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Abstract

Large Language Models (LLMs) are large-
scale pretrained models that have achieved
remarkable success across diverse domains.
These successes have been driven by unprece-
dented complexity and scale in both data and
computations. However, due to the high costs
of training such models, brute-force trial-and-
error approaches to improve LLMs are not fea-
sible. Inspired by the success of inverse prob-
lems in uncovering fundamental scientific laws,
this position paper advocates that inverse prob-
lems can also be used to efficiently uncover
scaling laws that guide the building of LLMs
to achieve a desirable performance with signifi-
cantly better cost-effectiveness.

1 Introduction

LLMs represent a paradigm shift in artificial intel-
ligence, embodied by their unprecedented levels
of complexity and scale in both data and computa-
tions, and their demonstrated generalization capa-
bilities across a wide array of tasks and domains,
such as natural language processing, computer vi-
sion, coding, gaming, among many others (Bom-
masani et al., 2021; Anthropic, 2023; OpenAl,
2023; Nijkamp et al., 2023; Dubey et al., 2024;
Reid et al., 2024). These remarkable successes
result from the amalgamation of several input in-
gredients, including high-quality and diverse train-
ing data, advanced modeling techniques, skillfully
designed training procedures, and effective infer-
ence schemes (Antropic, 2024b; Davis, 2024; Wei
et al., 2022b). The intricate interactions among
these ingredients are not fully understood, yet they
collectively influence the performance of large lan-
guage models. To advance the development of high-
performance and cost-effective models further, it
is essential to uncover the underlying scaling laws
that govern these interactions. More importantly,
designing an LL.M that achieves desirable perfor-
mance under resource constraint is a highly com-

plex challenge, as it requires careful selection and
combination of data, model architecture, training
procedures, and inference strategies.

As an example, when building an LLM specif-
ically for GSMS8K (i.e., grade school math bench-
mark), several design principles must be consid-
ered: (i) The training data should contain ample
examples that foster language understanding and
reasoning capabilities to ensure that the LLLM can
learn the nuances of math problems presented in
natural language; (ii) the model architecture should
be complex enough to process sequential inputs
(since each question in GSMS8K is described in nat-
ural language) and generate the required output for-
mats, such as multiple-choice questions or detailed
natural language explanations; (iii) the training pro-
cedure should be designed to allow the model to ef-
fectively acquire task-specific knowledge from the
data (e.g., suitably defined loss functions tailored
for solving math problems); and (iv) the inference
scheme should guide the LLM toward generating
accurate and desired outputs, as demonstrated by
techniques like Chain of Thought (CoT) (Wei et al.,
2022b) and ReAct (Yao et al., 2023a).

Due to the scale of the required data and mod-
ern model architectures, creating an LLM instance
is an extremely costly process, e.g., GPT-4 costs
over $100 million (Knight, 2023) while the cost
for Gemini Ultra is estimated at over $191 mil-
lion (HAI, 2024). This high expense makes build-
ing better LLMs through brute-force trial and er-
ror prohibitively costly. In contrast, DeepSeek
V3 achieved state-of-the-art performance with just
$5.6 million by optimizing training protocols and
architecture (Liu et al., 2024a; ApX, 2025). Thus,
it becomes necessary to uncover underlying scal-
ing laws (e.g., the required composition and min-
imum size of training data or model architecture)
that help build LLMs with the desired performance
and significantly better cost-effectiveness. To this
end, we advocate examining the class of inverse



problems for LLMs. Inverse problems involve de-
termining unknown parameters of an underlying
model from observational data, a concept crucial in
scientific and engineering domains (Groetsch and
Groetsch, 1993; Vogel, 2002; Chadan and Sabatier,
2012; Gazzola et al., 2018). Tackling the inverse
problems is a tried-and-true methodology for in-
ferring and uncovering fundamental scientific laws
from observations, e.g., Kepler’s laws of planetary
motion, Newton’s law of universal gravitation, and
Schrodinger’s wave equation. Inspired by these
successes in physics, inverse problems offer a pow-
erful approach for uncovering the underlying scal-
ing laws behind the behavior of LLMs.

A typical approach to tackle an inverse problem
involves using a forward process to obtain obser-
vation data given some specified input and latent
parameter values. However, this forward process is
often costly. The inverse problem, which involves
identifying the latent parameter values that are con-
sistent with a given set of observation data, is inher-
ently very challenging due to the complexity of the
search space and the lack of solution uniqueness.
In the LLM context, the inverse problem requires
finding the optimal combination of ingredients (i.e.,
data, model architecture, training procedures, and
inference schemes) to build the LLLMs with desir-
able performance, while forward processes refer
to the costly training of LLMs and running model
inference for task execution and evaluation.

Formally, let 7 denote the training ingredients,
such as the dataset, model architecture, and train-
ing procedure, and let Z represent the ingredients
of the inference scheme (e.g., prompting method).
Note that 7 includes both pretraining and fine-
tuning, and it affects the LLM’s model parameters,
whereas 7 typically does not alter these parameters.
Let F(7) — LLM denote the process of creating
an LLLM by executing the computation following
the specified ingredients 7 (i.e., forward process).
Let T(LLM,Z) — C represent the evaluation of
the LLM on a task using the inference scheme Z,
resulting in a performance metric C'. Therefore, we
have the following two forward processes:

F(T)— LLM, (la)
T(F(T),7)—C. (1b)
These two forward processes are illustrated in
Fig. 1. To understand how these forward processes
function, consider the above example of building an

LLM for the GSMS8K task, which assesses various
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Figure 1: The forward process generates an LLM from
key input ingredients and components: datasets, model
architecture, and the training procedure. During infer-
ence time, other ingredients such as the prompt exam-
ples would affect the desired performance metric C.

and fine-tuning datasets), model architecture, and
training procedure. These ingredients are included
within 7 and used in the creation process of an
LLM as F(7) — LLM. Subsequently, the trained
LLM, along with the inference ingredients Z, is
evaluated on the GSMS8K task as T'(LLM, Z) — C.
Here, T'(-) includes both the evaluation metric (e.g.,
accuracy) and the evaluation dataset (i.e., GSM8K
questions), and C' is thus representing the accuracy
of the trained LLM on the GSM8K benchmark.

Given practical constraints such as limited data
and computational resources, tackling the inverse
problems to uncover end-to-end scaling laws may
be overly ambitious. Thus, as a first step, we con-
sider simplified versions of these problems by fix-
ing certain ingredients or focusing on a manageable
subset of the problem space. Specifically, this posi-
tion paper frames the following classes of inverse
problems in the context of LLMs:

* In Section 2, we frame Data Selection as an
inverse problem, focusing on integrating mul-
tiple data modalities, exploiting commonly
used yet non-differentiable metrics, and en-
hancing selection efficiency. Solving this
problem is expected to improve performance
on downstream tasks while reducing the need
for extensive human feedback.

* In Section 3, we frame Inference Optimiza-
tion as an inverse problem and focus on the
inference scheme used in conjunction with
trained models. Solving this problem en-
sures trained models are adapted to underlying
downstream tasks using minimal resources,
without needing to modify their parameters.



¢ In Section 4, we frame Machine Unlearn-
ing (MU) verification and MU for LLMs to
achieve desired performance metrics as in-
verse problems. Solving these problems en-
sures data owners that their deletion requests
are fulfilled and assures model owners that
harmful data are removed.

2 Data Selection

The recent successes of LLMs have been driven
by training on massive and heterogeneous datasets.
For example, LLaMA 3 was trained on 15 trillion
multilingual tokens (Dubey et al., 2024). Previ-
ous works have established scaling laws that link
data quantity to model performance (Kaplan et al.,
2020; Wu et al., 2024a; Zhai et al., 2022). How-
ever, more recent studies (Xia et al., 2024; Wang
et al., 2024b) demonstrate that strategically select-
ing data subsets can improve the performance of
both LLMs and multi-modal LLMs (MLLMSs) in
a way even surpassing the conventional scaling
laws, particularly in domains like computer vi-
sion (Sorscher et al., 2022)). This naturally raises
some key questions: How does model performance
scale with data quantity when data selection meth-
ods are used for MLLMs? Furthermore, how do the
scaling laws vary across different stages of MLLM
training, such as pretraining, fine-tuning, and align-
ment? We formulate data selection as an inverse
problem of T'(F(7),Z) — C. The goal is to
understand how the quantity of selected training
data (in 7) scales with the desired MLLM per-
formance (C'). For example, we might want to
identify the minimal dataset required to train an
MLLM to achieve specific performance metrics un-
der optimal data selection. Therefore, efficient data
selection can significantly reduce computational
costs by prioritizing informative and representative
data, thereby improving training efficiency without
sacrificing performance. Furthermore, these scal-
ing laws should be general enough so that they are
applicable to a family of data selection methods in-
stead of specific implementations (e.g., the family
of influence functions (Koh and Liang, 2017) vs. its
implementation Datalnf (Kwon et al., 2024)).

2.1 Data Selection for Multi-Model LLMs

The remarkable successes of LLMs have led to the
development of MLLMs that integrate advanced
visual processing capabilities (Liu et al., 2023; Zhu
et al., 2024; Dai et al., 2023). However, the rapid

growth of the MLLMs and their multi-modal na-
ture have led to instruction-tuning datasets that of-
ten rely on automated or template-based content,
resulting in relatively poor-quality and redundant
datasets (Liu et al., 2024d). To address this chal-
lenge, introducing smaller yet high-quality datasets
can potentially maintain or even improve the perfor-
mance of MLLMs. Traditional data pruning meth-
ods often require repeated gradients retrieval (Park
et al., 2023) or extensive memory for storage (Yang
et al., 2023), both of which become impractical for
MLLMs due to their massive model sizes and data
volumes. Conventional attribution methods, such
as the influence function (Koh and Liang, 2017;
Kwon et al., 2024) or TracIn (Pruthi et al., 2020),
have not been widely adapted for MLLMs. This
naturally raises a question: How to perform effec-
tive data selection for MLLMs while considering
both image and text features?

Previous efforts have approached the problem
as a large-scale data selection challenge, focusing
on external evaluators such as established crite-
ria (Wei et al., 2023) or intrinsic features (Liu et al.,
2024d; Chen et al., 2024a). For example, Xia et al.
(2024) demonstrated using a small subset of textual
training data can achieve the same performance
as the full dataset. The next step is to propose
relatively more compute-friendly methods and gen-
eralize them to the large-scale domain of MLLMs,
improving upon the standard power law scaling.
The core objective of data selection research is to
identify the techniques for optimally scaling train-
ing with respect to the amount of data used.

In addition, some training data points may rely
primarily on a single modality (e.g., cases where
images alone suffice to answer the questions).
Would the scaling laws of data selection differ
across different modalities, and would any partic-
ular modality have a stronger impact on the per-
formance? To address these inquiries, one can
potentially employ feature attribution methods like
Integrated Gradients (Sundararajan et al., 2017)
to attribute the score of each training data point
to specific modalities. The multi-modal nature of
data introduces an additional layer of complexity,
rendering the adaptation more challenging than its
conventional application in computer vision tasks.
Analyzing these modality-specific scores will help
better understand the relative importance of each
modality and how these modalities influence the
performance and, hence, uncover a universal scal-
ing law for all modalities.



2.2 Data Selection for LLLM Fine-tuning with
Non-differentiable Performance Metrics

Commonly used data selection methods in LLMs
are often the gradient-based data attribution meth-
ods (Han et al., 2020; Yeh et al., 2022; Schioppa
etal., 2022; Grosse et al., 2023; Wang et al., 2024a),
such as influence functions (Kwon et al., 2024)
and Tracln (Xia et al., 2024), which quantify the
impact of each data point on model parameters
and next-token prediction loss. However, non-
differentiable metrics C', such as semantic similar-
ity with the ground truth (Cer et al., 2017), BLEU
score (Papineni et al., 2002; Sellam et al., 2020),
reward models (Ouyang et al., 2022), and LL.M-as-
a-judge (Zheng et al., 2023), are commonly used
to evaluate the LLM performance in practice. This
discrepancy between the metrics used for data se-
lection and the metrics employed for evaluating the
LLM performance can result in sub-optimal perfor-
mance. Therefore, we advocate for research on how
to select data for LLM fine-tuning when optimizing
for commonly used but non-differentiable evalua-
tion metrics. This problem is non-trivial because,
unlike influence functions, there is no straightfor-
ward way to compute the effect or gradient of the
non-differentiable evaluation metric with respect
to the model parameters and training data.

One promising approach is the integration of
non-differentiable evaluation metrics into the data
selection method using reinforcement learning tech-
niques, for instance, the policy gradients from
the REINFORCE algorithm (Williams, 1992). By
serving as a surrogate for “gradients” of the non-
differentiable evaluation metrics with respect to
the model parameters, these methods can lead to a
novel data selection method that facilitates direct
optimization towards desired (non-differentiable)
evaluation criteria, thereby directly uncovering the
underlying scaling laws that link the amount of
training data to model performance.

2.3 Data Selection for LLM Alignment

Existing works have shown that LLM responses
often do not immediately align with user intent
after pretraining or fine-tuning, as LLMs can
generate untruthful, unuseful, and even harmful
contents (Bai et al., 2022). However, recent
successes (Ouyang et al., 2022; Stiennon et al.,
2020) in training LLMs using human feedback
has improved alignment between user intent and
LLM responses (i.e., achieving the desired align-

ment performance metric C') via methods like
Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024).
Achieving the desired alignment depends heavily
on obtaining high-quality human feedback (i.e.,
human labeling), which is costly and requires a
large amount of feedback to ensure effective align-
ment training (i.e., RLHF/DPO). This challenge
has motivated the development of a heuristic-based
approach (Muldrew et al., 2024) that aimed at ef-
ficiently selecting a subset of LLM responses for
human feedback. However, this heuristic-based ap-
proach lacks a principled foundation, leading to the
following question: How to actively select the LLM
responses for human feedback in a principled way
to minimize the amount of feedback required while
ensuring effective RLHF/DPO alignment training?
To address this problem, one can consider de-
signing theoretically grounded acquisition func-
tions (Verma et al., 2024) specifically tailored for
efficient LLM fine-tuning. Such acquisition func-
tions should account for variations in pretrained
data and model architecture, which can lead to
potentially different preferences for responses de-
pending on these factors. Specifically, the acqui-
sition functions need to consider the DPO process
and quantify the uncertainty for the difference be-
tween the latent scores of two prompt-response
pairs, where the latent scoring function is defined
using the LLM itself (Rafailov et al., 2024). Un-
covering scaling laws to efficiently acquire high-
quality and diverse training data from LLLM users
can reduce the budget needed for data collection.

2.4 Joint Optimization for Data Selection

Previous discussions focus on data selection for a
single training stage. However, different training
stages improve different aspects of the model capa-
bility, and combining them can further improve the
performance (Ke et al., 2023). Specifically, contin-
ued pretraining can be used to keep the knowledge
of the model updated (Ke et al., 2023; Jindal et al.,
2024) while instruction fine-tuning can improve its
ability to follow natural language instructions (Wei
et al., 2022a). Thus, a question naturally arises:
How to decide the ratio of data points used in dif-
ferent stages under a fixed number of data points?
A joint optimization approach can be plausible to
find the optimal ratio (Jindal et al., 2024). Finding
this optimal ratio helps uncover the underlying scal-
ing laws of optimal data selection across different



training stages, changing the scaling law of model
performance C with respect to the dataset size.
Recent results from training LLMs for low-
resource languages such as SEA-LION (Singapore,
2024) demonstrate that combining continued pre-
training with instruction fine-tuning achieves supe-
rior performance. On the other hand, selecting the
best training data also depends on the LLM/MLLM
architecture. Existing model selection works (Xia
et al., 2024; Raschka, 2018; Wang et al., 2021)
typically seek to find the optimal model architec-
ture given fixed training data or the other way
around. Therefore, producing the best-performing
LLM/MLLM requires us to jointly select the most
appropriate data and model architecture. Hence,
an important research direction will be to develop
algorithms that jointly select data and model ar-
chitecture (Hemachandra et al., 2023) in order to
optimize an LLM/MLLM’s performance metric C.
By doing so, deeper insights into the underlying
scaling laws governing how model architecture and
data selection jointly influence the LLM/MLLM’s
performance metric C' can be developed.

3 Inference Optimization

Optimizations carried out at the inference stage
significantly affect the performance of LLMs. For
example, given a trained LLM, it is common prac-
tice to provide a prompt (i.e., a snippet of text) that
the LLM uses to generate further text conditioned
on the snippet. This represents a forward process
T(F(T),Z) — Cin Eq. (1b), where the prompt
is a component of inference ingredient Z, and in-
verting the process to carefully construct prompts
that can instruct the LLM to perform a specific
downstream task, hence achieving a desired perfor-
mance measured by the metric C, is challenging.
Thus, inference optimization can be viewed as an
inverse problem of T'(F'(7),Z) — C in Eq. (1b),
where the goal is to design inference schemes in Z
that, when combined with a model trained on T,
achieves the desired performance metric C. Fur-
thermore, one can also aim to uncover the underly-
ing scaling laws at inference time with respect to
optimized data, model, and compute.

3.1 Data Optimization at Inference Time

Prompts are key components of Z during the LLM
inference. A widely adopted popular prompt-
ing structure consists of instructions and few-shot
demonstrations (data samples), also known as ex-
emplars. This approach leverages LLMs’ ability

for in-context learning, which has emerged with
the rapid scaling of LLMs in terms of the number
of parameters, particularly since the advent of GPT-
3 (Brown et al., 2020). Specifically, the LLMs can
understand and perform tasks based on exemplars
and instructions provided only in the context of the
prompt, without relying on conventional training
methods like fine-tuning on specific datasets (Liu
et al., 2022). It is widely observed that the design
of instructions and the selection of exemplars in
the prompt significantly influence the LLM perfor-
mance (Albalak et al., 2024; Rubin et al., 2022).

Prompting techniques have been introduced to
steer the LLLM responses towards better accuracy,
tailored tone, improved focus (Antropic, 2024b,a),
and reduced hallucinations (Davis, 2024; Xu et al.,
2024b). In short, prompting is a tool to achieve the
desired performance metric C'. Despite its benefits,
designing instructions and selecting exemplars for
prompts typically requires a human-intensive and
costly trial-and-error approach (Reynolds and Mc-
Donell, 2021; Mishra et al., 2021). Recent works
have explored heuristic local search methods (Zhou
et al., 2023) and evolutionary strategies (Prasad
et al., 2023; Guo et al., 2024) to identify the best
instructions and retrieval-based methods to find the
most relevant exemplars (Liu et al., 2022; Rubin
et al., 2022). However, these methods can still be
costly and sub-optimal, raising the question: How
can the prompts be efficiently optimized when sub-
jected to resource constraints, such as limited com-
putational resources or fewer queries?

Viewing the research question as an inverse
problem, one can formulate the prompt optimiza-
tion problem as a black-box optimization problem
where the inputs are the prompts (comprising in-
structions and exemplars) and the output is the
prompt’s performance. Then, optimization tech-
niques such as the NeuralUCB algorithm can be
applied to optimize the prompt for the best per-
formance under resource constraints (Zhou et al.,
2020; Dai et al., 2022). Specifically, in the Neu-
ralUCB algorithm, a neural network is trained on
past observations to predict the LLM performance
for different combinations of instructions and exem-
plars. This approach will help uncover underlying
scaling laws and understand the effect of instruc-
tions and exemplars on LLM performance. More-
over, finding the exemplars (given a fixed budget)
and instructions to achieve the best LLM perfor-
mance helps to uncover the scaling law of LLM per-
formance with respect to the number of exemplars.



This scaling law will inform the real applications
to choose the least number of exemplars to achieve
a target performance metric C.

Since both the data in 7 and the data in Z affect
the final LLM performance, optimizing an LLM’s
performance requires the joint optimization of in-
context data in Z and training data in 7. To effi-
ciently solve this optimization problem, we further
advocate for research into developing algorithms
that automatically select the optimal combination
of in-context and training data for an LLM. This
approach will help us to uncover fundamental scal-
ing laws governing the combined impact of both
training 7’s and inference Z’s ingredients on the
performance metric C.

Additionally, we can consider the problem of
prompt optimization with human feedback, aim-
ing to minimize the amount of human feedback
required to find the best prompt that maximizes
LLM performance. Specifically, we consider the
inverse problem in which the performance metric
C' is defined as the alignment of LLM responses
with human values, such as helpfulness. The goal
is to optimize the prompt to improve the alignment.
Recent works have shown that humans are better at
providing preference feedback than giving a score,
which has been the focus of prior prompt optimiza-
tion works (Lin et al., 2024b; Hu et al., 2024; Wu
et al., 2024b; Zhou et al., 2024b). To address this,
recent works propose a framework of prompt op-
timization that relies solely on human preference
feedback on the LLM responses (Lin et al., 2024a),
demonstrating superior performance compared to
prior results on prompt optimization.

3.2 Model Optimization at Inference Time

When deploying resource-efficient LLMs, under-
standing the scaling laws for determining optimal
model configurations is crucial for effective and
efficient usage (Devvrit et al., 2024). Selecting the
best model configuration during inference is a criti-
cal inverse problem that aims to identify an LLM
setup capable of achieving a target performance
metric C' with minimal computational resources.
Formally, the inference-time model configuration
should be considered as part of the inference in-
gredients Z in Eq. (1b). The goal is to identify a
model configuration that minimizes computational
requirements while achieving the desired perfor-
mance metric C'. As model sizes increase, they
require proportionately more compute and mem-
ory per generation, making them impractical in

resource-constrained settings. Moreover, simply
scaling model parameters does not guarantee better
performance, especially in scenarios constrained by
data variety and quality (Allen-Zhu and Li, 2020).
This challenge can be addressed from two per-
spectives: (1) selecting the optimal model at in-
ference time from LLMs of varying sizes and ca-
pacities using methods like model valuation and
selection (Xu et al., 2024a), and (2) determining
the optimal number of activated routes in Mixture-
of-Expert LLMs during inference time to balance
efficiency and performance. Through a structured
exploration of model size scaling, it is possible to
determine how to adjust the model size to meet the
demands of specific tasks during inference. Ulti-
mately, uncovering the scaling laws behind model
scaling at inference allows us to trade off between
computational efficiency and performance.

3.3 Compute Optimization at Inference Time

The recent introduction of OpenAl’s ol model
and DeepSeek R1, which are designed to facili-
tate CoT (Wei et al., 2022b) reasoning during in-
ference, has induced increasing interest in scal-
ing computational resources at inference time to
improve model performance (Wu et al., 2024a;
Snell et al., 2024). Existing work (Chen et al.,
2024b) has demonstrated a scaling law that relates
model performance to the computational resources
used in inference. However, this work focuses
on a single inference scheme, where the infer-
ence scheme (e.g., CoT) is an inference ingredi-
ent Z in Eq. (1b). Besides CoT, other inference
schemes, such as prompt optimization, optimiza-
tion with human feedback, retrieval-augmented
generation (Gao et al., 2024; Shao et al., 2024),
repeated sampling (Brown et al., 2024; Gui et al.,
2024), and ensemble models (Allen-Zhu and Li,
2020), have also been explored to scale inference-
time compute for improving performance.

An exciting area of research is to optimize a
mix of these inference schemes within a fixed
computational budget, uncovering more effective
model scaling behavior. Specifically, computa-
tional resources can be quantified by the number
of responses generated by each of these inference
schemes. Optimally allocating resources across
schemes and then selecting and merging these
responses improves LLM performance. Study-
ing how the scaling law changes when inference
schemes are optimally combined will provide better
insight into the computational requirements neces-



sary to achieve a target performance C'

3.4 Joint Optimization at Inference Time

LLM performance is influenced by a complex in-
terplay between data, model, and compute. Given
a fixed computational cost specified by the perfor-
mance metric C, it is crucial to identify the optimal
combination of model configuration and inference
schemes when user prompts (i.e., data) are fixed.
Thus, jointly optimizing the model configuration
and inference schemes can help to approach op-
timal LLM performance. Specifically, exploring
how to allocate computational resources across dif-
ferent inference schemes and models should be a
key focus. This approach will help uncover the un-
derlying scaling laws that characterize how models,
inference schemes, and computational budgets col-
lectively impact LLM performance. These scaling
laws can help to decide minimal model parameters
and computational resources needed for LLMs to
achieve desired performance, reducing the serving
cost of these models in real-life applications.

4 Unlearning

Machine unlearning (MU) is the process of re-
moving the influence of a set of training data (i.e.,
erased data) from a trained model to either com-
ply with data owners’ deletion requests (GDPR,
2016; CCPA, 2018) or erase harmful data to im-
prove the model performance (Fore et al., 2024;
Liu et al., 2024c; Zhou et al., 2024a). We consider
two inverse problems. Verification of MU is an
inverse problem of F'(7) — LLM as given any
“unlearned” model, aiming to identify if the erased
data is present in the training ingredients 7. MU
techniques can also be viewed as an inverse prob-
lem of T(F(T),Z) — C as given some perfor-
mance metrics (e.g., poor knowledge on weapons
of mass destruction (Li et al., 2024), similar perfor-
mance on the retained data as before unlearning),
the goal is to design the inference ingredients (e.g.,
unlearning prompts) in Z, or the datasets and train-
ing procedure (e.g., use of training checkpoints,
model architecture that facilitates unlearning with-
out retraining) in 7 to achieve the desired metrics.

4.1 MU Verification

Despite the growing interest in MU for LLMs (El-
dan and Russinovich, 2023; Chen and Yang, 2023;
Liu et al., 2024b), one major challenge remains:
How to efficiently verify whether the requested
data is not present in an unlearned LLM? At first

glance, we can compare the similarity of an un-
learned LLM with the model trained only on the re-
tained data (without the erased data) (Nguyen et al.,
2022; Maini et al., 2024). However, such an ap-
proach requires obtaining the LLMs retrained only
on the retained data, which is computationally ex-
pensive (Yao et al., 2024) or infeasible when there
are computational hardware constraints. Other MU
metrics try to address the challenge empirically.
For example, the Membership Inference Attack
(MIA) metric (Shokri et al., 2017) expects low ac-
curacy on the erased data when assessed by an
adversarial model trained to classify whether data
points were members of the training dataset. These
metrics fall short as they either require white-box
access to the LLM (Duan et al., 2024), which is
often unfeasible, or require training shadow mod-
els, which are computationally expensive (Shokri
etal., 2017). Furthermore, the MIA metric depends
on the adversarial model’s ability to distinguish
between membership and non-membership (Duan
et al., 2024), which can be limited when similar
data points are present in both erased and retained
data (e.g., multiple news sources reporting on the
same event). Thus, such a situation raises the fol-
lowing question: How can an efficient MU verifica-
tion metric for LLMs not requiring model retrain-
ing be designed? Can the metric be intuitive and
effective despite the presence of similar data?

Answering these open questions is non-trivial.
One potential approach is to leverage related work
on scalable and robust watermarking (Lau et al.,
2024) for text data. By embedding unique water-
marks into each data owner’s text content before
LLM training. Such watermarks should remain
detectable and verifiable in LLM predictions after
fine-tuning and, hence, be used to test the effec-
tiveness of unlearning. Research on this metric
could help support the scaling law that retraining-
free metrics require data attribution to trace the im-
pact of individual data points during initial training,
thereby improving unlearning procedures without
the need for complete retraining.

MU metrics can help define scaling laws govern-
ing the difficulty of unlearning erased data. Previ-
ous work (Zhao et al., 2024) explored how the tug-
of-war (ToW) verification metric, which compares
the accuracies of the unlearned and retrained mod-
els, is influenced by the properties of erased and
retained data. It also examined how certain proper-
ties of erased data, like high memorization score,
may require different MU techniques to achieve a



better ToW score. Building on these works, one can
further explore how this new retraining-free metric
and other MU metrics are influenced by various
dataset properties, such as dataset size, watermark
count, and the similarity between erased and re-
tained data. These insights will uncover underlying
scaling law that guides the selection of MU tech-
niques and improve the reliability of metrics used
for evaluating unlearning techniques.

4.2 MU Techniques

Many existing MU techniques modify the model
weights (Chen and Yang, 2023; Yao et al., 2023b;
Jang et al., 2023), making them unsuitable for
black-box LLMs or when fine-tuning is expensive
due to computational constraints. While recent
approaches like offset unlearning (Huang et al.,
2024) may work for black-box models, they often
cause an unacceptable performance drop in the re-
tained data (Huang et al., 2024). Moreover, prior
LLM work (Pawelczyk et al., 2023) on in-context
unlearning is restricted to sentiment classification
and does not scale to generative tasks. Existing
MU techniques may perform well on metrics like
MIA but risk unlearning some retained data that
are similar to the erased data (Jin et al., 2024). This
situation raises a critical question: Is post-hoc un-
learning (i.e., only modifying 7) for text generation
feasible without compromising the performance of
the retained data or introducing unintended biases?

The target performance C' of an LLM is de-
fined as minimizing the generation of harmful
data or weak watermark strength based on the
watermarking-based MU metric while retaining
its performance on other metrics, such as the vali-
dation loss. How to achieve C efficiently by mod-
ifying the inference process Z? We advocate for
research that identifies the private or harmful data
(e.g., by identifying the watermarks present in gen-
erated text) and modifies Z during inference to sup-
press the data influence and prevent them from
being generated. Alternatively, can C be achieved
efficiently by modifying the model architecture in
T such that it is easier to unlearn?

Using the intrinsic sparsity of Mixture-of-
Experts transformer paradigm (Shazeer et al., 2017;
Lepikhin et al., 2020; Fedus et al., 2022) to iso-
late the influence of data to only a few experts
and thereby perform unlearning more efficiently on
fewer model parameters. Overall, the aim should
be to improve LLM performance on the given met-
ric C' and uncover underlying scaling laws for un-

learning during inference. Specifically, this in-
volves identifying how the metric C, like the loss
on the erased and retained data, varies with the size
of these datasets, computation cost, and model’s
ability to unlearn during inference. These scaling
laws can identify the most suitable MU techniques
for removing harmful knowledge from LLMs and
determine how much data can be erased before per-
formance metrics drop below a predefined thresh-
old, beyond which retraining becomes necessary.

5 Conclusion and Future Outlook

This position paper highlights the significance of
improving our understanding of the scaling laws
that govern the behavior of LLMs, such as data re-
quirements and compute scaling laws. To uncover
the underlying scaling laws, we advocate for re-
search exploring two classes of inverse problems
for LLMs (i.e., Eq. (1a) and Eq. (1b)): Identifying
optimal input ingredients and achieving desired
performance metrics by adjusting both training
and inference ingredients. Specifically, we frame
data selection, inference optimization, and machine
unlearning as inverse problems, each presenting
unique challenges to solve. Yet, jointly optimiz-
ing them (including data, model architecture, train-
ing procedures, inference scheme, and unlearning
techniques) holds great potential for advancing the
development and deployment of LLMs.

Instead of iterating over the engineering efforts
to further improve the empirical performance, we
aim to uncover the fundamental scaling laws gov-
erning the training and inference of LLMs via in-
verse problems, which can lay the foundations for
building better LLMs. These scaling laws can im-
prove specific applications by providing better se-
lection methods for training data, flexible unlearn-
ing techniques, methods with improved inference
efficiency, and optimized inference schemes.

Looking ahead, future research should further ex-
plore these scaling laws and investigate how the in-
terplay among various components and ingredients
impacts performance. Additionally, advancements
in machine unlearning will be crucial as models be-
come more complex, ensuring they can adapt with-
out compromising functionality or privacy stan-
dards. Emerging technologies and methodologies
from fields like optimization theory can also offer
novel tools for tackling inverse problems in LLMs.
By integrating these approaches, we may uncover
innovative solutions that improve the efficiency and
cost-effectiveness of LLM development.



Limitations

While the inverse problem formulation offers a
promising perspective for studying large language
models (LLMs), it is important to recognize that
not all problems in LL.Ms have well-defined inverse
formulations. Analogous to how the inverse for a
many-to-one function is ill-defined mathematically,
many forward problems in LLMs, such as data
aggregation or input-to-output mappings, are inher-
ently many-to-one. This leads to potential ambi-
guity or ill-posedness in their inverse counterparts.
Addressing these challenges will require further
theoretical and methodological advancements.
Additionally, this paper focuses on a limited set
of illustrative problems, such as data selection, in-
ference optimization, and machine unlearning for
LLMs, to demonstrate the potential of the inverse
problem framework. A comprehensive exploration
of its applicability across the broader and rapidly
evolving landscape of LLM research remains an
open direction. We encourage future work to un-
cover additional problem domains where inverse
formulations may offer meaningful insights.

Ethic Statement

LLMs are largely trained on data scraped from the
Internet, which may include dangerous, unsafe, bi-
ased, or inaccurate content. As a result, LLMs
risk reproducing these harmful patterns in their
generated outputs. Moreover, the use of scraped
data raises both legal and ethical issues. The data
may be copyrighted or include sensitive personal
information without the consent of the data sub-
jects. In response, we aim to mitigate these risks by
improving data selection and developing machine
unlearning techniques that support the removal of
harmful or sensitive data and machine unlearning
verification metrics to verify removal.
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