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Abstract001

Large Language Models (LLMs) are large-002
scale pretrained models that have achieved003
remarkable success across diverse domains.004
These successes have been driven by unprece-005
dented complexity and scale in both data and006
computations. However, due to the high costs007
of training such models, brute-force trial-and-008
error approaches to improve LLMs are not fea-009
sible. Inspired by the success of inverse prob-010
lems in uncovering fundamental scientific laws,011
this position paper advocates that inverse prob-012
lems can also be used to efficiently uncover013
scaling laws that guide the building of LLMs014
to achieve a desirable performance with signifi-015
cantly better cost-effectiveness.016

1 Introduction017

LLMs represent a paradigm shift in artificial intel-018

ligence, embodied by their unprecedented levels019

of complexity and scale in both data and computa-020

tions, and their demonstrated generalization capa-021

bilities across a wide array of tasks and domains,022

such as natural language processing, computer vi-023

sion, coding, gaming, among many others (Bom-024

masani et al., 2021; Anthropic, 2023; OpenAI,025

2023; Nijkamp et al., 2023; Dubey et al., 2024;026

Reid et al., 2024). These remarkable successes027

result from the amalgamation of several input in-028

gredients, including high-quality and diverse train-029

ing data, advanced modeling techniques, skillfully030

designed training procedures, and effective infer-031

ence schemes (Antropic, 2024b; Davis, 2024; Wei032

et al., 2022b). The intricate interactions among033

these ingredients are not fully understood, yet they034

collectively influence the performance of large lan-035

guage models. To advance the development of high-036

performance and cost-effective models further, it037

is essential to uncover the underlying scaling laws038

that govern these interactions. More importantly,039

designing an LLM that achieves desirable perfor-040

mance under resource constraint is a highly com-041

plex challenge, as it requires careful selection and 042

combination of data, model architecture, training 043

procedures, and inference strategies. 044

As an example, when building an LLM specif- 045

ically for GSM8K (i.e., grade school math bench- 046

mark), several design principles must be consid- 047

ered: (i) The training data should contain ample 048

examples that foster language understanding and 049

reasoning capabilities to ensure that the LLM can 050

learn the nuances of math problems presented in 051

natural language; (ii) the model architecture should 052

be complex enough to process sequential inputs 053

(since each question in GSM8K is described in nat- 054

ural language) and generate the required output for- 055

mats, such as multiple-choice questions or detailed 056

natural language explanations; (iii) the training pro- 057

cedure should be designed to allow the model to ef- 058

fectively acquire task-specific knowledge from the 059

data (e.g., suitably defined loss functions tailored 060

for solving math problems); and (iv) the inference 061

scheme should guide the LLM toward generating 062

accurate and desired outputs, as demonstrated by 063

techniques like Chain of Thought (CoT) (Wei et al., 064

2022b) and ReAct (Yao et al., 2023a). 065

Due to the scale of the required data and mod- 066

ern model architectures, creating an LLM instance 067

is an extremely costly process, e.g., GPT-4 costs 068

over $100 million (Knight, 2023) while the cost 069

for Gemini Ultra is estimated at over $191 mil- 070

lion (HAI, 2024). This high expense makes build- 071

ing better LLMs through brute-force trial and er- 072

ror prohibitively costly. In contrast, DeepSeek 073

V3 achieved state-of-the-art performance with just 074

$5.6 million by optimizing training protocols and 075

architecture (Liu et al., 2024a; ApX, 2025). Thus, 076

it becomes necessary to uncover underlying scal- 077

ing laws (e.g., the required composition and min- 078

imum size of training data or model architecture) 079

that help build LLMs with the desired performance 080

and significantly better cost-effectiveness. To this 081

end, we advocate examining the class of inverse 082
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problems for LLMs. Inverse problems involve de-083

termining unknown parameters of an underlying084

model from observational data, a concept crucial in085

scientific and engineering domains (Groetsch and086

Groetsch, 1993; Vogel, 2002; Chadan and Sabatier,087

2012; Gazzola et al., 2018). Tackling the inverse088

problems is a tried-and-true methodology for in-089

ferring and uncovering fundamental scientific laws090

from observations, e.g., Kepler’s laws of planetary091

motion, Newton’s law of universal gravitation, and092

Schrödinger’s wave equation. Inspired by these093

successes in physics, inverse problems offer a pow-094

erful approach for uncovering the underlying scal-095

ing laws behind the behavior of LLMs.096

A typical approach to tackle an inverse problem097

involves using a forward process to obtain obser-098

vation data given some specified input and latent099

parameter values. However, this forward process is100

often costly. The inverse problem, which involves101

identifying the latent parameter values that are con-102

sistent with a given set of observation data, is inher-103

ently very challenging due to the complexity of the104

search space and the lack of solution uniqueness.105

In the LLM context, the inverse problem requires106

finding the optimal combination of ingredients (i.e.,107

data, model architecture, training procedures, and108

inference schemes) to build the LLMs with desir-109

able performance, while forward processes refer110

to the costly training of LLMs and running model111

inference for task execution and evaluation.112

Formally, let T denote the training ingredients,113

such as the dataset, model architecture, and train-114

ing procedure, and let I represent the ingredients115

of the inference scheme (e.g., prompting method).116

Note that T includes both pretraining and fine-117

tuning, and it affects the LLM’s model parameters,118

whereas I typically does not alter these parameters.119

Let F (T ) → LLM denote the process of creating120

an LLM by executing the computation following121

the specified ingredients T (i.e., forward process).122

Let T (LLM, I) → C represent the evaluation of123

the LLM on a task using the inference scheme I,124

resulting in a performance metric C. Therefore, we125

have the following two forward processes:126

F (T ) → LLM , (1a)127

T (F (T ) , I) → C . (1b)128

129 These two forward processes are illustrated in130

Fig. 1. To understand how these forward processes131

function, consider the above example of building an132

LLM for the GSM8K task, which assesses various133

design principles related to data (i.e., pretraining134

Figure 1: The forward process generates an LLM from
key input ingredients and components: datasets, model
architecture, and the training procedure. During infer-
ence time, other ingredients such as the prompt exam-
ples would affect the desired performance metric C.

and fine-tuning datasets), model architecture, and 135

training procedure. These ingredients are included 136

within T and used in the creation process of an 137

LLM as F (T ) → LLM. Subsequently, the trained 138

LLM, along with the inference ingredients I, is 139

evaluated on the GSM8K task as T (LLM, I) → C. 140

Here, T (·) includes both the evaluation metric (e.g., 141

accuracy) and the evaluation dataset (i.e., GSM8K 142

questions), and C is thus representing the accuracy 143

of the trained LLM on the GSM8K benchmark. 144

Given practical constraints such as limited data 145

and computational resources, tackling the inverse 146

problems to uncover end-to-end scaling laws may 147

be overly ambitious. Thus, as a first step, we con- 148

sider simplified versions of these problems by fix- 149

ing certain ingredients or focusing on a manageable 150

subset of the problem space. Specifically, this posi- 151

tion paper frames the following classes of inverse 152

problems in the context of LLMs: 153

• In Section 2, we frame Data Selection as an 154

inverse problem, focusing on integrating mul- 155

tiple data modalities, exploiting commonly 156

used yet non-differentiable metrics, and en- 157

hancing selection efficiency. Solving this 158

problem is expected to improve performance 159

on downstream tasks while reducing the need 160

for extensive human feedback. 161

• In Section 3, we frame Inference Optimiza- 162

tion as an inverse problem and focus on the 163

inference scheme used in conjunction with 164

trained models. Solving this problem en- 165

sures trained models are adapted to underlying 166

downstream tasks using minimal resources, 167

without needing to modify their parameters. 168
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• In Section 4, we frame Machine Unlearn-169

ing (MU) verification and MU for LLMs to170

achieve desired performance metrics as in-171

verse problems. Solving these problems en-172

sures data owners that their deletion requests173

are fulfilled and assures model owners that174

harmful data are removed.175

2 Data Selection176

The recent successes of LLMs have been driven177

by training on massive and heterogeneous datasets.178

For example, LLaMA 3 was trained on 15 trillion179

multilingual tokens (Dubey et al., 2024). Previ-180

ous works have established scaling laws that link181

data quantity to model performance (Kaplan et al.,182

2020; Wu et al., 2024a; Zhai et al., 2022). How-183

ever, more recent studies (Xia et al., 2024; Wang184

et al., 2024b) demonstrate that strategically select-185

ing data subsets can improve the performance of186

both LLMs and multi-modal LLMs (MLLMs) in187

a way even surpassing the conventional scaling188

laws, particularly in domains like computer vi-189

sion (Sorscher et al., 2022)). This naturally raises190

some key questions: How does model performance191

scale with data quantity when data selection meth-192

ods are used for MLLMs? Furthermore, how do the193

scaling laws vary across different stages of MLLM194

training, such as pretraining, fine-tuning, and align-195

ment? We formulate data selection as an inverse196

problem of T (F (T ) , I) → C. The goal is to197

understand how the quantity of selected training198

data (in T ) scales with the desired MLLM per-199

formance (C). For example, we might want to200

identify the minimal dataset required to train an201

MLLM to achieve specific performance metrics un-202

der optimal data selection. Therefore, efficient data203

selection can significantly reduce computational204

costs by prioritizing informative and representative205

data, thereby improving training efficiency without206

sacrificing performance. Furthermore, these scal-207

ing laws should be general enough so that they are208

applicable to a family of data selection methods in-209

stead of specific implementations (e.g., the family210

of influence functions (Koh and Liang, 2017) vs. its211

implementation DataInf (Kwon et al., 2024)).212

2.1 Data Selection for Multi-Model LLMs213

The remarkable successes of LLMs have led to the214

development of MLLMs that integrate advanced215

visual processing capabilities (Liu et al., 2023; Zhu216

et al., 2024; Dai et al., 2023). However, the rapid217

growth of the MLLMs and their multi-modal na- 218

ture have led to instruction-tuning datasets that of- 219

ten rely on automated or template-based content, 220

resulting in relatively poor-quality and redundant 221

datasets (Liu et al., 2024d). To address this chal- 222

lenge, introducing smaller yet high-quality datasets 223

can potentially maintain or even improve the perfor- 224

mance of MLLMs. Traditional data pruning meth- 225

ods often require repeated gradients retrieval (Park 226

et al., 2023) or extensive memory for storage (Yang 227

et al., 2023), both of which become impractical for 228

MLLMs due to their massive model sizes and data 229

volumes. Conventional attribution methods, such 230

as the influence function (Koh and Liang, 2017; 231

Kwon et al., 2024) or TracIn (Pruthi et al., 2020), 232

have not been widely adapted for MLLMs. This 233

naturally raises a question: How to perform effec- 234

tive data selection for MLLMs while considering 235

both image and text features? 236

Previous efforts have approached the problem 237

as a large-scale data selection challenge, focusing 238

on external evaluators such as established crite- 239

ria (Wei et al., 2023) or intrinsic features (Liu et al., 240

2024d; Chen et al., 2024a). For example, Xia et al. 241

(2024) demonstrated using a small subset of textual 242

training data can achieve the same performance 243

as the full dataset. The next step is to propose 244

relatively more compute-friendly methods and gen- 245

eralize them to the large-scale domain of MLLMs, 246

improving upon the standard power law scaling. 247

The core objective of data selection research is to 248

identify the techniques for optimally scaling train- 249

ing with respect to the amount of data used. 250

In addition, some training data points may rely 251

primarily on a single modality (e.g., cases where 252

images alone suffice to answer the questions). 253

Would the scaling laws of data selection differ 254

across different modalities, and would any partic- 255

ular modality have a stronger impact on the per- 256

formance? To address these inquiries, one can 257

potentially employ feature attribution methods like 258

Integrated Gradients (Sundararajan et al., 2017) 259

to attribute the score of each training data point 260

to specific modalities. The multi-modal nature of 261

data introduces an additional layer of complexity, 262

rendering the adaptation more challenging than its 263

conventional application in computer vision tasks. 264

Analyzing these modality-specific scores will help 265

better understand the relative importance of each 266

modality and how these modalities influence the 267

performance and, hence, uncover a universal scal- 268

ing law for all modalities. 269
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2.2 Data Selection for LLM Fine-tuning with270

Non-differentiable Performance Metrics271

Commonly used data selection methods in LLMs272

are often the gradient-based data attribution meth-273

ods (Han et al., 2020; Yeh et al., 2022; Schioppa274

et al., 2022; Grosse et al., 2023; Wang et al., 2024a),275

such as influence functions (Kwon et al., 2024)276

and TracIn (Xia et al., 2024), which quantify the277

impact of each data point on model parameters278

and next-token prediction loss. However, non-279

differentiable metrics C, such as semantic similar-280

ity with the ground truth (Cer et al., 2017), BLEU281

score (Papineni et al., 2002; Sellam et al., 2020),282

reward models (Ouyang et al., 2022), and LLM-as-283

a-judge (Zheng et al., 2023), are commonly used284

to evaluate the LLM performance in practice. This285

discrepancy between the metrics used for data se-286

lection and the metrics employed for evaluating the287

LLM performance can result in sub-optimal perfor-288

mance. Therefore, we advocate for research on how289

to select data for LLM fine-tuning when optimizing290

for commonly used but non-differentiable evalua-291

tion metrics. This problem is non-trivial because,292

unlike influence functions, there is no straightfor-293

ward way to compute the effect or gradient of the294

non-differentiable evaluation metric with respect295

to the model parameters and training data.296

One promising approach is the integration of297

non-differentiable evaluation metrics into the data298

selection method using reinforcement learning tech-299

niques, for instance, the policy gradients from300

the REINFORCE algorithm (Williams, 1992). By301

serving as a surrogate for “gradients” of the non-302

differentiable evaluation metrics with respect to303

the model parameters, these methods can lead to a304

novel data selection method that facilitates direct305

optimization towards desired (non-differentiable)306

evaluation criteria, thereby directly uncovering the307

underlying scaling laws that link the amount of308

training data to model performance.309

2.3 Data Selection for LLM Alignment310

Existing works have shown that LLM responses311

often do not immediately align with user intent312

after pretraining or fine-tuning, as LLMs can313

generate untruthful, unuseful, and even harmful314

contents (Bai et al., 2022). However, recent315

successes (Ouyang et al., 2022; Stiennon et al.,316

2020) in training LLMs using human feedback317

has improved alignment between user intent and318

LLM responses (i.e., achieving the desired align-319

ment performance metric C) via methods like 320

Reinforcement Learning with Human Feedback 321

(RLHF) (Ouyang et al., 2022) and Direct Prefer- 322

ence Optimization (DPO) (Rafailov et al., 2024). 323

Achieving the desired alignment depends heavily 324

on obtaining high-quality human feedback (i.e., 325

human labeling), which is costly and requires a 326

large amount of feedback to ensure effective align- 327

ment training (i.e., RLHF/DPO). This challenge 328

has motivated the development of a heuristic-based 329

approach (Muldrew et al., 2024) that aimed at ef- 330

ficiently selecting a subset of LLM responses for 331

human feedback. However, this heuristic-based ap- 332

proach lacks a principled foundation, leading to the 333

following question: How to actively select the LLM 334

responses for human feedback in a principled way 335

to minimize the amount of feedback required while 336

ensuring effective RLHF/DPO alignment training? 337

To address this problem, one can consider de- 338

signing theoretically grounded acquisition func- 339

tions (Verma et al., 2024) specifically tailored for 340

efficient LLM fine-tuning. Such acquisition func- 341

tions should account for variations in pretrained 342

data and model architecture, which can lead to 343

potentially different preferences for responses de- 344

pending on these factors. Specifically, the acqui- 345

sition functions need to consider the DPO process 346

and quantify the uncertainty for the difference be- 347

tween the latent scores of two prompt-response 348

pairs, where the latent scoring function is defined 349

using the LLM itself (Rafailov et al., 2024). Un- 350

covering scaling laws to efficiently acquire high- 351

quality and diverse training data from LLM users 352

can reduce the budget needed for data collection. 353

2.4 Joint Optimization for Data Selection 354

Previous discussions focus on data selection for a 355

single training stage. However, different training 356

stages improve different aspects of the model capa- 357

bility, and combining them can further improve the 358

performance (Ke et al., 2023). Specifically, contin- 359

ued pretraining can be used to keep the knowledge 360

of the model updated (Ke et al., 2023; Jindal et al., 361

2024) while instruction fine-tuning can improve its 362

ability to follow natural language instructions (Wei 363

et al., 2022a). Thus, a question naturally arises: 364

How to decide the ratio of data points used in dif- 365

ferent stages under a fixed number of data points? 366

A joint optimization approach can be plausible to 367

find the optimal ratio (Jindal et al., 2024). Finding 368

this optimal ratio helps uncover the underlying scal- 369

ing laws of optimal data selection across different 370
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training stages, changing the scaling law of model371

performance C with respect to the dataset size.372

Recent results from training LLMs for low-373

resource languages such as SEA-LION (Singapore,374

2024) demonstrate that combining continued pre-375

training with instruction fine-tuning achieves supe-376

rior performance. On the other hand, selecting the377

best training data also depends on the LLM/MLLM378

architecture. Existing model selection works (Xia379

et al., 2024; Raschka, 2018; Wang et al., 2021)380

typically seek to find the optimal model architec-381

ture given fixed training data or the other way382

around. Therefore, producing the best-performing383

LLM/MLLM requires us to jointly select the most384

appropriate data and model architecture. Hence,385

an important research direction will be to develop386

algorithms that jointly select data and model ar-387

chitecture (Hemachandra et al., 2023) in order to388

optimize an LLM/MLLM’s performance metric C.389

By doing so, deeper insights into the underlying390

scaling laws governing how model architecture and391

data selection jointly influence the LLM/MLLM’s392

performance metric C can be developed.393

3 Inference Optimization394

Optimizations carried out at the inference stage395

significantly affect the performance of LLMs. For396

example, given a trained LLM, it is common prac-397

tice to provide a prompt (i.e., a snippet of text) that398

the LLM uses to generate further text conditioned399

on the snippet. This represents a forward process400

T (F (T ) , I) → C in Eq. (1b), where the prompt401

is a component of inference ingredient I, and in-402

verting the process to carefully construct prompts403

that can instruct the LLM to perform a specific404

downstream task, hence achieving a desired perfor-405

mance measured by the metric C, is challenging.406

Thus, inference optimization can be viewed as an407

inverse problem of T (F (T ) , I) → C in Eq. (1b),408

where the goal is to design inference schemes in I409

that, when combined with a model trained on T ,410

achieves the desired performance metric C. Fur-411

thermore, one can also aim to uncover the underly-412

ing scaling laws at inference time with respect to413

optimized data, model, and compute.414

3.1 Data Optimization at Inference Time415

Prompts are key components of I during the LLM416

inference. A widely adopted popular prompt-417

ing structure consists of instructions and few-shot418

demonstrations (data samples), also known as ex-419

emplars. This approach leverages LLMs’ ability420

for in-context learning, which has emerged with 421

the rapid scaling of LLMs in terms of the number 422

of parameters, particularly since the advent of GPT- 423

3 (Brown et al., 2020). Specifically, the LLMs can 424

understand and perform tasks based on exemplars 425

and instructions provided only in the context of the 426

prompt, without relying on conventional training 427

methods like fine-tuning on specific datasets (Liu 428

et al., 2022). It is widely observed that the design 429

of instructions and the selection of exemplars in 430

the prompt significantly influence the LLM perfor- 431

mance (Albalak et al., 2024; Rubin et al., 2022). 432

Prompting techniques have been introduced to 433

steer the LLM responses towards better accuracy, 434

tailored tone, improved focus (Antropic, 2024b,a), 435

and reduced hallucinations (Davis, 2024; Xu et al., 436

2024b). In short, prompting is a tool to achieve the 437

desired performance metric C. Despite its benefits, 438

designing instructions and selecting exemplars for 439

prompts typically requires a human-intensive and 440

costly trial-and-error approach (Reynolds and Mc- 441

Donell, 2021; Mishra et al., 2021). Recent works 442

have explored heuristic local search methods (Zhou 443

et al., 2023) and evolutionary strategies (Prasad 444

et al., 2023; Guo et al., 2024) to identify the best 445

instructions and retrieval-based methods to find the 446

most relevant exemplars (Liu et al., 2022; Rubin 447

et al., 2022). However, these methods can still be 448

costly and sub-optimal, raising the question: How 449

can the prompts be efficiently optimized when sub- 450

jected to resource constraints, such as limited com- 451

putational resources or fewer queries? 452

Viewing the research question as an inverse 453

problem, one can formulate the prompt optimiza- 454

tion problem as a black-box optimization problem 455

where the inputs are the prompts (comprising in- 456

structions and exemplars) and the output is the 457

prompt’s performance. Then, optimization tech- 458

niques such as the NeuralUCB algorithm can be 459

applied to optimize the prompt for the best per- 460

formance under resource constraints (Zhou et al., 461

2020; Dai et al., 2022). Specifically, in the Neu- 462

ralUCB algorithm, a neural network is trained on 463

past observations to predict the LLM performance 464

for different combinations of instructions and exem- 465

plars. This approach will help uncover underlying 466

scaling laws and understand the effect of instruc- 467

tions and exemplars on LLM performance. More- 468

over, finding the exemplars (given a fixed budget) 469

and instructions to achieve the best LLM perfor- 470

mance helps to uncover the scaling law of LLM per- 471

formance with respect to the number of exemplars. 472
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This scaling law will inform the real applications473

to choose the least number of exemplars to achieve474

a target performance metric C.475

Since both the data in T and the data in I affect476

the final LLM performance, optimizing an LLM’s477

performance requires the joint optimization of in-478

context data in I and training data in T . To effi-479

ciently solve this optimization problem, we further480

advocate for research into developing algorithms481

that automatically select the optimal combination482

of in-context and training data for an LLM. This483

approach will help us to uncover fundamental scal-484

ing laws governing the combined impact of both485

training T ’s and inference I’s ingredients on the486

performance metric C.487

Additionally, we can consider the problem of488

prompt optimization with human feedback, aim-489

ing to minimize the amount of human feedback490

required to find the best prompt that maximizes491

LLM performance. Specifically, we consider the492

inverse problem in which the performance metric493

C is defined as the alignment of LLM responses494

with human values, such as helpfulness. The goal495

is to optimize the prompt to improve the alignment.496

Recent works have shown that humans are better at497

providing preference feedback than giving a score,498

which has been the focus of prior prompt optimiza-499

tion works (Lin et al., 2024b; Hu et al., 2024; Wu500

et al., 2024b; Zhou et al., 2024b). To address this,501

recent works propose a framework of prompt op-502

timization that relies solely on human preference503

feedback on the LLM responses (Lin et al., 2024a),504

demonstrating superior performance compared to505

prior results on prompt optimization.506

3.2 Model Optimization at Inference Time507

When deploying resource-efficient LLMs, under-508

standing the scaling laws for determining optimal509

model configurations is crucial for effective and510

efficient usage (Devvrit et al., 2024). Selecting the511

best model configuration during inference is a criti-512

cal inverse problem that aims to identify an LLM513

setup capable of achieving a target performance514

metric C with minimal computational resources.515

Formally, the inference-time model configuration516

should be considered as part of the inference in-517

gredients I in Eq. (1b). The goal is to identify a518

model configuration that minimizes computational519

requirements while achieving the desired perfor-520

mance metric C. As model sizes increase, they521

require proportionately more compute and mem-522

ory per generation, making them impractical in523

resource-constrained settings. Moreover, simply 524

scaling model parameters does not guarantee better 525

performance, especially in scenarios constrained by 526

data variety and quality (Allen-Zhu and Li, 2020). 527

This challenge can be addressed from two per- 528

spectives: (1) selecting the optimal model at in- 529

ference time from LLMs of varying sizes and ca- 530

pacities using methods like model valuation and 531

selection (Xu et al., 2024a), and (2) determining 532

the optimal number of activated routes in Mixture- 533

of-Expert LLMs during inference time to balance 534

efficiency and performance. Through a structured 535

exploration of model size scaling, it is possible to 536

determine how to adjust the model size to meet the 537

demands of specific tasks during inference. Ulti- 538

mately, uncovering the scaling laws behind model 539

scaling at inference allows us to trade off between 540

computational efficiency and performance. 541

3.3 Compute Optimization at Inference Time 542

The recent introduction of OpenAI’s o1 model 543

and DeepSeek R1, which are designed to facili- 544

tate CoT (Wei et al., 2022b) reasoning during in- 545

ference, has induced increasing interest in scal- 546

ing computational resources at inference time to 547

improve model performance (Wu et al., 2024a; 548

Snell et al., 2024). Existing work (Chen et al., 549

2024b) has demonstrated a scaling law that relates 550

model performance to the computational resources 551

used in inference. However, this work focuses 552

on a single inference scheme, where the infer- 553

ence scheme (e.g., CoT) is an inference ingredi- 554

ent I in Eq. (1b). Besides CoT, other inference 555

schemes, such as prompt optimization, optimiza- 556

tion with human feedback, retrieval-augmented 557

generation (Gao et al., 2024; Shao et al., 2024), 558

repeated sampling (Brown et al., 2024; Gui et al., 559

2024), and ensemble models (Allen-Zhu and Li, 560

2020), have also been explored to scale inference- 561

time compute for improving performance. 562

An exciting area of research is to optimize a 563

mix of these inference schemes within a fixed 564

computational budget, uncovering more effective 565

model scaling behavior. Specifically, computa- 566

tional resources can be quantified by the number 567

of responses generated by each of these inference 568

schemes. Optimally allocating resources across 569

schemes and then selecting and merging these 570

responses improves LLM performance. Study- 571

ing how the scaling law changes when inference 572

schemes are optimally combined will provide better 573

insight into the computational requirements neces- 574
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sary to achieve a target performance C.575

3.4 Joint Optimization at Inference Time576

LLM performance is influenced by a complex in-577

terplay between data, model, and compute. Given578

a fixed computational cost specified by the perfor-579

mance metric C, it is crucial to identify the optimal580

combination of model configuration and inference581

schemes when user prompts (i.e., data) are fixed.582

Thus, jointly optimizing the model configuration583

and inference schemes can help to approach op-584

timal LLM performance. Specifically, exploring585

how to allocate computational resources across dif-586

ferent inference schemes and models should be a587

key focus. This approach will help uncover the un-588

derlying scaling laws that characterize how models,589

inference schemes, and computational budgets col-590

lectively impact LLM performance. These scaling591

laws can help to decide minimal model parameters592

and computational resources needed for LLMs to593

achieve desired performance, reducing the serving594

cost of these models in real-life applications.595

4 Unlearning596

Machine unlearning (MU) is the process of re-597

moving the influence of a set of training data (i.e.,598

erased data) from a trained model to either com-599

ply with data owners’ deletion requests (GDPR,600

2016; CCPA, 2018) or erase harmful data to im-601

prove the model performance (Fore et al., 2024;602

Liu et al., 2024c; Zhou et al., 2024a). We consider603

two inverse problems. Verification of MU is an604

inverse problem of F (T ) → LLM as given any605

“unlearned” model, aiming to identify if the erased606

data is present in the training ingredients T . MU607

techniques can also be viewed as an inverse prob-608

lem of T (F (T ) , I) → C as given some perfor-609

mance metrics (e.g., poor knowledge on weapons610

of mass destruction (Li et al., 2024), similar perfor-611

mance on the retained data as before unlearning),612

the goal is to design the inference ingredients (e.g.,613

unlearning prompts) in I, or the datasets and train-614

ing procedure (e.g., use of training checkpoints,615

model architecture that facilitates unlearning with-616

out retraining) in T to achieve the desired metrics.617

4.1 MU Verification618

Despite the growing interest in MU for LLMs (El-619

dan and Russinovich, 2023; Chen and Yang, 2023;620

Liu et al., 2024b), one major challenge remains:621

How to efficiently verify whether the requested622

data is not present in an unlearned LLM? At first623

glance, we can compare the similarity of an un- 624

learned LLM with the model trained only on the re- 625

tained data (without the erased data) (Nguyen et al., 626

2022; Maini et al., 2024). However, such an ap- 627

proach requires obtaining the LLMs retrained only 628

on the retained data, which is computationally ex- 629

pensive (Yao et al., 2024) or infeasible when there 630

are computational hardware constraints. Other MU 631

metrics try to address the challenge empirically. 632

For example, the Membership Inference Attack 633

(MIA) metric (Shokri et al., 2017) expects low ac- 634

curacy on the erased data when assessed by an 635

adversarial model trained to classify whether data 636

points were members of the training dataset. These 637

metrics fall short as they either require white-box 638

access to the LLM (Duan et al., 2024), which is 639

often unfeasible, or require training shadow mod- 640

els, which are computationally expensive (Shokri 641

et al., 2017). Furthermore, the MIA metric depends 642

on the adversarial model’s ability to distinguish 643

between membership and non-membership (Duan 644

et al., 2024), which can be limited when similar 645

data points are present in both erased and retained 646

data (e.g., multiple news sources reporting on the 647

same event). Thus, such a situation raises the fol- 648

lowing question: How can an efficient MU verifica- 649

tion metric for LLMs not requiring model retrain- 650

ing be designed? Can the metric be intuitive and 651

effective despite the presence of similar data? 652

Answering these open questions is non-trivial. 653

One potential approach is to leverage related work 654

on scalable and robust watermarking (Lau et al., 655

2024) for text data. By embedding unique water- 656

marks into each data owner’s text content before 657

LLM training. Such watermarks should remain 658

detectable and verifiable in LLM predictions after 659

fine-tuning and, hence, be used to test the effec- 660

tiveness of unlearning. Research on this metric 661

could help support the scaling law that retraining- 662

free metrics require data attribution to trace the im- 663

pact of individual data points during initial training, 664

thereby improving unlearning procedures without 665

the need for complete retraining. 666

MU metrics can help define scaling laws govern- 667

ing the difficulty of unlearning erased data. Previ- 668

ous work (Zhao et al., 2024) explored how the tug- 669

of-war (ToW) verification metric, which compares 670

the accuracies of the unlearned and retrained mod- 671

els, is influenced by the properties of erased and 672

retained data. It also examined how certain proper- 673

ties of erased data, like high memorization score, 674

may require different MU techniques to achieve a 675
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better ToW score. Building on these works, one can676

further explore how this new retraining-free metric677

and other MU metrics are influenced by various678

dataset properties, such as dataset size, watermark679

count, and the similarity between erased and re-680

tained data. These insights will uncover underlying681

scaling law that guides the selection of MU tech-682

niques and improve the reliability of metrics used683

for evaluating unlearning techniques.684

4.2 MU Techniques685

Many existing MU techniques modify the model686

weights (Chen and Yang, 2023; Yao et al., 2023b;687

Jang et al., 2023), making them unsuitable for688

black-box LLMs or when fine-tuning is expensive689

due to computational constraints. While recent690

approaches like offset unlearning (Huang et al.,691

2024) may work for black-box models, they often692

cause an unacceptable performance drop in the re-693

tained data (Huang et al., 2024). Moreover, prior694

LLM work (Pawelczyk et al., 2023) on in-context695

unlearning is restricted to sentiment classification696

and does not scale to generative tasks. Existing697

MU techniques may perform well on metrics like698

MIA but risk unlearning some retained data that699

are similar to the erased data (Jin et al., 2024). This700

situation raises a critical question: Is post-hoc un-701

learning (i.e., only modifying I) for text generation702

feasible without compromising the performance of703

the retained data or introducing unintended biases?704

The target performance C of an LLM is de-705

fined as minimizing the generation of harmful706

data or weak watermark strength based on the707

watermarking-based MU metric while retaining708

its performance on other metrics, such as the vali-709

dation loss. How to achieve C efficiently by mod-710

ifying the inference process I? We advocate for711

research that identifies the private or harmful data712

(e.g., by identifying the watermarks present in gen-713

erated text) and modifies I during inference to sup-714

press the data influence and prevent them from715

being generated. Alternatively, can C be achieved716

efficiently by modifying the model architecture in717

T such that it is easier to unlearn?718

Using the intrinsic sparsity of Mixture-of-719

Experts transformer paradigm (Shazeer et al., 2017;720

Lepikhin et al., 2020; Fedus et al., 2022) to iso-721

late the influence of data to only a few experts722

and thereby perform unlearning more efficiently on723

fewer model parameters. Overall, the aim should724

be to improve LLM performance on the given met-725

ric C and uncover underlying scaling laws for un-726

learning during inference. Specifically, this in- 727

volves identifying how the metric C, like the loss 728

on the erased and retained data, varies with the size 729

of these datasets, computation cost, and model’s 730

ability to unlearn during inference. These scaling 731

laws can identify the most suitable MU techniques 732

for removing harmful knowledge from LLMs and 733

determine how much data can be erased before per- 734

formance metrics drop below a predefined thresh- 735

old, beyond which retraining becomes necessary. 736

5 Conclusion and Future Outlook 737

This position paper highlights the significance of 738

improving our understanding of the scaling laws 739

that govern the behavior of LLMs, such as data re- 740

quirements and compute scaling laws. To uncover 741

the underlying scaling laws, we advocate for re- 742

search exploring two classes of inverse problems 743

for LLMs (i.e., Eq. (1a) and Eq. (1b)): Identifying 744

optimal input ingredients and achieving desired 745

performance metrics by adjusting both training 746

and inference ingredients. Specifically, we frame 747

data selection, inference optimization, and machine 748

unlearning as inverse problems, each presenting 749

unique challenges to solve. Yet, jointly optimiz- 750

ing them (including data, model architecture, train- 751

ing procedures, inference scheme, and unlearning 752

techniques) holds great potential for advancing the 753

development and deployment of LLMs. 754

Instead of iterating over the engineering efforts 755

to further improve the empirical performance, we 756

aim to uncover the fundamental scaling laws gov- 757

erning the training and inference of LLMs via in- 758

verse problems, which can lay the foundations for 759

building better LLMs. These scaling laws can im- 760

prove specific applications by providing better se- 761

lection methods for training data, flexible unlearn- 762

ing techniques, methods with improved inference 763

efficiency, and optimized inference schemes. 764

Looking ahead, future research should further ex- 765

plore these scaling laws and investigate how the in- 766

terplay among various components and ingredients 767

impacts performance. Additionally, advancements 768

in machine unlearning will be crucial as models be- 769

come more complex, ensuring they can adapt with- 770

out compromising functionality or privacy stan- 771

dards. Emerging technologies and methodologies 772

from fields like optimization theory can also offer 773

novel tools for tackling inverse problems in LLMs. 774

By integrating these approaches, we may uncover 775

innovative solutions that improve the efficiency and 776

cost-effectiveness of LLM development. 777
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Limitations778

While the inverse problem formulation offers a779

promising perspective for studying large language780

models (LLMs), it is important to recognize that781

not all problems in LLMs have well-defined inverse782

formulations. Analogous to how the inverse for a783

many-to-one function is ill-defined mathematically,784

many forward problems in LLMs, such as data785

aggregation or input-to-output mappings, are inher-786

ently many-to-one. This leads to potential ambi-787

guity or ill-posedness in their inverse counterparts.788

Addressing these challenges will require further789

theoretical and methodological advancements.790

Additionally, this paper focuses on a limited set791

of illustrative problems, such as data selection, in-792

ference optimization, and machine unlearning for793

LLMs, to demonstrate the potential of the inverse794

problem framework. A comprehensive exploration795

of its applicability across the broader and rapidly796

evolving landscape of LLM research remains an797

open direction. We encourage future work to un-798

cover additional problem domains where inverse799

formulations may offer meaningful insights.800

Ethic Statement801

LLMs are largely trained on data scraped from the802

Internet, which may include dangerous, unsafe, bi-803

ased, or inaccurate content. As a result, LLMs804

risk reproducing these harmful patterns in their805

generated outputs. Moreover, the use of scraped806

data raises both legal and ethical issues. The data807

may be copyrighted or include sensitive personal808

information without the consent of the data sub-809

jects. In response, we aim to mitigate these risks by810

improving data selection and developing machine811

unlearning techniques that support the removal of812

harmful or sensitive data and machine unlearning813

verification metrics to verify removal.814
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