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Abstract

Recent work on Transformer-based large language models (LLMs) has revealed1

striking limits in their working memory capacity, similar to what has been found in2

human behavioral studies. Specifically, these models’ performance drops signifi-3

cantly on N-back tasks as N increases. However, there is still a lack of mechanistic4

interpretability as to why this phenomenon would arise. Inspired by the executive5

attention theory from behavioral sciences, we hypothesize that the self-attention6

mechanism within Transformer-based models might be responsible for their work-7

ing memory capacity limits. To test this hypothesis, we train vanilla decoder-only8

transformers to perform N-back tasks and find that attention scores gradually ag-9

gregate to the N-back positions over training, suggesting that the model masters the10

task by learning a strategy to pay attention to the relationship between the current11

position and the N-back position. Critically, we find that the total entropy of the12

attention score matrix increases as N increases, suggesting that the dispersion of13

attention scores might be the cause of the capacity limit observed in N-back tasks.14

1 Introduction15

In cognitive science, working memory is defined as the ability of humans to temporarily maintain and16

manipulate task-relevant information for flexible behaviors [1]. Recent advancements in Transformer-17

based LLMs have sparked interest in evaluating their cognitive abilities, including working memory18

capacity [9]. By designing multiple variants of N-back tasks (Figure 1a) [11, 10] and employing19

different instructional strategies, it has been found that LLMs consistently perform worse as N20

increases (Figure 1b), which is reminiscent of the capacity limit of human working memory [2, 15, 17].21

However, due to the black-box nature of LLMs, we still lack mechanistic insights as to why the22

observed capacity limit would emerge, especially given the fact that the length of N-back task23

sequences (e.g., 24 letters in [9]) is well within the context length of these models [16]. To answer24

this question, we were inspired by the executive attention theory [7, 5, 6] in human working memory25

research. The executive attention theory proposes that working memory requires executive attention26

to maintain access to information in the face of interference. suggesting that it is the scarcity of27

attentional resources [12, 14], but not memory storage itself, that is responsible for working memory28

capacity limits. In Transformer-based LLMs, the self-attention mechanism computes the importance29

of each element in the input sequence relative to other elements. While this approach allows the30

model to focus on relevant information, as N increases in the N-back task, it could be increasingly31

hard to maintain focus between distant positions. Therefore, we hypothesize that self-attention might32

be the cause of working memory capacity limits in Transformer-based models.33

In the current study, we train causal Transformers on N-back tasks and observe that as N increases,34

the model presents a decline in its prediction accuracy. We further find that the prediction accuracy at35

position i is positively correlated with the attention score at position i−N . Furthermore, the model’s36
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Figure 1: (a): N-back task schematic. Participants (humans or LLMs) are instructed to give a
response (humans: press a button; LLMs: output "m") when the current letter is matched with the
letter N step(s) ago, and withhold responses (humans: do nothing; LLMs: output "-") if it’s a
nonmatch. N is fixed for a given task sequence, and here we put {1, 2, 3}-back in the same schematic
for illustration purposes only. (b): performance of GPT-3.5 and GPT-4 on this task, reproduced from
results in [9]. Error bars represent ±1 standard error of the mean.

performance is negatively correlated with the total entropy of the attention score matrix. Our findings37

suggest that model’s inability to aggregate most of its attention to the target position leads to the38

decline in its prediction accuracy as N increases.39

2 Methods40

Dataset. We use the same procedure described by Gong et al. [9] to generate a dataset of N-back41

tasks consisting of task sequences and correct answers. Each task sequence contains 24 letters42

sampled from an alphabet commonly used in the behavioral literature (“bcdfghjklnpqrstvwxyz"),43

and the correct answers always consist of 8 matches and 16 nonmatches, mimicking the setup in some44

human studies. For N ∈ {1, 2, 3, 4, 5, 6}, we generate 800 sequences for training and 200 sequences45

for testing, while our analyses mostly focus on N ∈ {1, 2, 3} to compare with previous studies.46

Model. We use vanilla Transformers in order to facilitate interpretability, as done in prior work47

aiming to better understand computations in Transformers in more controlled task settings [4, 13].48

We mainly focus our analysis on a causal Transformer containing one decoder layer with only one49

attention head (Figure 6 in Appendix), although we also test a few architectural variants in the number50

of decoder layers (L) and number of attention heads per layer (H) for comparisons (see Section 3 for51

details). The decoder layer contains masked self-attention so that for each position in the sequence the52

model can only attend to the current and previous positions. No multi-layer feed-forward networks53

or layer normalization are applied. The decoder layer is then followed by an unembedding layer to54

project the decoder outputs to two logits (representing match and nonmatch) for each position.55

Training and Evaluation. We train 50 independent models for each N. We choose to train each56

model for 10 epochs because empirically the model converges after around 10 epochs of training (see57

Figure 7 in Appendix for details). Cross-entropy loss is computed between the output logits and the58

correct answers at each position.59

3 Results60

Model accuracy decreases as N increases. For L ∈ {1, 2} and H ∈ {1, 2, 4}, we train models on61

the N-back task (Figures 2a) and find a significant decline in model performance as N increases for62

the 1-layer 1-head model (Kruskal-Wallis test: H-statistic = 38.517, p < .001, ϵ2 = 0.248; see Table 163

in Appendix for post-hoc comparisons using Mann-Whitney U tests1). To further confirm this pattern,64

we extend the task to N = 6, and find a significant logarithmic decline in the test accuracy as N65

1We use nonparametric Kruskal-Wallis and Mann-Whitney tests instead of F and t tests because the data do
not conform to the assumptions of parametric tests (normality and homogeneity of the variance).
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Figure 2: (a): N-back task performance of Transformers with different number of decoder layers
and attention heads per layer. (b): for the 1 -layer 1-head Transformer model, task performance drops
logarithmically as N increases. Error bars represent ±1 standard error of the mean.

increases (Figure 2b). For models with a larger L or H, most of them achieved over 95% accuracy on66

all N-back tasks. However, they still present slight declines in test accuracy as N increases, suggesting67

that the working memory capacity limit does exist in the nature of transformer models.68
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Figure 3: the model learns to attend target locations over training epochs. Here we show attention
maps of a 1-layer, 1-head Transformer model trained on the 3-back task as an example. See Appendix
for attention maps in the 1-back and 2-back tasks.
Attention scores during training reflect the trajectory of learning. To investigate how the69

self-attention mechanism influences model performance, we visualize attention maps after each70

training epoch (Figures 3, 8 and 10). For each position, we also plot the trajectory of attention scores71

over training epochs (Figures 9, 11, and 12) to see with more granularity how the model learns to72

perform the task. Starting with almost uniformly distributed attention scores in each row, attention73

scores gradually aggregate to a line corresponding to the N-back positions. For each position in74

the sequence, attention scores gradually aggregate to the N-back position over training epochs and75

attention scores converge faster for positions earlier in sequence (Figures 9, 11, and 12). This shows76

that the Transformer model learns to master the N-back task by increasing the attention score between77

the current position and the N-back position.78

Attention score at position i−N increases with test accuracy at position i. To further investigate79

the relationship between attention scores and test accuracy, we plot accuracy at position i against the80

attention score at the position i−N over training epochs (i ∈ {1..24}, N ∈ {1, 2, 3}). The accuracy81

at position i is defined as the percentage of the model making a correct prediction at position i. Over82

training epochs, we find that the attention score at position i−N increases along with the accuracy83

at position i (Figure 4a-c). We reason that in order to produce an accurate prediction at position i, the84

Transformer model needs to learn to put most attention on the i−N position and reduce dispersion85

of attention to other positions. To better visualize dispersion of attention scores across positions,86

we use the same data in Figure 4a-c but assign colors to the dots according to which position each87

dot belongs to (Figure 4d-f). This reveals a clear pattern that attention scores get dispersed at later88

locations, suggesting that more interference is caused when there are more preceding positions.89

Total entropy of attention scores increases as N increases. Building up from the results above,90

we take a step further to investigate the overall characteristic of attention scores as N increases.91

3
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Figure 4: (a)-(c): the relationship between test accuracy at position i and the attention score at
position i−N . Colors represent different epochs each dot belongs to. (d)-(f): same as (a)-(c) but
colors represent different position each dot belongs to.

To measure the dispersion of attention scores for each N, we define the total entropy HN of each92

attention score matrix A ∈ R24×24 as:93

HN (A) = −
24∑
i=1

i∑
j=1

Ai,j log (Ai,j) (1)

where94

Ai,j = Softmax(
QKT

√
dk

)i,j (2)

The entropy HN is well-defined as {Ai,1, Ai,2, ..., Ai,i} gives a probability distribution with95 ∑i
j=1 Ai,j = 1 thanks to the Softmax function and causal masking.96
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Figure 5: HN increases as the
test accuracy decreases with
larger N. Error bars represent
±1 standard error of the mean.

We find that HN increases as N increases, leading to the decrease in98

test accuracy (Figure 5). We infer that as N increases, it gets harder99

for the model to learn to attend to the N-back letter and the model100

is less confident about which letter is important, leading to higher101

entropy and lower accuracy.102

4 Discussion103

The current study provides important insights for the mechanis-104

tic interpretability of working memory capacity limits observed in105

Transformer-based LLMs [9]. The self-attention mechanism is crit-106

ical for the model to achieve good performance in the N-back task,107

but also limits its capacity on the other hand. This is analogous to108

the mechanism of selective attention in the human brain, which pri-109

oritizes relevant information and filter out the rest to ensure effective110

task performance, but also restricts our information processing by imposing neural and cognitive111

bottlenecks [3]. Future work should explore a more formal mathematical proof as to why capacity112

limits might naturally emerge in complex intelligent systems [8, 18].113
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char: idx for idx, char in 

enumerate(alphabet)
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Figure 6: The architecture of the 1-layer 1-head Transformer.
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Figure 7: Training loss of the 1-layer 1-head Transformer converges after 10 epochs.

Table 1: Post-hoc Mann-Whitney U test results for the 1-layer 1-head model.

N-back U p r

1 vs 2 1825.0000 0.0002 -0.4600
1 vs 3 2096.0000 0.0000 -0.6768
2 vs 3 1665.0000 0.0128 -0.3320
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Figure 8: Attention maps over training epochs for a 1-layer 1-head Transformer trained on the 1-back
task.
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Figure 9: Training trajectory of attention scores over 10 epochs for the 1-back task.
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Figure 10: Attention maps over training epochs for a 1-layer 1-head Transformer trained on the
2-back task.
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Figure 11: Training trajectory of attention scores over 10 epochs for the 2-back task.
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Figure 12: Training trajectory of attention scores over 10 epochs for the 3-back task.
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