
Consensus Sparse Attention: A Memory and Computation Efficient
Mechanism Based on Inter-Head Consensus

Anonymous ACL submission

Abstract001

The inference efficiency of large language mod-002
els (LLMs) is limited by the computational003
complexity and memory usage of attention004
layers. To address these challenges, we in-005
troduce Consensus Sparse Attention (CSA),006
a technique that leverages the consensus of a007
few representative attention heads to select the008
Key tokens for the remaining heads, thereby009
limiting the attention computation space from010
all tokens to a small number of potential can-011
didate tokens, effectively reducing computa-012
tional and peak memory consumption without013
additional training. Experiments conducted on014
diverse scale models and varied downstream015
tasks demonstrate that CSA can offer a signifi-016
cant improvement in computational efficiency017
with a negligible accuracy decrease. In particu-018
lar, CSA was able to achieve a two-fold speed019
increase, along with a half reduction of peak020
memory usage in the attention layer computa-021
tion during the prefilling stage on LLaMA-3.022

1 Introduction023

Due to the efficient ability in modeling complex024

relationships between different tokens, Large Lan-025

guage Models (LLMs) have recently achieved ex-026

cellent performance in various fields(Zhao et al.,027

2023; Chang et al., 2024), including multi-model028

fusion(Cha et al., 2024), relation extraction(Wan029

et al., 2023), code generation(Zhong and Wang,030

2024) and even agent-based decision-making(Li031

et al., 2023).032

However, the quadratic time and space com-033

plexity of dense attention in LLMs create a crit-034

ical bottleneck for widespread application and effi-035

cient deployment as model size and input sequence036

length increase, significantly raising computational037

resource and memory demands.038

Many previous works have achieved efficiency039

gains through sparse attention mechanisms, such040

as Local (Child et al., 2019), Global (Beltagy et al.,041

2020), Hybrid (Zaheer et al., 2020), Predicted To- 042

ken Dominated (Tang et al., 2024), and Explicit 043

sparse transformer (Zhao et al., 2019). The above 044

method approximates dense attention based on the 045

fact that most attention scores are concentrated on a 046

few important tokens. However, they either require 047

retraining or need to compute the complete atten- 048

tion scores before selecting the important tokens, 049

which does not sufficiently reduce the computa- 050

tional load. SparQ (Ribar et al., 2023) finds the r 051

largest components of the query vector and gathers 052

the corresponding components along the hidden 053

dimension of the Key tokens to approximate the 054

attention scores. The compression along the hidden 055

dimension reduces the computational load, but the 056

resulting attention scores [b, h, s, s] are of the same 057

size as in the dense condition, which does not yield 058

significant peak memory consumption benefits. 059

Our work began with the observation that atten- 060

tion heads tend to consistently select some impor- 061

tant Key tokens. Specifically, certain Key tokens 062

receive high attention scores across different atten- 063

tion heads. As shown in Figure 1b, different colors 064

represent different attention heads. It can be noted 065

that tokens at certain index positions receive high 066

attention scores across various attention heads, indi- 067

cating that these tokens are valued by the majority 068

of the attention heads. Building on this insight, we 069

propose the Consensus Sparse Attention (CSA) 070

method for multi-head attention. By computing 071

a small number of g representative heads, we use 072

their consensus to identify important Key tokens 073

for the others, thus avoiding the computation of all 074

Key tokens. Since only the maximum [b, g, s, s] 075

(g < h) attention scores need to be calculated, CSA 076

effectively reduces both the computational load and 077

peak memory usage of the attention layer. 078

In mainstream benchmark tests presented in Ta- 079

ble 1, CSA maintained comparable performance to 080

Dense models. In high-batch and long-sequence 081

scenarios, CSA achieved a true two-fold speedup 082

1

and reduced memory peak by 50% when comput-083

ing the attention layer. These results highlight084

CSA’s advantages in both efficiency and perfor-085

mance.086

In summary, we make the following contribu-087

tion:088

• We reveal the consensus exhibited by multiple089

attention heads when selecting important Key090

tokens and validate this phenomenon through091

experiments.092

• We propose Consensus Sparse Attention093

(CSA), leveraging the consensus among a few094

representative attention heads to select Key095

tokens for the others, thus reducing computa-096

tional load and memory usage in the attention097

layer without extra training.098

• We evaluated CSA through experiments, and099

the results show that it outperforms existing100

benchmarks across multiple key performance101

indicators, fully validating its effectiveness.102

2 Related Work103

2.1 Efficient LLMs Inference104

LLMs usually require a higher inference cost when105

processing large amounts of queries, which poses a106

huge challenge for its deployment. To improve the107

inference efficiency of LLMs, some current works108

optimize two important parts in the model, Feed109

Forward Network (FFN)(Zhang et al., 2021; Gao110

et al., 2022; Komatsuzaki et al., 2022) and Atten-111

tion Operation(Shazeer, 2019; Ainslie et al., 2023;112

Ma et al., 2021), by designing efficient structure113

or strategies. Some other works consider apply-114

ing classical scheduling strategies in query batch-115

ing process to handle asynchronous queries more116

quickly, such as FCFS(Yu et al., 2022), Multi-Level117

Feedback Queue(Wu et al., 2023) and Continuous118

Batching(Kwon et al., 2023). Besides, in model119

compression, quantization is a commonly used120

method. It reduces the computational and mem-121

ory costs of LLMs by converting model weights122

and activations from high to low bit-widths, such123

as GPTQ(Frantar et al., 2022) minimizes the differ-124

ence in model output before and after quantization125

by using a small portion of calibration data for126

the weight matrix of each layer, AWQ(Lin et al.,127

2024)selects salient weights based on the activa-128

tion distribution. Also, some methods (Frantar and129

Alistarh, 2023; Sun et al., 2023; Kurtic et al., 2022)130

prune the model parameters, or (Gu et al., 2023; 131

Hsieh et al., 2023; Shridhar et al., 2022) compress 132

the model volume by distilling knowledge into a 133

smaller one. The method studied in this paper 134

is closely related to sparsity in model compres- 135

sion and focuses on the bottleneck of dense self- 136

attention in inference process. 137

2.2 Sparse Attention Compression 138

Due to the sparsity of self-attention matrix, ex- 139

tracting the important parts from it has always 140

been an active research field. For example, meth- 141

ods like Local(Child et al., 2019; Ren et al., 142

2021), Global(Beltagy et al., 2020), Hybrid(Zaheer 143

et al., 2020) improve the computational efficiency 144

of attention scores by choosing random, adja- 145

cent or specially marked tokens during long con- 146

text process. LM-Infinite(Han et al., 2023) and 147

StreamingLLM(Xiao et al., 2023) adopt some fixed 148

sparse patterns to select the latest and important to- 149

kens. Top-k(Zhao et al., 2019) and FlexGen(Sheng 150

et al., 2023) identify important tokens through the 151

attention scores and Tang et al.(Tang et al., 2024) 152

link the selection of important attention scores and 153

currently predicted token together. Meanwhile, the 154

eviction strategy maintains a certain size by con- 155

tinuously deleting irrelevant tokens. H2O(Zhang 156

et al., 2024) maintains a budget space of size k 157

by accumulating historical attention weight scores. 158

TOVA(Oren et al., 2024) discards tokens with 159

lower attention scores based on the current query. 160

SparQ(Ribar et al., 2023) reduces the memory 161

bandwidth during the computation process by se- 162

lecting key query tokens before computing the at- 163

tention weights. FastGen(Ge et al., 2023) formu- 164

lates separate compression strategies for them re- 165

spectively based on the observation of different 166

heads. Unlike the aforementioned methods, our ap- 167

proach achieves sparse attention by leveraging the 168

consensus among attention heads on key tokens. 169

3 Background and Motivation 170

In well-trained Transformer models, it is often 171

observed that most tokens receive low attention 172

scores, while the primary attention is concentrated 173

on a small subset of tokens, as depicted in Figure 174

1b. This suggests that only a minority of tokens 175

significantly impact model performance. Statistical 176

results in Figure 1c show that attention scores in 177

Dense models are largely concentrated on a few 178

important tokens, indicating that focusing on these 179

2

Random CSA

QHR Matrix
He
ad
m

Head m

Random CSA

(a) QHR Result

0 20 40 60 80 100 120
Token Index

0.0

0.2

0.4

0.6

0.8

1.0

At
te
nt
io
n
Sc
or
e

Top 4

Top 64

(b) Top Key Tokens

Top32 Top64 Top0.1

(c) Attention Scores Accumulation

(d) Attention Heads Community (e) Time Analysis

16 32 64 128 256 512 1024
Batch Size

0

10

20

30

40

Me
mo
ry
 C
os
t
(G
B)

Dense

CSA

(f) Memory Usage

Figure 1: Subfigure (a) QHR Matrix illustrates the QHR scores between any two attention heads. Both Random and
CSA show the QHR scores of the remaining heads as voted by the representative attention heads. Subfigure (b)
displays the distribution of Attention Scores for the Top 64 Key tokens and Top 4 Key tokens across different heads,
with each color representing a distinct head. Subfigure (c) presents the distribution of cumulative attention scores
for the top Key tokens at sequence lengths of 128 and 2048. Subfigure (d) demonstrates the results of community
division and the selection of representative attention heads; the size of each node indicates its in-degree, with C1,
C2, and C3 representing the divided communities, and solid nodes indicating representative nodes.Subfigure (e)
illustrates the token generation time across different batch sizes (top x-axis, dotted line) and sequence lengths
(bottom x-axis, solid line). In particular, for the experiments conducted on the LLaMA3 8B model, the sequence
length experiment was performed with a batch size (bsz) of 1, while the batch size experiment used a sequence
length of 512. Subfigure (f) illustrates the peak memory usage of the attention layer when computing the first token
on LLaMA3 8B with a sequence length of 512.

tokens can effectively capture sufficient attention180

information.181

The Current Top-k Tokens Mechanism Faces182

Several Challenges. Existing studies like Explicit183

sparse transformer (Zhao et al., 2019) and SparQ184

(Ribar et al., 2023) have implemented Sparse At-185

tention by selecting a fixed number(k) of Key186

tokens with the highest attention scores to replace187

Dense Attention. This approach accelerates infer-188

ence while preserving model capabilities. However,189

using a fixed number of Top k Key tokens results190

in a sparser distribution of attention scores as the191

input sequence length increases. As shown in Fig-192

ure 1c, when the input sequence length grows from193

128 to 2048, the attention score distribution for194

the top 32 Key tokens becomes more dispersed.195

Although the top 64 Key exhibit a higher concen-196

tration, the overall trend of declining concentration197

persists. This indicates that regardless of adjust-198

ments to the value of k, the top k method struggles 199

with declining attention score concentration, pos- 200

ing challenges for handling long-sequence tasks. 201

Percentage-based Top p Tokens Mechanism 202

demonstrates superior performance. To address 203

the decline in attention concentration caused by 204

selecting a fixed number of important Key tokens 205

(Top k), we did experiments to find a simple ef- 206

fective percentage-based method. This approach 207

involves selecting a fixed proportion of tokens as 208

Key tokens to maintain stable accumulated atten- 209

tion scores. To differentiate this method from the 210

existing Top k approach, which uses a fixed number 211

of tokens, we refer to it as the Top p method. As il- 212

lustrated in Figure 1c, as the input sequence length 213

increases from 128 to 2048, the Top p method con- 214

sistently maintains a high concentration of attention 215

scores. This demonstrates that the Top p method 216

can sustain stable model performance as sequence 217

3

length scales, as verified in Section 5.3.3.218

4 Methodology219

Unlike the traditional top-p method, which requires220

first calculating the complete attention scores and221

then selecting the top p Key tokens, we aim to222

propose a method that does not require calculating223

the full attention scores. This method utilizes the224

consensus of attention heads on important tokens225

to predict the indices of the top p Key tokens.226

4.1 Consensus Sparse Attention227

Algorithm 1 Consensus Sparse Attention

Input: Q,K,V ∈ Rb×h×s×d, selection parame-
ters p

Output: Attention output O ∈ Rb×h×s×d

1: Initialize output tensor O
2: for each community c ∈ C do
3: Identify representative heads gi and remain

heads hc−gi in community c
4: Extract Qgi ,Kgi from representative heads

5: Sgi ← softmax

(
QgiK

⊤
gi√

d
+Mask

)
6: Ogi ← SgiVgi [: p]
7: Sgi ← Sgi ⊙Maskp

8: Ŝc ←
∑

gi
Sgi . // consensus scores voting

9: Pselected ← topp(Ŝc)
10: Kc−gi ,Vc−gi ← gather(Pselected)

11: Sc−gi ← softmax

(
Qc−giK

⊤
c−gi√

d

)
12: O← O+ Sc−giVc−gi +Ogi

13: end for
14: return O

In Figure 1b, we observe a clear consensus228

among different attention heads in selecting key to-229

kens: Important key tokens are typically the focus230

of most attention heads, with stronger consensus231

for more significant tokens. This observation is232

further supported by the QHR matrix analysis in233

Figure 1a. Experimental results indicate that most234

QHR scores (defined in Equation 2) exceed 2, com-235

pared to a score of only 0.41 for random selection,236

demonstrating the effectiveness of consensus-based237

inference. However, consensus levels vary among238

different attention heads, and some heads show a239

clear advantage in guiding others.240

Based on these insights, we propose an efficient241

important Key token prediction method called242

Consensus Sparse Attention (CSA). Specifically,243

instead of computing the important Key tokens 244

for each attention head individually, we first se- 245

lect representative attention heads g and then use 246

their consensus on important Key tokens to pre- 247

dict the important Key tokens for the remaining 248

heads. This strategy avoids the need to compute the 249

complete attention scores for each head, thereby 250

reducing computational overhead and enhancing 251

the efficiency of inference. 252

The consensus sparse attention mechanism oper- 253

ates through the following key phases, as shown in 254

Figure 2 255

1. Community Initialization: For each atten- 256

tion head community (introduced in Section 257

4.3), identify representative heads (introduced 258

in Section 4.2) that capture dense attention 259

patterns, as well as the remaining heads that 260

use sparse attention patterns. See details in 261

Algorithm 2. 262

2. Representative Head Processing: Represen- 263

tative heads use standard-scaled dot-product 264

attention to compute full attention scores. 265

These scores preserve complete sequence in- 266

formation within the representative heads. 267

3. Consensus Scores Voting: Enforce sparsity 268

by masking nontop-p elements in the attention 269

matrices of the representative heads to form 270

top-p votes for each attention head. Sum the 271

masked scores across the representative heads 272

to generate a consensus score matrix through 273

voting, highlighting strongly attended tokens. 274

4. Sparse Pattern Propagation: Use the con- 275

sensus scores to select top-p indices with the 276

highest aggregate attention. These indices de- 277

fine sparse attention patterns propagated to 278

remain heads through Key selection. 279

5. Attention Computation: remaining heads 280

compute attention using only the selected to- 281

kens. The final output combines results from 282

both representative and remain heads. 283

The above process demonstrates how CSA 284

achieves sparse attention through consensus among 285

representative attention heads, thereby simultane- 286

ously reducing computational and peak memory 287

consumption. 288

4

Figure 2: Overview of CSA framework

Algorithm 2 Community and Heads Selection

Input: Query I , h attention heads, representative
heads number g , temperature t

Output: A set of representative attention heads
1: Compute HRi(hm, hn);∀i ∈ I,m ̸= n.

// (hm, hn) is a pair of headm and headn

2: Compute QHR(hm, hn);m ̸= n
3: Form a directed graph G with h nodes using

QHR(hm, ∗) as weight to select edges
4: G′ ←− f(G). // f is Spectral Clustering

5: for each community Ci do
6: gi ←− size(Ci)//h ∗ g. // gi refers to

representative heads for community Ci

7: while not all gi heads are selected do
8: Select the head (node) with the highest

in-degree
9: Remove the selected node along with its

associated edges
10: end while
11: end for
12: return A set of attention heads {gi}

4.2 Representative Heads Selection289

As mentioned, the selection of representative atten-290

tion heads significantly influences the prediction291

of top p tokens. To address this, we propose an292

adaptive method for selecting representative heads293

based on prior knowledge of different input queries.294

Specifically, for a token i in the input query I , we295

define the Hit Rate, denoted as HRi(hm, hn), to296

represent the weighted accuracy of using the top297

p Key tokens of attention head hn to predict the298

important Key tokens of attention head hm on to-299

ken i, which indicates the effectiveness of hn in300

predicting hm. The calculation is as follows:301

HRi(hm, hn) =
s∑

s∈M(hn,p,i)

(
1

GetRank(s, hm, i)
)t

(1)302

Where function M returns the indices of the top303

p key tokens that have the highest attention scores304

for a Query token i in attention head hn. The 305

function GetRank returns the rank of the attention 306

scores for the key tokens at index s among all key 307

tokens in attention head hm.The t is a temperature 308

parameter that is used to smooth the influence of 309

the ranking order. 310

For an input query sequence I of length L, we 311

use the QHR to quantify the advantage of an at- 312

tention head hn over other heads in predicting the 313

important Key tokens of attention head hm. The 314

calculation formula is as follows: 315

QHR(hm, hn, I) =
1

L

i∑
i∈I

(HRi(hm, hn)) (2) 316

QHR is the average of HR scores on the Query I . 317

Obviously, the higher the QHR(hm, hn), the more 318

advantageous hn is in inferring the important Key 319

tokens of hm compared to other attention heads, 320

indicating that hn is regarded as a representative 321

attention head for hm. 322

Afterward, we calculate the QHR between any 323

pair of heads through Equation 2. For each head 324

hm, we select the top j attention heads with the 325

highest QHR, identifying those that statistically 326

best represent hm. We then construct j directed 327

edges from hm to these heads, forming a directed 328

graph, as illustrated in Figure 1d. In this graph, 329

some nodes have a higher in-degree than others, 330

indicating they are recognized by more nodes as 331

representative attention heads. We then select g 332

attention heads in descending order of in-degree. 333

These g attention heads are the representative atten- 334

tion heads we seek. 335

4.3 Heads Community Clustering 336

However, treating all attention heads as a whole 337

may introduce representational biases. As shown 338

in Figure 1d, some sections (green parts) of the di- 339

rected graph are independent. Thus, when selecting 340

representative nodes for the green parts, heads from 341

the blue and red sections should not be considered. 342

To enhance selection accuracy, we use a spectral 343

5

clustering algorithm for community detection, di-344

viding all heads into c communities and assigning345

gi representative heads to each community based346

on its size, with the total number being g.347

Specifically, after partitioning the communities,348

within each community, we first select the attention349

head node with the highest in-degree and remove it350

from the community, along with its corresponding351

edges. We repeat this process until a sufficient num-352

ber of representative attention heads are identified353

within each community. The detailed procedure is354

provided in Algorithm 2.355

4.4 Complexity and Memory Analysis356

4.4.1 Computational Complexity357

The baseline dense attention mechanism involves:358

• QKT Multiplication: 2bhs2d operations for359

[b, h, s, d]× [b, h, d, s] tensor contraction360

• Value Projection: 2bhs2d operations for361

[b, h, s, s]× [b, h, s, d] tensor product362

The CSA mechanism includes:363

• QKT Multiplication: 2bgs2d operations for g364

representative heads, 2b(h − g)ps2d opera-365

tions for remaining heads with p366

• Value Projection: 2bhps2d operations for367

compressed value projection368

The total complexity for the dense model is369

4bhs2d, while for CSA it is 2bgs2d + 2b(h −370

g)ps2d + 2bhps2d. Thus, CSA reduces compu-371

tational cost by a factor of g+(h−g)p+hp
2h .372

4.4.2 Memory Utilization373

The CSA mechanism can effectively reduce the374

peak memory usage during the attention computa-375

tion process.376

Baseline: Peak memory O(bhs2) for storing the377

full attention matrix [b, h, s, s]378

CSA: O(bgs2) memory for [b, g, s, s] matrices379

in representative heads, O(b(h− g)ps2) memory380

for [b, h− g, s, ps] matrices in remaining heads381

The peak memory is max(bgs2, b(h − g)ps2).382

Typically, g > (h− g)p holds. CSA can reduce the383

peak memory by a factor of
g

h
through bgs2

bhs2
.384

5 Experiment385

We aim to answer the following research questions386

in our experiments:387

• RQ1: Compared to baseline methods, how 388

does the CSA method perform across different 389

NLP tasks and model scales? 390

• RQ2: Do Representative Heads Selection and 391

Heads Community Clustering contribute to 392

the effectiveness of CSA? 393

• RQ3:Can CSA maintain consistent perfor- 394

mance as the sequence length scales? 395

• RQ4:Does CSA provide significant improve- 396

ments in inference speed and memory con- 397

sumption? 398

5.1 Experiment Setting 399

To validate the broad effectiveness of our method, 400

we tested mainstream models of various sizes and 401

architectures. Since Instruct models are currently 402

the most widely used, we selected the Instruct ver- 403

sion of the corresponding models for our experi- 404

ments. We tested our method on multiple main- 405

stream datasets and tasks. 406

5.1.1 Task 407

To validate the performance of CSA in prac- 408

tical NLP tasks, we refer to the OpenCom- 409

pass(Contributors, 2023) framework to construct 410

a multi-dimensional evaluation task set: we use 411

MMLU(Hendrycks et al., 2020) and Ceval(Huang 412

et al., 2023) to evaluate the model’s comprehen- 413

sive capabilities in both languages. For special- 414

ized capabilities, we employ HumanEval(Chen 415

et al., 2021) to assess coding, GSM8K(Cobbe 416

et al., 2021) for mathematical reasoning, Trivi- 417

aQA(Joshi et al., 2017) for knowledge understand- 418

ing, SQuAD2.0 for reading comprehension, and 419

"needle-in-a-haystack"(Li et al., 2024) for long- 420

text processing. In terms of model efficiency, to 421

control for implementation differences, we mea- 422

sure memory and time consumption for different 423

batch sizes and sequence lengths on the core matrix 424

computation components under aligned PyTorch 425

implementations. Further details are provided in 426

Section B. 427

5.1.2 Models 428

We evaluated the CSA on mainstream open-source 429

models, including Qwen14B-chat, LLaMA-3-8B- 430

Chat, and LLaMA-3-70B-Chat. In the long-text ex- 431

periments, we utilized the chatglm-6b-32k model, 432

which was trained specifically for long-text experi- 433

ment. 434

6

DataSets

Models Methods MMLU HumanEval@5 Ceval Gsm8k TriviaQA SQuAD

LLaMA-3 8B
Dense 63.2 73.0 54.0 78.9 75.4 53.0
Top 63.4 73.1 53.2 79.2 74.8 52.9
SparQ 61.7 72.5 51.5 76.5 72.9 49.4
CSA 63.2 73.0 52.7 78.2 74.9 52.5

Qwen2 14B
Dense 49.6 74.4 62.9 65.5 65.3 21.2
Top 50.0 75.6 62.7 65.6 65.1 20.3
SparQ 47.1 74.4 62.2 65.9 65.1 20.3
CSA 50.1 75.0 62.4 65.6 65.1 20.0

LLaMA-3 70B
Dense 77.5 84.1 67.5 92.6 88.7 56.9
Top 77.9 84.7 66.3 92.3 88.7 56.8
SparQ 75.4 84.1 58.3 89.9 88.3 52.0
CSA 77.8 83.9 66.3 92.4 88.7 56.8

Table 1: The experimental results of CSA on different models are shown above. We used Pass@5 as the metric on
HumanEval and accuracy on the other datasets. Dense represents the Dense model, Top represents the original top p
method, SparQ is the implementation of the SparQ method, and CSA represents our proposed method. In all the
experiments, p=0.1. For LLaMA-3 8b, g=8 and c=1; for Qwen 14B, g=16 and c=2; for LLaMA-3 70B, g=16 and
c=2.

5.1.3 Baseline435

For the baseline, we considered the original top p436

and SparQ (Ribar et al., 2023). SparQ computes437

approximate attention scores through vector com-438

ponents selection and selects Key tokens based on439

these scores. Both SparQ and CSA aim to avoid the440

full computation of attention scores. Therefore, we441

introduced SparQ for a horizontal comparison and442

used top p as the theoretical upper limit for compar-443

ison with SparQ and CSA. Considering that SparQ444

select a fixed number of Key tokens, whereas CSA445

employs a top p mechanism based on percentages,446

to ensure a fair comparison, we also adopted the top447

p method for testing in SparQ. Since CSA supports448

prefilling but the code provided for SparQ only449

supports the decoding stage, we modified SparQ to450

enable it to function during the prefilling stage for451

comparative purposes.452

5.2 Main Result(RQ1)453

Table 1 shows the results of our method running454

under the condition of p=0.1 on different scales of455

Instruct models. Here, Dense represents the test456

results of the Dense model, serving as the actual457

benchmark; Top denotes the results achieved using458

the original top p method, representing the theoret-459

ical upper limit; SparQ is the baseline method at460

the same compression ratio. Experimental results461

indicate that, our method outperforms the baseline462

method on almost all datasets, approaches the the-463

oretical upper limit of the top p method, and is464

nearly equivalent to the Dense model. Notably,465

DataSet

Models Methods MMLU HumanEval@5 Gsm8k

LLaMA-3 8B
Random 62.6 72.5 77.8
CSA 63.2 73.0 78.2

Qwen 14B
Random 47.7 71.0 62.1
CSA 50.1 75.0 65.6

LLaMA-3 70B
Random 76.0 82.6 92.0
CSA 77.8 83.9 92.4

Table 2: Random and CSA selection mechanism.

on some datasets, our method even surpasses the 466

Dense model. We believe this is because the top p 467

method eliminates interference from tokens with 468

lower attention scores, thereby concentrating atten- 469

tion and enhancing model performance. 470

5.3 Ablations 471

5.3.1 Heads Selection Ablation(RQ2) 472

To validate the effectiveness of the representative 473

heads selection in CSA, we conducted compara- 474

tive experiments with random selection. As shown 475

in Table 2, CSA outperforms random selection in 476

all scenarios. Figure 1a, through QHR scores 477

(Random and CSA), further reveals that compared 478

to single-head inference, random selection signifi- 479

cantly reduces low-hit regions (cool tones) through 480

consensus scores voting, while CSA further com- 481

presses low-value areas and increases the density of 482

warm tones, demonstrating its ability to select more 483

representative attention heads and produce more 484

stable and reliable voting results.These ablation 485

studies indicate that representative heads selection 486

7

community size

Models g4 c1 g8 c1 g8 c2 g16 c1 g16 c2 g32 c4

LLaMA-3 8B 62.4 63.2 63.0 63.2 63.2 63.3

Qwen 14B 41.7 48.2 39.8 49.0 50.1 50.3

LLaMA-3 70B 76.1 76.9 76.5 77.2 77.8 77.9

Table 3: Comparison on the Selection of Parameters g
and c.

Methods 0k - 4k 4k - 8k 8k - 12k 12k - 16k

Dense 100 100 99.7 99.6

Top 100 100.0 99.5 99.2

SparQ 99.5 99.3 99.1 99.0

CSA 100 99.3 99.0 99.0

Table 4: Sequence Length Scaling.

enhances the stability of top p token prediction487

and the algorithm’s performance across multiple488

datasets by optimizing the quality of consensus489

voting.490

5.3.2 Community Size Ablation(RQ2)491

To demonstrate the impact of community size on492

model performance and to support our parameter493

choices for g and c, we conducted community size494

ablation experiments, as shown in Table 4. The495

strategy of community partitioning effectively en-496

hances the performance of CSA. Moreover, we ob-497

served that more partitions are not always better, as498

over-partitioning leads to a reduction in the number499

of attention heads sampled per community, thereby500

diluting the consensus of attention heads to a few501

determinative heads. Similarly, the number of se-502

lected heads does not need to be excessively high;503

after a certain number is reached, the model’s per-504

formance no longer improves significantly, while505

the computational cost increases markedly. Based506

on experimental results, we selected g=8,c=1,for507

LLaMA-3 8B, g=16,c=2,for LLaMA-3 70B, and508

g=16,c=2 for Qwen 14B.509

5.3.3 Sequence Length Scaling(RQ3)510

We assessed the performance of CSA on long-511

sequence problems using the "needle in a haystack"512

experiment. We concatenating the contexts from513

SQuAD to form a context of a specified length, and514

subsequently inserting a "text needle" at a specific515

depth within this context. The model’s capability516

for long-text processing was evaluated by retriev-517

ing the text needle from the context. The detailed518

implementation of this task was kept consistent 519

with the methods described in (gkamradt, 2023) 520

and (Contributors, 2023).As shown in Table 5.3.3, 521

experiments show that CSA can maintain good sta- 522

bility under Sequence Length Scaling conditions. 523

5.3.4 Computational Efficiency and Memory 524

Optimization(RQ4) 525

To evaluate practical computational consumption, 526

we measured the attention operations in attention 527

layers using uniform PyTorch implementations. As 528

shown in Figure 1e, CSA achieves a near 2-fold 529

acceleration over Dense models in high-batch and 530

long-text scenarios, with further optimization po- 531

tential given nonoptimal attention implementations. 532

Currently, by avoiding the computation of the full 533

attention matrix, CSA significantly reduces peak 534

memory usage - our fp16 experiments in Figure 1f 535

demonstrate up to 50% memory savings, enabling 536

higher batch sizes for efficient inference. 537

6 Limitations 538

When calculating attention, CSA needs to com- 539

pute the representative attention heads and the re- 540

maining attention heads in a serial manner. This 541

approach may not fully utilize the computational 542

power of the machine in low-batch, short-text sce- 543

narios. 544

7 Conclusion 545

In this work, we propose the Consensus Sparse 546

Attention (CSA) mechanism, a new technique for 547

accelerating the inference of large language models 548

(LLMs). By leveraging consensus voting among 549

representative attention heads for important tokens, 550

CSA predicts potential key tokens in the remaining 551

attention heads. CSA employs a top-p tokens mech- 552

anism, reducing the decline in attention concentra- 553

tion under long text conditions. By utilizing con- 554

sensus among attention heads, CSA can simulta- 555

neously reduce computational load and peak mem- 556

ory consumption, providing significant efficiency 557

gains. In the experimental section, we demonstrate 558

the robustness of CSA across numerous tasks and 559

models, indicating that CSA has the potential to 560

become a reliable technique for reducing inference 561

time and memory consumption in the future. 562

References 563

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury 564
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. 565

8

2023. Gqa: Training generalized multi-query trans-566
former models from multi-head checkpoints. arXiv567
preprint arXiv:2305.13245.568

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.569
Longformer: The long-document transformer. arXiv570
preprint arXiv:2004.05150.571

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and572
Byungseok Roh. 2024. Honeybee: Locality-573
enhanced projector for multimodal llm. In Proceed-574
ings of the IEEE/CVF Conference on Computer Vi-575
sion and Pattern Recognition, pages 13817–13827.576

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,577
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,578
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-579
vey on evaluation of large language models. ACM580
Transactions on Intelligent Systems and Technology,581
15(3):1–45.582

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming583
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-584
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,585
Greg Brockman, et al. 2021. Evaluating large586
language models trained on code. arXiv preprint587
arXiv:2107.03374.588

Rewon Child, Scott Gray, Alec Radford, and589
Ilya Sutskever. 2019. Generating long se-590
quences with sparse transformers. arXiv preprint591
arXiv:1904.10509.592

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,593
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias594
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro595
Nakano, et al. 2021. Training verifiers to solve math596
word problems. arXiv preprint arXiv:2110.14168.597

OpenCompass Contributors. 2023. Opencompass:598
A universal evaluation platform for foundation599
models. https://github.com/open-compass/600
opencompass.601

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-602
sive language models can be accurately pruned in603
one-shot. In International Conference on Machine604
Learning, pages 10323–10337. PMLR.605

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and606
Dan Alistarh. 2022. Gptq: Accurate post-training607
quantization for generative pre-trained transformers.608
arXiv preprint arXiv:2210.17323.609

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-610
Yi Lu, and Ji-Rong Wen. 2022. Parameter-efficient611
mixture-of-experts architecture for pre-trained lan-612
guage models. arXiv preprint arXiv:2203.01104.613

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,614
Jiawei Han, and Jianfeng Gao. 2023. Model tells you615
what to discard: Adaptive kv cache compression for616
llms. arXiv preprint arXiv:2310.01801.617

gkamradt. 2023. Llmtest needle in a haystack - pressure618
testing llms. https://github.com/gkamradt/619
LLMTest_NeedleInAHaystack.620

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 621
2023. Knowledge distillation of large language mod- 622
els. arXiv preprint arXiv:2306.08543. 623

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 624
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 625
on-the-fly length generalization for large language 626
models. arXiv preprint arXiv:2308.16137. 627

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 628
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 629
2020. Measuring massive multitask language under- 630
standing. arXiv preprint arXiv:2009.03300. 631

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 632
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 633
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 634
2023. Distilling step-by-step! outperforming larger 635
language models with less training data and smaller 636
model sizes. arXiv preprint arXiv:2305.02301. 637

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei 638
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, 639
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, 640
Maosong Sun, and Junxian He. 2023. C-eval: A 641
multi-level multi-discipline chinese evaluation suite 642
for foundation models. In Advances in Neural Infor- 643
mation Processing Systems. 644

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke 645
Zettlemoyer. 2017. Triviaqa: A large scale distantly 646
supervised challenge dataset for reading comprehen- 647
sion. arXiv preprint arXiv:1705.03551. 648

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, 649
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie, 650
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 651
2022. Sparse upcycling: Training mixture-of- 652
experts from dense checkpoints. arXiv preprint 653
arXiv:2212.05055. 654

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran- 655
tar, Mark Kurtz, Benjamin Fineran, Michael Goin, 656
and Dan Alistarh. 2022. The optimal bert surgeon: 657
Scalable and accurate second-order pruning for large 658
language models. arXiv preprint arXiv:2203.07259. 659

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 660
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 661
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 662
memory management for large language model serv- 663
ing with pagedattention. In Proceedings of the 29th 664
Symposium on Operating Systems Principles, pages 665
611–626. 666

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. 667
2024. Needlebench: Can llms do retrieval and rea- 668
soning in 1 million context window? Preprint, 669
arXiv:2407.11963. 670

Nian Li, Chen Gao, Yong Li, and Qingmin Liao. 2023. 671
Large language model-empowered agents for sim- 672
ulating macroeconomic activities. arXiv preprint 673
arXiv:2310.10436. 674

9

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-675
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,676
Xingyu Dang, Chuang Gan, and Song Han. 2024.677
Awq: Activation-aware weight quantization for on-678
device llm compression and acceleration. Proceed-679
ings of Machine Learning and Systems, 6:87–100.680

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,681
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.682
Luna: Linear unified nested attention. Advances683
in Neural Information Processing Systems, 34:2441–684
2453.685

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,686
and Roy Schwartz. 2024. Transformers are multi-687
state rnns. arXiv preprint arXiv:2401.06104.688

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang,689
Jure Leskovec, Dale Schuurmans, and Bo Dai. 2021.690
Combiner: Full attention transformer with sparse691
computation cost. Advances in Neural Information692
Processing Systems, 34:22470–22482.693

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,694
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.695
Sparq attention: Bandwidth-efficient llm inference.696
arXiv preprint arXiv:2312.04985.697

Noam Shazeer. 2019. Fast transformer decoding:698
One write-head is all you need. arXiv preprint699
arXiv:1911.02150.700

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-701
han Li, Max Ryabinin, Beidi Chen, Percy Liang,702
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.703
Flexgen: High-throughput generative inference of704
large language models with a single gpu. In Inter-705
national Conference on Machine Learning, pages706
31094–31116. PMLR.707

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya708
Sachan. 2022. Distilling reasoning capabilities709
into smaller language models. arXiv preprint710
arXiv:2212.00193.711

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico712
Kolter. 2023. A simple and effective pruning ap-713
proach for large language models. arXiv preprint714
arXiv:2306.11695.715

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,716
Baris Kasikci, and Song Han. 2024. Quest: Query-717
aware sparsity for efficient long-context llm inference.718
arXiv preprint arXiv:2406.10774.719

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying720
Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi.721
2023. Gpt-re: In-context learning for relation ex-722
traction using large language models. arXiv preprint723
arXiv:2305.02105.724

Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang,725
Xuanzhe Liu, and Xin Jin. 2023. Fast distributed726
inference serving for large language models. arXiv727
preprint arXiv:2305.05920.728

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 729
Han, and Mike Lewis. 2023. Efficient streaming 730
language models with attention sinks. arXiv preprint 731
arXiv:2309.17453. 732

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo- 733
jeong Kim, and Byung-Gon Chun. 2022. Orca: A 734
distributed serving system for {Transformer-Based} 735
generative models. In 16th USENIX Symposium 736
on Operating Systems Design and Implementation 737
(OSDI 22), pages 521–538. 738

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 739
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 740
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 741
Li Yang, et al. 2020. Big bird: Transformers for 742
longer sequences. Advances in neural information 743
processing systems, 33:17283–17297. 744

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, 745
Maosong Sun, and Jie Zhou. 2021. Moefication: 746
Transformer feed-forward layers are mixtures of ex- 747
perts. arXiv preprint arXiv:2110.01786. 748

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 749
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 750
dong Tian, Christopher Ré, Clark Barrett, et al. 2024. 751
H2o: Heavy-hitter oracle for efficient generative in- 752
ference of large language models. Advances in Neu- 753
ral Information Processing Systems, 36. 754

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu- 755
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit 756
sparse transformer: Concentrated attention through 757
explicit selection. arXiv preprint arXiv:1912.11637. 758

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 759
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 760
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 761
survey of large language models. arXiv preprint 762
arXiv:2303.18223. 763

Li Zhong and Zilong Wang. 2024. Can llm replace 764
stack overflow? a study on robustness and reliability 765
of large language model code generation. In Proceed- 766
ings of the AAAI Conference on Artificial Intelligence, 767
volume 38, pages 21841–21849. 768

A Supplementary Experiment 769

In this appendix, we provide a comprehensive and 770

detailed enumeration of the data presented in the 771

figures throughout the main text. 772

A.1 Top p Ablation 773

In this section, we conduct an ablation study on the 774

parameter p. To test the performance of p across 775

different lengths, we concatenate contexts from the 776

SQuAD dataset to create new datasets of varying 777

lengths. We set different values of p to evaluate 778

the impact of p in the standard Top-p method on 779

model performance. As illustrated in the figure, 780

10

using constant values of 64 and 32 results in a sig-781

nificant performance drop compared to the method782

that adapts to sequence length proportionally. This783

indicates that the adaptive method, which adjusts784

according to sequence length, offers more stable785

performance.786

1 0.2 0.1 64 32

Top Ratio

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ac
cu
ra
cy

5120

4096

2048

Figure 3: p Ablation

A.2 CSA on Various devices787

To comprehensively verify the applicability of the788

computational efficiency optimization method CSA789

on different platforms, we have extended the scope790

of our experiments to other computing environ-791

ments, building on our analysis of computational792

load and peak memory tests on the A100 accel-793

erator card (see Chapter 5.3.4). We selected the794

Intel(R) Xeon(R) Platinum 8163 CPU and the795

NVIDIA RTX4090 GPU for additional experi-796

ments to systematically examine the performance797

of CSA across different computing architectures.798

As shown in Figure 4, the experimental data indi-799

cate that CSA can still provide effective efficiency800

improvements on both the CPU platform and the801

consumer-grade GPU platform.802

B Experiment Detailed803

In this section, we will provide further explanations804

for all the experimental configurations mentioned805

in the main text.806

In Section 5.2, we adopted a 5-shots approach807

for evaluation on MMLU, Ceval, and Gsm8K.808

Specifically, we constructed a multi-round dialogue809

prompt, consistent with the approach in opencom-810

pass. For evaluation metrics, we used exact match811

for MMLU and Ceval, while for other evaluations,812

we used the same Evaluator as in opencompass813

1024 2048 4096 8192
Sequence Length S

0

20

40

60

80

Ti
me

 p
er

 T
ok

en
 (

s)

Dense Sequence
CSA Sequence
Theoretical CSA Sequence
Dense Bsz
CSA Bsz
Theoretical CSA Bsz

16 32 64 128
Batch Size B

(a) cpu time analysis

16 32 64 128
Batch Size

0

1

2

3

4

5

6

7

8

Co
st

 (
GB

)

Dense

CSA

(b) cpu memory analysis

1024 2048 4096 8192
Sequence Length S

0.0

0.2

0.4

0.6

0.8

Ti
me

 p
er

 T
ok

en
 (

s)

Dense Sequence
CSA Sequence
Theoretical CSA Sequence
Dense Bsz
CSA Bsz
Theoretical CSA Bsz

16 32 64 128
Batch Size B

(c) RTX 4090 time analysis

16 32 64 128 256 512
Batch Size

0

5

10

15

20

Co
st

 (
GB

)

Dense

CSA

(d) RTX 4090 memory analysis

Figure 4: The CSA (Channel State Information Acqui-
sition) running results on different architecture devices

11

(Contributors, 2023).For the baseline, we set the814

r value of SparQ to 32 to ensure the same com-815

pression ratio as CSA, thereby providing a fair816

comparison.817

In Section 5.3.1, to compare with the representa-818

tive attention head selection algorithm in CSA, we819

adopted a method of randomly selecting represen-820

tative attention heads. Specifically, we randomly821

selected g attention heads from all attention heads822

as representative attention heads. This method does823

not allow further community division, so the num-824

ber of randomly selected communities is 1.825

In Section 5.3.2, we conducted comparative ex-826

periments on the selection of g and c on llama3827

8b on MMLU, using exact match accuracy as the828

evaluation metric.829

In Section 5.3.3, we selected "needle in830

haystack" as the evaluation task. Our evaluation831

followed the approach in opencompass, where we832

first concatenated a context of specified length from833

SQuAD, then inserted a needle into the context for834

evaluation. For evaluation metrics, we directly used835

the opencompass Evaluator.836

In Section 5.3.4, since the performance bottle-837

neck of large language models is mainly concen-838

trated in the prefilling stage, our experiments were839

also conducted in the prefilling stage. Regarding840

computational efficiency, since CSA only modifies841

Core Attention, we focused on the changes in com-842

putational efficiency in the Core Attention part. To843

ensure fairness in comparison, we aimed to com-844

pare on the same code implementation. Since CSA845

provides gains only in the QKV computation, we846

chose to stat the computational efficiency in the847

QKV computation. In terms of memory efficiency,848

CSA provides gains by reducing peak memory, so849

for the kv Cache of the same size present in both850

Dense and CSA, we chose to subtract the impact of851

the KV Cache in both Dense and CSA experiments.852

Finally, we recorded the time consumed in Core853

Attention during the first token inference under dif-854

ferent Sequence Length and Batch size, as well as855

the corresponding changes in peak memory.856

Since the selection of p is not the main content of857

CSA, we provided comparative experiments in A.1.858

The experiments showed that the adaptive method859

by percentage is more effective than using a fixed860

constant.861

In the preparation of community division and862

representative attention selection, we chose Queries863

from multiple evaluation sets when calculating864

QHR to enhance statistical reliability. For parame-865

ter settings, to align with formal experiments, we 866

chose p=0.1. In the calculation of HR and QHR, 867

we chose the temperature coefficient t as 1. When 868

constructing the Graph of attention head nodes, we 869

set j to 2. In community division, we directly used 870

the SpectralClustering implementation of sklearn. 871

C Case Study 872

C.1 LLaMA-3 8b(MMLU) 873

874
###Question 875

HUMAN: 876

There is a single choice question about 877

global facts. Answer the question by 878

replying A, B, C or D. 879

Question: As of 2019, about what 880

percentage of people from the United 881

States says homosexuality should be 882

accepted by society? 883

A. 52% 884

B. 62% 885

C. 72% 886

D. 82% 887

Answer: 888

BOT: 889

B 890

...few shots 891

HUMAN: 892

There is a single choice question about 893

global facts. Answer the question by 894

replying A, B, C or D. 895

Question: 896

What was GDP per capita in the United 897

States in 1850 when adjusting for 898

inflation and PPP in 2011 prices? 899

A. About $300 900

B. About $3k 901

C. About $8k 902

D. About $15k 903

###Answer: 904

DENSE: C 905

CSA: C 906907

C.2 LLaMA-3 8b(HumanEval) 908

909
###Question 910

HUMAN: 911

from typing import List\n\n\ndef 912

separate_paren_groups(paren_string: 913

str) -> List[str]:\n """ Input to 914

this function is a string containing 915

multiple groups of nested 916

12

parentheses. Your goal is to\n917

separate those group into separate918

strings and return the list of those919

.\n Separate groups are balanced (920

each open brace is properly closed)921

and not nested within each other\n922

Ignore any spaces in the input923

string.\n >>> separate_paren_groups924

(\'() (()) (()())\')\n [\'()\',925

\'(())\', \'(()())\']\n926

###Answer:927

DENSE:928

from typing import List\n\ndef929

separate_paren_groups(paren_string:930

str) -> List[str]:\n """\n This931

function takes a string containing932

multiple groups of nested933

parentheses as input.\n It separates934

those groups into separate strings935

and returns the list of those.\n936

Separate groups are balanced (each937

open brace is properly closed) and938

not nested within each other.\n It939

ignores any spaces in the input940

string.\n\n Parameters:\n941

paren_string (str): A string942

containing multiple groups of nested943

parentheses.\n\n Returns:\n List[944

str]: A list of strings, each945

containing a group of balanced946

parentheses.\n """\n\n # Remove947

spaces from the input string\n948

paren_string = paren_string.replace949

(" ", "")\n\n # Initialize an empty950

list to store the separated groups\n951

groups = []\n\n # Initialize an952

empty string to build the current953

group\n current_group = ""\n\n #954

Initialize a counter to keep track955

of the balance of parentheses\n956

balance = 0\n\n # Iterate over each957

character in the input string\n for958

char in paren_string:\n # If the959

character is an open parenthesis,960

increment the balance\n if char ==961

"(":\n balance += 1\n current_group962

+= char\n # If the character is a963

close parenthesis, decrement the964

balance\n elif char == ")":\n965

balance -= 1\n current_group += char966

\n # If the balance becomes zero, it967

means we have a complete group, so968

add it to the list and reset the 969

current group\n if balance == 0:\n 970

groups.append(current_group)\n 971

current_group = ""\n\n # Return the 972

list of separated groups\n return 973

groups\n 974

CSA: 975

from typing import List\n\ndef 976

separate_paren_groups(paren_string: 977

str) -> List[str]:\n """\n This 978

function separates multiple groups 979

of nested parentheses into separate 980

strings.\n\n Args:\n paren_string (981

str): A string containing multiple 982

groups of nested parentheses.\n\n 983

Returns:\n List[str]: A list of 984

separate strings, each representing 985

a group of nested parentheses.\n 986

"""\n \n # Remove spaces from the 987

input string\n paren_string = 988

paren_string.replace(" ", "")\n\n # 989

Initialize an empty list to store 990

the separated groups\n 991

separated_groups = []\n\n # 992

Initialize an empty string to build 993

the current group\n current_group = 994

""\n\n # Initialize a counter for 995

open and close parentheses\n 996

open_count = 0\n close_count = 0\n\n 997

Iterate over each character in 998

the input string\n for char in 999

paren_string:\n # If the character 1000

is an open parenthesis, increment 1001

the open count\n if char == "(":\n 1002

open_count += 1\n current_group += 1003

char\n # If the character is a close 1004

parenthesis\n elif char == ")":\n 1005

close_count += 1\n current_group += 1006

char\n # If the current group is 1007

balanced, add it to the list and 1008

reset the current group\n if 1009

open_count == close_count:\n 1010

separated_groups.append(1011

current_group)\n current_group = ""\ 1012

n open_count = 0\n close_count = 0\n 1013

If the current group is not 1014

balanced, reset the current group\n 1015

if open_count < close_count:\n 1016

current_group = ""\n open_count = 0\ 1017

n close_count = 0\n\n # Add the last 1018

group to the list if it\'s not 1019

empty\n if current_group:\n 1020

13

separated_groups.append(1021

current_group)\n\n return1022

separated_groups\n10231024

C.3 LLaMA-3 8b(GSM8k)1025

1026
###Question1027

HUMAN:1028

Question: \nJosh decides to try flipping1029

a house. He buys a house for $801030

,000 and then puts in $50,000 in1031

repairs. This increased the value of1032

the house by 150%. How much profit1033

did he make?\nLet's think step by1034

step\n1035

Answer:1036

The cost of the house and repairs came1037

out to 80,000+50,000=$1038

<<80000+50000=130000>>130,000\nHe1039

increased the value of the house by1040

80,000*1.5=<<80000*1.5=120000>>120,000\1041

nSo the new value of the house is1042

120,000+80,000=$1043

<<120000+80000=200000>>200,000\nSo1044

he made a profit of 200,000-130,000=1045

$<<200000-130000=70000>>70,000\n####1046

70000\n1047

...few shots1048

HUMAN:1049

Question:’1050

Janets ducks lay 16 eggs per day. She1051

eats three for breakfast every1052

morning and bakes muffins for her1053

friends every day with four. She1054

sells the remainder at the farmers'1055

market daily for $2 per fresh duck1056

egg. How much in dollars does she1057

make every day at the farmers'1058

market?1059

Let's think step by step1060

Answer:1061

###Answer:1062

DENSE: Janet's ducks lay 16 eggs per day1063

. She eats 3 eggs for breakfast and1064

bakes muffins with 4 eggs, leaving:\1065

n\n16 - 3 - 4 = 9 eggs\n\nShe sells1066

these 9 eggs at the farmers' market1067

for $2 per egg, so she makes:\n\n91068

eggs x $2 per egg = $18\n\n#### $181069

CSA: Janet's ducks lay 16 eggs per day.1070

She eats 3 for breakfast, and bakes1071

muffins with 4, leaving her with:\n\1072

n16 - 3 - 4 = 9 eggs\n\nShe sells 1073

these 9 eggs at the farmers' market 1074

for $2 per egg, making:\n\n9 eggs x 1075

$2 per egg = $18\n\n#### 18 10761077

C.4 LLaMA-3 8b(TriviaQA) 1078

1079
###Question 1080

HUMAN: 1081

Answer these questions, your answer 1082

should be as simple as possible, 1083

start your answer with the prompt ' 1084

The answer is '. 1085

Q: Which Lloyd Webber musical premiered 1086

in the US on 10th December 1993? 1087

###Answer: 1088

DENSE: The answer is "Sunset Boulevard". 1089

CSA: The answer is "Sunset Boulevard". 10901091

C.5 LLaMA-3 8b(SQuAD) 1092

1093
###Question 1094

HUMAN: 1095

The Normans (Norman: Nourmands; French: 1096

Normands; Latin: Normanni) were the 1097

people who in the 10th and 11th 1098

centuries gave their name to 1099

Normandy, a region in France. They 1100

were descended from Norse ("Norman" 1101

comes from "Norseman") raiders and 1102

pirates from Denmark, Iceland and 1103

Norway who, under their leader Rollo 1104

, agreed to swear fealty to King 1105

Charles III of West Francia. Through 1106

generations of assimilation and 1107

mixing with the native Frankish and 1108

Roman-Gaulish populations, their 1109

descendants would gradually merge 1110

with the Carolingian-based cultures 1111

of West Francia. The distinct 1112

cultural and ethnic identity of the 1113

Normans emerged initially in the 1114

first half of the 10th century, and 1115

it continued to evolve over the 1116

succeeding centuries.\nAccording to 1117

the above passage, answer the 1118

following question. If it is 1119

impossible to answer according to 1120

the passage, start your answer with 1121

the prompt \'The answer is \'.answer 1122

`impossible to answer`: 1123

14

Question: In what country is Normandy1124

located?1125

###Answer:1126

DENSE: France.1127

CSA: France.11281129

15

	Introduction
	Related Work
	Efficient LLMs Inference
	Sparse Attention Compression

	Background and Motivation
	Methodology
	Consensus Sparse Attention
	Representative Heads Selection
	Heads Community Clustering
	Complexity and Memory Analysis
	Computational Complexity
	Memory Utilization

	Experiment
	Experiment Setting
	Task
	Models
	Baseline

	Main Result(RQ1)
	Ablations
	Heads Selection Ablation(RQ2)
	Community Size Ablation(RQ2)
	Sequence Length Scaling(RQ3)
	Computational Efficiency and Memory Optimization(RQ4)

	Limitations
	Conclusion
	Supplementary Experiment
	Top p Ablation
	CSA on Various devices

	Experiment Detailed
	Case Study
	LLaMA-3 8b(MMLU)
	LLaMA-3 8b(HumanEval)
	LLaMA-3 8b(GSM8k)
	LLaMA-3 8b(TriviaQA)
	LLaMA-3 8b(SQuAD)

