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ABSTRACT

Spatial scenes, which are composed by spatial objects and their spatial relations,
are the basis of geographic information retrieval, spatial cognition, and spatial
search. Despite the wide usage of spatial scenes, representation learning on spatial
scenes that contain complex composition of spatial objects remains a challenge,
since the spatial data types of geographic objects (e.g., points, polylines, and poly-
gons) and the geographical scales vary across different spatial scenes. Inspired by
recently proposed multi-scale location encoding models such as Space2Vec, we
propose a multi-scale spatial scene encoding model called Scene2Vec to solve
these representational challenges. In Scene2Vec, a location encoder is used to
model the spatial relationships among spatial objects and a feature encoder is
used for objects’ semantic feature encoding. A scene encoder is developed to
integrate the representations of spatial objects into a single scene embedding.
Moreover, we propose a spatial scene augmentation method to sample additional
points based on the shapes of polyline/polygon-based spatial objects in all scales
of spatial scenes. The whole model is trained in a self-supervised manner with a
contrastive loss. We conduct experiments on real world datasets for spatial scene
retrieval task 1) purely based on points, e.g., points of interest (POIs), and 2) based
on multi-structured spatial objects. Results show that Scene2Vec outperforms
well-established encoding methods such as Space2Vec and multi-layer percep-
trons due to the advantages of the integrated multi-scale representations and the
proposed spatial scene augmentation method. Moreover, detailed analysis shows
that Scene2Vec has the ability to generate representations of all the three types of
spatial objects in a multi-scale manner.

1 INTRODUCTION

Imagine you are wondering around to find a specific place in the real world. Purely based on your
memory or expectation, you know the (partially) surroundings/spatial context around it. This is
called mental map. Mental map (Graham, 1976; Purchase et al., 2006) is a concept in behavioral
geography, which is the basis of human spatial cognition. How to represent real-world environ-
ments with mental maps through scientific computational models is a major challege in the spatial
cognition ability of intelligent robots, such as autopilot (Badue et al., 2021). One possible solution
is through spatial scene encoding (Guo et al., 2022). Spatial scene encoding refers to a neural net-
work architecture that encode a combination of spatial objects in a 2D or 3D Euclidean space into
a high dimensional embedding for downstream spatial scene related tasks such as geographic infor-
mation retrieval, spatial cognition, and spatial search. Spatial scene encoding can be incorporated
into state-of-the-art (SOTA) machine learning models for many tasks to make them spatially explicit
(Janowicz et al., 2020; Mai et al., 2019). And it has huge application potential in geospatial related
domains such as urban planning (Oliveira & Pinho, 2010), land cover classification (Mallet et al.,
2011), scene restoration (Ali et al., 2021), etc.

Existing models often focus on encoding specific information of geographic objects while ignoring
other aspects of geographic information. For example, Place2Vec (Yan et al., 2017) converts the co-
ordinates of points of interest (POIs) into spatially collocated POI pairs within certain distance bins,
and does not preserve information about the (cardinal) direction between points. Mot2vec (Crivellari
& Beinat, 2019) provides a meaningful representation of locations, based on the motion behavior of
users, defining a direct way of comparing locations’ connectivity and providing analogous similar-
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ity distributions for places of the same type. Tile2Vec (Jean et al., 2019) utilizes an unsupervised
learning objective that makes spatially nearby image tiles similar in the image embedding space.
However, both Mot2Vec and Tile2Vec ignore the actual geographical coordinates and convert them
into visiting sequences (Mot2Vec) or qualitative distance measures (e.g., nearby or distant image
tiles by Tile2Vec). There lacks a general model to directly encode the spatial configuration of spa-
tial scene data which is composed of different types of spatial objects.

(a) (b) (c)

Figure 1: The challenges of modeling spatial scenes with distributions of differeant types of spatial
objects. The marks in the (a)(b)(c) indicate the spatial objects. Specifically, the orange points
indicate spatial objects represented as points while the blue lines denote the polyline data, the yellow
polygons indicate the polygon data. The spatial scale of (a) and (b) are the same while the scale of
(c) is smaller. The numbers of spatial objects in these three spatial scenes are different from each
other. To achieve multi-scale representation, Scene2Vec concatenates the spatial scene features of
K scales and three different spatial data types as the first layer of a location encoding model. The
whole model is trained in a unsupervised manner with a contrastuve loss.

The key challenge in designing spatial scene encoding models is the problem of modeling complex
composition of various number of spatial objects represented in different geometric types in spatial
scenes (see an example in Figure 1). More specifically, there are three challenges for spatial scene
representation learning. First, the map scales of spatial scenes vary. For instance, the map scale
in Figure 1c is smaller than those of Figure 1a and 1b. Second, the number of spatial objects that
make up a spatial scene also vary. Last but not least, a spatial scene can be composed of spatial
objects that are represented as different geometric types such as points, polylines, and polygons.
To overcome these challenges, we aim to develop a general-purpose representation learning model
for spatial scene with the following characteristics: 1) A multi-scale encoding method for arbitrary
spatial scale of spatial scenes; 2) A permutation invarant architecture which can handle arbitrary
number of spatial objects; 3) A encoding method which can seemlessly handle different geometry
types including points, polylines, and polygons; 4) An inductive learning model – the pretrained
spatial scene encoder can be readily utilized on unseen dataset.

Several recent studies (Gao et al., 2018; Mai et al., 2019; 2020; Dang et al., 2021) present multi-scale
location encoding models which show promising results on different geospatial tasks including POI
type classification, geo-aware image classification, geographic question answering, and path integra-
tion. These models inspire us to develop neural architectures to capture the relative spatial relations
among spatial objects. Moreover, approaches related to contrastive loss (Hadsell et al., 2006) play
a critical role in unsupervised representation learning, whose core idea is to learn metric similarity
between samples. Coincidentally, spatial scene similarity plays a critical role in geoinformatic re-
search (e.g., spatial prediction (Zhu et al., 2018)) – spatial scene similarity can be considered as the
criterion to validate the location representation learning model (Guo et al., 2022). Inspired by these
researches, we propose a multi-scale spatial scene encoding method to encode spatial objects repre-
sented in different geometric types in a spatial scene, their features, as well as their relative spatial
relations into an embedding space. We use the momentum contrastive learning-based approach (He
et al., 2020) to train our model in an unsupervised learning manner. Correspondingly, we propose
a specialized spatial scene augmentation method which can do augmentation on spatial scenes with
various scales while preserving their similarity with original scenes. This augmentation method do
point sampling based on the shapes of the polyline and polygon type spatial objects in a spatial scene
such that it adds randomness (and increase robustness) to the framework. In addition, the combina-
tion of the augmentation method and the spatial scene encoder can be regarded as a potential way
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for polyline and polygon1 encoding. Figure 2 shows the methodological framework of spatial scene
encoding we proposed. In summary, the main contributions of our work are four-fold:

1. We propose a general-purpose spatial scene encoder framework, Scene2Vec, which uses
multi-scale location encoding methods to model relative spatial relations among spatial
objects in a spatial scene.

2. We propose a novel spatial scene augmentation method that can generate spatial scenes
in arbitrary scales as positive samples by sampling points based on the shape of poly-
line/polygon type spatial objects.

3. We use a contrastive learning framework to train the proposed model in an unsupervised
manner. This encoder combines with the augmentation method can be considered as an
encoder for polylines and polygons.

4. We conduct experiments on real world datasets for the spatial scene similarity task. Results
show that Scene2Vec outperforms well-established encoding methods such as Space2Vec,
multi-layer perceptrons, and can serve as a pretrained model in multiple geospatial tasks.

(a)

(b)

Figure 2: The methodological framework of our proposed spatial scene encoding. (a) Overall work-
flow of our method including augmenting, encoding and contrastive representation learning; (b) An
illuatration of Scen2Vec encoder.

1In GIS and spatial analysis, A tree, for instance, be modeled by a point, while street would be represented
as a polyline and a shopping mall could be modeled as a polygon.
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2 RELATED WORK

Theoretical research has been done on spatial scene analysis in the field of geography. Tobler’s
First Law of Geography (TFL) (Tobler, 1970) gives a general statement of the spatial correlation of
geographic phenomena, which provides an theoretical basis for quantitative computation for the ex-
pression, analysis and application of geographic information. Frank et al. (1995) further introduced
spatial relationships containing topological, direction and distance relations and Bruns & Egen-
hofer (1996) defined the similarity of spatial scenes based on these relations. Several approaches
(Egenhofer, 1997; Haarslev & Wessel, 1997; Winter, 2000; Caduff & Egenhofer, 2005; Liang et al.,
2005) have successfully combined mental map (described in Section 1) with real world data by us-
ing sketch maps based on the above relationship principles. Zhu et al. (2018) then described the
cross-correlation of spatial phenomena based on the spatial similarity and adopted it to implement
spatial prediction. All these research focus on the conceptualization of spatial scene similarity and
its importance for spatial analysis in the geography and GIS domain. We hope to introduce these
geographic knowledge to geospatial artificial intelligence (GeoAI) to better develop the geoinfor-
matics.

Recently, several studies (Yan et al., 2017; Yao et al., 2017; Mai et al., 2019) proposed represen-
tation learning models to encode points to high-dimensional vectors and applied them in various
downstream tasks such as POI classification and urban land use classification. However, these mod-
els purely focus on the single point encoding. Other works (Xu et al., 2018; Rao et al., 2020) used
the language model-like architectures to encode a polyline by regarding a series of locations as a
sentence for trajectory prediction. The shortcoming of these models is they do not meet the charac-
teristics of the permutation invariant (Qi et al., 2017) of polylines due to the constraints of language
model. Moreover, polygon encoder research are still at an early stage because of the difficulties
to handle topological relationships. Mai et al. (2020) presented a Space2Vec-based geographic en-
tity encoding model as the first step towards polygon encoding by uniformly sampling a location
from within the bounding box of a geographic entity and feeding it to Space2Vec location encoder.
However, this model still cannot handle fine-grained polygon geometries. In contrast, we propose a
representation model to encode all kinds of spatial objects such as points, polylines, and polygons.

3 PROBLEM FORMULATION

We represent a polyline or a polygon as a series of points in our dataset where polyline(polygon) =
(p1, ..., pi, ..., pm), in which pi = (xi, v) is associated with a location xi and all the points have the
same attributes v. That is, we can use a point set to represent all the three spatial types in a spatial
scene. So representation of spatial scenes can be formulate as follows. Given a set of spatial
scenes S = si,in L-D (L=2,3.In this paper,L=2) space, each scene si = [ci, (p1, ..., pi, ..., pn)]
is associated with a spatial scene description location ci and a set of spatial objects (i.e., POIs)
p = (p1, ..., pi, ..., pn), in which pi = (xi, vi) is associated with a location xi and attributes vi
(i.e. POI type name). We define function fs,θ(x) : RL → Rd, which is parameterized by θ and
maps any coordinate of a spatial object in a spatial scene to a vector representation of d dimension.
The function fs,θ(x) encodes the distribution of spatial objects in a spatial scene and can give
a representation of any scale of spatial scene. Attributes (e.g. POI types such as Market) and
coordinates of spatial objects can be seen as analogies to words and word positions in commonly
used language embedding models such as Transformer (Vaswani et al., 2017).

4 METHOD

We propose the representation learning of spatial scenes (defined in Section 3) with an encoder
architecture combined with a novel augmentation method suitable for spatial scene data:

1. Given a spatial scene si = [ci, (p1, ..., pi, ..., pn)], Aug(s) firstly uses Sim(s) to cre-
ate a similar spatial scene s′i = [ci, (p

′
1, ..., p

′
i, ..., p

′
m)] where m is not necessarily equal

to n. Then we use Padding(s) to pad both si and s′i to a fixed length, si(pad) =
[ci, (p1, ..., pi, ..., pl)] and s′i(pad) = [ci, (p

′
1, ..., p

′
i, ..., p

′
l)], where l is a hyper-parameter.
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2. According to the si(pad) = [ci, (p1, ..., pi, ..., pl)], pi = (xi, vi) (we use the same operation
to s′i(pad)), given in the first step, we firstly use a point location encoder Enc(x)() to

encode relative location ri = xi− ci into a location embedding ei[ri] ∈ Rm(r)

and a point
feature encoder Enc(v)() to encoder its feature into a feature embedding ei[vi] ∈ Rm(v)

.
ei = ei[ri] + ei[vi] ∈ Rm is the full representation of point pi ∈ P , where m = m(r) =
m(v). Then we use scene encoder to integrate e = [e1, ..., ei, ..., el] ∈ Rl×m to s ∈ Rd.

4.1 AUGMENTATION

One novelty of this work is from the spatial scene augmentation Aug(s). According to the con-
trastive learning objective, we need to create a spatial scene augmentation method. We first give the
definition of Spatial Scene Similarity.

Definition 1. Given two spatial scenes si = [ci, (p1, ..., pm)] and sj = [cj , (p1, ..., pn)], where
pi = (xi, vi). Let di = [xi1− ci, ..., xik− ci] and dj = [xj1− cj ; ...;xjk− cj ] as relative locations
of k paried points in two spatial scenes. Let fi = [vi1; ...; vik] and fj = [vj1; ...; vjk] as attributes
of those paired points in two spatial scenes. We say si is similar to sj if they satisfy:1)di is similar
to dj and 2)fi is similar to fj . 3) the number of rest points in both two spatial scenes is as less as
possible.

The proof of Definition 1 can be seen in Nedas & Egenhofer (2008). Here we use similar to indicate
the algorithms of similarity calculation (e.g.,cosine similarity). Moreover, this description about the
spatial scene similarity in Definition 1 is purely based on calculations of geospatial relationships
(Nedas & Egenhofer, 2008).

Inspired by Definition 1, we set up our similar spatial scene generation method Sim(s) to use
addition, deletion and translation strategies to create similar spatial scene. Given a spatial scene
si = [ci, (p1, ..., pn)] in a scale d, the method Sim(s) firstly add or delete several (e.g.,0-2) points
with probability p1 based on the number of points in the spatial scene and the scale d. Then
Sim(s) randomly translates several(e.g.,0-2) points in a slightly small scale with probability p2.
s′i = [ci, (p

′
1, ..., p

′
i, ..., p

′
m)] is generated after these steps, where m is not necessarily equal to n

according to Denifition 1.

However, the input with variable lengths still remains as a challenge for neural network mini-batch
training. Inspired by Mai et al. (2022), we can pad the spatial scene si (same operation imple-
mented to the similar one s′i) to the same length l with the randomly sample points of polylines
(e.g., road) or the edge of polygons (e.g., shopping mall), which can preserve the original infor-
mation of the spatial scene. This is similar to the padding operation in CNN (Krizhevsky et al.,
2017), so we call it spatial scene padding Padding(s). We can get si(pad) = [ci, (p1, ..., pi, ..., pl)]

and s′i(pad) = [ci, (p
′
1, ..., p

′
i, ..., p

′
l)] when using Padding(s), s′i(pad) is still similar to si(pad). Note

that with Padding(s), we can augment spatial scenes in different spatial scales while preserving its
original features. Moreover, this process gives an idea of representation of polylines and polygons.
Specifically, given a polyline or polygon with its basic information, our augmentation can enrich
the number of points with the same feature to represent its shape, which contains its topological
relationship. The left part of Figure 2a shows the workflow of our augmentation method. Initially,
all spatial objects in spatial scenes are represented by a single point, the different colors of points
indicate different features of these points. We first use Sim(s) to create a similar spatial scene, then
we use Padding(s) to augment polylines or polygons data type with their geospatial shape.

Point Feature Encoder Each point pj = (xj , vj) in a spatial scene si has its point features vi
such as POI type name (e.g.,school). The point feature encoder Enc(v)() encodes such feature vj

into a feature embedding ej [vj ] ∈ Rm(v)

. In this study, we consider POI types as point features. Let
T is the total number of POI types. Enc(v)() is a embedding look-up function.

Point Location Encoder Inspired by Space2Vec (Mai et al., 2019), we use a relative point lo-
cation encoder Enc(x) which uses sinusoid functions with different frequencies to encode relative
locations in spatial scene si. Given xj in the studied 2D space of pj = (xj , vj) in si, we first
calculate the relative location rj = xj − cj , the location encoder Enc(x)(rj) = FFN(LEj(rj))
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where LEj(rj) = [LEj,0; ...;LEj,n(ri); ...;LEj,N−1(rj)] is a concatenation of multi-scale rep-
resentations. Here N is the total number of spatial scene scales. FFN() refers to a fully con-
nected feed-forward network. In this study, FFN() contains of three linear transformations with a
ReLU activation and layer normalization (Ba et al., 2016) between each. Similar to Space2Vec,
we use three unit vector ak(k = 1, 2, 3) and the angle between any of them is 2π/3 and
λ = scalemax

scalemin
to represents the ratio of max scale and min scale of spatial scene. At each scale

n, LEj,n(rj) = [LEj,n,1(ri); , LEj,n,2(ri);LEj,n,3(ri)]

LEj,n,k(ri) = [cos
< rj ,ak >

scalemin · λn/N−1
; sin

< rj ,ak >

scalemin · λn/N−1
]∀k = 1, 2, 3; (1)

Here our point location encoder encodes the relative locations to the same representation dimension
as point feature encoder, that is m(r) = m(v).

Scene Encoder After point feature encoder and point location Encoder, we get feature embeddings
[e1[v1], ..., el[vl]] and relative location embeddings [e1[r1], ..., el[rl]] of spatial objects in spatial
scene si. We simply use ej = ej [vj ] + ej [rj ](∀i = 1, ..., l) to integrate two kinds of embeddings
inspired by the combination of positional encoding and input embedding in Transformer (Vaswani
et al., 2017). Then we use FFN() to model [e1, ..., el] ∈ Rl×m to s ∈ Rd. Figure 2b shows the
architecture of our model.

4.2 CONTRASTIVE LEARNING

According to He et al. (2020), “unsupervised learning trains encoders to perform dictionary look-
up: an encoded ”query” should be similar to its matching key and dissimilar to others. Learning
is formulated as minimizing a contrastive loss (Hadsell et al., 2006)”. Spatial scene similarity is
also the basis of spatial prediction (Zhu et al., 2018). Therefore, we use contrastive learning method
to train Scene2Vec. Specifically, we use the InfoNCE (Oord et al., 2018) as our contrastive loss to
measure the similarity.

Lq = −log exp (q · k+/τ )∑K
i=0 exp (q · ki/τ )

(2)

where τ is a temperature hyper-parameter, we set τ to 0.7 in this study. Correspondingly, we use
a key encoder fk with parameters θk and a query encoder fq with parameters θq (both encoders
use Scene2Vec) to get the key embedding k and query embedding q. Then we use momentum
contrastive method (He et al., 2020) and inspired by Chen et al. (2021) that when the batch size is
big enough (e.g.,4096), there is no need to build a big key embedding dictionary. Initially, we copy
the parameters θk from θq and prohibit the gradient to update θk. We use a momentum coefficient
(He et al., 2020) m ∈ [0, 1) to update θk instead, m is a momentum hyper-parameter.

θk ← mθk + (1−m)θq (3)

Moreover, we adopt symmetrized loss Lq(q1, k2) + Lq(q2, k1) in Chen et al. (2021) to enhance the
performance. We can get q1, q2, k1, k2 from the same spatial scene data si augmented by Aug(s)

twice then encoded by fq and fk separately. The right part of Figure 2a shows the specific procedure
of contrastive learning.

5 EXPERIMENT

We conduct experiments on real world data for the spatial scene similarity task 1) purely based
on points and 2) based on multi-structure spatial objects to evaluate the performance of Scene2Vec
compared with other widely used location encoding methods. For those baselines, we simply change
the last layer of these encoders to get the same representation dimension as our model.

Baselines We compare Scene2Vec with three baselines including 1) ffn directly using feed-forward
nets (Chu et al., 2019); 2) rbf Radial Basis Function (RBF) kernels (Baudat & Anouar, 2001); and
3) Space2Vec using multi-scale representation encoder (Mai et al., 2019).
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Dataset We implement our experiments to evaluate the proposed model by using OpenStreetMap
(OSM) (Haklay & Weber, 2008) data and large-scale commercial map data from Esri for the same
area in Beijing, China. There are 58276 spatial objects with 22 different types in this dataset (Guo
et al., 2022). We use the Pseudo-Mercator projection coordinate system to project the spatial objects
geographic coordinates into projection coordinates. Initially, we separate them into 6480 spatial
scenes with a scale of 400m× 400m as the basis spatial scene data.

5.1 SPATIAL SCENES AUGMENTATION

Based on the augmentation method in Section 4.1, we create similar spatial scenes and enrich our
training dataset. Especially, this augment process is more likely to fulfill what has been occurred
in our mental map in Section 1,which may be deviate or incomplete. Specifically, we use a set
of operations (e.g. add, deletion, and spatial transformation) to randomly augment points data in
spatial scenes. As for polylines and polygons, we generate points of polylines or polygons based on
its spatial footprints and the given scale. We enlarge the training dataset by 20 times with the data
augmentation techniques. The detailed parameters setting for data augmentation of different types
of spatial objects are shown in Table 1.

Table 1: The parameter settings of spatial scene augmentation.

Geographic objects Selection
probability Simulation probabilities and transformations

Drop Data Type Aug Transformation
Schools and education institutions 0.3 0.1 0.3 0.3/± 100m

Hotel accommodation 0.2 0.2 0.2 0.2/± 100m
Governmental agencies and institutes 0.2 0.2 0.1 0.2/± 100m

Roads 0.4 0.3 0.4 0.2/± 50m
stations 0.4 0.3 0 0.2/± 50m

Greenbelt and plants 0.3 0.3 0.4 0.2/± 100m
Restaurants 0.5 0.4 0.3 0.2/± 100m

Residential areas 0.3 0.4 0.4 0.2/± 100m
Rivers and lakes 0.3 0.2 0.2 0.2/± 100m

Shopping malls and markets 0.4 0.2 0.2 0.3/± 100m
Office buildings and commercial districts 0.4 0.4 0.3 0.2/± 100m

Hospitals and health care providers 0.2 0.2 0.2 0.2/± 100m
Life service business 0.2 0.3 0.4 0.2/± 100m

Scenic spots and resorts 0.2 0.2 0.1 0.2/± 100m

We further use cosine similarity to compute the similarity between paired spatial scenes we gen-
erated (see Definition 1). The results are shown in Table 2. The Random augmentation indicates
generating random points based on the spatial objects features in the original spatial scene, which
will cause great deviation in the relative geographical location while ours will not.

Table 2: Similarity evaluation of augmentation methods

Method Similarity
Point Polyline Polygon all

Random augmentation 0.323 0.237 0.102 0.211
Spatial scene augmentation 0.922 0.832 0.811 0.824

5.2 SPATIAL SCENE RETRIEVAL TASKS

As mentioned above, we evaluate Scene2Vec mainly based on spatial scene retrieval tasks of different
data types of spatial objects 1) purely on points and 2) on all three data types – points, polyglines,
and polygons. In these experiments, we first build a spatial scene embedding database based on the
real-world Beijing spatial scenes using Scene2Vec, then we randomly select 350 simulated spatial
scenes with various categories using our augmentation method together with 150 raw spatial scene
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data for the comparison experiments to other baseline methods mentioned above. We using K-
Nearest Neighbor (KNN) method to evaluate the test results. We evaluate all models using Mean
Reciprocal Rank (MRR) and HIT@k (the chance of the true spatial scene being ranked to top k),
where k = [3, 5, 10].

5.2.1 SPATIAL SCENE RETRIEVAL TASK BASED ON POINTS

Since points are the most common spatial data type, we design the first experiment using a spatial
scene dataset with purely points spatial objects. This means that in the spatial scene augmentation
process, we abnegate the Padding(s) procedure and only use Sim(s) to obtain the similar spatial
scenes with the same number of spatial objects. Table 3 shows the average metrics of different
models with their best hyper-parameter setting on the contrastive learning. We can see that knn
and ffn represent the relevance of the data itself to some extent, are less competitive. Single scale
representation method rbf has a better performance. There is, however, the best results come from
multi-scale representation models.

Table 3: The evaluation results of different models on the test dataset with point spatial objects

Testing
MRR HIT@3 HIT@5 HIT@10

knn 0.443 0.452 0.501 0.522
ffn 0.374 0.411 0.446 0.506

rbf (σ=500) 0.488 0.492 0.591 0.622
Space2V ecgrid(λmin=100) 0.548 0.608 0.676 0.752
Space2V ectheory(λmin=100) 0.555 0.616 0.672 0.761

Scene2Vec(scalemin=1k) 0.492 0.518 0.581 0.696
Scene2Vec(scalemin=500) 0.563 0.616 0.684 0.768
Scene2Vec(scalemin=100) 0.598 0.652 0.734 0.812

Compared with rbf (σ=500), both Space2Vec and Scene2Vec have a better performance because of
their multi-scale structure. Specifically, we use two different types of Space2Vec and Scene2Vec in
different minimum scales. We can see the result of Scene2Vec with 1k as it minimum scale is rel-
atively poor, which indicates that the model will ignore some information of small scales. The im-
provements over Space2V ectheory(λmin=100) are -11.3%, +1.4%, +7.7% MRR for scalemin=1k,
500, 100 respectively.

5.2.2 SPATIAL SCENE RETRIEVAL TASK BASED ON THREE GEOSPATIAL DATA TYPES

In order to evaluate the capability of Scene2Vec of encoding polylines and polygons, we design
this experiment to evaluate spatial scene retrieval using spatial objects with all data types (point,
polyline and polygon). Here we first augment the polyline and polygon data types using data type
aug operation instead, we use a series of points to represent a polyline or a polygon, which conforms
to the geographic common representation. Table 4 shows the results of these models.

Table 4: The evaluation results of different models on the test dataset with all kinds of spatial objects

Testing
MRR HIT@3 HIT@5 HIT@10

knn 0.136 0.15 0.168 0.196
ffn 0.137 0.144 0.181 0.0.248

rbf (σ=500) 0.374 0.412 0.446 0.506
Space2V ecgrid(λmin=100) 0.478 0.514 0.576 0.684
Space2V ectheory(λmin=100) 0.485 0.508 0.576 0.681

Scene2Vec(scalemin=1k) 0.474 0.502 0.568 0.674
Scene2Vec(scalemin=500) 0.547 0.591 0.656 0.718
Scene2Vec(scalemin=100) 0.564 0.612 0.686 0.773
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Because of the data type aug operation, there will be a considerable number of points with the same
point feature. Therefore, knn and ffn have a terrible performance limited by their poor representa-
tional ability. Moreover, we can see that Space2Vec demonstrated its ability to encode polylines and
polygons as the first step, and our model gets the best performance, which means our model is more
robust compared with Space2Vec.

5.3 SPATIAL ANALYSIS OF SPATIAL SCENE ENCODING

To better illustrate the ability of our model to encode all these three data types of spatial objects.
We generate a series of points which refers to the shape of a polyline or a polygon with its POI
type as its label. Then we use the models mentioned above as the pre-trained model to implement a
classification task which is similar to point cloud classification (Qi et al., 2017). We use Accuracy
to evaluate these models.

Table 5: Comparing encoding performance based on the spatial data type classification

Polylines Polygons
ffn 0.322 0.331

rbf (σ=500) 0.482 0.476
Space2V ecgrid(λmin=100) 0.633 0.652
Space2V ectheory(λmin=100) 0.663 0.687

Scene2Vec(scalemin=100) 0.676 0.712

Main Types Roads, Greenbelts Residential areas
Shopping malls and markets

Table 5 shows that ffn has poor ability to encode complex spatial data type and single-scale represen-
tation model rbf also performs terrible compared with multi-scale representation models. Moreover,
Scene2Vec gets the best performance.

We further evaluate these methods by land use clustering. Specifically, we use clustering method
to group the spatial scene data embeddings encoded by these models and calculate the accuracy of
the clustering results. Unsurprisingly, Table 6 shows Scene2Vec has an average 3.5% promotion
compared with Space2V ectheory in the same minimum scale 100.

Table 6: Comparing encoding performance based on the land use clustering

Commercial
districts

Residential
areas

Public
areas Scenic spots

ffn 0.231 0.325 0.466 0.311
rbf (σ=500) 0.521 0.533 0.654 0.525

Space2V ecgrid(λmin=100) 0.732 0.753 0.798 0.823
Space2V ectheory(λmin=100) 0.744 0.784 0.802 0.816

Scene2Vec(scalemin=100) 0.792 0.814 0.833 0.832

6 CONCLUSION

In this work, we introduce an spatial scene representation model called Scene2Vec as a general-
purpose representation model for spatial scenes that contain different spatial data types including
points, polylines and polygons. The model can be trained in an unsupervised manner related to
contrastive loss. We conduct two experiments on spatial scenes retrieval tasks with spatial objects
based 1) purely on points and 2) on three spatial data types. Our analysis shows that Scene2Vec
has the ability to encode various spatial data types and performs better than other baselines. In the
future, we will integrate more spatial data types to build a more general representation model for
spatial scenes and bring it to more downstream geospatial problem solving tasks.
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A APPENDIX

A.1 AUGMENTATION

To help understanding our specially designed spatial scene augmentation method, we first give the
Algorithm 1 as the pseudo code of our method, which consists of two parts, similar spatial scene
generation operation and padding operation. Note that in the Padding operation, the points we
choosing in si and s′i are partially the same to confirm their similarity. Moreover, We guarantee that
after the padding operation both the number of points in si and s′i are m. Here α1 and α2 are two
hyperparameters we define beforehand as two probability thresholds. In practice, we use α1 = 0.4
and α2 = 0.3.

Algorithm 1: Workflow of spatial scene augmentation method.
Similar Spatial Scene Generation Operation:
Input: Raw spatial scene data si
Output: Similar spatial scene data s′i

Initialize P1 ∼ U(0, 1),P2 ∼ U(0, 1) randomly;
if P1 > α1 then

implement add or delete operation:
n refers to the number of points pi in si
if n < 4 then

adding 1-3 points in si
else

deleting 0-2 points in si randomly

if P2 > α2 then
implement translation operation:

randomly choose 1-3 points in si to translate based on the Transformation column in
Table 1

Padding Operation:
Input: Raw spatial scene data si, similar spatial scene data s′i and padding number m
Output: spatial scene pair [si(pad), s′i(pad)] with the same number of spatial objects

n,k refer to the number of points in si, s′i, separately
while n < m do

randomly choose a polyline/polygon point pj in si
get the geometry feature of pj
randomly add points based on the geometry feature

implement the same operation to s′i

Moreover, we design a simple ablation experiment about our augmentation method. We compare the
spatial scene retrieve results of Scene2Vec combined with Similar operation, Padding operation and
both two operations. We can see that from Table 7 both operations can perform well individually,
while the best results come from a combination of both. It is mainly because the combination of the
two operations enhance the similarity and add some latent information.

Table 7: The ablation experiment results of augmentation method

Testing
MRR HIT@3 HIT@5 HIT@10

Scene2VecSimilar 0.526 0.596 0.656 0.742
Scene2VecPadding 0.557 0.616 0.672 0.756

Scene2Vec 0.564 0.612 0.686 0.773

To evaluate the stability of Padding operation, we conduct the experiment of different padding points
numbers in spatial scene retrieve task, the result in Table 8 shows that the evaluation indicators have
slight change. Combined with other experiments in our article, we can see that our augmentation
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method can generate reliable spatial scene data. The overall result shows a trend of first rising and
then falling, we consider the main reason is as the number of points increases, the complexity of the
entire data increases geometrically, which will affect the experimental results to some extent.

Table 8: The evaluation results of different padding points numbers in spatial scene retrieve task

Testing
MRR HIT@3 HIT@5 HIT@10

Scene2Vec(paddingnum=0) 0.526 0.596 0.656 0.742
Scene2Vec(paddingnum=2) 0.543 0.594 0.666 0.762
Scene2Vec(paddingnum=4) 0.561 0.622 0.688 0.774
Scene2Vec(paddingnum=6) 0.568 0.63 0.718 0.786
Scene2Vec(paddingnum=8) 0.565 0.622 0.696 0.778

Scene2Vec(paddingnum=10) 0.564 0.612 0.686 0.773
Scene2Vec(paddingnum=15) 0.552 0.606 0.674 0.752
Scene2Vec(paddingnum=20) 0.525 0.584 0.644 0.734
Scene2Vec(paddingnum=30) 0.481 0.508 0.58 0.682

A.2 HYPER-PARAMETER SELECTION

Augmentation The main hyper-parameters in augmentation are the number of points (spatial ob-
jects) in a spatial scene. We set the number m = (6, 8, 10, 15, 20, 30), moreover, the result in Table
8 shows that all these parameters perform well in our retrieve experiment. After comprehensive
consideration of geographical significance and time cost, we choose m = 10 as our benchmark.

Spatial Scene Modeling Grid search method is used for hyperparameter tuning based on their
performance on the test datasets. The hyper-parameters of Point Feature Encoder and Point Lo-
cation Encoder on gird search with m(v) = m(r) = (32, 64, 128, 256, 512), and scalemin =
(5, 10, 50, 100, 300, 500) while scalemax = 50k is decided based on the total size of our study
area. As for Scene Encoder, the hyper-parameter are selected from d = (64, 128, 256, 512, 1024).
Combined accuracy and efficiency, we find out the best performance of different grid cell based
models are obtained then m(v) = m(r) = 64, scalemin = 100 and d = 128. Moreover,
we set the batchsize = 4096 based on the contrastive learning mechanisms. As for the FFN()
in Scene Encoder and other models, we select the hyper-parameter from f = (1, 2, 3) and
h = (2048, 4096, 8192). We find out f = 2 and h = [8192, 4096] give the best performance.
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