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Abstract: Robot evaluations in language-guided, real world settings are time-
consuming and often sample only a small space of potential instructions across
complex scenes. In this work, we introduce contrast sets for robotics as an ap-
proach to make small, but specific, perturbations to otherwise independent, iden-
tically distributed (i.i.d.) test instances. We investigate the relationship between
experimenter effort to carry out an evaluation and the resulting estimated test per-
formance as well as the insights that can be drawn from performance on perturbed
instances. We use the relative performance change of different contrast set pertur-
bations to characterize policies at reduced experimenter effort in both a simulated
manipulation task and a physical robot vision-and-language navigation task. We
encourage the use of contrast set evaluations as a more informative alternative to
small scale, i.i.d. demonstrations on physical robots, and as a scalable alternative
to industry-scale real world evaluations.
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1 Introduction

Language can be used for providing guidance on tasks like high-level task planning [1, 2], robot
manipulation [3, 4], and visual navigation [5]. Robots are deployed in environments with many
objects, and the space of language commands a robot can execute grows combinatorially with scene
complexity. As such, these robots are often trained on large datasets that can specify hundreds of
tasks in different environments. Evaluating such a robot on the large domain of its training set is
impractical, especially as one typically needs to evaluate various policies. In simulation, researchers
are able to evaluate their language-guided policies on robust, i.i.d. evaluation sets. However, since
evaluation on physical robots is difficult, and experimenters usually demonstrate a robot’s capabili-
ties on a small subset of tasks, falling short of the i.i.d. evaluation framework typical in simulation.
In this work, we focus on evaluating language-guided robot policies efficiently so that experimenters
can explore the large space of possible instructions with less work.

Simulation is commonly used to evaluate language-guided policies [6, 7, 8, 5]. After training a
policy on various tasks, the policy is evaluated on a large number of predefined test instances. Since
simulations are typically insufficient for truly understanding a policy’s real-world performance [9,
10], and despite correlations between simulation and reality [11], there is a need for an evaluation
framework to systematically evaluate language-guided robot policies in the physical world. Since
the space of possible robot behaviors in different scenes is large, these approaches must also be
efficient with respect to experimenter effort.

Consider manipulation and navigation tasks where a robot follows natural language instructions. To
evaluate a manipulation task, an experimenter has to move tabletop items to modify a scene, which
takes experimenter effort. In navigation tasks, evaluations are trickier because the environment
itself should vary between instances. Changing the environment in navigational settings often means
moving furniture or adding new large objects, which is labor-intensive. Additionally, when language
is involved, these objects must also be semantically relevant. As a consequence, it is difficult to
evaluate the performance of a language-guided policy at scale due to experimenter effort.

*These authors contributed equally to this work.
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Figure 1: Overview. Left: In standard test set evaluation, a test set is i.i.d. random sampled to cover
the domain of possible language, scene and behaviors that a robot can execute. It can be expensive
to reset the scene to each new test instance during experiments. Middle: In this work, we design
contrast sets [12] for language-guided robot evaluation, comprising perturbation strategies based on
the language, scene, and expected behavior of the robot. Right: The proposed contrast set evaluation
allows experimenters to efficiently evaluate neighborhoods around original test instances.

Contrast sets [12] use deliberate perturbations of i.i.d. test sets to enable better evaluation of a ma-
chine learning model. We take inspiration from contrast sets and propose perturbation functions to
systematically and efficiently evaluate the space of robot test instances. In this work, we build a
framework for contrast set-based perturbation strategies for evaluating language-guided robot poli-
cies. We apply perturbations on test set instances in the language, scene, and behavior axes, which
allows for a lower cost evaluation. This framework strikes a balance between expensive i.i.d. sam-
pling of test instances and cheaper test instance perturbations. In particular, we

• design contrast set-based perturbation strategies for exploring the test domain;
• demonstrate how policy performance across different types of perturbations lend insight

into axes of policy robustness and brittleness;
• design a simulated manipulation task and a real-world vision-and-language navigation task

and demonstrate that our contrast set evaluation efficiently estimates policy performance.

2 Background and Related Work

Past work in machine learning model evaluation has used perturbations as a method to probe model
performance; however, evaluation in robotics typically focuses on a small number of pre-defined
tasks. In this section, we discuss contrast sets from NLP, and its relevance to evaluation for robotics.

Evaluation in Machine Learning. A large, sampled i.i.d. test set may not capture the span of
expected situations a machine learning model could encounter in the real world. To address this,
researchers have designed out-of-distribution evaluation techniques in the vision [13, 14, 15, 16]
and NLP [17, 18, 12] communities. In computer vision, perturbations of images have been used
to generate counterfactual examples to test a model [19, 20, 21, 22, 23]. These approaches allow
experimenters to stress test their models and have confidence in their model during deployment.
However, in robotics, testing requires physical deployment and takes considerable efforts to compute
such metrics. In this work, we focus on designing contrast sets for language-guided robot policies.

Evaluation of Robot Policies. Simulation is a common way to train and evaluate robot poli-
cies [24, 25, 26]. These simulated environments are often used for evaluating the performance
of a real-robot system [10, 9, 27, 28] by recreating a simulated counterpart to a real environment,
but show ineffective direct sim2real performance without domain randomization or real-world fine-
tuning strategies. There exist correlations between simulation and real-world performance even if
they do not exactly match [29, 11]; however there are no guarantees about real-world performance.
These works also pre-define a set number of tasks in simulation; but it is not scalable to engineer
simulators for every new task. Other recent work consider how to evaluate in language-guided robots
in the real world such as evaluating LLM-based task planners [30] or providing bounds on policy
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performance [31]. Additionally, RL frameworks such as autonomous RL [32] and others [33, 34]
focus on minimizing the number of human interventions during deployment. Contemporary work
have begun to investigate how different visual or linguistic attributes impact evaluation performance
[35, 36, 37] and efficient data collection [38]. We find our work complementary to these, and focus
on evaluating the space of possible test instructions and scenes in an efficient manner.

Contrast sets in NLP. Contrast sets are perturbed variants of the test set that help characterize
the decision boundary of a classification model. They are constructed by perturbing the input text
and/or the output label. For example, in a sentiment classification task, a perturbation to test model
robustness to sarcasm could append “Yeah, right!” to the text of a positive review, indicating a
change from a positive label to a negative label. We design contrast sets for robotics that alter
accompanying language instructions of test instances and potentially the expected behavior.

Contrast sets with vision. In the NVLR2 [39] visual reasoning task, contrast sets are formed
by replacing an image with one that contains a minimal change that may alter the answer to an
accompanying question. For example, for a test that asks whether an image contains “two chow
dogs facing each other”, an image perturbation finds one that is semantically similar—two dogs are
facing each other—but the dogs are of different breeds, thus the label is flipped. We design contrast
sets for robotics that alter the start state of instances and potentially the expected behavior.

3 Problem Statement and Notation

Language-guided policies can be learned from large-scale collected data, then deployed to control
physical robots. Systematic, efficient approaches to evaluate learned policies controlling physical
robots will facilitate understanding how effectively those policies can cover the domain of test in-
stances. In this paper, we introduce an evaluation strategy inspired by contrast sets [12] to estimate
a given policy’s performance on a fixed evaluation set measured by a given metric while minimizing
the physical cost of setting the initial conditions of each evaluation instance.

The space of discrete language instructions is notoriously large, so these policies are typically eval-
uated in simulation over thousands of instructions. Several works have focused on correlating sim-
ulation performance to real world performance on a handful of instructions for tuning the sim2real
gap [11] or on evaluating image-based navigation policies in Airbnbs or rented homes [40, 28]. Tai-
loring simulations for new skills or renting dozens of environments are not scalable paradigms as
experimenters must spend dozens of hours to cover situations policies may encounter.

Evaluation sets. We formalize the problem of evaluating language-guided robot policies
in a domain of test instances X and range of expected behaviors Y . An evaluation set
X × Y ;X ⊂ X , Y ⊂ Y is composed of instances, the initial conditions (l, s) ∈ X faced by a
policy and the desired outcome b ∈ Y , characterized by the language instruction l, the starting
scene s, and the expected optimal behavior b. For notational simplicity, we specify a language-
guided policy f which takes in initial conditions l, s and produces behaviors b rather than that of
an iterated state-to-action definition: f(l, s) → b. To evaluate a language-guided robot policy f ,
experimenters sample an evaluation set X = {X1, ..., Xn|Xi ∼ X} with associated behaviors
Y = {human(Xi) = Yi;Xi ∈ X}. We assume that the sampled evaluation set X is representative
of the test manifold defined by X . A trained, language-guided robot policy f : θ × X → Y is
evaluated over X to produce Ŷ , against which a performance metric M(Ŷ , Y ) is calculated.

Evaluation Strategies. An evaluation strategy sequentially samples or modifies test instances X
into a sequence of test instances to be executed, with experimenter intervention to set up each
subsequent starting condition. A standard evaluation strategy I(X) = (xi ∈ X|∀i ∈ 1, ..., n)
simply converts the evaluation set into a shuffled sequence of test instances. Let P be a set of
perturbations functions. A strategy Γ can construct a larger test set by applying perturbations
Γ(X) = (δ(x)|xi ∈ X, δ ∈ P,∀i ∈ 1, ..., n). In this paper, we highlight the comparative ad-
vantages of such a perturbation-based evaluation strategy.

Cost and metrics. To calculate the cost of a series of evaluations, we define an evaluation cost
C(I(X)). This cost will give us insight to how much experimenter effort a given evaluation strategy
takes. The purpose of a test set is to estimate the value of a given metric M(f(I(X)), Y ) that is
an indicator of the robot’s performance. The metric M and evaluation cost C are general terms and
are chosen depending on the setting. The metric could be reward in an environment, success rate,
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success-weighted path length, or the distance from goal, while the evaluation cost metric could be
distance of objects moved, time taken, or energy used to reset the scene.

The i.i.d. random sampling strategy I(X) is typically ideal for estimating an evaluation metric for
a given policy. However, the cost over this strategy C(I(X)) likely exceeds any given cost budget
K, because i.i.d. sampling of test instances is not aware of the cost of changing instances. The goal
of our work is to design a strategy Γ(X) over the evaluation set using cost-effective perturbations P
such that C(ΓK(X)) < C(I(X)) while M(ΓK(X)) ≈ M(I(X)), where ΓK(X) is the sequence
of evaluations bounded by the cost budget K. This formulation means that the size of the contrast
set is often greater than the size of the standard evaluation |ΓK(X)| > |I(X)|. The procedure for
applying a set of perturbations P given a cost budget K is shown in Algorithm 1 in the Appendix.

In this work, we consider the problem of efficiently evaluating language-guided robots across dif-
ferent instructions, scenes and behaviors. As such, we do not focus on language-conditioned pick
and place tasks as the scope of perturbations is limited in these environments. We consider set-
tings where it is possible to compose language instructions to define innumerable numbers of robot
behaviors. Specifically, we use the LanguageTable [41] and VLN-CE [42] tasks, as the language
instructions in these environments specifically relate to how the actions are taken.

4 Contrast Set Evaluation Strategies

We adapt contrast set perturbations to design a strategy Γ(X) that perturbs an evaluation set in
the context of language-guided, visual sequence-to-sequence problems. We then instantiate these
perturbations in a simulated manipulation task and a physical vision-and-language navigation task.

Contrast sets for robots. Each test instance is characterized by the language instruction l, the
scene s, and the expected behavior b (Figure 1). Perturbations to the language and scene can lead to
changes in the expected behavior, so we define our own scene and language perturbation functions
that may or may not modify the expected behavior. We define four types of perturbation functions,
denoted by the symbol ∆ and a letter for the axes they modify.

• ∆L(x) perturbs the language instruction such that the expected behavior is the same.
• ∆LB(x) perturbs the language instruction such that the expected behavior is different.
• ∆S(x) perturbs the environment such that the expected behavior is the same.
• ∆SB(x) perturbs the environment such that the expected behavior is different.

Instantiated perturbation functions P depend on the tasks being evaluated. We measure cost C with
respect to modifying the environment, so language-based perturbations do not add any additional
physical cost. We do not include the cost of resetting the robot position as it is fixed across evalua-
tions, and in some cases can be automated. Our work investigates whether contrast sets are able to
estimate the sample mean performance of a standard evaluation set with a similar or lower cost.

Contrast sets vs i.i.d. evaluation sets. In comparison to a standard evaluation I(X), where an
experimenter sequentially executes i.i.d. random test instances with no consideration of the cost,
contrast set evaluation allows the experimenter to explore the test domain and cover it efficiently.

Often, when researchers demonstrate the capabilities of their policy, they do not construct an i.i.d.
evaluation set, but instead only apply perturbations. These demonstrations are typically done to
cheaply evaluate their robot in a limited domain. However, because those test instances and pertur-
bations are not i.i.d., those works are not properly evaluating their robot systems. Since our work
assumes access to an i.i.d. test set and then applies perturbations in sequence, contrast sets for
robots strikes a balance between saving experimenter effort and properly evaluating a robot policy.
Through more systematic evaluations in the test domain, contrast sets enable better coverage of the
test domain, accurate performance estimates, and insights on a policy’s sensitivity to perturbations.

5 Language-Table Simulator Experiments

Language-Table [41] is a multi-task language-conditioned control benchmark that spans 696 unique
task conditions across five categories, with each specified in language in dozens of ways. The general
task is for a manipulator to push blocks of various shapes and colors to specific relative or absolute
positions based on a language instruction, as visualized in Figure 2. It is infeasible to evaluate all of
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Figure 2: Language-Table Rollouts. In the Language-Table simualtor [41], we sample an evalu-
ation set of 250 test instances that is sequentially evaluated. A test instance is sampled from one
of five task types which manipulate blocks according to a task definition. The standard evaluation
requires i.i.d. random sampling instructions and scenes, which accumulate more effort for the exper-
imenter. Contrast set evaluation allows experimenters to perturb sampled test instances by making
minimal changes after each execution, leading to less work for the experimenter.

these test instances in a physical environment, especially if there are multiple checkpoints or models
to evaluate, making it important to study how to efficiently evaluate large task domains.

5.1 Experiment Design

We compare a standard evaluation setX against strategies Γ(X) that use various perturbation setsP .
Over three seeds, we sample an evaluation set X from the simulator consisting of 250 test instances
sampled across five different task categories, from which we run various evaluation strategies.

Perturbations. Using perturbation functions P , we perturb these test instances with low cost. We
believe it would normally be infeasible to reset the scene after each evaluation, so between perturbed
test instances, we do not reset the environment. However, if we applied perturbations that do not
modify the expected goal of the robot, a perturbed test instance may already be in a success state.
Therefore, we do not use the ∆L and ∆B functions and define two ∆LB perturbations and two
∆SB perturbations as shown in Figure 2. The test instructions typically involve a source block
that needs to be moved, a target block that a block needs to move relative to, or a direction such as
“top” or “right”. The ∆LB1 perturbation swaps the target and source block referring expressions in
the instruction. ∆LB2 modifies the instruction such that any directions or positions are flipped, for
example upper left is changed to lower right. ∆SB1 moves the target block to a new location, while
∆SB2 moves the source block to a new location. Given a pre-defined test set, we design various
contrast sets from these perturbation strategies to determine their impact on effort.

Metrics. We use an optimal planner to compute the the success weighted by path length (SPL) as
the metric M(·) such that suboptimal trajectories are penalized. As a proxy for experimenter effort
in resetting a scene, we define the cost C(·) as the distance (in meters) objects are moved in a scene.

5.2 Results and Discussion

Figure 3 summarizes the differences in policy performance on contrast sets that target particular
language- and scene-based perturbations versus the original test set and shows that contrast set
evaluation does not compromise the estimate of the test set M(·) achieved via Standard Evaluation.

Contrast sets show the policy’s sensitivity to perturbations. Since the perturbations are concrete
and specific, they can show a policy’s sensitivity to the language and scene axes. As shown in
Figure 3, we find that the language-based perturbation ∆LB2 is notably below the mean SPL for the
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Figure 3: Left: A key insight offered by contrast set evaluations is probing the strengths and weak-
nesses of a learned policy. The mean success-weighted path length (SPL) achieved over the full test
set may compare average policy performances, but here we observe additional robustness to instruc-
tion source and target switches and source block starting position (∆LB1,∆SB2) but brittleness to
direction word inversion (∆LB2), providing insights for training and deployment. Right: Compar-
ison of evaluation strategies’ absolute estimation error of the SPL of the entire test set as a function
of the cumulative cost in distance blocks are moved during scene resets. The maximum cost of the
standard evaluation is 281, achieving the horizontal error line at 0.0, and we cap cost at 300, though
additional perturbation instances are possible for some strategies. All perturbation strategies achieve
better test set SPL estimates than a Limited Intervention baseline.

policy. ∆LB2 simply swaps the directions in text to be the opposite. We took a test instruction of
moving a block to the right changed the direction to left with ∆LB2, and we found that the policy
would continue to move the block to the right This reduction in performance indicates that the
trained model may be overfit to direction in some cases. By contrast, ∆SB2’s higher SPL relative to
the contrast set indicates the policy is robust to source block locations. Intuitively, this result shows
that perturbations help qualitatively characterize different regions of the test manifold.

Limited interventions are not predictive of SPL. Standard evaluation i.i.d. samples new test in-
stances. However, in practice, sometimes experimenters simply execute new language instructions
in a given scene until they cannot anymore, which allows them to reduce the amount of effort re-
quired by minimally intervening to reset their scene. We explore a limited intervention evaluation
strategy in which new language instructions are sampled from the evaluation set sequentially with-
out resetting the scene. This experiment is meant to be a lower bound in cost, where new language
instructions and behaviors are sampled, but the reset costs are is minimized by not resetting the
scene unless a planner determines an instruction is infeasible. As shown in Figure 3, 250 trials of
this strategy yields much lower cost than all of the other strategies, but poorly estimates the test SPL.

Contrast sets improve predictive performance and provide a cost-effective approach to exe-
cuting more trials. Figure 3 shows that language-based perturbations underestimate the SPL of the
evaluation set while scene-based perturbations overestimates it. Using all four perturbation func-
tions together yields the best predictive performance, as it converges closest to the full evaluation set
performance. As shown in Figure 6 in the Appendix, the standard evaluation incurs a cost of 281 me-
ters over 250 trials. In comparison, the language-based contrast set reaches around 400 trials for the
same cost but under-estimates test performance. The combined scene and language-based contrast
set allows for 380 trials without significant under- or over-estimation of the test performance.

6 VLN-CE Evaluation on a Physical Robot

Vision-and-language navigation in continuous environments [42] (VLN-CE) is a task where an agent
follows fine-grained language instructions in a household setting. We deploy a VLN-CE agent to
control a real world Locobot [43]. By evaluating with contrast sets, we are able to draw insights
about policy sensitivity and estimate the full test performance with a lower cost to the experimenter.

6.1 Experiment Design

We design a pseudo studio apartment environment populated with furniture similar to categories in
simulation. To ensure ecological validity of test instances, we recruited five participants to design
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Figure 4: VLN-CE Robot Rollouts. The standard evaluation of i.i.d. random sampling scenes
requires scenes to be shuffled around drastically. Intuitively, contrast sets allow experimenters to
cheaply perturb sampled test instances to find new ecologically valid samples to evaluate.

five furniture setups, each of which they annotated with a navigation instruction as shown in Figure 4.
Each test instance x and outcome y is defined by the scene s based on the furniture arrangement and
the robot’s pose, and the expected behavior b of the robot, described by the language instruction
l consisting of two subgoals to be reached. More details on this protocol for ensuring ecological
validity and model training can be found in Appendix C.

Perturbations. We define four perturbation functions as shown in Figure 4. We define language-
only perturbations ∆L to simply change the wording of the instruction but preserving the meaning.
If a language instruction tells the policy to go to a bed then to the couch, then this perturbation
simply rephrases the instruction. ∆LB changes the final goal in the text instruction, so the first half
of the robot’s behavior to the first goal is the same, but the latter half changes. ∆S moves an object
around in the scene such that the expected trajectory of the robot is still the same. For example,
passive objects the robot is not meant to interact with may change positions as long as they do not
change the interpretation of either language subgoal. Lastly, ∆SB moves an object around in the
scene such that the expected trajectory of the robot is different. This perturbation either moves the
goal object such that the trajectory must be different, or an object is moved in front of the robot to
impede its originally-intended trajectory.

Metrics. We define the cost metricC as the distance objects were moved in the scene. The metricM
is the average progress toward two subgoals: 50% for reaching the first and 100% for reaching both.
We evaluate each test instance three times. Four perturbation strategies applied to five original test
instances yield 20 new instances Executing these 20 test instances and the original 5 test instances
three times results in a strategy set size of |Γ(X)| = 75.

6.2 Results and Discussion

Modifying the scene, robot malfunctions, and maintenance all add to the cost of evaluating robots.
We find that contrast sets reduce the effort required for evaluating robots in the real world.

Contrast set perturbations enable more experiments for less work. The contrast set consists
of 4 perturbation functions. Based on Figure 8 in the Appendix,the average cost per instance in
the standard evaluation set is 8.8 meters, while generating 4 perturbed trials from a single i.i.d.
test instance costs about 1 meter. With 5 i.i.d. test instances from the standard evaluation set, the
additional cost of 1 meter from perturbations allows one to execute 4 ∗ 5 = 20 more trials.

Contrast sets can estimate the full test set with less cost. Figure 5 demonstrates that contrast
set evaluation converges to a similar success rate as standard evaluation while requiring less effort,
indicating that this evaluation allows experimenters to efficiently measure a policy’s performance.

Contrast sets can provide insights into a policy’s linguistic and visual understanding. Similar to
results in the simulation results, our specific perturbations can show a policy’s sensitivity to specific
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Figure 5: Left: Contrast set evaluation probes the strengths of a trained VLN-CE model to a physical
robot. We observe that the policy is robust to changes to the final goal instruction (∆LB) and
physical changes to the goal itself (∆SB) as depicted by the 13% higher performance over the
full contrast set. Right: Average cumulative progress to goal error (and cumulative std. dev.) vs.
cumulative cost. The contrast set evaluation quickly reaches a nearly accurate estimate of the final
test set progress to goal, showcasing the potential to reduce experimenter costs dramatically by
exploring neighborhoods of contrast around test instances.

axes. We find that ∆L and ∆S is lower in performance than that of the full contrast set, especially
compared to the higher performing contrast sets. For example, we found that instruction “Go pass
by the lamp and the plants, keep going and stop when you reach the bookshelf” performed with an
average progress to goal of 100% over three runs, while the reworded version in the same setting
achieved 33%. We found this trend to continue, and it directly highlights potential issues in the lan-
guage encoder, as the language representations are likely not well aligned. Though our perturbations
for this experiment are relatively general, more specific perturbations can highlight regions of the
test domain where a policy is particularly effective and where it may need improvement.

7 Conclusion and Limitations

A language-guided robot can be tasked with potentially thousands of tasks across arbitrary envi-
ronments. To evaluate such a robot, experimenters ideally construct i.i.d. test sets that effectively
cover the domain of possible test instances. However, creating these sets often require extensive
rearrangement of the environment, increasing experimenter effort. In this work, we propose contrast
sets as an approach for evaluating language-guided robot policies. We find that evaluating these
contrast sets provides insights into policy robustness and sensitivity. Additionally, contrast sets are
able to estimate the full evaluation set performance while maintaining low experimenter cost. We
conducted simulated manipulation and real-world vision-and-language navigation experiments and
found that contrast sets enable experimenters to run more evaluations with less effort. We argue that
contrast set evaluations offer higher fidelity than small-scale, real robot demonstrations while not
requiring the industry-level resources for large-scale, deployed evaluations.

While we focused primarily on environments where language instructions specify greater details on
how the robot should interact with the environment, we intend to investigate larger manipulation-
focused datasets such as DROID [44] and OXE [45]. Additionally, we want to emphasize ecologi-
cally valid language instructions that perturbations may deviate from, which could involve new scene
perturbations (e.g., new object instances), language perturbations (e.g., changing cultural contexts),
or different cost types (e.g., labor costs). We assumed the existence of a test set that is representative
of the test manifold, and that contrast set perturbations will generate instances within the domain.
Unlike other works, we do not aim to estimate performance outside this domain. Typically, test sets
are not well-defined in advance and future work can explore which perturbations can allow experi-
menters to efficiently evaluate more open-ended robot systems. Now that our work has shown the
utility of perturbation strategies for efficiently evaluating robot policies, future work can consider
automatic approaches to selecting which perturbations to apply and for generating new test instances
for experimenters, potentially using large language models.
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A Contrast Sets for Robotics

Overall, our work investigates whether contrast sets are able to estimate the sample mean perfor-
mance of a standard evaluation set with a similar or lower cost. We do not make estimates of the
true population mean of the performance (i.e. run the experiment a large number of times so that
the performance converges to a single true mean). Instead, we focus on sample mean performance
comparisons because experimenters can realistically only estimate the sample mean and not the true
population mean.

Algorithm 1 Contrast set with perturbations

1: Input: Test set X , budget K, perturbation functions P
2: ctotal ← 0
3: for x ∈ X do
4: for δ ∈ P do
5: c← cost(x′, x)
6: x′, ŷ ← f(δ(x)) . x′ is the resultant state
7: ctotal ← ctotal + c
8: if ctotal > K then
9: End

10: end if
11: end for
12: end for

B Language-Table Simulator Experiments

We describe additional details left out of the main text on the Language-Table simulator.

B.1 Model Details

For the policy, we use the pretrained FiLM-conditioned ResNet architecture that was trained using
behavior cloning provided by the Language-Table repository [41]. We do not use Language-Table’s
LAVA model as a pretrained model was not provided and requires 64 TPUv3 chips to train.

B.2 Additional Details

In this section, we describe how the cumulative cost plot in Figure 3 was generated. Since we
evaluated over three seeds and each experiment has a different cost, we create 50 bins at equal
intervals from 0 to the max overall cost across all seeds, then aggregate the cumulative absolute SPL
error and cumulative cost. Using this binning approach, we also compute the standard deviation of
the error bounds.

B.3 Additional Results

Contrast sets allow for more evaluations with less cost. As depicted in Figure 6, the slopes of
each type of perturbations determines how the cost scales compared to the number of evaluations.
Limited interventions is clearly the lowest cost; however, we had found that it does not estimate the
evaluation set. All contrast set strategies have a higher slope than that of standard evaluation. For
example, scene and language perturbations can execute nearly double the number of experiments
compared to the standard evaluation given a cost budget of 281.

C VLN-CE Evaluation on a Physical Robot

We use a Locobot [43] robot to run vision-and-language navigation in continuous environments [42]
(VLN-CE) in the real world.

C.1 Model Details
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Figure 7: Average cumulative progress to goal vs
cumulative cost as time to perturb the scene in
seconds. We find that the results found in Figure 3
and Section 6.2 when using time as the cost func-
tion instead of the distance objects were moved
still hold when switching to time to perturb the
scene as the cost. This shows that we may be
able to use various cost metrics to measure exper-
imenter effort.

We pretrain a policy for the robot on the VLN-
CE task in the Habitat simulator using the
RxR training set [46]. We then use a behav-
ior cloning objective to finetune the simulation-
trained model on a small set of real world ex-
amples using teacher-forcing. The policy uses
a discrete action space of forward, rotate left
by 30 degrees, rotate right by 30 degrees, and
stop. Only one scene arrangement was used
in the training dataset, and this scene was not
used during testing. We note that the furni-
ture, especially larger items such as beds and
couches, were used during training and existed
during training. However, the scene arrange-
ments, which is key to the task of VLN-CE, was
ensured to be different.

C.2 Experiment Design

We describe how we collected our test in-
stances. We design a pseudo studio apartment
environment which is populated with furniture
similar to those found in simulation. To en-
sure ecological validity of test instances, we re-
cruited five participants to design five furniture
setups. They were instructed to ensure that the
furniture was arranged in any way they would prefer, defining the scene s. They then placed the
robot and walked a trajectory b they wanted the robot to execute while narrating a natural language
command l. A subset of the navigation instructions can be found in Figure 4. By using external
participants to design our test instances, we hope to ensure that we, as experimenters, do not bias
the collection of our test instances to be easier than expected.

C.3 Additional Results

Contrast sets allow for more evaluations with less cost. As depicted in Figure 8, the slopes of
each type of perturbations determines how the cost scales compared to the number of evaluations.
Though contrast set evaluation has a higher bound, given a cost budget of 35, contrast sets allow a
user to run nearly triple the number of trials for the same cost budget.
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Figure 6: Compared to Figure 3, we separate the relationship between cost and error. Limited inter-
ventions and language-only perturbations allows for more evaluations with less cost, and standard
evaluation has the least number of evaluations for the cost. As described in the main text, scene and
language pertubations finds a good middle ground with more evaluations for less cost.
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Figure 8: We separate the relationship between cost and error in the real word VLN-CE experi-
ments. We note that the number of evaluations performed in the standard evaluation is relatively low
compared to the contrast set evaluation. Contrast set evaluation allows the experimenter to execute
more experiments compared to standard evaluation. Though not every single experiment from the
test set can be executed under a cost budget of around 35 (blue dotted line), Figure 5 indicates that
contrast set evaluation still estimates the test set.

Contrast sets also estimate the full test set while minimizing time to reset the scene. Instead of
using distance of objects moved during a scene reset as we did in the main text, we also investigate
the time used to reset the scene as a cost metric. We find similar results in Figure 7 which uses time
as cost as we did in Figure 5 which uses distance of objects moved as cost. This is likely due to the
nearly-linear relationship between time it takes to move items in the scene and the distance they are
moved.
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