Consensus Sparse Attention: A Memory and Computation Efficient
Mechanism Based on Inter-Head Consensus

Anonymous ACL submission

Abstract

The inference efficiency of large language mod-
els (LLMs) is limited by the computational
complexity and memory usage of attention
layers. To address these challenges, we in-
troduce Consensus Sparse Attention (CSA),
a technique that leverages the consensus of a
few representative attention heads to select the
Key tokens for the remaining heads, thereby
limiting the attention computation space from
all tokens to a small number of potential can-
didate tokens, effectively reducing computa-
tional and peak memory consumption without
additional training. Experiments conducted on
diverse scale models and varied downstream
tasks demonstrate that CSA can offer a signifi-
cant improvement in computational efficiency
with a negligible accuracy decrease. In particu-
lar, CSA was able to achieve a two-fold speed
increase, along with a half reduction of peak
memory usage in the attention layer computa-
tion during the prefilling stage on LLaMA-3.

1 Introduction

Due to the efficient ability in modeling complex
relationships between different tokens, Large Lan-
guage Models (LLMs) have recently achieved ex-
cellent performance in various fields(Zhao et al.,
2023; Chang et al., 2024), including multi-model
fusion(Cha et al., 2024), relation extraction(Wan
et al., 2023), code generation(Zhong and Wang,
2024) and even agent-based decision-making(Li
et al., 2023).

However, the quadratic time and space com-
plexity of dense attention in LLMs create a crit-
ical bottleneck for widespread application and effi-
cient deployment as model size and input sequence
length increase, significantly raising computational
resource and memory demands.

Many previous works have achieved efficiency
gains through sparse attention mechanisms, such
as Local (Child et al., 2019), Global (Beltagy et al.,

2020), Hybrid (Zaheer et al., 2020), Predicted To-
ken Dominated (Tang et al., 2024), and Explicit
sparse transformer (Zhao et al., 2019). The above
method approximates dense attention based on the
fact that most attention scores are concentrated on a
few important tokens. However, they either require
retraining or need to compute the complete atten-
tion scores before selecting the important tokens,
which does not sufficiently reduce the computa-
tional load. SparQ (Ribar et al., 2023) finds the r
largest components of the query vector and gathers
the corresponding components along the hidden
dimension of the K ey tokens to approximate the
attention scores. The compression along the hidden
dimension reduces the computational load, but the
resulting attention scores [b, h, s, s] are of the same
size as in the dense condition, which does not yield
significant peak memory consumption benefits.

Our work began with the observation that atten-
tion heads tend to consistently select some impor-
tant Key tokens. Specifically, certain Key tokens
receive high attention scores across different atten-
tion heads. As shown in Figure 1b, different colors
represent different attention heads. It can be noted
that tokens at certain index positions receive high
attention scores across various attention heads, indi-
cating that these tokens are valued by the majority
of the attention heads. Building on this insight, we
propose the Consensus Sparse Attention (CSA)
method for multi-head attention. By computing
a small number of g representative heads, we use
their consensus to identify important K ey tokens
for the others, thus avoiding the computation of all
Key tokens. Since only the maximum [b, g, s, $]
(g < h) attention scores need to be calculated, CSA
effectively reduces both the computational load and
peak memory usage of the attention layer.

In mainstream benchmark tests presented in Ta-
ble 1, CSA maintained comparable performance to
Dense models. In high-batch and long-sequence
scenarios, CSA achieved a true two-fold speedup

and reduced memory peak by 50% when comput-
ing the attention layer. These results highlight
CSA’s advantages in both efficiency and perfor-
mance.

In summary, we make the following contribu-
tion:

* We reveal the consensus exhibited by multiple
attention heads when selecting important K ey
tokens and validate this phenomenon through
experiments.

* We propose Consensus Sparse Attention
(CSA), leveraging the consensus among a few
representative attention heads to select Key
tokens for the others, thus reducing computa-
tional load and memory usage in the attention
layer without extra training.

* We evaluated CSA through experiments, and
the results show that it outperforms existing
benchmarks across multiple key performance
indicators, fully validating its effectiveness.

2 Related Work
2.1 Efficient LLMs Inference

LLMs usually require a higher inference cost when
processing large amounts of queries, which poses a
huge challenge for its deployment. To improve the
inference efficiency of LLMs, some current works
optimize two important parts in the model, Feed
Forward Network (FFN)(Zhang et al., 2021; Gao
et al., 2022; Komatsuzaki et al., 2022) and Atten-
tion Operation(Shazeer, 2019; Ainslie et al., 2023;
Ma et al., 2021), by designing efficient structure
or strategies. Some other works consider apply-
ing classical scheduling strategies in query batch-
ing process to handle asynchronous queries more
quickly, such as FCFS(Yu et al., 2022), Multi-Level
Feedback Queue(Wu et al., 2023) and Continuous
Batching(Kwon et al., 2023). Besides, in model
compression, quantization is a commonly used
method. It reduces the computational and mem-
ory costs of LLMs by converting model weights
and activations from high to low bit-widths, such
as GPTQ(Frantar et al., 2022) minimizes the differ-
ence in model output before and after quantization
by using a small portion of calibration data for
the weight matrix of each layer, AWQ(Lin et al.,
2024)selects salient weights based on the activa-
tion distribution. Also, some methods (Frantar and
Alistarh, 2023; Sun et al., 2023; Kurtic et al., 2022)

prune the model parameters, or (Gu et al., 2023;
Hsieh et al., 2023; Shridhar et al., 2022) compress
the model volume by distilling knowledge into a
smaller one. The method studied in this paper
is closely related to sparsity in model compres-
sion and focuses on the bottleneck of dense self-
attention in inference process.

2.2 Sparse Attention Compression

Due to the sparsity of self-attention matrix, ex-
tracting the important parts from it has always
been an active research field. For example, meth-
ods like Local(Child et al.,, 2019; Ren et al.,
2021), Global(Beltagy et al., 2020), Hybrid(Zaheer
et al., 2020) improve the computational efficiency
of attention scores by choosing random, adja-
cent or specially marked tokens during long con-
text process. LM-Infinite(Han et al., 2023) and
StreamingLLM(Xiao et al., 2023) adopt some fixed
sparse patterns to select the latest and important to-
kens. Top-k(Zhao et al., 2019) and FlexGen(Sheng
et al., 2023) identify important tokens through the
attention scores and Tang et al.(Tang et al., 2024)
link the selection of important attention scores and
currently predicted token together. Meanwhile, the
eviction strategy maintains a certain size by con-
tinuously deleting irrelevant tokens. HoO(Zhang
et al., 2024) maintains a budget space of size k
by accumulating historical attention weight scores.
TOVA(Oren et al., 2024) discards tokens with
lower attention scores based on the current query.
SparQ(Ribar et al., 2023) reduces the memory
bandwidth during the computation process by se-
lecting key query tokens before computing the at-
tention weights. FastGen(Ge et al., 2023) formu-
lates separate compression strategies for them re-
spectively based on the observation of different
heads. Unlike the aforementioned methods, our ap-
proach achieves sparse attention by leveraging the
consensus among attention heads on key tokens.

3 Background and Motivation

In well-trained Transformer models, it is often
observed that most tokens receive low attention
scores, while the primary attention is concentrated
on a small subset of tokens, as depicted in Figure
1b. This suggests that only a minority of tokens
significantly impact model performance. Statistical
results in Figure 1c show that attention scores in
Dense models are largely concentrated on a few
important tokens, indicating that focusing on these

Random CSA

QHR Matrix
1

Top 32 [Top 64]

= d] 1 3 o 0 Top 4 128 [Top0.1
. 2048
. Top 64 | o 500
4 N
5 5
10 i e 400
o
3 2 10 10 ? UC) 0.6 b=
R - 5 3300
E: N 2| ¥ <
20 488 ? g 0.4 A i
LE 8 = 15 15 2 200
51" 2 . 1 ¥ 10.2
20 20 % LT 100
30 | | * " : Tl
= 0 i d R aniiit 0.0
0 5w 12025 30 0 20 40 60 80 100 120 ! 8 2 0.4 0.6
Head m Token Index Attention Score
(a) QHR Result (b) Top Key Tokens (c) Attention Scores Accumulation
= o1
Batch Size B
o 2 EJ m c2 16 32 64 128 256 512 1024 » I Dense
23 7\ . ——— 6l = Dense Sequence 3 csA
® 10 . . CSA Sequence @
s 13 o A’ - L | —o— Theoretical CSA Sequence £30
26
5 % P ‘ E 4 Dense Bsz §
~] CSA Bsz o
' B - @C N Theoretical CSA Bsz >20
28 30 32 g o
- 34 ® 39 . 02 é
3 E 10
@
a7 3 . ® - T
1 - 24 P —
a 22 .) 1024 2048 4096 8192 16384 32768 0 16 32 64 128 256 512 1024
Sequence Length S Batch Size
(d) Attention Heads Community (e) Time Analysis (f) Memory Usage

Figure 1: Subfigure (a) QHR Matrix illustrates the QHR scores between any two attention heads. Both Random and
CSA show the QHR scores of the remaining heads as voted by the representative attention heads. Subfigure (b)
displays the distribution of Attention Scores for the Top 64 K ey tokens and Top 4 K ey tokens across different heads,
with each color representing a distinct head. Subfigure (c) presents the distribution of cumulative attention scores
for the top Key tokens at sequence lengths of 128 and 2048. Subfigure (d) demonstrates the results of community
division and the selection of representative attention heads; the size of each node indicates its in-degree, with C1,
C2, and C3 representing the divided communities, and solid nodes indicating representative nodes.Subfigure (e)
illustrates the token generation time across different batch sizes (top x-axis, dotted line) and sequence lengths
(bottom x-axis, solid line). In particular, for the experiments conducted on the LLaMA3 8B model, the sequence
length experiment was performed with a batch size (bsz) of 1, while the batch size experiment used a sequence
length of 512. Subfigure (f) illustrates the peak memory usage of the attention layer when computing the first token

on LLaMA3 8B with a sequence length of 512.

tokens can effectively capture sufficient attention
information.

The Current Top-k Tokens Mechanism Faces
Several Challenges. Existing studies like Explicit
sparse transformer (Zhao et al., 2019) and SparQ
(Ribar et al., 2023) have implemented Sparse At-
tention by selecting a fixed number(k) of Key
tokens with the highest attention scores to replace
Dense Attention. This approach accelerates infer-
ence while preserving model capabilities. However,
using a fixed number of Top k K ey tokens results
in a sparser distribution of attention scores as the
input sequence length increases. As shown in Fig-
ure lc, when the input sequence length grows from
128 to 2048, the attention score distribution for
the top 32 Key tokens becomes more dispersed.
Although the top 64 Key exhibit a higher concen-
tration, the overall trend of declining concentration
persists. This indicates that regardless of adjust-

ments to the value of k, the top k method struggles
with declining attention score concentration, pos-
ing challenges for handling long-sequence tasks.

Percentage-based Top p Tokens Mechanism
demonstrates superior performance. To address
the decline in attention concentration caused by
selecting a fixed number of important K ey tokens
(Top k), we did experiments to find a simple ef-
fective percentage-based method. This approach
involves selecting a fixed proportion of tokens as
K ey tokens to maintain stable accumulated atten-
tion scores. To differentiate this method from the
existing Top k approach, which uses a fixed number
of tokens, we refer to it as the Top p method. As il-
lustrated in Figure lc, as the input sequence length
increases from 128 to 2048, the Top p method con-
sistently maintains a high concentration of attention
scores. This demonstrates that the Top p method
can sustain stable model performance as sequence

length scales, as verified in Section 5.3.3.

4 Methodology

Unlike the traditional top-p method, which requires
first calculating the complete attention scores and
then selecting the top p Key tokens, we aim to
propose a method that does not require calculating
the full attention scores. This method utilizes the
consensus of attention heads on important tokens
to predict the indices of the top p K ey tokens.

4.1 Consensus Sparse Attention

Algorithm 1 Consensus Sparse Attention

Input: Q, K,V € RW*hxsxd gelection parame-
ters p
Output: Attention output O € RV*/xsxd
1: Initialize output tensor O
2: for each community ¢ € C do
3: Identify representative heads g; and remain
heads h._g4, in community c
4: Extract Qg,, K, from representative heads
5. Sy, < softmax T" + Mask>
6: Oy, <S4, Vg, [: 1]
7. Sy S, © Mask,
8 S. + Zgi Sgy,. // consensus scores voting
9

~

: Pselected — t0pp(SC)
10 Ky, Veog, < gather(Pseiected)

-9, K,
11: S._y, « softmax %
122 0+ 0+8S.,V.y +0,

13: end for
14: return O

In Figure 1b, we observe a clear consensus
among different attention heads in selecting key to-
kens: Important key tokens are typically the focus
of most attention heads, with stronger consensus
for more significant tokens. This observation is
further supported by the QHR matrix analysis in
Figure 1a. Experimental results indicate that most
QHR scores (defined in Equation 2) exceed 2, com-
pared to a score of only 0.41 for random selection,
demonstrating the effectiveness of consensus-based
inference. However, consensus levels vary among
different attention heads, and some heads show a
clear advantage in guiding others.

Based on these insights, we propose an efficient
important Key token prediction method called
Consensus Sparse Attention (CSA). Specifically,

instead of computing the important Key tokens
for each attention head individually, we first se-
lect representative attention heads g and then use
their consensus on important Key tokens to pre-
dict the important K ey tokens for the remaining
heads. This strategy avoids the need to compute the
complete attention scores for each head, thereby
reducing computational overhead and enhancing
the efficiency of inference.

The consensus sparse attention mechanism oper-
ates through the following key phases, as shown in
Figure 2

1. Community Initialization: For each atten-
tion head community (introduced in Section
4.3), identify representative heads (introduced
in Section 4.2) that capture dense attention
patterns, as well as the remaining heads that
use sparse attention patterns. See details in
Algorithm 2.

2. Representative Head Processing: Represen-
tative heads use standard-scaled dot-product
attention to compute full attention scores.
These scores preserve complete sequence in-
formation within the representative heads.

3. Consensus Scores Voting: Enforce sparsity
by masking nontop-p elements in the attention
matrices of the representative heads to form
top-p votes for each attention head. Sum the
masked scores across the representative heads
to generate a consensus score matrix through
voting, highlighting strongly attended tokens.

4. Sparse Pattern Propagation: Use the con-
sensus scores to select top-p indices with the
highest aggregate attention. These indices de-
fine sparse attention patterns propagated to
remain heads through Key selection.

5. Attention Computation: remaining heads
compute attention using only the selected to-
kens. The final output combines results from
both representative and remain heads.

The above process demonstrates how CSA
achieves sparse attention through consensus among
representative attention heads, thereby simultane-
ously reducing computational and peak memory
consumption.

[Representative Head Process|| Consensus Scores Voting || Sparse Pattern Propagation|| Attention Computation

on

1
ol

Community
Initialization

Figure 2: Overview of CSA framework

Algorithm 2 Community and Heads Selection

Input: Query I, h attention heads, representative
heads number g , temperature ¢
Output: A set of representative attention heads
1: Compute HR;(hy,, hy,); Vi € I, m # n.
/! (hm,hyn) is a pair of head,, and heady,
2: Compute QH R(hyy, hy);m # n
3: Form a directed graph GG with h nodes using
QHR(h, *) as weight to select edges

4: G' + f(G). 7/ f is Spectral Clustering

5: for each community C; do

6: g;i < size(Cy)//h % g. // g; refers to
representative heads for community C;

7 while not all g; heads are selected do

8: Select the head (node) with the highest

in-degree
9: Remove the selected node along with its

associated edges
10: end while
11: end for
12: return A set of attention heads {g; }

4.2 Representative Heads Selection

As mentioned, the selection of representative atten-
tion heads significantly influences the prediction
of top p tokens. To address this, we propose an
adaptive method for selecting representative heads
based on prior knowledge of different input queries.
Specifically, for a token ¢ in the input query I, we
define the Hit Rate, denoted as H R;(hu,, hy), to
represent the weighted accuracy of using the top
p Key tokens of attention head h,, to predict the
important K ey tokens of attention head k., on to-
ken ¢, which indicates the effectiveness of h,, in
predicting h,,. The calculation is as follows:

s

S :)
. GetRank(s, huy, 1)
SEM (hn,p,i)
(D

Where function M returns the indices of the top
p key tokens that have the highest attention scores

HR;(hp, hy) =

for a Query token i in attention head h,. The
function Get Rank returns the rank of the attention
scores for the key tokens at index s among all key
tokens in attention head h,,.The ¢ is a temperature
parameter that is used to smooth the influence of
the ranking order.

For an input query sequence I of length L, we
use the QH R to quantify the advantage of an at-
tention head h,, over other heads in predicting the
important K ey tokens of attention head h,,. The
calculation formula is as follows:

1 [
QH R, b, 1) = 7 > _(HRi(hm, hn)) (2)
el

QH R is the average of H R scores on the Query /.
Obviously, the higher the Q H R(hy,, hy,), the more
advantageous h,, is in inferring the important Key
tokens of h,, compared to other attention heads,
indicating that h,, is regarded as a representative
attention head for h,,.

Afterward, we calculate the () H R between any
pair of heads through Equation 2. For each head
hn, we select the top j attention heads with the
highest Q H R, identifying those that statistically
best represent h,,. We then construct j directed
edges from h,, to these heads, forming a directed
graph, as illustrated in Figure 1d. In this graph,
some nodes have a higher in-degree than others,
indicating they are recognized by more nodes as
representative attention heads. We then select g
attention heads in descending order of in-degree.
These g attention heads are the representative atten-
tion heads we seek.

4.3 Heads Community Clustering

However, treating all attention heads as a whole
may introduce representational biases. As shown
in Figure 1d, some sections (green parts) of the di-
rected graph are independent. Thus, when selecting
representative nodes for the green parts, heads from
the blue and red sections should not be considered.
To enhance selection accuracy, we use a spectral

clustering algorithm for community detection, di-
viding all heads into ¢ communities and assigning
g; representative heads to each community based
on its size, with the total number being g.

Specifically, after partitioning the communities,
within each community, we first select the attention
head node with the highest in-degree and remove it
from the community, along with its corresponding
edges. We repeat this process until a sufficient num-
ber of representative attention heads are identified
within each community. The detailed procedure is
provided in Algorithm 2.

4.4 Complexity and Memory Analysis
4.4.1 Computational Complexity

The baseline dense attention mechanism involves:

» QKT Multiplication: 2bhs*d operations for
[b, h,s,d] x [b, h,d, s] tensor contraction

* Value Projection: 2bhs?d operations for
[b, h, s, s] x [b, h,s,d] tensor product

The CSA mechanism includes:

» OKT Multiplication: 2bgs®d operations for g
representative heads, 2b(h — ¢)ps®d opera-
tions for remaining heads with p

* Value Projection: 2bhps®d operations for
compressed value projection

The total complexity for the dense model is
4bhs?d, while for CSA it is 2bgs®d + 2b(h —
g)ps®d + 2bhps®d. Thus, CSA reduces compu-

tational cost by a factor of W,

4.4.2 Memory Utilization

The CSA mechanism can effectively reduce the
peak memory usage during the attention computa-
tion process.

Baseline: Peak memory O(bhs?) for storing the
full attention matrix [b, h, s,]

CSA: O(bgs?) memory for [b, g, s, 5] matrices
in representative heads, O(b(h — g)ps?) memory
for [b, h — g, s, ps| matrices in remaining heads

The peak memory is max(bgs?, b(h — g)ps?).
Typically, g > (h — g)p holds. CSA can reduce the

bgs?
bhs? "

peak memory by a factor of % through

S Experiment

We aim to answer the following research questions
in our experiments:

* RQI1: Compared to baseline methods, how
does the CSA method perform across different
NLP tasks and model scales?

* RQ2: Do Representative Heads Selection and
Heads Community Clustering contribute to
the effectiveness of CSA?

* RQ3:Can CSA maintain consistent perfor-
mance as the sequence length scales?

* RQ4:Does CSA provide significant improve-
ments in inference speed and memory con-
sumption?

5.1 Experiment Setting

To validate the broad effectiveness of our method,
we tested mainstream models of various sizes and
architectures. Since Instruct models are currently
the most widely used, we selected the Instruct ver-
sion of the corresponding models for our experi-
ments. We tested our method on multiple main-
stream datasets and tasks.

5.1.1 Task

To validate the performance of CSA in prac-
tical NLP tasks, we refer to the OpenCom-
pass(Contributors, 2023) framework to construct
a multi-dimensional evaluation task set: we use
MMLU (Hendrycks et al., 2020) and Ceval(Huang
et al., 2023) to evaluate the model’s comprehen-
sive capabilities in both languages. For special-
ized capabilities, we employ HumanEval(Chen
et al., 2021) to assess coding, GSM8K(Cobbe
et al.,, 2021) for mathematical reasoning, Trivi-
aQA(Joshi et al., 2017) for knowledge understand-
ing, SQuAD2.0 for reading comprehension, and
"needle-in-a-haystack"(Li et al., 2024) for long-
text processing. In terms of model efficiency, to
control for implementation differences, we mea-
sure memory and time consumption for different
batch sizes and sequence lengths on the core matrix
computation components under aligned PyTorch
implementations. Further details are provided in
Section B.

5.1.2 Models

We evaluated the CSA on mainstream open-source
models, including Qwen14B-chat, LLaMA-3-8B-
Chat, and LLaMA-3-70B-Chat. In the long-text ex-
periments, we utilized the chatglm-6b-32k model,
which was trained specifically for long-text experi-
ment.

DataSets

Models | Methods | MMLU HumanEval@5 Ceval Gsm8k TriviaQA SQuAD
Dense 63.2 73.0 54.0 78.9 754 53.0
LLaMA-3 8B Top 634 73.1 53.2 79.2 74.8 52.9
SparQ 61.7 72.5 51.5 76.5 72.9 49.4
CSA 63.2 73.0 52.7 78.2 74.9 52.5
Dense 49.6 74.4 62.9 65.5 65.3 21.2
Qwen2 14B Top 50.0 75.6 62.7 65.6 65.1 20.3
SparQ 47.1 74.4 62.2 65.9 65.1 20.3
CSA 50.1 75.0 62.4 65.6 65.1 20.0
Dense 71.5 84.1 67.5 92.6 88.7 56.9
LLaMA-370B | Top 779 84.7 66.3 92.3 88.7 56.8
SparQ 754 84.1 58.3 89.9 88.3 52.0
CSA 77.8 83.9 66.3 92.4 88.7 56.8

Table 1: The experimental results of CSA on different models are shown above. We used Pass@5 as the metric on
HumanEval and accuracy on the other datasets. Dense represents the Dense model, Top represents the original top p
method, SparQ is the implementation of the SparQ method, and CSA represents our proposed method. In all the
experiments, p=0.1. For LLaMA-3 8b, g=8 and c=1; for Qwen 14B, g=16 and c=2; for LLaMA-3 70B, g=16 and

c=2.

5.1.3 Baseline

For the baseline, we considered the original top p
and SparQ (Ribar et al., 2023). SparQ computes
approximate attention scores through vector com-
ponents selection and selects K ey tokens based on
these scores. Both SparQ and CSA aim to avoid the
full computation of attention scores. Therefore, we
introduced SparQ for a horizontal comparison and
used top p as the theoretical upper limit for compar-
ison with SparQ and CSA. Considering that SparQ
select a fixed number of K ey tokens, whereas CSA
employs a top p mechanism based on percentages,
to ensure a fair comparison, we also adopted the top
p method for testing in SparQ. Since CSA supports
prefilling but the code provided for SparQ only
supports the decoding stage, we modified SparQ to
enable it to function during the prefilling stage for
comparative purposes.

5.2 Main Result(RQ1)

Table 1 shows the results of our method running
under the condition of p=0.1 on different scales of
Instruct models. Here, Dense represents the test
results of the Dense model, serving as the actual
benchmark; Top denotes the results achieved using
the original top p method, representing the theoret-
ical upper limit; SparQ is the baseline method at
the same compression ratio. Experimental results
indicate that, our method outperforms the baseline
method on almost all datasets, approaches the the-
oretical upper limit of the top p method, and is
nearly equivalent to the Dense model. Notably,

‘ ‘ DataSet
Models ‘ Methods ‘ MMLU HumanEval@5 Gsm8k
LLaMA-3 8B ‘ Candom ‘ o 750 752
Qwen 14B ‘ Egr/]\dom ‘ ‘SLZ)I ;;8 géé
LLaMA-3 70B ‘ lé;r:‘iom ‘ ;gg igg gig

Table 2: Random and CSA selection mechanism.

on some datasets, our method even surpasses the
Dense model. We believe this is because the top p
method eliminates interference from tokens with
lower attention scores, thereby concentrating atten-
tion and enhancing model performance.

5.3 Ablations
5.3.1 Heads Selection Ablation(RQ2)

To validate the effectiveness of the representative
heads selection in CSA, we conducted compara-
tive experiments with random selection. As shown
in Table 2, CSA outperforms random selection in
all scenarios. Figure la, through QH R scores
(Random and CSA), further reveals that compared
to single-head inference, random selection signifi-
cantly reduces low-hit regions (cool tones) through
consensus scores voting, while CSA further com-
presses low-value areas and increases the density of
warm tones, demonstrating its ability to select more
representative attention heads and produce more
stable and reliable voting results.These ablation
studies indicate that representative heads selection

‘ community size

Models ‘ gdcl g8cl g8c2 glbécl gl6ec2 g32c4
LLaMA-3 8B ‘ 624 632 630 632 63.2 63.3
Qwen 14B ‘ 4177 482 398 49.0 50.1 50.3
LLaMA-3 70B ‘ 76.1 769 76.5 712 71.8 71.9

Table 3: Comparison on the Selection of Parameters g
and c.

Methods | Ok -4k 4k -8k 8k-12k 12k- 16k
Dense | 100 100 99.7 99.6
Top | 100 100.0 99.5 99.2
SparQ | 99.5 99.3 99.1 99.0
CSA | 100 99.3 99.0 99.0

Table 4: Sequence Length Scaling.

enhances the stability of top p token prediction
and the algorithm’s performance across multiple
datasets by optimizing the quality of consensus
voting.

5.3.2 Community Size Ablation(RQ2)

To demonstrate the impact of community size on
model performance and to support our parameter
choices for g and ¢, we conducted community size
ablation experiments, as shown in Table 4. The
strategy of community partitioning effectively en-
hances the performance of CSA. Moreover, we ob-
served that more partitions are not always better, as
over-partitioning leads to a reduction in the number
of attention heads sampled per community, thereby
diluting the consensus of attention heads to a few
determinative heads. Similarly, the number of se-
lected heads does not need to be excessively high;
after a certain number is reached, the model’s per-
formance no longer improves significantly, while
the computational cost increases markedly. Based
on experimental results, we selected g=8,c=1,for
LLaMA-3 8B, g=16,c=2,for LLaMA-3 70B, and
g=16,c=2 for Qwen 14B.

5.3.3 Sequence Length Scaling(RQ3)

We assessed the performance of CSA on long-
sequence problems using the "needle in a haystack"
experiment. We concatenating the contexts from
SQuAD to form a context of a specified length, and
subsequently inserting a "text needle" at a specific
depth within this context. The model’s capability
for long-text processing was evaluated by retriev-
ing the text needle from the context. The detailed

implementation of this task was kept consistent
with the methods described in (gkamradt, 2023)
and (Contributors, 2023).As shown in Table 5.3.3,
experiments show that CSA can maintain good sta-
bility under Sequence Length Scaling conditions.

5.3.4 Computational Efficiency and Memory
Optimization(RQ4)

To evaluate practical computational consumption,
we measured the attention operations in attention
layers using uniform PyTorch implementations. As
shown in Figure le, CSA achieves a near 2-fold
acceleration over Dense models in high-batch and
long-text scenarios, with further optimization po-
tential given nonoptimal attention implementations.
Currently, by avoiding the computation of the full
attention matrix, CSA significantly reduces peak
memory usage - our fp16 experiments in Figure 1f
demonstrate up to 50% memory savings, enabling
higher batch sizes for efficient inference.

6 Limitations

When calculating attention, CSA needs to com-
pute the representative attention heads and the re-
maining attention heads in a serial manner. This
approach may not fully utilize the computational
power of the machine in low-batch, short-text sce-
narios.

7 Conclusion

In this work, we propose the Consensus Sparse
Attention (CSA) mechanism, a new technique for
accelerating the inference of large language models
(LLMs). By leveraging consensus voting among
representative attention heads for important tokens,
CSA predicts potential key tokens in the remaining
attention heads. CSA employs a top-p tokens mech-
anism, reducing the decline in attention concentra-
tion under long text conditions. By utilizing con-
sensus among attention heads, CSA can simulta-
neously reduce computational load and peak mem-
ory consumption, providing significant efficiency
gains. In the experimental section, we demonstrate
the robustness of CSA across numerous tasks and
models, indicating that CSA has the potential to
become a reliable technique for reducing inference
time and memory consumption in the future.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.

2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and
Byungseok Roh. 2024. Honeybee: Locality-
enhanced projector for multimodal llm. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13817-13827.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1-45.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-

quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323-10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-
Yi Lu, and Ji-Rong Wen. 2022. Parameter-efficient
mixture-of-experts architecture for pre-trained lan-
guage models. arXiv preprint arXiv:2203.01104.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
1Ims. arXiv preprint arXiv:2310.01801.

gkamradt. 2023. Llmtest needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. arXiv preprint arXiv:2308.16137.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In Advances in Neural Infor-
mation Processing Systems.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby.
2022. Sparse upcycling: Training mixture-of-
experts from dense checkpoints. arXiv preprint
arXiv:2212.05055.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. arXiv preprint arXiv:2203.07259.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen.
2024. Needlebench: Can llms do retrieval and rea-
soning in 1 million context window? Preprint,
arXiv:2407.11963.

Nian Li, Chen Gao, Yong Li, and Qingmin Liao. 2023.
Large language model-empowered agents for sim-
ulating macroeconomic activities. arXiv preprint
arXiv:2310.10436.

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87-100.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear unified nested attention. Advances
in Neural Information Processing Systems, 34:2441—
2453.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang,
Jure Leskovec, Dale Schuurmans, and Bo Dai. 2021.
Combiner: Full attention transformer with sparse
computation cost. Advances in Neural Information
Processing Systems, 34:22470-22482.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.
Sparq attention: Bandwidth-efficient 1lm inference.
arXiv preprint arXiv:2312.04985.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ton Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages

31094-31116. PMLR.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2022. Distilling reasoning capabilities
into smaller language models. arXiv preprint
arXiv:2212.00193.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm inference.
arXiv preprint arXiv:2406.10774.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying
Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi.
2023. Gpt-re: In-context learning for relation ex-
traction using large language models. arXiv preprint
arXiv:2305.02105.

Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang,
Xuanzhe Liu, and Xin Jin. 2023. Fast distributed
inference serving for large language models. arXiv
preprint arXiv:2305.05920.

10

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based }
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2021. Moefication:
Transformer feed-forward layers are mixtures of ex-
perts. arXiv preprint arXiv:2110.01786.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024.
H2o: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Li Zhong and Zilong Wang. 2024. Can llm replace
stack overflow? a study on robustness and reliability
of large language model code generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 21841-21849.

A Supplementary Experiment

In this appendix, we provide a comprehensive and
detailed enumeration of the data presented in the
figures throughout the main text.

A.1 Top p Ablation

In this section, we conduct an ablation study on the
parameter p. To test the performance of p across
different lengths, we concatenate contexts from the
SQuAD dataset to create new datasets of varying
lengths. We set different values of p to evaluate
the impact of p in the standard Top-p method on
model performance. As illustrated in the figure,

using constant values of 64 and 32 results in a sig-
nificant performance drop compared to the method
that adapts to sequence length proportionally. This
indicates that the adaptive method, which adjusts
according to sequence length, offers more stable
performance.

47.5

45.0

IS
N
(&)

Accuracy
N
o
o

37.5
35.0
32.5
\ 0.} o ok %
Top Ratio

Figure 3: p Ablation

A.2 CSA on Various devices

To comprehensively verify the applicability of the
computational efficiency optimization method CSA
on different platforms, we have extended the scope
of our experiments to other computing environ-
ments, building on our analysis of computational
load and peak memory tests on the A100 accel-
erator card (see Chapter 5.3.4). We selected the
Intel(R) Xeon(R) Platinum 8163 CPU and the
NVIDIA RTX4090 GPU for additional experi-
ments to systematically examine the performance
of CSA across different computing architectures.
As shown in Figure 4, the experimental data indi-
cate that CSA can still provide effective efficiency
improvements on both the CPU platform and the
consumer-grade GPU platform.

B Experiment Detailed

In this section, we will provide further explanations
for all the experimental configurations mentioned
in the main text.

In Section 5.2, we adopted a 5-shots approach
for evaluation on MMLU, Ceval, and Gsm8K.
Specifically, we constructed a multi-round dialogue
prompt, consistent with the approach in opencom-
pass. For evaluation metrics, we used exact match
for MMLU and Ceval, while for other evaluations,
we used the same Evaluator as in opencompass

Batch Size B
32 64 128

g0 U Dense Sequence
—4— CSA Sequence
—O0— Theoretical CSA Sequence
---- Dense Bsz
CSA Bsz
-=0-- Theoretical CSA Bsz

o
o

N
S

Time per Token (S)

N
o

1024 2048 4096 8192
Sequence Length S

(a) cpu time analysis

8| WM Dense

Cost (GB)
N oW & O o

32 64
Batch Size

(b) cpu memory analysis

Batch Size B
32 64 128

0.8 —— Dense Sequence

—4*— GCSA Sequence

—O0— Theoretical CSA Sequence
--i-- Dense Bsz

“

—o¢ CSA Bsz

s --0-- Theoretical CSA Bsz A
3 P

. 0.4

(]

o

o

E

=0.2

1024 2048 4096 8192
Sequence Length S

(c) RTX 4090 time analysis

I Dense
20{ W CSA
15
@
&
o
810
o
5
0
16 32 64 128 256

Batch Size

(d) RTX 4090 memory analysis

Figure 4: The CSA (Channel State Information Acqui-
sition) running results on different architecture devices

(Contributors, 2023).For the baseline, we set the
r value of SparQ to 32 to ensure the same com-
pression ratio as CSA, thereby providing a fair
comparison.

In Section 5.3.1, to compare with the representa-
tive attention head selection algorithm in CSA, we
adopted a method of randomly selecting represen-
tative attention heads. Specifically, we randomly
selected g attention heads from all attention heads
as representative attention heads. This method does
not allow further community division, so the num-
ber of randomly selected communities is 1.

In Section 5.3.2, we conducted comparative ex-
periments on the selection of g and ¢ on llama3
8b on MMLU, using exact match accuracy as the
evaluation metric.

In Section 5.3.3, we selected "needle in
haystack" as the evaluation task. Our evaluation
followed the approach in opencompass, where we
first concatenated a context of specified length from
SQuAD, then inserted a needle into the context for
evaluation. For evaluation metrics, we directly used
the opencompass Evaluator.

In Section 5.3.4, since the performance bottle-
neck of large language models is mainly concen-
trated in the prefilling stage, our experiments were
also conducted in the prefilling stage. Regarding
computational efficiency, since CSA only modifies
Core Attention, we focused on the changes in com-
putational efficiency in the Core Attention part. To
ensure fairness in comparison, we aimed to com-
pare on the same code implementation. Since CSA
provides gains only in the QKV computation, we
chose to stat the computational efficiency in the
QKYV computation. In terms of memory efficiency,
CSA provides gains by reducing peak memory, so
for the kv Cache of the same size present in both
Dense and CSA, we chose to subtract the impact of
the KV Cache in both Dense and CSA experiments.
Finally, we recorded the time consumed in Core
Attention during the first token inference under dif-
ferent Sequence Length and Batch size, as well as
the corresponding changes in peak memory.

Since the selection of p is not the main content of
CSA, we provided comparative experiments in A.1.
The experiments showed that the adaptive method
by percentage is more effective than using a fixed
constant.

In the preparation of community division and
representative attention selection, we chose Queries
from multiple evaluation sets when calculating
QHR to enhance statistical reliability. For parame-

ter settings, to align with formal experiments, we
chose p=0.1. In the calculation of HR and QHR,
we chose the temperature coefficient t as 1. When
constructing the Graph of attention head nodes, we
set j to 2. In community division, we directly used
the SpectralClustering implementation of sklearn.

C Case Study
C.1 LLaMA-3 8b(MMLU)

###Question

HUMAN :

There is a single choice question about

global facts. Answer the question by
replying A, B, C or D.

Question: As of 2019, about what
percentage of people from the United
States says homosexuality should be
accepted by society?

52%

62%

72%

82%

Answer:

BOT:

B

O O W >

...few shots
HUMAN :
There is a single choice question about
global facts. Answer the question by
replying A, B, C or D.
Question:
What was GDP per capita in the United
States in 1850 when adjusting for
inflation and PPP in 2011 prices?
About $300
About $3k
About $8k
. About $15k
###Answer :
DENSE: C
CSA: C

O O W >

C.2 LLaMA-3 8b(HumanEval)

12

###Question

HUMAN :

from typing import List\n\n\ndef
separate_paren_groups(paren_string:
str) -> List[strl:\n """ Input to
this function is a string containing
multiple groups of nested

parentheses. Your goal is to\n
separate those group into separate
strings and return the list of those
.\n Separate groups are balanced (
each open brace is properly closed)
and not nested within each other\n
Ignore any spaces in the input
string.\n >>> separate_paren_groups
AC) O CCXENNDIAN IN'ON',
NVEOIN, NCOOXN IAn

###ANSWer :

DENSE :

from typing import List\n\ndef

add it to the list and reset the
current group\n if balance == @:\n
groups.append(current_group)\n
current_group = ""\n\n # Return the
list of separated groups\n return
groups\n

from typing import List\n\ndef

separate_paren_groups(paren_string:
str) -> List[str]:\n """\n This

function separates multiple groups
of nested parentheses into separate
strings.\n\n Args:\n paren_string (

separate_paren_groups(paren_string:
str) -> List[strl:\n """\n This
function takes a string containing
multiple groups of nested
parentheses as input.\n It separates
those groups into separate strings
and returns the list of those.\n
Separate groups are balanced (each
open brace is properly closed) and
not nested within each other.\n It
ignores any spaces in the input
string.\n\n Parameters:\n
paren_string (str): A string
containing multiple groups of nested
parentheses.\n\n Returns:\n List[
str]: A list of strings, each
containing a group of balanced
parentheses.\n """\n\n # Remove
spaces from the input string\n
paren_string = paren_string.replace
" ", "™A\n\n # Initialize an empty
list to store the separated groups\n
groups = [J\n\n # Initialize an
empty string to build the current
group\n current_group = ""\n\n #
Initialize a counter to keep track
of the balance of parentheses\n
balance = 0\n\n # Iterate over each
character in the input string\n for
char in paren_string:\n # If the
character is an open parenthesis,
increment the balance\n if char ==
"(":\n balance += 1\n current_group
+= char\n # If the character is a
close parenthesis, decrement the
balance\n elif char == ")":\n
balance -= 1\n current_group += char
\n # If the balance becomes zero, it
means we have a complete group, so

str): A string containing multiple
groups of nested parentheses.\n\n
Returns:\n List[str]: A list of
separate strings, each representing
a group of nested parentheses.\n
"""\n \n # Remove spaces from the
input string\n paren_string =
paren_string.replace(” ", "")\n\n #
Initialize an empty list to store
the separated groups\n
separated_groups = [J\n\n #
Initialize an empty string to build
the current group\n current_group =
""\n\n # Initialize a counter for
open and close parentheses\n
open_count = @\n close_count = @\n\n
Iterate over each character in
the input string\n for char in
paren_string:\n # If the character
is an open parenthesis, increment
the open count\n if char == "(":\n
open_count += 1\n current_group +=
char\n # If the character is a close
parenthesis\n elif char == ")":\n
close_count += 1\n current_group +=
char\n # If the current group is
balanced, add it to the list and
reset the current group\n if
open_count == close_count:\n
separated_groups.append(
current_group)\n current_group
n open_count = @\n close_count
If the current group is not
balanced, reset the current group\n
if open_count < close_count:\n
current_group = ""\n open_count = 0\
n close_count = @\n\n # Add the last
group to the list if it\'s not
empty\n if current_group:\n

n II\
2\n

13

separated_groups. append(
current_group)\n\n return
separated_groups\n

C.3 LLaMA-3 8b(GSMS8k)

###Question

HUMAN :

Question: \nJosh decides to try flipping

a house. He buys a house for $80
,000 and then puts in $50,000 in
repairs. This increased the value of

the house by 150%. How much profit
did he make?\nLet's think step by
step\n

Answer:

The cost of the house and repairs came
out to 80,000+50,000=%
<<80000+50000=130000>>130,000\nHe
increased the value of the house by
80,000%1.5=<<80000*1.5=120000>>120,00
nSo the new value of the house is
120,000+80,000=$%
<<120000+80000=200000>>200,000\nSo
he made a profit of 200,000-130,000=
$<<200000-130000=70000>>70 , 000 \ni##i#

70000\n

...few shots

HUMAN:

Question:’

Janets ducks lay 16 eggs per day. She
eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She
sells the remainder at the farmers'
market daily for $2 per fresh duck
egg. How much in dollars does she
make every day at the farmers'
market?

Let's think step by step

Answer:

###ANswer :

DENSE: Janet's ducks lay 16 eggs per day
. She eats 3 eggs for breakfast and
bakes muffins with 4 eggs, leaving:\
n\n16 - 3 - 4 = 9 eggs\n\nShe sells
these 9 eggs at the farmers' market
for $2 per egg, so she makes:\n\n9
eggs x $2 per egg = $18\n\nif### $18

CSA: Janet's ducks lay 16 eggs per day.
She eats 3 for breakfast, and bakes

muffins with 4, leaving her with:\n\

n16 - 3 - 4 = 9 eggs\n\nShe sells
these 9 eggs at the farmers' market
for $2 per egg, making:\n\n9 eggs x
$2 per egg = $18\n\n##i## 18

C.4 LLaMA-3 8h(TriviaQA)

###Question

HUMAN :

Answer these questions, your answer
should be as simple as possible,
start your answer with the prompt '
The answer is '

Q: Which Lloyd Webber musical premiered
in the US on 10th December 19937

###Answer :

DENSE: The answer is "Sunset Boulevard".

CSA: The answer is "Sunset Boulevard”.

0\

C.5 LLaMA-38b(SQuAD)

14

###Question

HUMAN :

The Normans (Norman: Nourmands; French:
Normands; Latin: Normanni) were the
people who in the 10th and 11th
centuries gave their name to
Normandy, a region in France. They
were descended from Norse ("Norman”
comes from "Norseman”) raiders and
pirates from Denmark, Iceland and
Norway who, under their leader Rollo
, agreed to swear fealty to King
Charles III of West Francia. Through

generations of assimilation and
mixing with the native Frankish and
Roman-Gaulish populations, their
descendants would gradually merge
with the Carolingian-based cultures
of West Francia. The distinct
cultural and ethnic identity of the
Normans emerged initially in the
first half of the 10th century, and
it continued to evolve over the
succeeding centuries.\nAccording to
the above passage, answer the
following question. If it is
impossible to answer according to
the passage, start your answer with
the prompt \'The answer is \'.answer

“impossible to answer™:

Question: In what country is Normandy
located?

###ANswer :

DENSE: France.

CSA: France.

15

	Introduction
	Related Work
	Efficient LLMs Inference
	Sparse Attention Compression

	Background and Motivation
	Methodology
	Consensus Sparse Attention
	Representative Heads Selection
	Heads Community Clustering
	Complexity and Memory Analysis
	Computational Complexity
	Memory Utilization

	Experiment
	Experiment Setting
	Task
	Models
	Baseline

	Main Result(RQ1)
	Ablations
	Heads Selection Ablation(RQ2)
	Community Size Ablation(RQ2)
	Sequence Length Scaling(RQ3)
	Computational Efficiency and Memory Optimization(RQ4)

	Limitations
	Conclusion
	Supplementary Experiment
	Top p Ablation
	CSA on Various devices

	Experiment Detailed
	Case Study
	LLaMA-3 8b(MMLU)
	LLaMA-3 8b(HumanEval)
	LLaMA-3 8b(GSM8k)
	LLaMA-3 8b(TriviaQA)
	LLaMA-3 8b(SQuAD)

