.40 0.27 0.28 0.73 0.74
MLP r 0.82 0.80 0.65 0.65 0.84 0.82
Transformer r 0.93 0.93 0.84 0.83 0.96 0.96

Table 2: Top section: Median RMS errors for joint angles (in degrees) and feet positions (in meters)
using either VIBE, 3D joint locations, 3D joint locations transformed by an MLP, or the trans-
former output. Bottom section: Median correlation coefficient (R) between kinematic parameters
and ground truth.

Figure 3: The left two panels show the error histograms for the down and up events, respectively.
The third panel shows an example of the four gait phase outputs from the gait transformer with the
ground truth events plotted, showing the tight alignment between the zero crossings and true events.
The fourth panel shows the same thing for the MLP model after additional Kalman smoothing.

is consistent with our expectation that the transformer effectively combines information over the
time series. The attention weights also suggest the transformer combines information over multiple
gait cycles and displays sharp transitions between gait phases (Supplementary Fig. [7).

Cadence and Gait Phase Duration Some of the more common summary statistics computed for
gait are the cadence (steps per minute, with two steps taken per gait cycle), time spent in single leg
support on the left and right, and time spent in double limb support. We computed these over single
gait cycles from the detected event times and found a close correspondence with ground truth values,
as shown by the Bland Altman plots in Fig.[d Multiple trials are collected for a given condition (e.g.
with bracing versus without) and, in clinical practice, typically the average value is reported. The
bottom row of Fig. [] shows the tight correlation between these reported values and the average
parameters measured by our approach.

Spatiotemporal Parameters Two important spatiotemporal gait parameters are step length and
walking velocity. Step length is defined as the distance between the left and right foot when both
feet are on the ground, which we extract from the difference between the foot kinematic traces at
the time point each foot goes down (see diagram in Fig. [I). Walking velocity is the stride length
(distance between two successive foot contacts) divided by the time between these events (Richards
et al.l 2012). We found computing the average pelvis velocity output over a gait cycle produced
a more accurate walking velocity estimate than the product of the step length and the cadence, so
report that. Fig.[d]shows these estimates are fairly accurate, but also reveals a slight systematic error.
We suspect the output is biased towards the average in the face of uncertain information, and this
systematic error could be calibrated out post hoc. We also lesioned the height token, and as expected
found this worsened the accuracy for estimating both of these parameters, particularly step length.

Generalization To test whether our pipeline generalizes to views outside the training data (e.g.
from the side), we tested it on Human 3.6M (lonescu et al., [2014), which includes motion capture
with multiple camera views. It is not designed for gait analysis, so does not have gait parameters or



Under review as a conference paper at ICLR 2022

Error (Step/Min)

200

150

Cadence
s
8

g

°

Figure 4: Top row: Bland-Altman plots of error for cadence, double support time and single support
time with correlation coefficients. Horizontal bars are the 5% and 95% percentiles for error. Bottom

0 50

Cadence

r=0.981

Error (s)

Double Support
0.4

0.2

0.0

Error (s)

-0.2

-0.4 r=0.818

0 100 200
Ground Truth (Steps / Min)

100 150
GT Cadence (step/min)

200

0.00 0.25 050 0.75 1.00
Ground Truth (s)

175

IS

150

£ 125
s

g
S 1.00

o
2075

Double Support

¥ 0.50

0.25
0.00

°

GT Double Support (s)

Single Support

r=0.741

T
0.00 0.25 0.50 0.75 1.00

Ground Truth (s)

o =074

Error (m/s)

14
12
1.0
0.8
0.6

Walking Velocity

0.4
0.2
0.0

Walking Velocity

r=0.865

Step Length
r=0.608

05 10 15
Ground Truth (m/s)

Step Length

02 04 06 08
Ground Truth (m)

0.0

o r=0.749

0.0

05 10 15
GT Single Support (s)

0.0

0.5 1.0
GT Walking Velocity (m/s)

02 04 06
GT Step Length (m)

row: average parameter values over trials with the same condition (e.g. bracing versus none).

-

Velocity (m/s)

— Right Foot
Left Foot

— Pelvis

°
&

°
=

> Right down
> Right up
.
o

Left up.

Foot position (m)

Left down J

LI

0 {6306 556 55-6 +5-6 556 506 s S0

0 2 4 13 5 10 0 2 4 5 s 10
Time () Right hip (sensor)
Right knee (sensor)
- Right hip (video)
== Right knee (v\deD)

&

AN

Right Flexion (deg)
g

AARARBMARA

6
Time (s)

Time (s)

Figure 5: Left: Comparing our approach on four simultaneous views from Human 3.6 shows all
views produce consistent estimates. Darker traces for foot and pelvis velocity show ground truth.
Right: Results from our approach in clinic setting. The first row shows the model velocity and
foot position outputs with the event times annotated. The second row compares these the joint
angles to those estimated from wearable sensors, and also the detected event times compared to the
accelerometer value at the ankle.

annotate foot up and down events. However, step events are apparent from the foot velocity and the
walking velocity can be determined from the pelvis velocities. Fig. [5]shows samples of these traces
from all four views, showing how similar the inferences are from all perspectives and the ground
trutlﬂ Lesioning the rotational augmentation worsened the generalization over views.

We also tested our pipeline in our intended context — a clinic visit. This differs from the training
data in several ways. It is portrait video acquired at 1080x1920 on a smartphone over many gait
cycles while walking with the subject down a hallway. The clinic hallways also appear different
than the gait laboratory. We recorded video of a subject (in this case, an amputee using a prosthetic)
walking down a hall. Ground truth was obtained from a wearable sensor system’|on the prosthetic
limb, which allows estimating the hip and knee angle and detecting foot down events from the
accelerometer. The joint angles and event times from our pipeline closely matched the wearable
system (Fig.[5] Right). Walking velocity was measured over 10 meters as 1.17 m/s, with our pipeline
estimating 1.23 m/s .

2Video overlay from all views available at here and as supplemental video
3Reference removed during anonymous review


https://www.dropbox.com/s/o8kv8kn4x34auqe/h36m_vid_cat.mp4?dl=0
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6 DISCUSSION

Our results show that 3D joint locations lifted from 2D keypoints contain enough information to
characterize gait. However, at least on our gait lab dataset with a clinical population, the 3D joint
locations themselves are not precise enough and required an additional task-specific transformer
trained to output smooth sagittal plane kinematics and the timing of foot up and down events. From
these interpretable features, we extracted gait parameters on a cycle-by-cycle basis and found a high
correlation for cadence, double stance time, single support time, walking velocity and step length.

Compared to Kidzinski et al.| (2020), who predicted average gait parameters from 2D keypoint tra-
jectories, our model outputs explainable features and allows a cycle-by-cycle analysis. This enables
more precise characterization of gait variability in the clinic or home, which is associated with bal-
ance and quality of gait and possibly fall risk (Hausdorff et al., [2001; Hausdorff, |2005; |Park et al.,
2021)). In addition, our correlation coefficients for walking speed and cadence (both near 0.9) exceed
theirs (0.73 and 0.79, respectively) and we accurately estimate additional parameters.

Our results raise the question why the 3D keypoints did not yield more accurate kinematics. Due to
the time required to process the thousands of videos, we could not exhaustively explore all possible
components in our video processing pipeline. Each component (Zhang et al., |2020b; Wojke & Be-
wleyl, [2018; |Sun et al.,2019; Zhang et al.|[2020a; [Liu et al., 2020) was selected for their competitive
performance and promising results on initial testing, and our results will only improve with advances
in human pose estimation, such as newer lifting algorithms (Shan et al.| 2021} |(Gong et al., [2021]).
Despite this, the utility of the lifted 3D joints for gait analysis was limited. We speculate multiple
factors contributed to this: (1) Individuals undergoing gait analysis often walk differently than would
be seen in the public datasets, and algorithms trained on these might not generalized well to people
with disabilities (Trewin et al.,2019). This is supported by the qualitative behavior we described
above. Systematically evaluating the performance of all of the pipeline components on patient pop-
ulations and people with disabilities is an important task for future work. (2) Optimizing lifting
algorithms for 3D location error may not have an inductive bias towards biomechanically consistent
results. (3) These algorithms are optimized for general HPE rather than specifically for gait anal-
ysis. Although, the graph attention spation-temporal convolutional network we used reports state
of the art performance on lifting for walking accuracy (Liu et al.,|2020). (4) Video resolution was
480x720 resolution and subjects sometimes spanned a small area, so performance might improve
with different video conditions.

Ultimately, it would be preferable to have methods that produce both accurate 3D joint estimates
and clinically useful kinematics, rather than training an additional component to accomplish this.
Several recent studies incorporate either physics-based modeling into motion inference (Yuan et al.,
2021} Shimada et al., 2021) or use a latent action space to constrain transitions to plausible hu-
man movements (Rempe et al., | 2021)), and additionally model foot contact events. We are excited
that these approaches may produce more biomechanically accurate inferences, allow joint torque
estimates, and we hope implementations of these will become available soon. Again, their gener-
alization to clinical populations will need to be assessed. Another avenue is fine-tuning pretrained
algorithms — either 3D lifting or physics-based — on the diverse set of gaits present in our dataset.
This could include a loss function to ensure the representation is clinically interpretable and useful,
but would also require careful design and possibly augmentation to ensure it generalizes outside
the frontal views. Finally, self-supervised training of the gait transformer on additional, longer, un-
annotated samples of gait will likely further improve the performance when fine tuned to output gait
kinematics.

7 CONCLUSIONS

Our approach improves the accuracy of kinematic trajectories estimated from monocular video and
accurately predicts a number of gait parameters, but there is still a large gap between the precise
biomechanical measurements made in a gait laboratory and what can be obtained from video. The
utility of our approach will depend on the clinical question at hand. For measuring the parameters
we explored and monitoring changes at home or during a clinical encounter, we are optimistic this
method can be useful. Despite this, we hope this work primarily highlights the need for HPE to
produce more clinically relevant and calibrated outputs.
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A APPENDIX

A.1 VIDEO PROCESSING

DataJoint Pipeline To manage these dependent steps from thousands of videos, we implemented
a human pose estimation pipeline using DataJoint (Yatsenko et al.l |2015)), which handles both the
data management and computational dependencies with a database backend. Figure [6] shows the
computational dependencies for this analysis, with each node reflecting a separate MySQL table
linked via foreign primary keys.

Wrappers for algorithms implementing each of these steps were implemented in our DataJoint Pose
Pipeline using a common data format in the database, making it straightforward to the pipeline to
change the algorithm for each step. We used the official implementation and released weights for
each algorithm.

Tracking and Annotation Videos typically included multiple people including staff helping with
data acquisition and sometimes physical therapists providing assistance with gait, so the first step
was identifying the person of interest. We do this by first running a pretrained algorithm to produce
bounding boxes with subject IDs, and then manually annotating which subject ID corresponds to
the person of interest. In some videos multiple bounding boxes would be detected for the individual
in different parts of the video (e.g. fragmentation), in which downstream algorithms took the unions
of these bounding boxes. In videos where either the person was not detected in a large number of
frames or critically if a bounding box switched from tracking the person of interest to another per-
son (most commonly a nearby physical therapy), the video was marked as invalid. For these invalid
videos, we ran alternative tracking algorithms which would frequently allow reliable tracking. The
manual annotation of these thousands of videos was facilitated with a custom tool using PyWidgets
in a Jupyter notebook (Kluyver et al.,|2016) that would query the database, show the next unanno-
tated video, and insert the annotation into the database after clicking the appropriate track. In videos
processed with multiple tracking algorithms that were annotated as valid, we used the one with the
highest fraction of frames where the person was detected for subsequent processing.
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Figure 6: DataJoint schema for computational pipeline. The right side shows the general video pro-
cessing pipeline and the left side the organizational structure specific to the gait lab data. Lookup
tables allow selecting different algorithms for video processing component. Circular nodes are com-
puted can be computed once requisite parent nodes exist.

The majority of our videos were successively annotated with FairMOT (n=5358, [Zhang et al.
(2020b)). The next most common tracking algorithm we used was DeepSORT (n=2891, [Wojke
& Bewley| (2018)); [Wojke et al.|(2017)). A few videos were also processed with TransTrack (n=164)
(Sun et al.| (2021))) and MMTrack (n=55, |Contributors| (2020Db)).

2D keypoint and 3D joint locations Two-dimensional joint locations are extracted with an HRNet
(Sun et al.}|2019;|Wang et al.,2019)) trained with a Distribution-Aware Coordinate Representation of
Keypoints (Zhang et al.,2020a) on the COCO dataset (Lin et al., 2014). We use the implementation
and pretrained weights from the MMPose package (Contributors, 2020a)), which has the additional
benefit of providing a wide range of network architectures and training strategies using a consistent
API. The 2D keypoints sequences are lifted to 3D coordinates (relative to the pelvis) using a graph
attention spation-temporal convolutional network (GAST-Net) (Liu et al., 2020) with the official
implementation and pretrained weights and a receptive field of 27 frames. As with the tracking
algorithms, Pose Pipeline wrappers for these algorithms directly pull the videos and bounding boxes
from DataJoint and the results are inserted directly into the database.

Computing the 3D keypoints took approximately a month using an Nvidia A100 and two 3090RTX
GPUs and two of the authors performing manual annotation for several hours a day.

Reprojection error Although the synchronization between the motion capture system and the
video camera is hardware triggered, there is still typically 100-200 ms of offset. We correct this
by jointly optimizing for the intrinsic and extrinsic camera parameters as well as a temporal offset
that minimizes the reprojection error of the hip, knee and ankle joints into the image plane. The
camera properties are first initialized with the OpenCV calibrateCamera method (Bradskil [2000),
using the the sequence of paired 2D keypoint locations from the video and the ground truth 3D
coordinates from the motion capture data. This initialization assumes zero time offset and uses
the time range with both high keypoint confidences and where the motion capture markers were
visible. A differentiable reprojection loss is then computed with respect to the camera parameters
and the temporal offset by first computing the 3D joint location with the time offset using linear
interpolation, projecting these through a simple camera model (i.e. no distortion parameters), and
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then finally computing the Huber loss between these projected coordinates and the detected joint
locations in the image. This loss is optimized with Jax (Bradbury et al.| [2018]).

Trials were only included for analysis if the average reprojection Huber loss across the six joints in
the leg was less than 10 pixels and the absolute value of the offset was less than 200ms. Only 219
out of 8468 trials were excluded for this reason, confirming that 2D keypoint detection generally
performed well on rehabilitation subjects.

After screening the data for poor bounding box annotations, reprojection errors, trials with insuffi-
cient frames that the person was visible, and trials with an invalid sequence of gait events our final
dataset contained 6747 trials for training and 1592 trials for testing.

A.2 ATTENTIONAL WEIGHTS
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Figure 7: Two examples of the attention weights throughout the transformer (all layers and heads
are shown), with the phase of the four gait events at the bottom. The attention scores were transpose
to align with the gait phase traces below. The attention pattern period matches the gait period, and
even develops sharp transitions aligned with foot events despite the quadrature encoded phases being

smooth.
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