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Abstract

Sequential Bayesian inference can be used for continual learning to prevent catastrophic
forgetting of past tasks and provide an informative prior when learning new tasks. We revisit
sequential Bayesian inference and assess whether using the previous task’s posterior as a
prior for a new task can prevent catastrophic forgetting in Bayesian neural networks. Our
first contribution is to perform sequential Bayesian inference using Hamiltonian Monte Carlo.
We propagate the posterior as a prior for new tasks by approximating the posterior via
fitting a density estimator on Hamiltonian Monte Carlo samples. We find that this approach
fails to prevent catastrophic forgetting demonstrating the difficulty in performing sequential
Bayesian inference in neural networks. Furthermore, we study simple analytical examples of
sequential Bayesian inference and CL and highlight the issue of model misspecification which
can lead to sub-optimal continual learning performance despite exact inference. Furthermore,
we discuss how task data imbalances can cause forgetting. From these limitations, we argue
that we need probabilistic models of the continual learning generative process rather than
relying on sequential Bayesian inference over Bayesian neural network weights. Our final
contribution is to propose a simple baseline called Prototypical Bayesian Continual Learning,
which is competitive with the best performing Bayesian continual learning methods on class
incremental continual learning computer vision benchmarks.

1 Introduction

The goal of continual learning (CL) is to find a predictor that learns to solve a sequence of new tasks without
losing the ability to solve previously learned tasks. One key challenge of CL with neural networks (NNs) is
that model parameters from previously learned tasks are “overwritten” during gradient-based learning of
new tasks, which leads to catastrophic forgetting of previously learned abilities (McCloskey & Cohen, 1989;
French, 1999). One approach to CL hinges on using recursive applications of Bayes’ Theorem; using the
weight posterior in a Bayesian neural network (BNN) as the prior for a new task (Kirkpatrick et al., 2017).
However, obtaining a full posterior over NN weights is computationally demanding and we often need to
resort to approximations, such as the Laplace method (MacKay, 1992) or variational inference (Graves, 2011;
Blundell et al., 2015) to obtain a neural network weight posterior.

When performing Bayesian CL, sequential Bayesian inference is performed with an approximate BNN
posterior, not the true posterior (Schwarz et al., 2018; Ritter et al., 2018; Nguyen et al., 2018; Ebrahimi et al.,
2019; Kessler et al., 2021; Loo et al., 2020). If we consider the performance of sequential Bayesian inference
with a variational approximation over a BNN weight posterior then we barely observe an improvement over
simply learning new tasks with stochastic gradient descent (SGD). We will develop this statement further
in Section 2.2. So if we had access to the true BNN weight posterior, would this be enough to prevent
forgetting by sequential Bayesian inference?

Our contributions in this paper are to revisit Bayesian CL. 1) Experimentally, we perform sequential Bayesian
inference using the true Bayesian NN weight posterior. We do this by using the gold standard of Bayesian
inference methods, Hamiltonian Monte Carlo (HMC) (Neal et al., 2011). We use density estimation over
HMC samples and use this approximate posterior density as a prior for the next task within the HMC
sampling process. Surprisingly our HMC method for CL yields no noticeable benefits over an approximate
inference method (VCL Nguyen et al. (2018)) despite using samples from the true posterior. 2) As a result
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we consider a simple analytical example and highlight that exact inference with a misspecified model can still
cause forgetting. 3) We show mathematically that under certain assumptions task data imbalances will cause
forgetting in Bayesian NNs. 4) We propose a new probabilistic model for CL and show that by explicitly
modeling the generative process of the data, we can achieve good performance, avoiding the need to rely
on recursive Bayesian inference over NN weights to prevent forgetting. Our proposed model, Prototypical
Bayesian Continual Learning (ProtoCL), is conceptually simple, scalable, and competitive with state of the
art Bayesian CL methods in the class-incremental learning setting.

2 Background

2.1 The Continual Learning Problem

Continual learning (CL) is a learning setting whereby a model must learn to make predictions over a
set of tasks sequentially while maintaining performance across all previously learned tasks. In CL, the
model is sequentially shown T tasks, denoted Tt for t = 1, . . . , T . Each task, Tt, is comprised of a dataset
Dt = {(xi, yi)}Nt

i=1 which a model needs to learn to make predictions with. More generally, tasks are denoted
by distinct tuples comprised of the conditional and marginal data distributions, {pt(y|x), pt(x)}. After task
Tt the model will lose access to the training dataset but its performance will be continually evaluated on all
tasks Ti for i ≤ t. We decompose predictors as g = h ◦ f such that ŷ = g(x). We define f as an embedding
function mapping f : X → Z and h as a head mapping to outputs h : Z → Y. Some continual learning
methods use a separate head per task {hi}T

i=1, these methods are called multi-headed while those that use
one head are called single-headed.

2.2 Bayesian Continual Learning

We consider a setting in which task data arrives sequentially at time steps, t = 1, 2, . . . , T . At the first time
step, t = 1, the model parameterized by θ receives the dataset D1 and learns the conditional distribution
p(yi|xi, θ) for all (xi, yi) ∈ D1 (i indexes a datapoint), the parameters θ have a prior distribution p(θ). The
posterior predictive distribution for a test point, x∗

1 is:

p(y∗
1 |x∗

1, D1) =
∫

p(y∗
1 |x∗

1, θ)p(θ|D1)dθ. (1)

Computing this posterior predictive distribution above requires p(θ|D1). For t = 2, a CL model is required
to fit p(yi|xi, θ) for D1 ∪ D2. The posterior predictive distribution for a new test point x∗

2 point is:

p(y∗
2 |x∗

2, D1, D2) =
∫

p(y∗
2 |x∗

2, θ)p(θ|D1, D2)dθ. (2)

The posterior must thus be updated to reflect this new conditional distribution. We can use repeated
application of Bayes’ rule to calculate the posterior distributions p(θ|D1, . . . , DT ) as:

p(θ|D1, . . . , DT −1, DT ) = p(DT |θ)p(θ|D1, . . . , DT −1)
p(DT |D1, . . . , DT −1) . (3)

In the CL setting we lose access to previous training datasets: however, using repeated applications of Bayes’
rule Eq. (3), allows us to sequentially incorporate information from past tasks in the parameters θ. At t = 1,
we have access to D1 and the posterior over weights is:

log p(θ|D1) = log p(D1|θ) + log p(θ) − log p(D1). (4)

At t = 2, we require a posterior p(θ|D1, D2) to calculate the posterior predictive distribution in Eq. (2).
However, we have lost access to D1. According to Bayes’ rule, the posterior may be written as:

log p(θ|D1, D2) = log p(D2|θ) + log p(θ|D1) − log p(D2|D1), (5)
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Figure 1: Accuracy on Split-MNIST for various CL methods with a two-layer BNN, all accuracies are an
average and standard deviation over 10 runs with different random seeds. We compare a NN trained with
SGD (single-headed) with VCL. We consider single-headed (SH) and multi-head (MH) VCL variants.

where we used the conditional independence of D2 and D1 given θ. We note that the likelihood is only
dependent upon the current task dataset, D2, and that the prior encodes parameter knowledge from the
previous task. Hence, we can use the posterior at t as a prior for learning a new task at t + 1. From Eq. (5)
we require that our model with parameters θ is a sufficient statistic of D1, making the likelihood conditionally
independent of D1 given θ. This observation motivates the use of high-capacity predictors, such as Bayesian
neural networks, that are flexible enough to learn D1.

2.2.1 Continual Learning Example: Split-MNIST

For the MNIST dataset (LeCun et al., 1998) we know that if we were to train a BNN we would achieve good
performance by inferring the posterior p(θ|D) and integrating out the posterior to infer the posterior predictive
over a test point Eq. (1). So if we were to split the dataset MNIST into 5 two class classification tasks then
we should be able to recursively recover the multi-task posterior p(θ|D) = p(θ|D1 . . . , D5) using Eq. (5). This
problem is called Split-MNIST (Zenke et al., 2017), where the first task involves the classification of the digits
{0, 1} then the second task classification of the digits {2, 3} and so on.

We can define a 3 different CL settings Hsu et al. (2018); Van de Ven & Tolias (2019); van de Ven et al.
(2022). When we allow the CL agent to make predictions with a task identifier τ the scenario is referred to
as task-incremental. The identifier τ could be used to select different heads Section 2.1, for instance. This
scenario is not compatible with sequential Bayesian inference outlined in Eq. (5) since no task identifier is
required for making predictions. Domain-incremental learning is another scenario that doesn’t have access to
τ during evaluation and requires the CL agent to perform classification to the same output space for each
task, for example for Split-MNIST the output space is {0, 1} for all tasks, so this amounts to classifying
between even and odd digits. Domain incremental learning is compatible with sequential Bayesian inference
with a Bernoulli likelihood. The third scenario is class-incremental learning which also doesn’t have access to
τ but the agent needs to classify each example to its corresponding class. For Split-MNIST, for example, the
output space is {0, . . . , 9} for each task. Class-incremental learning is compatible with sequential Bayesian
inference with a categorical likelihood.

2.3 Variational Continual Learning

Variational CL (VCL; Nguyen et al. (2018)) simplifies the Bayesian inference problem in Eq. (5) into a
sequence of approximate Bayesian updates on the distribution over random neural network weights θ. To do
so, VCL uses the variational posterior from previous tasks as a prior for new tasks. In this way, learning
to solve the first task entails finding a variational distribution q1(θ|D1) that maximizes a corresponding
variational objective. For the subsequent task, the prior is chosen to be q1(θ|D1), and the goal becomes to
learn a variational distribution q2(θ|D2) that maximizes a corresponding variational objective under this
prior. Denoting the recursive posterior inferred from multiple datasets by qt(θ|D1:t), we can express the
variational CL objective for the t-th task as:

L(θ, Dt) = DKL [qt(θ)||qt−1(θ|D1:t−1)] − Eqt
[log p(Dt|θ)]. (6)
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When applying VCL to the problem of Split-MNIST Figure 1, we can see that single-headed VCL barely
performs better than SGD when remembering past tasks. Multi-headed VCL performs better, despite not
being a requirement from sequential Bayesian inference Eq. (5). So why does single-head VCL not improve
over SGD if we can recursively build up an approximate posterior using Eq. (5)? We hypothesize that it could
be due to using a variational approximation of the posterior and so we are not actually strictly performing
the Bayesian CL process described in Section 2.2. We test this hypothesis in the next section by propagating
the true BNN posterior to verify whether we can recursively obtain the true multi-task posterior and so
improve on single-head VCL and prevent catastrophic forgetting.

3 Bayesian Continual Learning with Hamiltonian Monte Carlo

To perform inference over BNN weights we use the HMC algorithm (Neal et al., 2011). We then use these
samples and learn a density estimator that can be used as a prior for a new task1. HMC is considered the
gold standard in approximate inference and is guaranteed to asymptotically produce samples from the true
posterior2. we use posterior samples of θ from HMC and then fit a density estimator over these samples, to
use as a prior for a new task. This allows us to use a multi-modal posterior distribution over θ. In contrast,
to a diagonal Gaussian variational posterior like in VCL. More concretely, to propagate the posterior p(θ|D1)
we use a density estimator, defined p̂(θ|D1), to fit a probability density on HMC samples as a posterior. For
the next task T2 we can use p̂(θ|D1) as a prior for a new HMC sampling chain and so on (see Fig. 2). The
density estimator priors need to satisfy two key conditions for use within HMC sampling. Firstly, that they
are a probability density function. Secondly, that they are differentiable with respect to the input samples.

...

Figure 2: Illustration of the posterior propagation pro-
cess; priors in blue are in the top row and posterior
samples on the bottom row. This is a two step process
where we first perform HMC with an isotropic Gaus-
sian prior for T1 then perform density estimation on
the HMC samples from the posterior to obtain p̂1(θ|D1).
This posterior can then be used as a prior for the new
task T2 and so on.

We use a toy dataset (Fig. 3) with two classes and
inputs x ∈ R2 (Pan et al., 2020). Each task is
a binary classification problem where the decision
boundary extends from left to right for each new
task. We train a two layer BNN, with hidden state
size of 10. We use a Gaussian Mixture Models
(GMM) as a density estimator for approximating
the posterior with HMC samples. We also tried Nor-
malizing Flows which should be more flexible (Dinh
et al., 2016) however these did not work robustly
for HMC sampling3. To the best of our knowledge
we are the first to incorporate flexible priors into
the sampling methods like HMC.

Training a BNN with HMC on the same multi-
task dataset gets a test accuracy of 1.0. Thus, the
final posterior is suitable for continual learning un-
der Eq. (3) we should be able to recursively arrive
at the multi-task posterior with our recursive infer-
ence method with HMC. The results from Fig. 3
demonstrate that using HMC with an approximate multi-modal posterior fails to prevent forgetting and
is less effective than using multi-head VCL. In fact, multi-head VCL clearly outperforms HMC indicating
that the source of the knowledge retention is not through the propagation of the posterior but through the
task-specific heads. For T2 we use p̂(θ|D1) instead of p(θ|D1) as a prior and this will bias the HMC sampling
for all subsequent tasks. In the next paragraph we detail the measures taken to ensure that our HMC chains
have converged so we are sampling from the true posterior. Also we access the fidelity of the GMM density

1We considered Sequential Monte Carlo, but it is unable to scale to the dimensions required for the NNs we consider (Chopin
et al., 2020). HMC on the other hand has recently been successfully scaled to relatively small BNNs of the size considered in
this paper (Cobb & Jalaian, 2021) and ResNet models but at large computational cost (Izmailov et al., 2021).

2In the NeurIPS 2021 Bayesian Deep Learning Competition, the goal was to find an approximate inference method that is as
“close” as possible to the posterior samples from HMC.

3RealNVP was very sensitive to the choice of random seed, the samples from the learned distribution did not give accurate
predictions for the current task and led to numerical instabilities when used as a prior within HMC sampling.
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Figure 3: On the left is the toy dataset of 5 distinct 2-way classification tasks which involve classifying circles
and squares (Pan et al., 2020). Also, continual learning binary classification test accuracies over 10 seeds.
The pink solid line is a multi-task (MT) baseline accuracy using SGD/HMC with the same model as for the
CL experiments.

estimator respect to the HMC samples. We also repeated these experiments with another toy dataset of five
binary classification tasks where we observe similar results (Fig. 7).

For HMC we ensure that we are sampling from the posterior by assessing chain convergence and effective
sample sizes (Fig. 11). The effective sample size measures the autocorrelation in the chain. The effective
sample sizes for the HMC chains for our BNNs are similar to the literature (Cobb & Jalaian, 2021). Also,
we ensure that the GMM approximate posterior is multi-modal and so has a more complex posterior in
comparison to VCL, and that the GMM samples produce equivalent results to HMC samples for the current
task (Fig. 10). See Appendix B for details.

The 2-d benchmarks we consider in this section are from previous works and are domain-incremental continual
learning problems. The domain incremental setting is also simpler (van de Ven et al., 2022) than the class-
incremental setting and thus a good starting point when attempting to perform exact sequential Bayesian
inference. Despite this, we are not able to perform sequential Bayesian inference in BNNs despite using HMC
which is considered the gold standard of Bayesian deep learning. HMC and density estimation with a GMM
produces richer, accurate, and multi-modal posteriors. Despite this, we are still not able to sequentially build
up the multi-task posterior or get much better results than an isotropic Gaussian posterior like single-head
VCL. The weak point of this method is the density estimation, the GMM removes probability mass over
areas of the BNN weight space posterior which is important for the new task. This demonstrates just how
difficult a task it is to model BNN weight posteriors. In the next section, we study a different analytical
example of sequential Bayesian inference and look at how model misspecification and task data imbalances
can cause forgetting in Bayesian CL.

4 Bayesian Continual Learning and Model Misspecification
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Figure 4: Posterior estimate of the filtering dis-
tribution Eq. (7) for two different scenarios with
two tasks or changepoint.

We now consider a simple analytical example where we
can perform the sequential Bayesian inference Eq. (3) in
closed form using conjugacy. We consider a simple setting
where data points arrive online, one after another.

Observations y1, y2, . . . , yt arrive online, each observation
is generated by a hidden variable θ1, θ2, . . . , θt ∼ p where
p is a probability density function. At time t we wish to
infer the filtering distribution p(θt|y1, y2, . . . , yt) (Doucet
et al., 2001) using sequential Bayesian inference, similarly
to the Kalman filter (Kalman, 1960). The likelihood is
p(yt|θt) = N (yt; f( · ; θt), σ2) such that yt = f( · ; θt) + ϵ
where ϵ ∼ N (0, σ2) and f( · ; θt) = θt. We consider a
Gaussian prior over the mean parameters θ such that
p(θ0) = N (θ0; 0, σ2

0). Since the conjugate prior for the mean is also Gaussian, the prior and posterior are
N (θt−1; θ̂t−1, σ̂2

t−1) and N (θt; θ̂t, σ̂2
t ). By using sequential Bayesian inference we can have closed-form update
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equations for our posterior parameters:

θ̂t = σ̂2
t

(
yt

σ2 + θ̂t−1

σ̂2
t−1

)
= σ̂2

t

(
t∑

i=1

yi

σ2 + θ̂0

σ̂2
0

)
,

1
σ̂2

t

= 1
σ2 + 1

σ̂2
t−1

. (7)

From Equation (7) the posterior mean follows a Gaussian distribution where the posterior mean is a sum of
the online observation and the online prior. So the posterior mean is a weighted sum of the data. So, if the
observations are non-stationary: if there is task change (more commonly referred to as a changepoint in the
time-series literature). Then the mean parameter will encapsulate a global mean over both tasks rather than
a mean for each task Fig. 4. Concretely, for task 1 the dataset is generated according to N (−1, σ2) so we
want the model to regress to this task. For task 2 the data is generated according to N (1, σ2) and so we
want our continual learning agent to regress well to this task too, afterwards. As with all continual learning
benchmarks we require our model to perform equally well on both tasks at the end of training at t = 220.
The model is clearly misspecified since a single parameter cannot regress to both of these tasks together.
Despite performing exact inference a misspecified model can forget, Fig. 4. In the case of HMC we verified
that our Bayesian neural network had perfect performance on all tasks beforehand. In Section 3 we had a
well specified model but struggled with exact sequential Bayesian inference Eq. (3). With this 1-d online
learning scenario we are performing exact inference, however we have a misspecified model. It is important to
disentangle model misspecification and exact inference, and highlight that model misspecification is a caveat
which has not been highlighted in the CL literature as far as we are aware. Furthermore we can only ensure
that our models are well specified if we have access to data from all tasks a priori. So in the scenario of online
continual learning (Aljundi et al., 2019b;a; De Lange et al., 2019) we cannot know if our model will perform
well on all past and future tasks without making assumptions on the task distributions.

5 Sequential Bayesian Inference and Imbalanced Task Data

θ∗
t−1θ∗

t−2 θ∗
t θ∗

t+1

yt−1yt−2 yt yt+1

xt−1xt−2 xt xt+1

. . . . . .

Figure 5: Graphical model for filtering. Grey and white
nodes are observed and latent variables respectively.

Neural Networks are complex models with a broad
hypothesis space and hence are a suitably well-
specified model when tackling continual learning
problems (Wilson & Izmailov, 2020). However, we
struggle to fit the posterior samples from HMC to
perform sequential Bayesian inference in Section 3.

We continue to use Bayesian filtering and assume a
Bayesian NN where the posterior is Gaussian with a
full covariance. By modeling the entire covariance we
enable modeling how each individual weight varies
with respect to all others. We do this by interpreting
online learning in Bayesian NNs as filtering (Cift-
cioglu & Türkcan, 1995). Our treatment is similar
to Aitchison (2020) who derives an optimizer by
leveraging Bayesian filtering. We consider inference in the graphical model depicted in Fig. 5. The aim is to
infer the optimal BNN weights, θ∗

t at t given a single observation and the BNN weight prior. The previous
BNN weights are used as a prior for inferring the posterior BNN parameters. We consider the online setting
where a single data point (xt, yt) is observed at a time.

Instead of modeling the full covariance we instead consider each parameter θi as a function of all the
other parameters θ−it. We also assume that the values of the weights are close to those of the previous
timestep (Jacot et al., 2018). To obtain the update equations for BNN parameters given a new observation
and prior we make two simplifying assumptions as follows.
Assumption 5.1. For a Bayesian neural network with output f(xt; θ) and likelihood L(xt, yt; θ), the
derivative evaluated at θt is zt = ∂L(xt, yt; θ)/∂θ|θ=θt

and the Hessian is H. We assume a quadratic loss
for a data point (xt, yt) of the form:

L(xt, yt; θ) = Lt(θ) = −1
2θ⊤Hθ + z⊤

t θ, (8)

6



Under review as submission to TMLR

the result of a second-order Taylor expansion. The Hessian is assumed to be constant with respect to (xt, yt)
(but not with respect to θ).

To construct the dynamical equation for θ, consider the gradient for the i-th weight while all other parameters
are set to their current estimate at the optimal value for the θ∗

it:

θ∗
it = − 1

Hii
H⊤

−iiθ−it, (9)

since zit = 0 at a mode. The equation above shows us that the dynamics of the optimal weight θ∗
it is

dependent on all the other current values of the parameters θ−it. The dynamics of θ−it will be a complex
stochastic process dependent on many different variables: such as the dataset, model architecture, learning
rate schedule, etc.
Assumption 5.2. Since reasoning about the dynamics of θ−it are intractable, we assume that at the next
time-step the optimal weights are close to the previous timesteps with a discretized Ornstein-Uhlenbeck process
for the weights θ−it with reversion speed ϑ ∈ R+ and noise variance η2

−i:

p(θ−i,t+1|θ−i,t) = N ((1 − ϑ)θ−it, η2
−i), (10)

this implies that the dynamics for the optimal weight is defined by

p(θ∗
i,t+1|θ∗

i,t) = N ((1 − ϑ)θ∗
it, η2), (11)

where η2 = η2
−iH

⊤
−iiH−ii.

In simple terms, in Assumption 5.2 we assume a parsimonious model of the dynamics. That the next value of
θ−i,t is close to their previous value according to a Gaussian, similarly to Aitchison (2020).
Lemma 5.3. Under Assumptions 5.1 and 5.2 the dynamics and likelihood are Gaussian. Thus we are able to
infer the posterior distribution over the optimal weights using Bayesian updates and by linearizing the BNN
the update equations for the posterior of the mean and variance of the BNN for a new data point are:

µt,post = σ2
t,post

(
µt,prior

σ2
t,prior(η2) + yt

σ2 g(xt)
)

and 1
σ2

t,post
= g(xt)2

σ2 + 1
σ2

t,prior(η2) , (12)

where we drop the notation for the i-th parameter, the posterior is N (θ∗
t ; µt,post, σ2

t,post) and g(xt) = ∂f(xt;θ∗
it)

∂θ∗
it

and σ2
t,prior is a function of η2.

See Appendix E for the derivation of Lemma 5.3. From Eq. (12) we can notice that the posterior mean
depends linearly on the prior and a data dependent term and so will behave similarly to our previous example
in Section 4. Under Assumption 5.1 and Assumption 5.2 then if there is a data imbalance between tasks
in Eq. (12), then the data dependent term will dominate the prior term if there is more data for the current
task.

In Section 3 we showed that it is very difficult with current machine learning tools to perform sequential
Bayesian inference for simple CL problems with small Bayesian NNs. When we disentangle Bayesian inference
and model misspecification we show showed that misspecified models can forget despite exact Bayesian
inference. The only way to ensure that our model is well specified is to show that the multi-task posterior
produces reasonable posterior predictive distributions p(y|x, D) =

∫
p(y|x, D, θ)p(θ|D)dθ for one’s application.

Additionally, in this section we have shown that if there is a task dataset size imbalance then we can get
forgetting under certain assumptions.

6 Related Work

There has been a recent resurgence in the field of CL (Thrun & Mitchell, 1995) given the advent of deep
learning. Methods which approximate sequential Bayesian inference Eq. (5) have been seminal in CL’s
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revival and have used a diagonal Laplace approximation (Kirkpatrick et al., 2017; Schwarz et al., 2018). The
diagonal Laplace approximation have been enhanced by modelling covariances of between neural network
weights in the same layer (Ritter et al., 2018). Instead of the Laplace approximation we can use a variational
approximation for sequential Bayesian inference (Nguyen et al., 2018; Zeno et al., 2018). Using richer priors
has also been explored (Ahn et al., 2019; Farquhar et al., 2020; Kessler et al., 2021; Mehta et al., 2021; Kumar
et al., 2021; Loo et al., 2020). Gaussian processes have also been applied to CL problems leveraging inducing
points to retain previous task functions (Titsias et al., 2020; Kapoor et al., 2021).

Bayesian methods which regularize weights have not matched up to the performance of experience replay-based
CL methods (Buzzega et al., 2020) in terms of accuracy on CL image classification benchmarks. Instead
of regularizing high-dimensional weight spaces, regularizing task functions is a more direct approach to
combat forgetting (Benjamin et al., 2018). Bayesian NN weights can also be generated by a hypernetwork,
where the hypernetwork needs only simple CL techniques to prevent forgetting (Henning et al., 2021). In
particular, one can leverage the duality between the Laplace approximation and Gaussian Processes to
develop a functional regularization approach to Bayesian CL (Swaroop et al., 2019) or using function-space
variational inference (Rudner et al., 2022a;b).

In the next section, we propose a simple Bayesian continual learning baseline that models the data-generating
continual learning process and performs exact sequential Bayesian inference in a low dimensional embedding
space. Previous work has explored modeling the data-generating process by inferring the joint distribution of
inputs and targets p(x, y) and learning a generative model to replay data to prevent forgetting (Lavda et al.,
2018), and by learning a generative model per class and evaluating the likelihood of the inputs given each
class p(x|y) (van de Ven et al., 2021).

7 Prototypical Bayesian Continual Learning

enc enc

Embedding
Space

Embedding
Space

Figure 6: Overview of ProtoCL.

We have shown that sequential Bayes over NN pa-
rameters is very difficult (Section 3), and is only
suitable for situations where the multi-task posterior
is suitable for all tasks. We now show that a more
fruitful approach is to model the full data-generating
process of the CL problem and we propose a simple
and scalable approach for doing so. In particular, we
represent classes by prototypes (Snell et al., 2017; Re-
buffi et al., 2017) to prevent catastrophic forgetting.
We refer to this framework as Prototypical Bayesian
Continual Learning, or ProtoCL for short. This ap-
proach can be viewed as a probabilistic variant of
iCarl (Rebuffi et al., 2017), which creates embedding
functions for different classes which are simply class
means and predictions are made by nearest neigh-
bors. ProtoCL also bears similarities to the few-shot
learning model Probabilistic Clustering for Online
Classification (Harrison et al., 2020), developed for
few-shot image classification.

Model. ProtoCL models the generative CL process.
We consider classes j ∈ {1, . . . , J}, generated from a categorical distribution with a Dirichlet prior:

yi,t ∼ Cat(p1:J), p1:J ∼ Dir(αt). (13)

Images are embedded into a embedding space by an encoder, z = f(x; w) with parameters w. The per class
embeddings are Gaussian whose mean has a prior which is also Gaussian:

zit|yit ∼ N (z̄yt, Σϵ), z̄yt ∼ N (µyt, Λ−1
yt ). (14)

8
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See Fig. 6 for an overview of the model. To alleviate forgetting in CL, ProtoCL uses a coreset of past
task data to continue to embed past classes distinctly as prototypes. The posterior distribution over class
probabilities {pj}J

j=1 and class embeddings {z̄yj }J
j=1 is denoted in short hand as p(θ) with parameters

ηt = {αt, µ1:J,t, Λ−1
1:J,t}. ProtoCL models each class prototype but does not use task specific NN parameters

or modules like multi-head VCL. By modeling a probabilistic model over an embedding space this allows us
to use powerful embedding functions f( · ; w) without having to parameterize them probabilistically and so
this approach will be more scalable than VCL, for instance.

Inference. As the Dirichlet prior is conjugate with the Categorical distribution and likewise the Gaussian
over prototypes with a Gaussian prior over the prototype mean, we can calculate posteriors in closed form
and update the parameters ηt as new data is observed without using gradient based updates. We optimize
the model by maximizing the posterior predictive distribution and use a softmax over class probabilities to
perform predictions. We perform gradient-based learning of the NN embedding function f( · ; w) and update
the parameters, ηt at each iteration of gradient descent as well, see Algorithm 1.

Sequential updates. We can obtain our parameter updates for the Dirichlet posterior by Categorical-
Dirichlet conjugacy:

αt+1,j = αt,j +
Nt∑
i=1

I(yi
t = j), (15)

where Nt are the number of points seen during the update at time step t. Also, due to Gaussian-Gaussian
conjugacy the posterior for the Gaussian prototypes is governed by:

Λyt+1 = Λyt
+ NyΣ−1

ϵ (16)
Λyt+1µyt+1 = NyΣ−1

ϵ z̄yt + Λytµyt , ∀yt ∈ Ct, (17)

where Ny are the number of samples of class y and z̄yt = (1/Ny)
∑Ny

i=1 zyi, see Appendix D.2 for the detailed
derivation.

Objective. We optimize the posterior predictive distribution of the prototypes and classes:

p(z, y) =
∫

p(z, y|θt; ηt)p(θt; ηt)dθt = p(y)
Nt∏
i=1

N (zit|yit; µyt,t, Σϵ + Λ−1
yt,t). (18)

Where the p(y) = αy/
∑J

j=1 αj , see Appendix D.3 for the detailed derivation. This objective can then be
optimized using gradient based optimization for learning the prototype embedding function z = f(x; w).

Predictions. To make a prediction for a test point x∗ the class with the maximum (log)-posterior predictive
is chosen, where the posterior predictive is:

p(y∗ = j|x∗, x1:t, y1:t) = p(y∗ = j|z∗, θt) = p(y∗ = j, z∗|θt)∑
i p(y = i, z∗|θt)

, (19)

see Appendix D.4 for further details.

Preventing forgetting. As we wish to retain the class prototypes. We make use of coresets: experience
from previous tasks. At the end of learning a task Tt, we retain a subset Mt ⊂ Dt and augment each new task
dataset to ensure that posterior parameters ηt and prototypes are able to retain previous task information.

Class-incremental learning. In this CL setting we do not tell the CL agent which task it is being evaluated
on with a task identifier τ . So we cannot use the task identifier to select a specific head to use for classifying
a test point, for example. Also, we require the CL agent to identify each class, {0, . . . , 9} for Split-MNIST
and Split-CIFAR10 for example and not just {0, 1} as in domain-incremental learning. Class-incremental
learning is more general, realistic, and harder a problem setting and thus important to focus on rather than
other settings, despite domain-incremental learning also being compatible with sequential Bayesian inference
as described in Eq. (5).

9
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Algorithm 1 ProtoCL continual learning
1: Input: task datasets T1:T , initialize embedding function: f( · ; w), coreset: M = ∅.
2: for T1 to TT do
3: for each batch in Ti ∪ M do
4: Optimize f(·; w) by maximizing the posterior predictive p(z, y) Eq. (18)
5: Obtain posterior over θ by updating η, Eqs. (15) to (17).
6: end for
7: Add random subset from Ti to M.
8: end for

Implementation. For Split-MNIST and Split-FMNIST the baselines and ProtoCL all use two layer NNs
with a hidden state size of 200. For Split-CIFAR10 and Split-CIFAR100, the baselines and ProtoCL use a
four layer convolution neural network with two fully connected layers of size 512 similarly to Pan et al. (2020).
For ProtoCL and all baselines which rely on replay we fix the size of the coreset to 200 points per task. For
all ProtoCL models we allow the prior Dirichlet parameters to be learned and set their initial value to 0.7
found by a random search over MNIST with ProtoCL. An important hyperparameter for ProtoCL is the
embedding dimension of the Gaussian prototypes for Split-MNIST and Split-FMNIST this was set to 128
while for the larger vision datasets, this was set to 32 found using grid-search.

Results. ProtoCL produces good results on CL benchmarks on par or better than S-FSVI (Rudner
et al., 2022b) which is state-of-the-art among Bayesian CL methods while being a lot more efficient to
train and without requiring expensive variational inference. ProtoCL can flexibly scale to larger CL vision
benchmarks producing better results than S-FSVI. Code to reproduce all experiments can be found here
anonymous.4open.science/r/bayes_cl_exploration. All our experiments are in the more realistic class
incremental learning setting, which is a harder setting than those reported in most CL papers, so the results
in Table 1 are lower for certain baselines than in the respective papers. We use 200 data points per task,
see Figure 12 for a sensitivity analysis of the performance over the Split-MNIST benchmark as a function of
core size for ProtoCL.

The stated aim of ProtoCL is not to provide a novel state-of-the-art method for CL, but rather to propose
a simple baseline that takes an alternative route than weight-space sequential Bayesian inference. We can
achieve strong results that mitigate forgetting, namely by modeling the generative CL process and using
sequential Bayesian inference over a few parameters in the class prototype embedding space. We argue
that modeling the generative CL process is a fruitful direction for further research rather than attempting
sequential Bayesian inference over the weights of a BNN. ProtoCL scales to 10 tasks of Split-CIFAR100 which
to the best of our knowledge, is the most number of tasks and classes which has been considered by previous
Bayesian continual learning methods.

Table 1: Mean accuracies across all tasks over CL vision benchmarks for class incremental learning (Van de
Ven & Tolias, 2019). All results are averages and standard errors over 10 seeds. ∗Uses the predictive entropy
to make a decision about which head for class incremental learning.

Method Coreset Split-MNIST Split-FMNIST
VCL (Nguyen et al., 2018) ✗ 33.01 ± 0.08 32.77 ± 1.25

+ coreset ✓ 52.98 ± 18.56 61.12 ± 16.96
HIBNN∗ (Kessler et al., 2021) ✗ 85.50 ± 3.20 43.70 ± 20.21
FROMP (Pan et al., 2020) ✓ 84.40 ± 0.00 68.54 ± 0.00
S-FSVI (Rudner et al., 2022b) ✓ 92.94 ± 0.17 80.55 ± 0.41
ProtoCL (ours) ✓ 93.73 ± 1.05 82.73 ± 1.70
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Table 2: Mean accuracies across all tasks over CL vision benchmarks for class incremental learning (Van de
Ven & Tolias, 2019). All results are averages and standard errors over 10 seeds. ∗Uses the predictive entropy
to make a decision about which head for class incremental learning. Training times have been benchmarked
using an Nvidia RTX3090 GPU.

Method Training time (sec) (↓) Split CIFAR-10 (acc) (↑)
FROMP (Pan et al., 2020) 1425 ± 28 48.92 ± 10.86
S-FSVI (Rudner et al., 2022b) 44434 ± 91 50.85 ± 3.87
ProtoCL (ours) 384 ± 6 55.81 ± 2.10

Split CIFAR-100 (acc)
S-FSVI (Rudner et al., 2022b) 37355 ± 1135 20.04 ± 2.37
ProtoCL (ours) 1425 ± 28 23.96 ± 1.34

8 Discussion & Conclusion

In this paper, we have revisited the use of sequential Bayesian inference for CL. We can use sequential
Bayes to recursively build up the multi-task posterior Eq. (5). Previous methods have relied on approximate
inference and see little benefit over SGD. We test the hypothesis of whether this poor performance is due to
the approximate inference scheme by using HMC in two simple CL problems. HMC asymptotically samples
from the true posterior and we use a density estimator over HMC samples to use as a prior for a new task
within the HMC sampling process. This density is multi-modal and accurate with respect to the current task
but is not able to improve over using an approximate posterior. This demonstrates just how challenging it is
to work with BNN weight posteriors. The source of error comes from the density estimation step. We then
look at an analytical example of sequential Bayesian inference where we perform exact inference however due
to model misspecification, we observe forgetting. The only way to ensure a well specified model is to assess
the multi-task performance over all tasks a priori. This might not be possible in online CL settings. We then
model an analytical example over Bayesian NNs and under certain assumptions show that if there is task
data imbalances then this will cause forgetting. Because of these results, we argue against performing weight
space sequential Bayesian inference and instead model the generative CL problem. We introduce a simple
baseline called ProtoCL. ProtoCL doesn’t require complex variational optimization and achieves competitive
results to state-of-the-art in the realistic setting of class incremental learning.

This conclusion should not be a surprise since the latest Bayesian CL papers have all relied multi-head
architectures or inducing points/coresets to prevent forgetting, rather than better weight-space inference
schemes. Our observations are in line with recent theory from (Knoblauch et al., 2020) which states that
optimal CL requires perfect memory. Although the results were shown with deterministic NNs the same
results follow for BNN with a single set of parameters. Future research directions include enabling coresets of
task data to efficiently and accurately approximate the posterior of a BNN to remember previous tasks.
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