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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based attacks
is challenging. While most attacks focus `2-norm and `1-norm constraints to
craft input perturbations, only a few have investigated sparse `1-norm and `0-norm
attacks. In particular, `0-norm attacks remain the least studied due to the inherent
complexity of optimizing over a non-convex and non-differentiable constraint.
However, evaluating the robustness of these attacks might unveil weaknesses other-
wise left untested with conventional `2 and `1 attacks. In this work, we propose a
novel `0-norm attack, called �-zero, which leverages an ad-hoc differentiable
approximation of the `0 norm to facilitate gradient-based optimization. Extensive
evaluations on MNIST, CIFAR10, and ImageNet datasets, involving robust and
non-robust models, show that �-zero can find minimum `0-norm adversarial
examples without requiring any time-consuming hyperparameter tuning, and that it
outperforms all competing attacks in terms of success rate and scalability.

1 INTRODUCTION

Early research has unveiled that Deep Neural Networks (DNNs) are fooled by adversarial examples,
i.e., slightly-perturbed inputs optimized to cause misclassifications (Biggio et al., 2013; Szegedy
et al., 2014a; Goodfellow et al., 2015). In turn, this has demanded the need for more careful reliability
assessments of such models. Most of the gradient-based attacks proposed to evaluate adversarial
robustness of DNNs optimize adversarial examples under different `p-norm constraints. In particular,
while convex `1, `2, and `1 norms have been widely studied (Chen et al., 2018; Croce & Hein, 2021a),
only a few `0-norm attacks have been considered so far. The main reason is that ad-hoc heuristics need
to be adopted to compute efficient projections on the `0 norm, overcoming issues related to its non-
convexity and non-differentiability. Although this task is challenging and computationally expensive,
attacks based on the `0 norm have the potential to reveal uncovered issues in DNNs that may not be
evident in other norm-based attacks (Carlini & Wagner, 2017; Croce & Hein, 2021a). For instance,
these attacks, known for perturbing a minimal fraction of input features, can be used to determine
the most sensitive characteristics that influence the model’s decision-making process. Furthermore,
they offer a different and relevant threat model to benchmark existing defenses. Developing efficient
algorithms for generating `0 adversarial examples is thus a crucial area of research that requires
further exploration to improve current adversarial robustness evaluations.

Unfortunately, current implementations of `0 attacks exhibit a largely suboptimal tradeoff between
their success rate and efficiency, i.e., they are either accurate but slow, or fast but inaccurate. In
particular, the accurate ones resort to the use of complex projections to find smaller input perturbations
but suffer from time or memory limitations, hindering their scalability to larger networks or high-
dimensional data (Brendel et al., 2019; Césaire et al., 2021). Other attacks execute faster, but their
output solution is typically inaccurate and largely suboptimal as they rely on heuristic approaches
and imprecise approximations to bypass the difficulties of optimizing the `0 norm, leading to
overestimating adversarial robustness (Matyasko & Chau, 2021; Pintor et al., 2021). However, all
existing strategies are often slow to converge because they require a large number of queries (i.e.,
forward and backward passes), or they output suboptimal solutions. It thus remains an open challenge
to develop a scalable and compelling method for assessing the robustness of DNNs against sparse
perturbations with minimum `0 norm.
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Figure 1: The leftmost plot shows an instance of �-zero’s execution on a two-dimensional problem.
The red dot and the green star respectively represent the initial point x and the corresponding
adversarial example x?. Our gradient-based attack seeks to find this adversarial example while
minimizing the number of perturbed features (i.e., the `0 norm of the perturbation). Gray lines
surrounding x demarcate regions where the `0 norm is minimized. The rightmost plot shows the
adversarial images (top row) and the corresponding perturbations (bottom row) found by �-zero
during the three steps highlighted in the leftmost plot, alongside their prediction and `0 norm.

To tackle these issues, in this work we propose a novel attack technique, namely �-zero, which
iteratively promotes the sparsity of the adversarial perturbations, minimizing their `0 norm (see
Fig. 1 and Sect. 2). The underlying idea is to leverage a differentiable approximation of the actual `0
norm, which is better suited to gradient-based optimizers. Specifically, we employ the approximation
initially introduced by Osborne et al. (2000b), and more recently adopted by Cinà et al. (2022) for
staging energy-latency poisoning attacks. This method offers an unbiased, differentiable estimation
of the true `0 norm, allowing us to optimize it via gradient descent.

Our experiments (Sect. 3) provide compelling evidence of the remarkable performance of our
attack. We evaluate �-zero on several benchmark datasets, including MNIST, CIFAR10, and
ImageNet, considering baseline and robust models from Robustbench (Croce et al., 2021). We
compare its performance with state-of-the-art attacks, showing that �-zero achieves better results
in terms of attack success rate and perturbation size, while being significantly faster and without
requiring any sophisticated and time-consuming hyperparameter tuning. Overall, our approach
encompasses two fundamental characteristics for a proficient adversarial attack, i.e., effectiveness
and scalability, making it a catalyst for significant advancements in developing novel models with
improved robustness, as well as better robustness evaluation tools.

2 �-ZERO : MINIMUM `0-NORM ADVERSARIAL EXAMPLES

We present here �-zero, our gradient-based approach to finding minimum `0-norm adversarial
examples. We start by describing the considered threat model and then give a formal overview of the
proposed attack and its algorithmic implementation.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks. This setting is useful for worst-case evaluation of the adversarial robustness of DNN models,
providing empirical upper bounds on the performance degradation that may incur when they are
attacked, and it is the usual setting adopted also in previous work related to gradient-based adversarial
robustness evaluations (Carlini & Wagner, 2017; Croce et al., 2021; Pintor et al., 2021).

Problem Formulation. In this work, we seek untargeted minimum `0-norm adversarial perturbations
that steer the model’s decision towards misclassification. To this end, let x 2 X = [0, 1]d be a
d-dimensional input sample, y 2 Y = {1, . . . , l} its associated true label, and f : X ⇥⇥ 7! Y the
target model, parameterized by ✓ 2 ⇥. While f outputs the predicted label, we will also use fk to
denote the continuous-valued output (logit) for class k 2 Y . The goal of our attack is to find the
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minimum `0-norm adversarial noise �? such that the corresponding adversarial example x? = x+�?

is misclassified by f . This is formalized as the following optimization problem:

�? 2 arg min
�

k�k0 , (1)

s.t. f(x + �,✓) 6= y , (2)
x + � 2 [0, 1]d , (3)

where k · k0 denotes the `0 norm, which counts the number of non-zero dimensions. The hard-
constraint in Equation 2 ensures that the perturbation � induces the target model f to misclassify the
perturbed sample x?. Finally, Equation 3 represents a box constraint, ensuring that the adversarial
example x? lies in [0, 1]d. Note that when the source point x is already misclassified by f , the trivial
solution to the above minimization problem is �? = 0.

Contrary to the `1, `2, `1 norms, when considering the `0 norm the problem becomes intractable
with standard methods. The `0 norm is indeed non-differentiable, thus unsuitable for gradient-
based optimization. To address this issue, we exploit the `0-norm approximation function proposed
by Osborne et al. (2000b), and defined as:

ˆ̀
0(x) =

dX

i=1

x2
i

x2
i + �

, � > 0, ˆ̀
0(x) 2 [0, d] , (4)

with � being a hyperparameter controlling its approximation quality. When � tends to zero, the
approximation becomes more accurate. However, an increasingly accurate approximation could lead
to the same optimization limits of the `0 norm.

Finally, similarly to previous work (Carlini & Wagner, 2017; Rony et al., 2021a; Szegedy et al.,
2014b), we transform the hard-constraint in Equation 2 in a soft-constraint. The resulting optimization
problem therefore becomes:

�? 2 arg min
�

L(x + �, y,✓) +
1

d
ˆ̀
0(�) (5)

s.t. x + � 2 [0, 1]d , (6)

where we substituted the ||�||0 with the approximation ˆ̀
0(�) and normalize it with respect to the

number of features d to ensure that its value is within the interval [0, 1]. The loss L is defined as:

L(x, y,✓) = max

✓
fy(x,✓)�max

k 6=y
fk(x,✓), 0

◆
+ I(f(x,✓) = y) . (7)

The first term in L represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, 2017).
The second term merely adds 1 to the loss if the sample is correctly classified.1 This ensures that
the loss term L is 0 only when an adversarial example is found, and higher than 1 otherwise. This
in turn implies that the loss term L is always higher than the `0-norm term in Equation 5 (as the
latter is bounded in [0, 1]), when no adversarial example is found. Accordingly, it is not difficult
to see that the feasible solutions of this problem only correspond to minimum-norm adversarial
examples. It is also worth remarking that, conversely to the objective function proposed by Carlini
& Wagner (2017), our objective does not require tuning the tradeoff between minimizing the loss
and reducing the perturbation size to find minimum-norm adversarial examples, thereby avoiding a
computationally-expensive line search for each input sample. In fact, the proposed objective function
inherently induces an alternate optimization process between the loss term and the `0-norm penalty,
as shown in the Appendix (see Figure 4). In particular, when the sample is not adversarial, the attack
algorithm mostly aims to decrease the loss term to find an adversarial example, while increasing the
perturbation size. Conversely, when an adversarial example is found, the loss term is cropped to zero,
and the perturbation size is gradually reduced.

Solution Algorithm. Given that the approximation function ˆ̀
0 in Equation 4 is differentiable, we

derive a custom gradient-based algorithm for solving Equation 5 and Equation 6. Our attack, detailed
1While a sigmoid approximation may be adopted to overcome the non-differentiability of the I term at the

decision boundary, we simply set its gradient to zero everywhere, without any impact on the experimental results.
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Algorithm 1: �-zero Attack Pseudocode.
Input: x 2 [0, 1]d, input sample; y, true class label; ✓, target model; N, number of iterations;

�, ˆ̀
0-approximation parameter; ⌘0, initial step size; ⌧0, initial sparsity threshold.

Output: x?, minimum `0 norm adversarial example.
1 �  0; �?  �; ⌧  ⌧0; ⌘  ⌘0 . initialization.

2 for i in 1, . . . , N do
3 rg r�[L(x + �, y,✓) + 1

d
ˆ̀
0(�, �)] . gradient computation.

4 rg rg/krgk1 . gradient normalization.

5 �  clip(x� [� � ⌘ ·rg])� x . � update.

6 �  ⇧⌧ (�) . zeroing � components below ⌧.
7 ⌘ = cosine_annealing(⌘0, i) . ⌘ update.

8 If L(x + �, y,✓)  0 ⌧+ = 0.01 · ⌘ else ⌧� = 0.01 · ⌘ . ⌧ update.

9 end
10 If L(x + �, y, ✓)  0 ^ k�k0 < k�?k0 �?  � . �?

update.

11 return x?  x + �?

in Algorithm 1, is fast, not memory-demanding, and easy to implement. It starts by initializing the
adversarial perturbation � = 0 (line 1). Subsequently, it computes the gradient of the objective
function in Equation 5 with respect to � (line 3), and normalizes it to speed up convergence (Rony
et al., 2018; Pintor et al., 2021). We then update � to minimize the objective via gradient descent,
while also accounting for the box constraints in Equation 6 through the usage of the clip operator
(line 5). We enforce sparsity in � by clipping to 0 all the components lower than the current sparsity
threshold ⌧ (Line 6). This step is necessary since the ˆ̀

0 approximation is not exact, and might result
in some values being closer to zero but not precisely zero. We therefore encourage the attack to focus
only on the most influential features, discarding less significant contributions. We then decrease the
step size ⌘ by following a cosine-annealing schedule (Rony et al., 2018; Pintor et al., 2021), and
adjust the sparsity threshold ⌧ dynamically. In particular, if the current sample is adversarial, we
increase ⌧ to promote sparser perturbations; otherwise, we decrease ⌧ to reduce L. The variations
of ⌧ are also iteratively reduced following the same cosine-annealing schedule of the step size. The
above process is repeated for N iterations, and if during each iteration, we find a better solution
that is adversarial and has a lower `0 norm, we update the optimal perturbation �? to the current
minimum (line 10). Finally, the best adversarial perturbation �? identified during the optimization
process is returned (line 11. In conclusion, the main contributions behind �-zero are: (i) the idea of
exploiting the numerically-stable approximation of the `0 norm by Osborne et al. (2000b) to design a
novel loss function (Equation 5), which enables simultaneously searching for an adversarial example
while minimizing the `0 norm of the perturbation (i.e., a non-trivial task given the non-convexity of
this norm); and (ii) the introduction of the sparsity threshold ⌧ and its dynamic adjustment policy
which, along with gradient normalization and step size annealing, help find very sparse adversarial
perturbations faster. The combination of our novel formulation with the aforementioned optimization
tricks yields a very fast and reliable `0-norm attack algorithm, which does not even require specific
hyperparameter tuning, as we will show in our experimental results.

3 EXPERIMENTS

We report the extensive evaluation of the proposed �-zero attack to compare its performance and
efficiency with other state-of-the-art `0 attacks, considering sixteen baseline and robust models and
three different datasets.

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three popular datasets used for benchmarking adversarial ro-
bustness: MNIST (LeCun & Cortes, 2005), CIFAR10 (Krizhevsky, 2009) and ImageNet (Krizhevsky
et al., 2012). We use a random subset of 1000 test samples from ImageNet to evaluate attacks
performance on it, while we consider the entire test set for MNIST and CIFAR10. For the MNIST
and CIFAR10 datasets we used a batch size of 32, while for ImageNet we opted for a batch size of 16.

4



Under review as a conference paper at ICLR 2024

Attacks. We compare �-zero against the following state-of-the-art, minimum-norm attacks, in
their `0-norm variants: the Voting Folded Gaussian Attack (VFGA) attack (Césaire et al., 2021), the
Primal-Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chau, 2021), the Brendel &
Bethge (BB) attack (Brendel et al., 2019), including also its variant with adversarial initialization
(BBadv), and the Fast Minimum Norm (FMN) attack (Pintor et al., 2021). We also consider two
state-of-the-art `1-norm attacks as additional baselines, i.e., the Elastic-Net (EAD) attack (Chen
et al., 2018) and SparseFool (Modas et al., 2019), along with two further `0-norm attacks, i.e., the
`0-norm Projected Gradient Descent (PGD-`0) attack (Croce & Hein, 2019) and the Sparse Random
Search (Sparse-RS) attack (Croce et al., 2022).2 Compared to minimum-norm attacks, PGD-`0
and Sparse-RS aim to maximize misclassification confidence within a given maximum number of
modifiable features k. Thus, to ensure a fair comparison with minimum-norm attacks, as suggested by
Rony et al. (2021b), we tune their perturbation budget k by performing a sample-wise binary search
to find minimum-norm adversarial examples. Further details are reported in the Appendix. Finally,
we configure all attacks to manipulate input values separately, without constraining the manipulations
to individual pixels; e.g., on CIFAR10, the number of modifiable inputs is thus 3⇥ 32⇥ 32 = 3072.

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. Our goal is to compare �-zero on a vast set of models to ensure its broad effectiveness
and to expose vulnerabilities that may not be revealed by other attacks (Croce & Hein, 2021a). For the
MNIST dataset, we consider two adversarially-trained convolutional neural network (CNN) models
by Rony et al. (2021a), i.e., CNN-DDN and CNN-Trades. These models have been trained to be
robust to both `2 and `1 adversarial attacks. We denote them respectively with M1 and M2. For the
CIFAR10 and ImageNet datasets, we employ state-of-the-art robust models from RobustBench (Croce
et al., 2021). For CIFAR10, we adopt eight models, denoted with C1-C10. C1 (Croce et al., 2021)
is a non-robust WideResNet-28-10 model. C2 (Carmon et al., 2019) and C3 (Augustin et al., 2020)
combine training data augmentation with adversarial training to improve robustness to `1 and `2
attacks. C4 (Engstrom et al., 2019) is an adversarially trained model that is robust to `2-norm attacks.
C5 (Gowal et al., 2021) exploits generative models to artificially augment the original training set
and improve adversarial robustness to generic `p-norm attacks. C6 (Chen et al., 2020) is a robust
ensemble model. C7 (Xu et al., 2023) is a recently proposed adversarial training defense robust to `2
attacks. C8 (Addepalli et al., 2022) enforces diversity during data augmentation and combines it with
adversarial training. Finally, we also include the `1 robust models C9 (Croce & Hein, 2021b) and
C10 (Jiang et al., 2023). For ImageNet, we consider a pretrained ResNet-18 denoted with I1 (He
et al., 2015), and five robust models to `1-attacks, denoted with I2 (Engstrom et al., 2019), I3 (Wong
et al., 2020), I4 (Salman et al., 2020), I5 (Hendrycks et al., 2021), and I6 (Salman et al., 2020).

Hyperparameters. We conduct our experiments using the default hyperparameters used in the
original implementation of the attacks from AdversarialLib (Rony & Ben Ayed) and Foolbox (Rauber
et al., 2017). We only change the number of steps to 1000, to ensure that all attacks reach con-
vergence (Pintor et al., 2022). VFGA (Césaire et al., 2021) constitutes the only exception, as it
terminates only once an adversarial example is obtained. We report additional results using 100
steps in the Appendix. As gradient-based attacks perform one forward and one backward pass in
each step, we double the steps for Sparse-RS, which, being a gradient-free attack, only makes one
forward pass per iteration. This ensures a fair comparison. For �-zero, we set 1000 steps, ⌘0 = 1,
⌧0 = 0.5 and � = 0.1. We keep the same configuration for all models and datasets, showing that no
specific hyperparameter tuning is required for �-zero. Additional analyses of the influence of the
hyperparameters on the performance of �-zero can be found in the Appendix.

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR), defined as the ratio
of successfully attacked samples, and the median `0 norm. Additionally, we report ASRk, which
indicates the ASR of attacks with a fixed budget of k perturbed features. We also compare the
computational effort of each attack considering their execution time, the average number of queries
(i.e., the sum of #forwards and #backwards) needed to perform each attack, and the Video Random
Access Memory (VRAM) consumption.3 We measure the execution time on a workstation with
NVIDIA A100 Tensor Core GPU (40GB memory) and two Intel® Xeo® Gold 6238R processors. For
measuring the memory consumption, we consider the maximum amount of VRAM used by each

2Sparse-RS is a gradient-free (black-box) attack, which only requires query access to the target model. We
consider it as an additional baseline in our experiments, but it should not be considered a direct competitor of
gradient-based attacks, as it works under much stricter assumptions (i.e., no access to input gradients).

3VRAM is a type of memory designed explicitly for use in Graphics Processing Units (GPUs).
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Figure 2: Robustness evaluation curves, reporting ASR versus perturbation size, for M2 on MNIST
(leftmost plot) , C2 on CIFAR10 (middle plot), and I1 on ImageNet (rightmost plot).

attack among all the batches, which is a minimum requirement to run it without failure. By assessing
the performance of each attack across these various metrics, we can gain a more comprehensive
understanding of their effectiveness and scalability.

3.2 EXPERIMENTAL RESULTS

Attack Performance. Table 1 reports, for all models and datasets, the median value of ||�||0 and the
attack success rates. The values obtained confirm that our attack can find smaller perturbations in
all cases. Specifically, over all the dataset-model configurations, �-zero drastically improves the
state of the art of sparse attacks. For example, on CIFAR10 models, �-zero outperforms FMN by
reducing the median number of manipulated features from 52 to 32 in the best case (C9) and from
7 to 5 in the worst case (C1). On ImageNet models, the median k�k0 is reduced from 58 to 23 in
the best case (I6) and from 9 to 3 in the worse case (I2). Furthermore, we observe that the ASR of
BB, which is the closest attack in terms of performance to �-zero, drops when used in settings
where the input dimensionality increases (e.g., CIFAR10), and it becomes unfeasible in extreme
cases (i.e., ImageNet). From Table 1, we can also notice that the median k�k0 of BB sometimes
is1, since its ASR is lower than 50%. BBadv does not suffer from the same issue but �-zero
continues to outperform that variant too. Lastly, we show in the Appendix that our attack always
reaches ASR=100% against all models, even when decreasing the number of iterations. For other
attacks, this is not ensured, particularly when reducing the number of iterations.

Computational Effort. We report the runtime comparison, the number of queries issued to the
model, and the VRAM used by each attack. The results show that our attack is up to 2 (16) times
faster than BB when considering MNIST (CIFAR10) models. Therefore, even if BB finds slightly
better `0-adversarial examples in one configuration, its computational effort is much higher than
�-zero. Furthermore, we observed that BB often stops unexpectedly before reaching the specified
number of steps because it fails to initialize the attack.
The speed advantage of �-zero is given because our attack is a simple gradient-based approach that
avoids costly inner projections, such as the ones used by BB. On the other hand, �-zero is slightly
slower than FMN and VFGA; however, it compensates by finding better solutions. Notably, similarly
to them, �-zero requires fewer queries than remaining attacks. Furthermore, the speed-competing
method VFGA is memory-hungry, forcing us to reduce the batch size when testing its effectiveness
on larger models, e.g., C5, C6, and C7. Conversely, running our algorithm also requires reasonable
VRAM, as �-zero implements a lightweight search that includes only the cost of computing
gradients and norms for each step. Overall, the practical advantages of our attack make it a promising
direction for benchmarking large DNNs in an effective and time-efficient way.

ImageNet Results. For ImageNet, we restrict our analysis to EAD, FMN, and VFGA, as they
outperform competing attacks on MNIST and CIFAR10 in terms of ASR, perturbation size, and
execution time. While all ImageNet models are deemed robust to `1 and `1-norm attacks, they are
vulnerable to our `0-attack. Remarkably, I6 offers higher robustness against `0 attacks, requiring
more effort to evade it. The results show that in most configurations, our attack finds adversarial
perturbations with a lower median `0-norm, while being at the same time faster and memory-
comparable. The results in the Appendix further confirm that even when decreasing the number of
iterations to 100, our attack finds lower `0-norm solutions and always achieves ASR=100%.
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Table 1: Attack results with 1000 steps. For each attack, we report the corresponding ASR10, ASR50,
ASR, median k�k0, sample-level average execution time and the number of queries q (x1000), and the
maximum VRAM consumed during the execution. The symbol ⇤ in VFGA suggests a potential overestimation due to using a smaller batch size for memory constraints.

Performance Computational effort Performance Computational effort
Attack Model ASR(%)10 ASR(%)50 ASR(%) ||�||0 t(s) q VRAM Model ASR(%)10 ASR(%)50 ASR(%) ||�||0 t(s) q VRAM

MNIST
EAD

M1

1.14 53.66 100.0 49 0.47 6.28 0.05

M2

1.2 55.57 100.0 48 0.5 6.73 0.05
VFGA 9.62 82.42 99.98 27 0.05 0.77 0.21 1.8 39.33 99.95 57 0.05 1.33 0.21
PDPGD 2.97 74.08 100.0 38 0.23 2.0 0.04 3.31 66.3 100.0 42 0.23 2.0 0.04
BB 14.97 97.86 100.0 18 0.90 2.99 0.05 25.95 91.62 100.0 18 0.74 3.71 0.05
BBadv 14.81 91.23 100.0 19 0.77 2.01 0.07 14.42 40.88 100.0 89 0.71 2.01 0.07
PGD-`0 12.22 99.84 100.0 19 1.15 1.99 0.07 5.04 90.17 100.0 24 1.42 2.0 0.06
Sparse-RS 12.57 83.74 100.0 25 3.45 3.05 0.07 60.04 98.48 100.0 9.0 2.51 2.44 0.06
SPARSEFOOL 4.86 6.76 96.98 469 1.07 0.18 0.06 0.93 1.21 91.68 463 2.87 0.86 0.07
FMN 7.29 93.74 100.0 29 0.21 2.0 0.04 10.86 91.84 99.41 24 0.22 2.0 0.04
�-zero 19.6 99.98 100.0 16 0.31 2.0 0.04 61.57 100.0 100.0 9.0 0.31 2.0 0.04

CIFAR10
EAD

C1

6.74 21.33 100.0 126 2.32 6.9 1.47

C5

14.47 35.9 100.0 74 10.76 5.55 9.92
VFGA 48.58 93.41 99.99 11 0.17 0.32 11.96 27.71 67.51 99.88 29 4.91⇤ 1.02 > 40
PDPGD 16.58 78.97 100.0 27 0.64 2.0 1.31 17.68 40.89 100.0 69 3.96 2.0 8.86
BB 69.77 99.79 100.0 7 5.81 2.76 1.47 13.46 17.14 17.94 1 3.46 2.08 9.93
BBadv 69.58 99.86 100.0 7 4.57 2.01 1.63 – – – – – – –
PGD-`0 31.82 85.21 100 18 6.46 1.93 1.73 – – – – – – –
Sparse-RS 59.64 98.59 100 9 3.76 1.49 1.74 – – – – – – –
SPARSEFOOL 11.19 11.19 56.56 3072 1.42 0.37 1.57 – – – – – – –
FMN 67.52 99.97 100.0 7 0.60 2.0 1.3 27.97 68.38 100.0 29 3.91 2.0 8.86
�-zero 80.84 100.0 100.0 5 0.83 2.0 1.51 44.72 94.14 100.0 12 4.39 2.0 9.92
EAD

C2

12.7 30.38 100.0 90 1.92 5.70 1.47

C6

17.29 33.68 100.0 105 8.33 5.37 5.39
VFGA 28.98 75.37 99.92 24 0.59 0.78 11.71 34.17 81.79 99.89 20 4.30⇤ 0.62 > 40
PDPGD 16.47 42.50 100.0 63 0.64 2.0 1.32 21.37 48.96 99.82 51 2.15 2.0 5.12
BB 11.73 14.24 14.7 1 0.63 2.05 1.47 37.98 78.76 83.58 16 12.49 3.14 5.39
BBadv 37.64 90.57 100 16 4.68 2.01 1.64 – – – – – – –
PGD-`0 21.4 56.85 100 39 5.79 1.92 1.75 – – – – – – –
Sparse-RS 31.02 62.81 90.78 27 6.6 1.89 1.71 – – – – – – –
SPARSEFOOL 18.31 18.77 56.39 3072 11.31 1.4 1.62 – – – – – – –
FMN 28.43 74.7 100.0 26 0.59 2.0 1.31 33.3 79.7 100.0 21 2.05 2.0 5.12
�-zero 47.15 95.38 100.0 11 0.82 2.0 1.53 49.29 97.14 100.0 11 2.71 2.0 5.39
EAD

C3

9.21 11.42 100.0 360 2.53 5.62 1.89

C7

9.38 23.62 100.0 148 2.23 5.8 2.15
VFGA 21.82 66.5 99.62 34 0.48 0.94 16.53 22.79 56.72 99.81 39 3.15⇤ 1.84 > 40
PDPGD 13.96 45.15 100.0 55 1.12 2.0 1.8 11.97 38.41 100.0 69 0.76 2.0 2.0
BB 21.32 56.78 58.64 33 2.31 2.89 1.89 38.82 93.24 100.0 15 6.49 2.87 2.16
BBadv 31.64 96.31 100.0 17 3.92 2.01 1.99 – – – – – – –
PGD-`0 17.33 58.82 100.0 39 10.31 1.93 2.30 – – – – – – –
Sparse-RS 21.41 61.00 100.0 36 5.54 2.26 2.20 – – – – – – –
SPARSEFOOL 14.3 21.22 98.74 3070 3.62 0.46 1.90 – – – – – – –
FMN 20.61 71.7 100.0 33 1.08 2.0 1.8 23.95 70.24 100.0 30 0.73 2.0 2.0
�-zero 36.61 97.55 100.0 15 1.41 2.0 1.92 44.53 96.77 100.0 12 0.93 2.0 2.15
EAD

C4

9.48 11.14 100.0 398 2.57 5.66 1.89

C8

15.75 29.23 100.0 118 1.01 5.32 0.41
VFGA 30.5 90.04 99.88 19 0.28 0.52 16.53 29.55 74.15 99.54 25 0.17 0.77 3.07
PDPGD 15.5 49.19 100.0 51 1.16 2.0 1.8 19.43 41.0 100.0 66 0.44 2.0 0.36
BB 16.32 31.03 31.36 1 3.01 2.37 1.89 38.64 91.83 100.0 15 10.90 2.93 0.41
BBadv 37.06 99.11 100.0 14 4.51 2.01 1.99 38.01 93.04 100.0 16 4.6 2.01 0.54
PGD-`0 19.9 70.04 100.0 33 8.97 1.93 2.30 24.20 59.98 100 36 4.1 1.9 0.56
Sparse-RS 22.82 62.18 100 36 13.2 2.26 2.20 31.51 67.82 98.46 27 9.84 3.95 0.54
SPARSEFOOL 15.52 40.86 93.82 3039 9.3 1.56 1.90 23.18 26.54 51.80 3072 0.58 0.33 0.51
FMN 26.85 85.6 100.0 23 1.09 2.0 1.8 29.75 73.71 100.0 16 0.41 2.0 0.36
�-zero 42.96 99.15 100 12 1.39 2.0 1.91 44.29 94.21 100.0 13 0.63 2.0 0.51
EAD

C9

12.96 13.23 100.0 800 0.94 4.89 0.65

C10

23.94 24.78 100.0 768 1.04 4.99 0.65
VFGA 18.86 49.98 99.72 51 0.32 1.25 4.44 33.61 69.47 99.83 28 0.25 0.82 4.22
PDPGD 15.95 35.13 100.0 75 0.41 2.0 0.59 26.89 42.38 100 66 0.4 2.0 0.60
BB 14.13 22.91 27.64 1 1.04 2.25 0.65 24.72 27.98 29.50 1 0.54 2.09 0.65
BBadv 19.93 72.43 100 34 5.28 2.01 0.64 35.67 82.46 100 22 3.03 2.01 0.65
PGD-`0 17.05 36.85 100.0 72 4.45 1.92 0.72 28.2 45.42 100.0 60 4.44 1.85 0.70
Sparse-RS 17.89 34.56 92.91 90 13.62 2.42 0.69 30.61 48.57 95.45 54 6.29 2.03 0.68
SPARSEFOOL 15.89 24.36 58.29 3072 1.63 0.48 0.66 26.85 43.07 91.14 69 4.32 1.49 0.66
FMN 18.61 48.87 100 52 0.24 2.0 0.60 32.63 62.96 100.0 34 0.35 2.0 0.59
�-zero 21.49 73.02 100.0 32 0.43 2.0 0.71 37.27 82.92 100.0 20 0.42 2.0 0.72

ImageNet
EAD

I1

34.4 36.3 100.0 460 1.69 6.06 1.21

I4

56.2 61.4 100.0 0 1.41 5.29 1.21
VFGA 48.4 72.4 99.2 14 3.03⇤ 1.05 > 40 61.6 76.6 99.3 1 3.44⇤ 1.21 > 40
FMN 48.7 81.0 100.0 12 0.62 2.0 1.14 63.8 78.7 100.0 0 0.57 2.0 1.14
�-zero 62.0 95.9 100.0 5 0.81 2.0 1.19 75.5 92.8 100.0 0 0.72 2.0 1.27
EAD

I2

44.6 51.0 100.0 42 3.64 5.67 4.36

I5

26.5 28.4 100.0 981 3.53 5.49 4.36
VFGA 49.1 63.4 96.7 12 15.17⇤ 2.35 > 40 36.6 59.5 97.9 31 12.12⇤ 1.98 > 40
FMN 50.9 67.0 100.0 9 1.21 2.0 4.25 38.1 67.7 100.0 25 1.23 2.0 4.25
�-zero 63.1 87.4 100.0 3 1.43 2.0 4.43 46.6 86.9 100.0 13 1.51 2.0 4.43
EAD

I3

55.1 60.2 100.0 0 3.53 5.5 4.36

I6

32.3 33.5 100.0 572 8.34 5.34 5.67
VFGA 62.2 76.2 98.8 1 10.12⇤ 1.43 > 40 35.4 46.5 95.5 66 52.32⇤ 3.95 > 40
FMN 64.1 79.5 100.0 0 1.22 2.0 4.25 35.6 47.2 100.0 58 3.15 2.0 5.54
�-zero 75.5 91.4 100 0 1.44 2.0 4.43 40.7 65.1 100.0 23 3.75 2.0 5.91
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EAD ��0�: 42.0 VFGA ��0�: 66.0 SPARSEFOOL ��0�: 275.0 PDPGD ��0�: 64.0 BB ��0�: 6.0 BBadv ��0�: 172.0 PGD0 ��0�: 19.0 Sparse-RS ��0�: 16.0 FMN ��0�: 36.0 �-zero ��0�: 5.0

EAD ��0�: 107.0 VFGA ��0�: 13.0 SPARSEFOOL ��0�: 12.0 PDPGD ��0�: 39.0 BB ��0�: 0.0 BBadv ��0�: 11.0 PGD0 ��0�: 30.0 Sparse-RS ��0�: 96.0 FMN ��0�: 14.0 �-zero ��0�: 9.0

Figure 3: Randomly chosen adversarial examples from MNIST M2 (top-row), CIFAR10 C2 (bottom
row) found by adversarial attacks we tested.

Robustness Evaluation Curves. Complementary to the performance results shown in Table1, we
present the robustness evaluation curves in Fig. 2 for each attack on M2, C2, and I1. These curves
go beyond the only median statistic and ASRk, providing more evidence that �-zero achieves
higher ASR with smaller `0-norm perturbations compared to the other attacks. Moreover, the ASR of
our attack goes up to 100%, validating the correctness of our gradient-based approach even when
considering unbounded perturbations (Carlini & Wagner, 2017). These results reinforce our previous
findings that �-zero is an efficient and effective method for generating adversarial examples
with smaller `0 norm. In the Appendix, we include similar curves for all the other experimental
configurations, for which results are consistent. In summary, our �-zero attack consistently
outperforms other state-of-the-art methods, suggesting that it can identify smaller and more effective
perturbations, making it a highly promising robustness evaluation method.

Visual Inspection of Adversarial Examples. In Fig. 3, we show adversarial examples generated
with competing `0-attacks, and our �-zero. First, we can see that `0 adversarial perturbations are
always clearly visually distinguishable. Their goal, indeed, is not to be indistinguishable to the human
eye – a common misconception related to adversarial examples (Biggio & Roli, 2018; Gilmer et al.,
2018) – but rather to show whether and to what extent models can be fooled by just changing a few
input values. For example, note how FMN and VFGA find similar perturbations, as they mostly target
overlapping regions of interest. Conversely, EAD finds sparse perturbations scattered throughout
the image but with a lower magnitude. This divergence is attributed to EAD’s reliance on an `1
regularizer, which promotes sparsity, thus diminishing perturbation magnitude without necessarily
reducing the number of perturbed features. Conversely, our attack does not focus on specific areas or
patterns within the images but identifies diverse critical features, whose manipulation is sufficient to
mislead the target models. Given the diversity of solutions that the attacks offer, we argue that their
combined usage may still improve adversarial robustness evaluation to sparse attacks.

4 RELATED WORK

Due to the inherent complexity of optimizing over non-convex and non-differentiable constraint,
classical gradient-based algorithms like PGD (Madry et al., 2018) cannot be used for computing
`0-norm attacks. We categorize the existing `0-norm attacks into two main groups: (i) multiple-norm
attacks extended to `0, and (ii) attacks specifically designed to optimize `0 perturbations. Furthermore,
we discuss related work that leverages the approximation of `0 for different goals.

Multiple-norm attacks extended to `0. These attacks are developed to work with multiple `p

norms and include the extension of their algorithms to the `0 norm. While they are able to find
sparse perturbations, they often require strong use of heuristics to work in this setting. Brendel
et al. (2019) initializes the attack from an adversarial example far away from the clean sample and
optimizes the perturbation by walking with small steps on the decision boundary trying to get closest
to the original sample. In general, the algorithm can be used for any `p norm, including `0, but the
individual optimization steps are very costly. Pintor et al. (2021) propose the Fast Minimum-Norm
(FMN) attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over `p norms, but it
does not make special adaptations to specifically minimize the `0 norm. Matyasko & Chau (2021)
use a two-player approach that optimizes the trade-off between perturbation size and loss of the attack
and uses relaxations of the `0 norm (e.g., `1/2) to promote sparsity. This scheme however does not
strictly minimize the `0 norm, as the relaxation does not set the lowest components exactly to zero.
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`0-specific attacks. Croce et al. (2022) introduced SparseRS, a random search-based adversarial
attack that explores potential perturbation candidates to return the highest confidence solution. Unlike
minimum-norm attacks, their approach is rooted in a maximum-confidence attack framework with a
predefined number of feature manipulations. Césaire et al. (2021) have designed an attack specifically
for the `0 norm. This attack is modeled as a stochastic Markov problem. It induces folded Gaussian
noise to selected input components, iteratively finding the set that achieves misclassification with
minimal perturbation. However, their approach requires a considerable amount of memory to explore
the possible combinations and to find an optimal solution. This makes it infeasible to use for larger
problems. With �-zero, we show that the benefits from both groups, efficiency and precision, can
be combined to effectively generate sparse `0 attacks. It stands therefore as a promising solution for
evaluating DNNs’ robustness within the `0 threat model, which remains relatively underexplored in
existing benchmarks (Croce et al., 2021).

Approximation of the `0 norm. Given the nonconvex and discontinuous nature of the `0 norm,
the adoption of surrogate approximation functions has been extensively studied (Bach et al., 2012;
Weston et al., 2003; Zhang, 2008). Chen et al. (2018) use elastic-net regularization to calculate
sparse perturbations, however, their attack do not necessarily find minimum `0-norm perturbations.
In our work, we use the formulation proposed by Osborne et al. (2000a), which provides an unbiased
estimate of the actual `0. Furthermore, it has been employed by Cinà et al. (2022) in the context of
poisoning attacks to decrease sparsity in the model’s activations, while we use it as a penalty term for
crafting minimum `0-norm adversarial examples.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Despite numerous proposed attacks for assessing DNN robustness, evaluation methods tend to
overlook the significance of `0-norm attacks (Chen et al., 2018; Croce & Hein, 2021a). However,
these attacks can provide valuable insights into identifying the minimum manipulated input values
required for successful attacks and reveal crucial information about model limitations. We argue that
this literature gap is primarily due to the non-differentiable nature of the `0 norm and its computational
complexity, which poses challenges for gradient-based optimization.

In this work, we present �-zero, a novel approach that leverages a smooth approximation of the
`0 norm. By making the objective differentiable, our method becomes amenable to optimization
with gradient descent. Through extensive experimentation, we demonstrate the efficacy, precision,
and scalability of �-zero in diverse scenarios, specifically for identifying minimal `0 perturbations.
Our approach consistently discovers smaller minimum-norm perturbations across all models and
datasets, while maintaining computational efficiency in execution time and VRAM consumption, and
without requiring any computationally-demanding hyperparameter tuning. By identifying the smallest
number of input values that can be modified to mislead the target model, our attack provides valuable
insights on the vulnerabilities of DNN models and what they learn as salient input characteristics.
Additionally, it may also provide meaningful insights on how to mitigate such vulnerabilities to
improve robustness.

Although our approach offers promising results for benchmarking DNNs robustness, it relies on the
white-box assumption. However, in the absence of such access, attackers may resort to techniques
like transferability or gradient estimation to exploit vulnerabilities (Carlini et al., 2019; Tramèr et al.,
2020). We acknowledge the significance of this analysis and plan to investigate it further in future
research endeavors.

In conclusion, �-zero emerges as a highly promising candidate for establishing a standardized
benchmark to evaluate robustness against sparse `0 perturbations. By facilitating more reliable and
scalable assessments, it is poised to drive significant advancements in the development of novel
models with improved robustness guarantees against the specific threat model under consideration.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the confines of this study. Rather this study will help improve the understanding of adversarial
robustness properties of DNNs, and identify potential ways in which robustness can be improved.
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