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Abstract

Forecast reconciliation, an ex-post technique applied to forecasts that must satisfy con-
straints, has been a prominent topic in the forecasting literature over the past two decades.
Recently, several efforts have sought to extend reconciliation methods to the probabilistic
settings. Nevertheless, formal theorems demonstrating error reduction in nonlinear con-
straints, analogous to those presented in Panagiotelis et al. (2021), are still lacking. This
paper addresses that gap by establishing such theorems for various classes of nonlinear hy-
persurfaces and vector-valued functions. Specifically, we derive an exact analog of Theorem
3.1 from Panagiotelis et al. (2021) for hypersurfaces with constant-sign curvature. Addi-
tionally, we provide an error reduction theorem for the broader case of hypersurfaces with
non-constant-sign curvature and for general manifolds with codimension > 1. To support
reproducibility and practical adoption, we release a JAX-based Python package, JNLR,
implementing the presented theorems and reconciliation procedures.

1 Introduction

Forecast reconciliation is a post-processing technique used to minimally correct an original set of forecasts,
ensuring they satisfy known structural constraints. A straightforward example is the case of additive signals,
grouped into increasingly larger sets, such as the quantity of a given good sold at the regional, state, and
national levels. In such cases, the forecasts must obey additive relationships, a setting typically referred to
as hierarchical forecasting (HF) in the literature.

Forecast reconciliation has become a widely adopted technique because it can be applied ex-post, indepen-
dently of the forecasting model. This makes it a model-agnostic method for enforcing known structural
constraints on forecasted signals. Reconciliation is typically motivated by two main considerations. An
existential reason, if forecasts not respecting the known constraints are unusable or of little value. In this
case reconciling is not an option. The second is a utilitarian reason: knowing the signals lie on a subman-
ifold induces a bias in the production of the forecasts; this can lower the forecasting error. In the case of
linear constraints, Theorem 3.1 of Panagiotelis et al. (2021) shows that orthogonally projecting forecasts
onto the consistent subspace reduces the overall root mean squared error (RMSE) across the hierarchy. This
refers to the RMSE of a single forecast vector at a given time point, computed as the square root of the
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average of its squared components (as opposed to the RMSE over an entire test set). However, when the
constraints are nonlinear, such a reduction is not always guaranteed: if reconciliation is performed solely to
boost accuracy—rather than to strictly enforce the constraints—it can in fact lead to worse predictions. The
ability to reliably estimate the probability of RMSE reduction under nonlinear constraints will significantly
drive the adoption of reconciliation for improving forecasting accuracy. In this paper, we present theorems
that establish conditions under which this RMSE reduction holds. In other words, these conditions answer
the question: Should I expect an RMSE reduction when applying nonlinear reconciliation to the current
forecasted point?

1.1 Linear reconciliation

Originally studied in industrial management as family-based forecasting (Fliedner, 2001), HF remains an
active research topic, as evidenced by its inclusion in the 2020 M5 competition, where the organizers con-
cluded that new methods capable of minimizing errors across all levels could offer significant accuracy gains
(Makridakis et al., 2022). The simplest reconciliation strategy, bottom-up (Orcutt et al., 1968; Dunn et al.,
1976), forecasts only the most disaggregated series, aggregating them upward. However, bottom-level series
often have low signal-to-noise ratios, limiting performance. Forecasting all series independently leads to
incoherent results unless reconciled. A major step forward was presented in (Hyndman et al., 2011), where
the authors proposed an optimal reconciliation based on generalize least square (GLS).

Later refinements (Athanasopoulos et al., 2009; Wickramasuriya et al., 2019) proposed the use of covariance
of base forecast errors. Later modification of the method include dropping the unbiasedness assumption
(Ben Taieb et al., 2017; Di Modica et al., 2021), extension to temporal hierarchies, where series are aggregated
over time (Athanasopoulos et al., 2017; Yang et al., 2017) and learning dynamic hierarchies (Cini et al.,
2020; 2024). While point forecast reconciliation is well established, probabilistic reconciliation remained
at first under-explored due to its complexity. Closed-form solutions exist only under strong assumptions
(e.g., Gaussianity) (Corani et al., 2021), or errors’ independence, when aggregation can be performed using
convolutions. Other techniques based on sample reordering or copulas have been proposed (Jeon et al., 2019;
Taieb et al., 2021), though they require knowledge of the joint cumulative density function (CDF) at each
level or rely on empirical approximations. A recent framework reconciles samples from joint but incoherent
distributions via constrained optimization based on scoring rules (Panagiotelis et al., 2023), outperforming
copula methods but still assuming known joint CDF.

1.2 Non-linear reconciliation

The nonlinear reconciliation problem has been less studied in the context of forecasting. Since the nonlinear
reconciliation problem doesn’t usually have an analytical, closed-form solution, its application is less attrac-
tive than its linear counterpart. A method that could be used to produce a set of coherent forecasts for
nonlinear manifolds, even if the authors applied it only to linear hierarchies, has been proposed by Spiliotis
et al. (2021), and later applied in Rombouts et al. (2025), where a nonlinear regressor is trained to produce
forecasts for the independent signal starting from the independent forecasts of all the signals. However,
this method needs to train a machine learning model, and one has no control on the kind of projection
applied, since this is implicitly learned by the model. On the other side, in the context of state estimation,
nonlinear reconciliation techniques are well known. At the intersection of forecasting and nonlinear state
estimation, the forecast aided state estimation (FASE) method has been proposed in the context of power
grid state estimation (Brown Do Coutto Filho & De Souza, 2009). In FASE the forecasting model is a linear
state-space, and the reconciliation step is equivalent to an iterated extended Kalman filter. In appendix A.1,
we show that the FASE objective function represents a special case of the nonlinear reconciliation problem
we introduce in the next section. That is, the theory presented in this paper is also valid for FASE and its
application to power flow state estimation and forecasting.

1.3 Contributions

The main contributions are the following:
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1. In section 2 we define the nonlinear reconciliation problem and an algorithm for its solution. In
appendix A.1 we show that this algorithm is a generalization of the FASE algorithm.

2. In section 3 we present theorems providing point-wise RMSE reduction conditions for the the non-
linear reconciliation problem, for different classes of manifolds M implicitly defined by level sets of
a function f . We propose two theorems, 1 and 2 for constant sign curvature manifolds and a third
one, Theorem 3, providing a probabilistic reduction condition, which can be applied in the general
case of M with codimension >1 and without assumptions on sub-level sets of f .

3. In section 4 we empirically assessed their correctness. The results confirm the soundness of the
theorems. Furthermore, we explore the possibility of using 3 to craft a reconciliation strategy
beating the naive ones (always reconcile, never reconcile), and shows that these strategies lead to
RMSE reduction.

4. To ease the application of these theorems and reconciliation methods, we release a JAX-based python
library, JNLR https://github.com/supsi-dacd-isaac/JNLR.

2 Nonlinear reconciliation problem

We would like to generate predictions for n signals, ẑ ∈ Rn which are known to satisfy one or more nonlinear
constraints encoded by the level set f(z) = 0 of a vector-valued function f : Rn → Rm with m continuous
constraints (1 < m ≤ n). The nonlinear reconciliation problem minimally displacing the original forecasts ẑ
onto the constraint manifold f(z) = 0 can be written as:

z̃ = S(ẑ) := arg min
z∈M
∥z − ẑ∥W , (1)

where we assume M := {z ∈ Rn | f(z) = 0} where f : Rn → Rm is smooth and 0 is a regular value of f .
Under this assumption, M is an n−m-dimensional differentiable manifold, with codimension m, embedded
in Rn. Here the dimension of M refers to its intrinsic manifold dimension, which could differ from the
ambient dimension in which it is embedded. We define the matrix norm as ∥z∥W = zT Wz and W ≻ 0 is
a weight matrix assumed to be symmetric and positive definite (SPD). SPD assumption ensure a strictly
positive objective. The mapping S : Rn → M is called the nonlinear reconciliation operator. The linear
reconciliation problem is a subset of 1, where M := {z ∈ Rn | z − Azb = 0}, A ∈ Rm×(n−m) and zb ∈ Rn−m

is usually referred to as bottom time series. The hierarchical reconciliation problem is a further subset, in
which A encodes a (usually unweighted) tree structure, ai,j ∈ {0, 1}.

The nonlinear optimisation problem in equation 1 can be solved by forming the Lagrangian

L(z, λ) = (z − ẑ)⊤W (z − ẑ) + λ⊤f(z), λ ∈ Rm. (2)

A stationary point is characterised by ∇zL = 0 and ∇λL = 0. Collecting these conditions gives the vector
equation

F (z, λ) :=
[
∇zL
∇λL

]
=

[
2W (z − ẑ) + J⊤λ

f(z)

]
= 0, J := ∇f(z) ∈ Rm×n. (3)

Starting from (zk, λk), a Newton–Raphson step (δz, δλ) solves[
2W J⊤

J 0

]
︸ ︷︷ ︸
JF (zk, λk)

[
δz

δλ

]
= −F (zk, λk), (4)

after which we update
(zk+1, λk+1) = (zk, λk) + (δz, δλ). (5)
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Existence, uniqueness and convergence Since M = {z ∈ Rn | f(z) = 0} is a closed set due to f being
continuous, and since the objective of equation 1 is coercive, a minimum for equation 1 always exists. Since
the objective is convex, the solution is unique only if M is convex. For the case of non-convex manifolds, under
standard assumptions, namely i) f ∈ C2, ii) the constraint Jacobian J is full row rank: rank(J(zk)) = m, iii)
the reduced Hessian of the Lagrangian is positive definite on the tangent space at z̃, the Jacobian JF

(
z̃, λ̃

)
is non-singular and the Newton iteration is locally quadratically convergent for initial guesses sufficiently
close to

(
z̃, λ̃

)
where

(
z̃, λ̃

)
is a solution of Problem 1 (Nocedal & Wright, 2006; Dennis & Schnabel, 1983;

Ortega & Rheinboldt, 1970).

In practice, for non-convex function, a globalization technique is usually used. In appendix A.5 we pro-
vide the pseudo-code of a solver using line search, which is also present in the released python package.
This algorithm instantiates a classical augmented Lagrangian framework for equality-constrained nonlinear
optimization, as described e.g. by and Bertsekas (2016) and Nocedal & Wright (2006). Under the same
assumptions previously stated for local convergence of the Newton-Raphson solver and standard regularity
assumptions of the augmented Lagrangian framework ((existence of a KKT point, Lipschitz continuity of
the derivatives, and sufficiently accurate solution of the subproblems), augmented Lagrangian methods with
line-search-based quasi-Newton inner solvers are known to be globally convergent in the sense that any ac-
cumulation point of the outer iterates satisfies the KKT conditions of the original constrained problem. We
do not derive new convergence results here, but we rely on this well-established theory; in our experiments,
the algorithm converged robustly for all tested forecasts.

3 Error reduction theorems

In the case of linear constraints, it has been shown that reconciliation via orthogonal projection always
reduces the overall point-wise prediction error. This result relies on the Pythagorean theorem and was
demonstrated in Panagiotelis et al. (2021). In this section, we derive analogous theorems for nonlinear
constraints.

All proofs are based on a geometric interpretation of problem 1, as illustrated in Figure 1, which depicts the
reconciliation process for two examples of predicted points, denoted by ẑ.

Let ẑ be a prediction of the true point z, and let z̃ denote the orthogonal projection of ẑ onto the manifold
M . We define three key vectors: the original prediction displacement δ̂ = z− ẑ, the reconciled displacement
after projection δ̃ = z − z̃, and the reconciliation adjustment δπ = z̃ − ẑ.

The condition for RMSE reduction can then be stated as:

∥δ̂∥2 ≥ ∥δ̃∥2 (6)

Using the vectorial relation δ̂ = δπ + δ̃ this becomes:

∥δπ∥2 + 2δT
π δ̃ ≥ 0 (7)

that can be rewritten as:
δT

π δ̃ ≥ −∥δπ∥2

2 (8)

3.1 Constant sign curvature hypersurfaces

A hypersurface in Rn is a smooth submanifold with codimension 1 that can be locally defined as the level set
M = {z ∈ Rn : f(z) = c}, where f : Rn → R is a smooth function and c is a regular value (i.e., ∇f(z) ̸= 0
for all z ∈M). As an example, Figure 1 shows the hypersurface given by M = {z ∈ R2 : f(z) ≜ y− x2 = 0}
as a thick black line, while blue and violet represent regions of the negative and positive values of f(z).

For hypersurfaces with a constant sign curvature, we can exploit the fact that they possess a supporting
hyperplane at the point of projection. If the forecasted point ẑ is on the right side of the hypersurface, it will
see the surface bending away from it, which is sufficient to guarantee a reduction of the error independently
from where the true point z is located.
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Figure 1: Conceptual plot for Theorem 1 (ẑ with negative f(ẑ) in the bottom right) and Theorem 3 (ẑ with
positive f(ẑ), shown along atoms of its predictive distribution and their projection onto M).

Theorem 1: Constant sign curvature hypersurfaces

Let M = {z : f(z) = 0} ⊂ Rn be a hypersurface defined by f : Rn → R ∈ C2 with ∇f(z) ̸= 0
on M and with convex sub or super level sets. Given a prediction ẑ ∈ Rn , denote by z̃ ∈ M its
orthogonal projection onto M . A sufficient local condition, that can be computed from the value of
f at the forecasted point ẑ and the Hessian at the projection point z̃, for the reduction of the RMSE
after projecting ẑ into z̃ is the following:

sign(f(ẑ)) · λmin(Htan(z̃)) > 0 (9)

where Htan denotes the Hessian H = D2f(z) restricted to the tangent space of M (see appendix A.2)
and λmin denotes its smallest eigenvalue.

Proof 1 A bounding condition for equation 7 to be positive is δT
π δ̃ ≥ 0 ∀ δ̃. That is, if we can show that

this condition holds for arbitrary values of δ̃ the theorem holds. We proceed in this way since δ̃ depends on
where the true point will be on the manifold, which is unknown at prediction time, so the need of bounding
the expression for any value of δ̃. Since δπ is an orthogonal projection onto M , it is parallel to the gradient
at z̃, so we can rewrite

µ∇f(z̃)T δ̃ ≥ 0 ∀δ̃ (10)
The sign of µ is given by the side ẑ is located with respect to the level set f(z) = 0, that is

sign(µ) = −sign(f(ẑ)) (11)

since if f(ẑ) is positive, the projecting vector δπ will oppose the gradient and vice versa.

Since M is the boundary of a convex sub or super level set of f(z), it has a supporting hyperplane in z̃, that
implies the sign of ∇f(z̃)T δ̃ is constant on M w.r.t. δ̃. This also implies:

sign(∇f(z̃)T δ̃) = −sign(λmin(Htan(z̃))) (12)

(see A.3 for the proof). Putting together equation 10 equation 11 and equation 12 we obtain the sufficient
condition of Theorem 1.
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Corollary 1: Constant sign curvature hypersurfaces

Under the same assumptions of Theorem 1, defining δπ = µ∇f(z̃), orthogonally projecting ẑ into z̃
will decrease RMSE if the following condition holds:

µ =
{

< 0 if {z : f(z) < 0} convex
> 0 if {z : f(z) > 0} convex

(13)

Proof of corollary 1 The projection vector δπ at z̃ is by definition parallel to ∇f(z̃) so that δπ = µ∇f(z̃)
holds. Since sub-level set of f(z) is convex iff λmin(Htan) > 0 (see A.2), considering equation 11 we can
re-write condition 9 as equation 13.

Corollary 1 states that, knowing if the sub or super level sets of f(z) are convex, we can restate Theorem 1
using the gradient at z̃ without computing the Hessian. We will use this fact to craft a theorem for vector
valued functions in the next section.

3.2 Multiple constraints

The next result extends Corollary 1 to manifolds defined by multiple constraints, or vector-valued functions.
The key idea is the same: if each defining function fi has convex sub or super level set, and if the projection
direction lies in the positive cone spanned by the gradients at projection point {∇fi(z̃)}m

i=1, then this
direction defines a supporting hyperplane to the intersection C = ∩m

i=1Ci of the corresponding convex sets
Ci = {z : fi(z) ≤ 0}. This yields a uniform decrease of squared error. Figure 2 illustrates the construction.

Figure 2: Concept for Theorem 2 with f = (f1, f2) = [x− y, x2 − z]. The zero level sets f1 = 0 and f2 = 0
are shown in blue and violet. The intersection C = {f1 ≤ 0}∩{f2 ≤ 0} is in green. If the projection direction
is a positive combination of the normals ∇f1(z̃),∇f2(z̃), it defines a supporting hyperplane for C (gray).

Theorem 2: Manifolds of codimension m > 1 with convex/concave level geometry

Let M = {z ∈ Rn : f(z) = 0} with f = (f1, . . . , fm) : Rn → Rm, f ∈ C2, and assume ∇fi(z) ̸= 0
and rank J(z) = m on M , where J(z) = ∇f(z). Suppose that for each i, the sublevel set Ci = {z :
fi(z) ≤ 0} is convex. For any ẑ ∈ Rn let z̃ ∈M be its orthogonal projection and define

δπ := z̃ − ẑ, δ̃(z) := z − z̃.
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If there exists µ ∈ Rm
+ such that

δπ = −
m∑

i=1
µi∇fi(z̃), (14)

then for every z ∈ C := ∩m
i=1Ci, ∥z − ẑ∥2 ≥ ∥z − z̃∥2; in particular, the inequality holds for all

z ∈M .
If instead each fi is concave (equivalently, the superlevel sets {fi ≥ 0} are convex), the same conclu-
sion holds with the sign in equation 14 reversed: δπ =

∑m
i=1 µi∇fi(z̃).

Proof 2 Fix z̃ and let z ∈ C := ∩m
i=1Ci. Since Ci is convex and fi(z̃) = 0, the hyperplane with normal

∇fi(z̃) supports Ci at z̃:
∇fi(z̃)⊤(z − z̃) ≤ 0 for all z ∈ Ci,

hence also for all z ∈ C. If equation 14 holds with µi ≥ 0, then

δ⊤
π δ̃(z) = −

m∑
i=1

µi∇fi(z̃)⊤(z − z̃) ≥ 0.

Using δ̂ = δπ + δ̃(z),
∥δ̂∥2 − ∥δ̃(z)∥2 = ∥δπ∥2 + 2 δ⊤

π δ̃(z) ≥ ∥δπ∥2 ≥ 0,

which proves the claim. In the concave case, the supporting inequality reverses sign for the convex superlevel
sets, yielding the stated flip of equation 14.

3.3 Applicability of Theorem 1 and 2

Theorems 1 and 2 provide sufficient conditions for a decrease of RMSE, conditioned on whether the forecast
ẑ lies in the relevant sublevel or superlevel region of the function(s) defining M . How often those conditions
hold depends on the geometry of M .

We estimate an a priori likelihood as follows. For several hypersurfaces (m = 1) and manifolds of codimension
m > 1, we sample points zi ∈ M . For each zi we draw an isotropic error εi ∼ N (0, Σ) with Σ = σ2

I In at
increasing noise standard deviations σI , form the forecast ẑi = zi + εi, and compute its projection z̃i by
solving equation 1. We then: (i) check the corresponding theorem’s condition at z̃i and record the indicator
of it holding, and (ii) record whether reconciliation reduces squared error, i.e. 1{∥zi − z̃i∥2 < ∥zi − ẑi∥2}.
Averaging these indicators over i yields the empirical probabilities shown in Figure 3 (left: theorem’s condition
holds; right: squared-error reduction).

Across the tested manifolds, the sufficient conditions identify only a subset of cases that actually benefit
from reconciliation. Moreover, real forecasting errors are rarely isotropic around a nonlinear M . The next
example shows that even with optimal mean–squared prediction, forecasts can systematically fall into the
region where Theorems 1 and 2 do not trigger.

Example 1: Optimal prediction on a parabola

Let M = {z : f(z) = 0} be a parabola, with f(z) = z2
1 − z2 : R2 → R where z = (z1, z2) ∈ R2. Given

a dataset D = {(z1,i, z2,i)}n
i=1, the independent least-squares predictors are the empirical means

ẑ∗
1 = 1

n

∑
i

z1,i, ẑ∗
2 = 1

n

∑
i

z2,i = 1
n

∑
i

z2
1,i ≥

(
1
n

∑
i

z1,i

)2
= ẑ∗2

1 ,

where the inequality is Jensen’s. Hence f(ẑ∗) = ẑ∗2
1 − ẑ∗

2 ≤ 0, i.e., the optimal independent prediction
lies in the sublevel region {z2 ≥ z2

1}.

Therefore, the rates in Figure 3 are optimistic regarding the frequency with which the sufficient conditions
will hold in practice: in many realistic settings, ẑ is likely to lie in the region where a reduction in error

7



Published in Transactions on Machine Learning Research (01/2026)

is not guaranteed by Theorems 1 and 2. This motivates the probabilistic guarantees for general nonconvex
manifolds of codimension m > 1 developed in the next section.
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Figure 3: Left: probability of observing a positive condition from Theorem 1 and 2 under isotropic Gaussian
perturbation of points on the manifold. Right: empirical probability of reducing RMSE by reconciling. The
x axis shows the noise level σI .

3.4 Non-constant sign curvature manifolds and probabilistic estimators

In Theorem 1 we used the orientation condition in equation 11 together with equation 12 to obtain a
sufficient error–reduction result for constant-sign curvature hypersurfaces. However, as shown in figure 1,
these conditions are conservative: if the prediction ẑ lies on the side where M bends towards ẑ, the Theorem 1
can’t predict if the RMSE is going to decrease. For those cases, and for general manifolds without constant-
sign curvature, strictly deterministic guarantees are not possible without knowing the true location of z.

However, if we shift the perspective from deterministic guarantees to probabilistic ones, we can still leverage
the general inequality described in equation 8, which says that the post-projection error vector δ̃ may
“climb” along the projection direction δπ by at most half its length. Geometrically, this defines a half-space
of candidate true points z for which reconciliation reduces the RMSE. Figure 1 illustrates, in two dimensions,
the corresponding half-plane for the left prediction point. For surfaces that can be sampled, this half-space
intersects M in a region where we will observe a reduction.

While informative, the geometric condition in equation 8 does not directly quantify the likelihood of error
reduction. We propose a practical probabilistic estimator to answer: What is the probability that projecting
the prediction onto M reduces RMSE?. Since the only unknown in equation 8 is the post-projection error
δ̃, which is fully determined by z̃ and z, this question reduces to estimating the probability that the true
point lies in the favorable half-space. The following discussion is general in terms of reconciliation method;
in particular we don’t assume an orthogonal projection for the reconciliation.

3.4.1 Coherent probability distributions on nonlinear manifolds

We recall the definition of reconciled probability distribution introduced in Panagiotelis et al. (2023) and
Zambon et al. (2023). This concept underpins the probabilistic guarantees we derive for manifolds with
non-constant-sign curvature.
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Definition 1: Coherent probability distribution on a nonlinear manifold

Let ν̂ ∈ P(Rn) be a predictive distribution on (Rn,BRn) and let S : Rn → M be a Borel-measurable
reconciliation operator whose image equals the constraint manifold M := {z ∈ Rn : f(z) = 0}. The
coherent predictive distribution ν̃ ∈ P(M) is the pushforward

ν̃ = S#ν̂, ν̃(F ) = ν̂
(
S−1(F )

)
, F ∈ BM ,

where BM := {F ⊆M : S−1(F ) ∈ BRn}.

3.4.2 Probability of RMSE reduction

Let h : R→ {0, 1} be the Heaviside function h(u) = 1{u>0}. For each time t, let Zt be a random vector with
(unknown) true and predictive distribution νt, ν̃t on the ambient space, and let z̃t denote the (deterministic)
reconciled point at time t. We assume νt, ν̃t are absolutely continuous w.r.t. a reference measure λ such that
their probability density functions exist, dνt

dλ := fνt

dν̃t

dλ := fν̃t . We write δπ,t := z̃t − ẑt for the reconciliation
adjustment. Define the scalar map:

ϕt(z) := δ⊤
π,t(z − z̃t) + 1

2∥δπ,t∥2 (15)

From condition equation 8, projection from ẑt to z̃t reduces the RMSE at time t if and only if ϕt(Zt) > 0.
Thus the true probability of RMSE reduction at time t is:

et := νt

(
Φt > 0

)
=

∫
M

h(ϕt(z)) dνt(z) =
∫
R

h(y) dµt(y) = Eµt [Yt], (16)

where µt = ϕt,#νt is the distribution of the scalar random variable Φt := ϕt(Zt) on R, and Yt := h(Φt) is
the binary indicator of reduction.

In practice, the true law νt is never observed, and we just have access ex-post to a sample drawn from it at
time t, zt ∼ νt. We therefore approximate νt by a consistent predictive distribution ν̃t, from which we can
retrieve an estimated probability of improvement ẽt := Eν̃t

[h(ϕt(Zt))]. To ease geometric intuition, Figure 4
depicts the relationship between νt, ν̃t, µt, µ̃t, ϕt and the estimators et, ẽt.

3.4.3 Monte Carlo Estimator

Given S samples (atoms) z̃t,s ∼ ν̃t with normalized weights π̃t,s (where π̃t,s = 1/S for unweighted Monte
Carlo) we define the estimator:

ẽmc,t := 1
S

S∑
s=1

h
(
ϕt(z̃t,s)

)
. (17)

Without loss of generality, and to ease the notation, we will just consider the unweighted Monte Carlo.

Lemma 1: Consistency of the Estimator

Let ν̃t be a predictive distribution at time t, and let z̃t,1, . . . , z̃t,S be i.i.d. draws from ν̃t. Then ẽmc,t

(with equal weights) is an unbiased and strongly consistent estimator of ẽt under the predictive law
ν̃t, i.e., E[ẽmc,t] = ẽt and ẽmc,t

a.s.−−→ ẽt as S →∞.

By construction, Ys are i.i.d. with E[Ys] = ẽt thus the result follows immediately from the Strong Law of
Large Numbers.

One possible practical procedure to obtain ẽmc,t is the following:

1. Obtain the reconciled point forecast via the nonlinear projection operator: z̃t = S(ẑt)

9



Published in Transactions on Machine Learning Research (01/2026)

Figure 4: Conceptual diagram for the probabilistic RMSE reduction. The unknown true distribution νt and
the predictive distribution ν̃t are mapped by ϕt to the scalar probability density functions of µt := ϕt,#νt

and µ̃t := ϕt,#ν̃t. Applying h yields the true and predicted probabilities of RMSE reduction et = Efµt
[h(Φt)]

and ẽt = Efµ̃t
[h(Φ̃t)], respectively. In the depicted realization, 60% of fµt

is below the dashed line defined
by ϕt(zt) = 0, so the true RMSE reduction probability is et = 0.6. However, the predictive distribution
entirely lies below the dashed line, resulting in an estimated probability ẽt = 1. The observed zt, lies above
the dashed line, so ϕt(zt) < 0 and the projection to z̃t would increase the RMSE at time t (and thus yt = 0).

2. Starting from atoms of a non-reconciled predictive distribution ẑt,s, obtain the consistent samples
always via projection z̃t,s = {S(ẑt,s)}S

s=1. By definition 1 this defines a sample-based representation
of a coherent probability distribution on M .

3. Count how many reconciled samples fall in the right half-space via equation 17, using δ̃t,s = z̃t,s− z̃t

We emphasize that the estimator equation 17 does not require the use of an orthogonal projection, in
contrast to Theorem 1 and Theorem 2. This represents a distinct advantage, since, at least in the case of
linear constraints, non-orthogonal projections have been shown to yield even greater RMSE reductions in
many settings.

3.4.4 Calibration Bounds

While Lemma 1 guarantees convergence to the predicted probability ẽt, it does not guarantee that ẽt matches
the true probability et. A more interesting result would be to bound the distance of the Monte Carlo estimator
ẽmc,t from the realized outcome Yt, |ẽmc,t − Yt|, or the distance of the Monte Carlo estimator from the true
probability of RMSE reduction, |emc,t− et|. The distance |ẽmc,t−Yt| cannot be bounded tightly for a single
instance t because we only observe a single binary outcome Yt = h(ϕt(Zt)) and never have access to the
true distribution νt (see appendix A.4). However, we can derive rigorous bounds on the calibration of the
estimator ẽmc,t over an archive of forecasts.

Theorem 3: Finite-Sample Conditional Calibration Bounds

Let us define the true conditional probability of RMSE reduction at prediction level e as:

π(e) := P(Y = 1 | E = e), (18)

For any e ∈ (0, 1), we define the binned archive

AN
∆(e) :=

{
(ei, yi) : i ∈ {1, . . . , N}, ei ∈ [e−∆, e + ∆]

}
. (19)

10
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with bin size N∆(e) := |A∆(e)| and number of successes k∆(e) :=
∑

i∈A∆(e) Yi, with yi ∈ {0, 1} a
binary indicator for the successful reconciliation and ei error reduction probability under the forecast
law.

I - Bounds for π(e): Assume each bin AN
∆(e) contains i.i.d. scenario pairs. Then, with probability

at least 1−β over the random mechanism producing AN
∆(e), the true conditional probability is bounded

by
eL(β, N∆(e), k∆(e)) ≤ π(e) ≤ eU (β, N∆(e), k∆(e)). (20)

where [eL, eU ] denotes the Clopper–Pearson confidence interval for a binomial proportion with N∆(e)
trials and k∆(e) observed successes at confidence level 1− β.

II - Instantaneous bounds for |et − ẽmc,t|: Assume the conditional distribution is stationary
such that et = π(e) Consequently, for a deployment time t where equation 17 predicts ẽmc,t = e, the
instantaneous estimation error is bounded by:

Lerr ≤ |et − ẽmc,t| ≤ Uerr, (21)

where the magnitude bounds are determined by the geometry of the interval relative to the estimate
e:

Uerr := max(|eU − e|, |eL − e|), (22)

Lerr :=


eL − e if eL > e,

e− eU if eU < e,

0 otherwise (if e ∈ [eL, eU ]).
(23)

Proof 3 I - Bounds for π(e) We condition on the random event E = ei for all ei ∈ AN
∆(e) and, under the

i.i.d. assumption of the archive, the outcomes yi are independent Bernoulli trials with success probability π(e)
defined in equation 18. Therefore, the count of successes follows a Binomial distribution: K ∼ Bin(k, π(e)).
The Clopper–Pearson interval [eL, eU ] is constructed by inverting the Binomial hypothesis test. By definition
(Clopper & Pearson, 1934), it satisfies:

PK∼Bin(k,π(e))

(
π(e) ∈ [eL(K), eU (K)]

)
≥ 1− δ.

This establishes that the random interval [eL, eU ] covers the true conditional probability π(e) with probability
at least 1− δ.

II - Instantaneous bounds for |et− ẽmc,t| Under the stationarity assumption, the true probability at time
t is et = π(e). We condition on the event that the interval covers the truth, i.e., eL ≤ et ≤ eU , which holds
with probability ≥ 1 − δ. The estimation error is |et − ẽmc,t|. Since ẽmc,t = e is fixed and et is constrained
to the interval [eL, eU ], the error is constrained by the minimum and maximum distances from the scalar e
to the set [eL, eU ].

• The maximum distance Uerr occurs at one of the endpoints, hence Uerr = maxp∈[eL,eU ] |p − e| =
max(|eL − e|, |eU − e|).

• The minimum distance Lerr is 0 if e lies inside the interval. If the interval is entirely above e
(eL > e), the minimum distance is eL− e. If the interval is entirely below e (eU < e), the minimum
distance is e− eU .

Combining these cases yields the definitions in equation 22 and equation 23.

Use and data collection: Informative reconciliation guarantees arise when the interval [eL, eU ] is narrow
and statistical uncertainty is low. For example, a one-sided lower bound P[π(e) ≥ eL] with eL ≥ 0.9 provides

11
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strong evidence in favor of reconciliation. Similarly, an upper bound P[π(e) ≤ eU ] with eU ≤ 0.1 indicates
that reconciliation is unlikely to be beneficial. Both cases are informative from a statistical standpoint.
In contrast, an interval [eL, eU ] = [0.1, 0.9] offers a weak statistical support and does not convey a clear
expectation of positive error reduction. On the other hand, if the interval is narrow but close to 0.5, e.g.,
[eL, eU ] = [0.45, 0.55], the statistical (epistemic) uncertainty in the estimate is low. Still, the results of the
previous theorems do not provide a definitive indication of whether reconciliation should be applied in this
case. This is due to the geometry of the problem (manifold) and natural variability in the probabilistic
predictions and data. Aiming for a reliable reconciliation with a high confidence, that is, high eL and low β,
an archive AN⋆

∆ (e) with minimum size N⋆ is required. The data set size may be computed numerically by
inverting Theorem 3; however, this requires specifying a target k (or expected rate k/N), which is not always
controllable. Yet inversion offers a simple and practical guideline for experimental design and selecting a
sufficiently large sample size for a target e. In fact, the minimal required sample size N⋆ may be increased by
further exploring the data-generating process and enlarging the archive, i.e., by collecting additional scenario
pairs (ei, yi) to verify whether reconciliation effectively reduces the error. This approach can help mitigate
epistemic uncertainty by providing a more representative coverage of the forecast law at the target prediction
level e. However, a practical limitation arises when the forecaster, data, reconciliation, and manifold jointly
lead to a limited number of hits within a specific bin ei ∈ [e−∆, e + ∆]. In such cases, even increasing the
overall archive may not sufficiently decrease uncertainty for that bin, as the number of realizations directly
constraining π(e) is inherently limited. Consequently, while enlarging N⋆ is a viable strategy to strengthen
statistical guarantees, the achievable reduction in epistemic uncertainty is ultimately constrained by the
intrinsic distribution of forecasted errors and the underlying geometry of the forecaster and the manifold.
This underscores the importance of both careful experimental design and awareness of the process-specific
limitations when interpreting informative reconciliation guarantees.

4 Numerical tests

To facilitate the application of the proposed theorems, we provide an open-source JAX-based Python library,
https://github.com/supsi-dacd-isaac/JNLR, which supports just-in-time compilation and GPU acceleration.
We use this library to conduct numerical tests for the presented theorems. The tests cover a collection of
manifolds with codimension 1 and 2, including cases with constant-sign curvature and convex sub-level sets.
The applicability of each theorem to the different classes of manifolds is summarized in Table 1.

Table 1: Applicability of the presented theorems.

constant sign curvature non-constant sign curvature

codimension 1 1 2 3 3
codimension >1 23 3

Furthermore, as stated before, equation 17 also applies when using non-orthogonal projections.

4.1 Experiments setup and evaluation metrics

The goal of the numerical tests is to evaluate the presented theorems in a realistic forecasting scenario.
Reconciliation is usually used as a post-processing technique, after each of the n variables of the multidimen-
sional point z has been predicted independently by a statistical or machine-learning model. Since predictions
are independently generated, they won’t perfectly lie on the manifold M defined by the constraints. Recon-
ciliation corrects this by projecting an unconstrained forecast onto M , enforcing coherence. The experiments
in this section simulate a typical forecasting pipeline. We start by generating data from a autoregressive
process. This allows us to control the variance and correlation of the different components of z and change
them systematically. This is a standard setting in simulation studies for forecast applications. Secondly, we
independently fit n standard regression models (LightGBM), which are then used to obtain our unreconciled
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forecasts ẑ. Those are then projected via S, which allows us to investigate the validity of the RMSE reduction
theorems. A more technical description of the setup follows.

All the tested manifolds are defined by one or two graphs g : R2 → R, so that M : {z ∈ R2 : f(z) = 0},
f = g(z1, z2) for manifolds with codimension 1 and f = (g1(z1, z2), g2(z1, z2)) for manifolds with codimension
2. This allows us to sample the manifolds by defining a two-dimensional data generation process spanning
the surfaces:

zt+1
1 = θ1zt

1 + w1

zt+1
2 = θ2zt

2 + w2
(24)

where w1, w2 ∼ N (0, σ2) are two independent random variables with normal distribution and θ1, θ2 ∈ [0, 1]
are two arbitrary parameters defining the autoregressive process. We then use the graphs g to obtain
coherent tuples, zt. We built a dataset of T = 104 samples D = {zt}T

t=1, applied a random reshuffle and
trained a LightGBM regressor to predict zt+1 from zt on 10% of D. At each time t, we obtained a predictive
distribution in terms of samples {(z̃t,s)S

s=1} with S = 200 via bootstrap on a calibration set with 40% of the
D, and we used the remaining 50% to test the theorems. Figure 5 shows a hypersurface (paraboloid) and a
manifold with codimension >1 (quadratic-exponential) as examples of M . On both panels, three examples
of predictions in terms of deterministic points ẑ, associated bootstrapped samples, their projection onto M ,
and true points z are shown.

Figure 5: Examples of test cases in terms of tuples of predictions (green dots), ground truth (red triangles),
and samples from predictive and reconciled distributions (gray and blue dots). Left: paraboloid case, Right:
vector-valued function. In this case, just one tuple is plotted, but two points are visible since f : R4 → R2.

For Theorems 1 and 2, we retrieved the number of predicted RMSE reduction cases and the false positives
(cases in which the theorems predict a decrease of RMSE while observing an increase). We anticipate that
we observed a total of 0 false positives across all the functions.

Since equation 17 provides a probabilistic estimation, we assess it with a randomized study. We generate
25 studies with associated datasets Dr of 104 points from M using the data generation process equation 24,
with random parameters θ1 and θ2. We follow the previously described procedure to obtain predictive
distributions via bootstrap on each test set. For each point on the test set we then evaluate 17, ẽmc,t.
To estimate the probability of RMSE reduction defined in equation 18, we adopted a binned calibration

13



Published in Transactions on Machine Learning Research (01/2026)

estimator. We used a fixed width of ∆ = 0.01 and estimated π(et) as

π̂ (et) = 1
N

∑
i∈AN

∆ (et)

yi (25)

where AN
∆(et) is the binned archive to which et belongs. As before, y is the binary outcome for the ex-post

condition (i.e., whether reconciliation led to a lower RMSE after the uncertainty resolved).

Since we equip the calibration estimation with upper and lower boundaries via Clopper-Pearson intervals,
we also test for the binary coverage of the intervals, defined as:

c =
∑

i∈Dte

ci ci =
{

eL,i > 0.5 if ∥δ̃∥ < ∥δ̂∥
eU,i < 0.5 otherwise

(26)

where eU , eL are the upper and lower bounds defined in equation 20.

Finally, considering the case in which the forecasting task doesn’t explicitly require ẑ ∈M , we investigate if
3 can be used to craft an effective reconciliation strategy, reconciling just the points for which the estimated
probability of a RMSE reduction is higher than a given threshold θ:

zθ
t =

{
z̃t := s(ẑt) if ẽmc,t > θ

ẑt otherwise
(27)

The results are shown as the reduction in RMSE from the baseline RMSE ∥δ̂∥ (never reconcile), normalized
for the RMSE of the optimal strategy, where the forecast ẑ is reconciled if this guarantees a reduction in
RMSE:

z∗
t =

{
z̃t := s(ẑt) if ∥δ̂∥ > ∥δ̃∥
ẑt otherwise

(28)

That is, z∗
t represents the best possible ex-post strategy, or equivalently, the optimal reconciliation strategy

with perfect knowledge of the future. The final normalized score is:

∆RMSE
rel,opt = ∥δ̂∥ − ∥z

θ
t − zt∥

∥δ̂∥ − ∥z∗
t − zt∥

(29)

4.2 Hypersurfaces

Plots of the tested hypersurfaces are shown in 12 in the appendix. Table 2 shows the ratio of cases with an
observed RMSE reduction (first column), with a predicted reduction from Theorem 1 (second column), and
of false positives, for different levels of noise affecting the data generation process described in equation 24.
Across all tested hypersurfaces and noise levels, we observed zero false positives, providing strong empirical
support for Theorem 1.

In Figure 6, two examples of calibration plots are shown for a constant sign curvature (paraboloid, left) and
a non-constant sign curvature (Himmelblau, right). Blue points show the collected 1.25× 105 (25 studies on
the 50% test sets of the 104 datasets) RMSE differences ∥δ̂∥−∥δ̃∥ before and after reconciliation. Lines show
the moving averages π̂(e) from equation 25. The top and bottom panels refer to the upper and lower bounds
obtained from Clopper-Pearson intervals, respectively, while the middle one shows π̂(e) for the nominal
response of equation 17. A higher inter-study variance is expected in the central region of the plot.

Table 3 reports the binary coverage c from 26. We see that the coverage tends to decrease with the noise σ,
possibly due to the deterioration of the forecasts. If the predicted distribution ν̃ is not representative of the
true distribution ν, we expect the test to be unreliable.

Figure 7 shows boxplots in terms of ∆RMSE
rel,opt defined in equation 29. Each boxplot contains ∆RMSE

rel,opt from
the 25 randomized studies. From the definition of ∆RMSE

rel,opt , positive values indicate a reduction in RMSE
compared to the unreconciled case, while a score of 1 represents the best binary reconciliation strategy.
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∥δ̃∥ < ∥δ̂∥ Th. 2 reduction Th. 2 FP
σ = 0.1 Abs 0.59 0.13 0.00

Exponential 0.87 0.46 0.00
MixedQuadratic 0.37 0.15 0.00
Paraboloid 0.34 0.10 0.00
Quartic 0.34 0.11 0.00

σ = 0.3 Abs 0.59 0.13 0.00
Exponential 0.68 0.36 0.00
MixedQuadratic 0.38 0.15 0.00
Paraboloid 0.33 0.10 0.00
Quartic 0.33 0.11 0.00

σ = 0.5 Abs 0.59 0.13 0.00
Exponential 0.60 0.36 0.00
MixedQuadratic 0.38 0.15 0.00
Paraboloid 0.33 0.10 0.00
Quartic 0.30 0.12 0.00

σ = 0.7 Abs 0.59 0.13 0.00
Exponential 0.55 0.33 0.00
MixedQuadratic 0.38 0.15 0.00
Paraboloid 0.33 0.10 0.00
Quartic 0.29 0.09 0.00

σ = 0.9 Abs 0.59 0.13 0.00
Exponential 0.52 0.33 0.00
MixedQuadratic 0.39 0.15 0.00
Paraboloid 0.33 0.10 0.00
Quartic 0.28 0.09 0.00

Table 2: Predictions and false positives for Theorem 1 for different hypersurfaces with constant sign curva-
ture, increasing levels of noise σ.

σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9
Rosenbrock 0.59 0.52 0.49 0.47 0.45
Ackley 0.59 0.50 0.37 0.28 0.21
Rastrigin 0.63 0.51 0.40 0.31 0.25
Quartic 0.65 0.64 0.65 0.65 0.66
Paraboloid 0.67 0.67 0.67 0.66 0.66
MixedQuadratic 0.69 0.68 0.67 0.66 0.66
Himmelblau 0.75 0.68 0.63 0.57 0.54
Abs 0.81 0.81 0.81 0.81 0.81
Exponential 0.84 0.68 0.57 0.57 0.58

Table 3: Binary coverage from equation 26 for different hypersurfaces, increasing levels of noise σ.

The first boxplot represents the strategy in which the points are always reconciled, while the others represent
the strategy of equation 27 with increasing values of θ. For the exponential manifold, the best strategy, close
to the optimal, is always reconciling. For the Rastring manifold, reconciling always worsens the RMSE,
and choosing θ = 0.6 only slightly improves the RMSE over the unreconciled case. For the other 7 tested
hypersurfaces, reconciling improves the RMSE, and the best reconciliation strategy based on equation 17
uses a threshold of θ = 0.5 or θ = 0.6.
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(a) Panel A: Paraboloid (b) Panel B: Himmelblau

Figure 6: Calibration plots for equation 17 for two examples of constant sign curvature (left) and non-
constant sign curvature (right) hypersurfaces, for noise level σ = 0.3.

4.3 Manifolds with codimension > 1

We repeat the same tests for manifolds with codimension>1, using Theorem 2 for manifolds with convex
sub-level sets. Figure 13 in the appendix shows plots for the tested manifolds. Table 4 shows the ratio of
cases with an observed RMSE reduction (first column), with a predicted reduction from Theorem 2 (second
column), and of false positives for manifolds with convex sub-level sets. Also in this case, no false positives
are present. This empirical finding is fully consistent with Theorem 2 prediction that false positives should
never occur under its assumptions.

Figure 8 shows the calibration plots for a quadratic-quartic and for a bowl-sin manifold. Also in this case,
for the manifold shown in the first panel, we can observe some underestimation of the probability of an
improvement due to reconciliation in low-density zones of the plot (low probabilities). As before, this is
likely due to the forecast ν̃ being unreliable in these conditions.

The binary coverage is shown in Table 5, where the coverage is lower under high noise σ for the ring-trig
and bowl-sin manifolds, which are the most irregular ones. Also in this case, this is likely the effect of the
forecast ν̃ becoming unreliable.

Finally, Figure 9 shows boxplots in terms of ∆RMSE
rel,opt for different manifolds. Also in this case, for the

saddle-poly, exp-cosh, and Rosenbrock style manifolds, always reconciling the sample is close to the optimal
strategy. For the other manifolds, as for the hypersurface tests, the best reconciliation strategy based on
equation 17 uses a threshold of θ = 0.5 or θ = 0.6.

5 Note on geodesics and optimal deterministic predictions

This paper presented RMSE reduction conditions for nonlinear manifolds. However, for some forecasting
tasks, other metrics could be more relevant. If we have a coherent forecast distribution ν̃ supported on M ,
finding the best point forecast is not as straightforward as in the linear case. In general, given a sample-based
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Figure 7: Boxplots of normalized improvements in RMSE for different reconciliation strategies for hypersur-
faces.

representation of ν̃, (z̃i, π̃i)S
i=1, the best deterministic point can be found solving:

z̃∗ = arg min
z∈M

S∑
i=1

π̃il(z, z̃i)2 (30)

In the linear case M = Rn and under RMSE loss l, the minimizer is the weighted average of the samples,
while when M is a nonlinear manifold, this must be solved numerically. For general Manifolds, problem 30 is
also known as Fréchet mean (Bačák, 2014; Lou et al., 2020), and is in general non-trivial to solve. For some
forecasting tasks, it may be more meaningful to consider the geodesic distance g as the loss l, rather than
the RMSE. Defined γ : [a, b]→ M a curve on the manifold, the geodesic between a and b is the distance of
the shortest path on M between these two points:

g(a, b) = inf
∫ b

a

∥γ′(t)∥ρ dt (31)

where the Riemannian metric ρ = (ρx)x∈M is a smooth collection of inner products ρx : TxM × TxM → R.
The following example illustrates the importance of considering geodesic distance for some forecasting tasks.
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∥δ̃∥ < ∥δ̂∥ Th. 2 reduction Th. 2 FP
σ = 0.1 4d-4d 0.36 0.09 0.00

bowl-sin 0.33 0.10 0.00
e2-s2 0.34 0.10 0.00
quad-qq 0.39 0.04 0.00
quad-quad 0.33 0.10 0.00

σ = 0.3 4d-4d 0.35 0.09 0.00
bowl-sin 0.36 0.07 0.00
e2-s2 0.32 0.09 0.00
quad-qq 0.39 0.02 0.00
quad-quad 0.33 0.10 0.00

σ = 0.5 4d-4d 0.32 0.09 0.00
e2-s2 0.29 0.08 0.00
quad-qq 0.42 0.01 0.00
quad-quad 0.33 0.10 0.00

σ = 0.7 4d-4d 0.27 0.09 0.00
e2-s2 0.28 0.07 0.00
quad-qq 0.48 0.01 0.00
quad-quad 0.33 0.10 0.00

σ = 0.9 4d-4d 0.25 0.09 0.00
e2-s2 0.27 0.06 0.00
quad-qq 0.52 0.00 0.00
quad-quad 0.33 0.10 0.00

Table 4: Predictions and false positives for Theorem 2 for different M with codimension>1 and convex
sub-level sets, increasing levels of noise σ.

σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9
quad-qq 0.61 0.64 0.62 0.61 0.59
ring-trig 0.61 0.23 0.11 0.10 0.07
e2-s2 0.64 0.66 0.69 0.71 0.71
4d-4d 0.64 0.66 0.70 0.71 0.72
exp-cosh 0.64 0.64 0.64 0.62 0.59
quad-quad 0.65 0.64 0.63 0.64 0.63
bowl-sin 0.65 0.46 0.37 0.30 0.25
saddle-poly 0.69 0.70 0.70 0.67 0.65
rosenbrock 0.82 0.68 0.60 0.54 0.54

Table 5: Binary coverage for equation equation 17 for different M with codimension>1, increasing levels of
noise σ.
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(a) Panel A: Quadratic-quartic (b) Panel B: Bowl-sin

Figure 8: Calibration plots for equation equation 17 for two examples of M with codimension >1 and convex
(left) and non-convex (right) sub-level sets, for noise level σ = 0.3.

Example 2: Optimal forecasts under geodesic distance

A heavy snowfall is forecast for tomorrow, with spatial probability distribution ν(z = [x, y]), over the
area surrounding a large lake. The event is expected to significantly disrupt road traffic. To reduce
the economic impact, road maintenance crews can be preemptively deployed to a specific location
along the road network, enabling a rapid response. Figure 10 illustrates two candidate deployment
locations, z̃1 and z̃2, marked as green dots and selected by the decision maker. While z̃2 is closer to
the true disruption point z (red triangle) in terms of Euclidean distance, deploying crews there would
incur much higher operational costs than choosing z̃1. This is due to the road network constraints,
as shown by the red and green geodesic paths, which represent the cost of relocating crews from each
candidate point to z along the road infrastructure.

6 Conclusions

This paper has advanced the theory of nonlinear forecast reconciliation through a geometric lens, establishing
both deterministic guarantees and a practical probabilistic framework. Our first key contribution lies in
Theorems 1 and 2, which provide sufficient conditions for strict RMSE reduction when reconciling forecasts
via orthogonal projection onto constraint manifolds M = {z : f(z) = 0}. These deterministic results hold
for codimension 1 and higher when all component functions fi exhibit convex sub-level or super-level sets.

However, our simulation study under isotropic-Gaussian errors revealed significant practical limitations:
these geometric conditions apply only to subsets of prediction points, particularly on highly curved manifolds.
This observation motivated our second major contribution— Theorem 3—which addresses the fundamental
question of when reconciliation is likely to help. By introducing a consistent Monte Carlo estimator for
Pr(∥z − ẑ∥ ≥ ∥z − z̃∥), this probabilistic framework accommodates arbitrary manifolds without curvature
assumptions or codimension restrictions, while providing confidence intervals.

Empirical validation confirmed the soundness of all theoretical contributions. Crucially, we observed zero
false positives across all tests of Theorems 1 and 2, consistent with their theoretical guarantees. The estimator
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Figure 9: Boxplots of normalized improvements in RMSE for different reconciliation strategies for manifolds
of codimension>1.
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Figure 10: Conceptual plot for the importance of using geodesics as scoring rules in forecasting. Red triangle:
true point z; green dots: examples of reconciled forecasts z̃1, z̃2; blue lines: euclidean distances; red and green
lines: shortest paths on M from predictions to z.

from equation 17 demonstrated excellent calibration, with empirical coverage of confidence bands aligning
closely with nominal levels. Most significantly, when using this probability estimate to decide whether
to reconcile—rather than naïve always/never approaches—we achieved measurable RMSE reduction across
diverse manifolds.

Collectively, these results bridge geometric theory with forecasting practice: while Theorems 1 and 2 establish
fundamental error-reduction principles under idealized conditions, equation 17 and Theorem 3 deliver a
versatile decision-making tool for real-world applications. This dual perspective enables more reliable forecast
integration where theoretical guarantees meet practical uncertainty.
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6.1 Future research directions

This paper lays the foundations for future research directions in the field of nonlinear reconciliation. An
interesting research direction is to craft analogous theorems using the geodesic distance instead of the RMSE.
An interesting research topic is to find a function of the geodesic that is a proper scoring rule for some
classes of nonlinear manifolds. For example, the energy score is a proper scoring rule and it’s a function of
the Euclidean distance. Another interesting research direction is to find robust rules to set the threshold
parameter θ that maximizes the accuracy of the reconciliation strategy. Lastly, the RMSE reduction theorems
and associated reconciliation strategies could be applied to nonlinear state estimation problems.
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A Appendix

A.1 Equivalence of problem equation 1 and FASE method

The FASE method (Brown Do Coutto Filho & De Souza, 2009) formulates the state estimation procedure
using a discrete time-variant state-space representation:

xk+1 = Fkxk + gk + wk (32)
yk = hk (xk) + vk (33)

Usually, in FASE, the state x are the magnitudes and angles of the voltages, while y represents the active
and reactive powers. Equation 33 represents an a-priori forecast of the state x at time t + 1 given the state
estimation at time t. Nonlinear forecasting models could also be used, leading to variations of the method,
but linear models have been found to be difficult to beat.

The objective of the FASE method is formulated as:

min
x
∥ŷ − h(x)∥2

R + ∥x− x̂∥2
M (34)
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where R and M are positive definite weighting matrices for the forecast errors in y and x, respectively.

To turn the nonlinear projection problem of 1 into the FASE problem of 34, we define z = [xT , yT ]T ,
M = {f(z) = 0} = {y = h(x)}. Then 1 becomes:

min
z

∥z − ẑ∥2
W

s.t. y = h(x)
(35)

with weight matrix
W =

[
M 0
0 R

]
The constraint y = h(x) implies that any feasible point z must satisfy

z =
[

x
h(x)

]
We can therefore rewrite the projection problem as an unconstrained optimization over x:

min
x

∥∥∥∥[
x

h(x)

]
−

[
x̂
ŷ

]∥∥∥∥2

W

Expanding the norm with block-diagonal weights:∥∥∥∥[
x− x̂

h(x)− ŷ

]∥∥∥∥2

W

= ∥x− x̂∥2
M + ∥h(x)− ŷ∥2

R

This is exactly the objective function of the FASE formulation. This shows the two objectives are equivalent
when considering a graph y = h(x) for the definition of the manifold and when the weight matrix W is
block-diagonal, partitioned according to the dimensionality of x and y.

A.2 Second fundamental form

Given f : Rn → R ∈ C2 , M = {z : f(z) = c} ⊂ Rn is a level set of f and a regular hypersurface of f if
∇f(z) ̸= 0 on M . H = D2f(z) is the Hessian of the function at z , Ez ∈ Rn×(n−1) an orthonormal basis of
the tangent space TxM at x. Then the second fundamental form Ip ∈ R at a point p ∈ M is a symmetric
bilinear form on the tangent space TpM , defined by:

Ip(z, w) = ⟨Dzν, w⟩, z, w ∈ TpM (36)

ν(z) = ∇f(z)
∥∇f(z)∥ (37)

where ν(z) is the unit normal vector field, measures the rate of change of the normal vector in the direction
z, i.e., the normal curvature. In coordinates, this reduces to:

Ip(z, z) = z⊤H(p)z
∥∇f(p)∥ , z ∈ TpM (38)

which describes the change of the normal acceleration of the surface in the direction of x belonging to the
tangent space. A sub-level set is locally convex iff the second fundamental form is positive semidefinite
(theorem 1 and 3 in Thorpe (1979)):

z⊤H(p) z ≥ 0 for all z ∈ TzM (39)
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We can test this condition by inspecting if the Hessian projected on the tangent space is positive definite,
or equivalently, by checking if the smallest eigenvalue of the restricted Hessian Htan(p) is greater than 0:

Htan(p) = E⊤
p H(p)Ep (40)

λmin (Htan(p)) > 0⇔ Htan(p) ≻ 0 (41)

where Ep ∈ Rn×(n−1) is an orthonormal basis of the tangent space TpM at p. This shows that λmin (Htan(p))
is a natural choice for inspecting the curvature of the levelset at p. Figure 11 shows different level sets for
f(z) = z4

1 − 3z2
1 + z2

2 (left axis) and a specific level set for f(z) = z4
1 − z2

1 + z2
2 + z2

3 − 2z1z3 (right axis),
both colored by λmin(Htan). The second fundamental form can be used to write the following second-order
approximation for M :

z = z̃ + t + 1
2ν(z̃) Iz̃(t, t)︸ ︷︷ ︸

scalar

+o
(
∥t∥2)

(42)

where t ∈ Tz̃M is in the tangent direction, while the correction introduced by the second fundamental form
lies in the direction of the unit normal ν(z̃), Im(∇f) ⊂ Rn.

A.2.1 Vector valued functions

In the case of manifold with codimension higher than 1, that is defined by a vector valued constraint
f : Rn → Rm, M = {z ∈ Rn : f(z) = 0} , m < n, the normal space Im (Jf (z)) spans the Jacobian rows. In
this case Iz̃(t, t) ∈ Rm is a vector and the analogous expression to equation 42 for second order approximation
can be written as:

z = z̃ + t + 1
2Jf (z̃)⊤ · Iz̃(t, t) + o

(
∥t∥2)

(43)

For the vector-valued case, an orthonormal basis E for the tangent space TzM = ker J(z) can be found by
QR decomposition of the transposed Jacobian.

Figure 11: Two examples of hypersurfaces colored by λmin(Htan). These examples illustrate how λmin(Htan)
can be thought of as the degree with which the surface bends away or bends towards a point in the ambient
space.
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A.3 Proof of equation 12

In the following, we prove equation 12 for hypersurface M = {z : f(z) = 0} ⊂ Rn with f having a convex
sub or super level set. Consider two points z and z̃, both belonging to M and minimally displaced ε = z− z̃.
We can write the second-order Taylor expansion at z̃:

0 = f(z) = f(z̃ + ε) = f(z̃) +∇f(z̃)T ε + 1
2εT H(z̃)ε + o

(
∥ε∥2)

(44)

Since f(z̃) = 0, and since ε becomes tangent to M in the limit, neglecting higher order terms, we can write:

∇f(z̃)T ε = −1
2εT H(z̃)ε ∀ε ∈ Tz̃M (45)

where Tz̃M is the tangent space at z̃. Equivalently, we can write:

∇f(z̃)T ε = −1
2ET

z̃ H(z̃)Ez̃ (46)

where Ez̃ ∈ Rn×(n−1) is an orthonormal basis of the tangent space Tz̃M at z̃. Then:

sign
(
∇f(z̃)T ε

)
= −sign

(
ET

z̃ H(z̃)Ez̃

)
= −sign (λmin(Htan(z̃))) (47)

where the last equality comes from the definiteness of the restricted Hessian for convex / concave curves
equation 39-equation 41. We proved equation 47 in the limit ε → 0, but since M is the boundary of a
convex set, it has a supporting hyperplane in z̃, which means that sign

(
∇f(z̃)T ε

)
is constant on M , and

thus equation 47 holds also for ε = δ̃.

A.4 On the vacuousness of instantaneous bounds for ẽ− Yt

We want to bound the error |emc,t − ẽt|, that is, the distance from the estimated probability of improving
RMSE after projection and the true probability or RMSE reduction. This can be decomposed via triangle
inequality to consider the error of the Monte Carlo sampling:

|et − ẽmc,t| ≤ |et − ẽt|︸ ︷︷ ︸
T

+ |ẽt − ẽmc,t|︸ ︷︷ ︸
M

The Monte Carlo estimation error M can be bounded easily as shown in lemma 1.

Since νt is never observed, bounding T is more challenging. We can try to make explicit the dependence of
T on the only observed sample Zt ∼ νt drawn from the true distribution at time t, using the decomposition:

|et − ẽt| ≤ |et − Yt|︸ ︷︷ ︸
A

+ |ẽt − Yt|︸ ︷︷ ︸
E

(48)

where Yt = h(ϕt(Zt)) is an indicator random variable, the evaluation of h(ϕt(·)) at the observed sample at
time t. This decomposition has the following interpretation: A represents the aleatoric uncertainty due to
the unobservable distribution νt, while E represents the epistemic uncertainty, which can be made smaller
by increasing the accuracy of the predicted law ν̃t. In the following we consider instantaneous bounds on
these two quantities.

• A: Unless νt produces a degenerate distribution under ht(ϕt(zt)), the best possible global, determin-
istic instantaneous bound for A is A < 1. That is, unless the true distribution is totally contained in
one of the two half-spaces defined by ϕt, the best instantaneous bound on A is uninformative since
et is a probability, bounded in 0, 1. A conditional (on the value of et) deterministic instantaneous
bound is max(1 − et, et) ≥ 1/2. Furthermore, this bound approaches 1 when et is close to 0 or 1,
making it particularly uninformative.
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• E: The best possible instantaneous bound on E is also uninformative, since it is the one that can be
obtained when ẽ = et, that is, the bound under perfect knowledge of the true distribution νt, which
is again max(1− et, et).

Summing the two components results in a totally uninformative bound 2 max(1 − et, et) ≥ 1 for |et − ẽt|,
therefore this specific decomposition can’t be used to bound T non-vacuously.
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Algorithm 1: Augmented Lagrangian nonlinear reconciliation with L–BFGS line search
Input: forecast ẑ ∈ Rn, SPD weight W ≻ 0, constraint f : Rn → Rm

Input: tolerances tolfeas, tolgrad, tolstep, penalty parameters ρ0, ρmult, τinc
Input: max iterations max_outer, max_inner
Whitening step: compute Cholesky W = L⊤L and set L−1.
Set ŷ ← Lẑ.
Initialize y0 ← ŷ, λ0 ← 0 ∈ Rm, ρ0 ← ρ0.
for k = 0, 1, 2, . . . , max_outer− 1 do

Inner problem (unconstrained):

min
y∈Rn

Lk(y) := 1
2∥y − ŷ∥2

2 + (λk)⊤c(y) + 1
2 ρk ∥c(y)∥2

2, c(y) := f(L−1y).

Initialize yk,0 ← yk and L–BFGS state.
for j = 0, 1, 2, . . . , max_inner− 1 do

Compute value and gradient vk,j ← Lk(yk,j), gk,j ← ∇Lk(yk,j).
Use a zoom line search (satisfying Wolfe conditions) to compute an L–BFGS step ∆yk,j and
update yk,j+1 ← yk,j + ∆yk,j .

if ∥gk,j∥∞ ≤ tolgrad or ∥∆yk,j∥2 ≤ tolstep then
break

Set yk+1 ← yk,j⋆ (final inner iterate).
Recover zk+1 ← L−1yk+1 and constraint ck+1 ← f(zk+1).
if ∥ck+1∥2 ≤ tolfeas then

break // outer stopping: feasibility reached

Multiplier update: λk+1 ← λk + ρkck+1.
Penalty update:

ρk+1 ←

{
ρk · ρmult, if ∥ck+1∥2 > τinc tolfeas,

ρk, otherwise.

return z̃ = zk+1 as the reconciled forecast.

A.5 ALM LBFGS solver

This pseudocode describes an L–BFGS method equipped with a zoom line search enforcing Wolfe conditions,
starting from the previous iterate. We terminate the inner loop when the gradient norm and step size are
below fixed tolerances, and then update the multipliers and penalty parameter in a standard Augmented
Lagrangian Method (ALM) fashion.
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A.6 Plots of tested manifolds
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Figure 12: Plots of tested hypersurfaces.
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Figure 13: Plots of tested manifolds with codimension > 1. Since it’s hard to visualize level sets of f : R4 →
R2, we plotted level sets of f1 and f2 separately.
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