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Abstract

Pool-based Active Learning (AL) has proven successful in minimizing labeling costs by sequentially
selecting the most informative unlabeled data from large pool and querying their labels from an oracle
or annotators. However, existing AL sampling schemes may not perform well in out-of-distribution
(OOD) data scenarios, where the unlabeled data pool contains samples that do not belong to
the pre-defined categories of the target task. Achieving strong AL performance under OOD data
scenarios presents a challenge due to the inherent conflict between AL sampling strategies and OOD
data detection. For instance, both more informative in-distribution (ID) data and OOD data in
an unlabeled data pool would be assigned high informativeness scores (e.g., high entropy) during
AL processes. To address this dilemma, we propose a Monte-Carlo Pareto Optimization for Active
Learning (POAL) sampling scheme, which selects optimal subsets of unlabeled samples with fixed
batch size from the unlabeled data pool. We formulate the AL sampling task as a multi-objective
optimization problem and employ Pareto optimization based on two conflicting objectives: (1) the
conventional AL sampling scheme (e.g., maximum entropy) and (2) the confidence of excluding
OOD data samples. Experimental results demonstrate the effectiveness of our POAL approach on
classical Machine Learning (ML) and Deep Learning (DL) tasks.

1 Introduction

In practical applications, obtaining large amounts of unlabeled data is relatively easy, but the process of
labeling them can be expensive and time-consuming (Shen et al., 2004). AL aims to solve this problem – it
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(a) Entropy score of ID and OOD data
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(b) Scatter plot of ID and OOD data
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Figure 1: (a) Entropy distribution for ID and OOD data during AL processes on EX8 dataset. (b) Scatter plot of the
AL score (entropy) and ID confidence score (negative Mahalanobis distance) of unlabeled data. A larger ID score
indicates that data is more likely to be ID data. (c) An example of the difference in the selection between our POAL
and True PO (POAL uses Monte-Carlo for approximation, while True PO makes final selection after transverse the
whole search space) on EX8 dataset, where each element of Pareto set is a selected subset with fixed batch size.

achieves higher model performance with less training data by sequentially selecting the most informative
instances and then querying their labels from oracles/annotators (Zhan et al., 2021b). However, current AL
methods have primarily been evaluated on well-studied, simple, and clean datasets (Kothawade et al., 2021)
like MNIST (Deng, 2012), CIFAR10 (Krizhevsky et al., 2009), etc. However, in real-life scenarios, when
collecting unlabeled data, it is common for task-unrelated data, referred to as out-of-domain (OOD) data,
to be mixed in with the task-related data. For instance, when the task involves classifying images of digits,
images of letters might also be present in the unlabeled data pool (Du et al., 2021). Most AL methods are
not robust to OOD data scenarios. For example, Karamcheti et al. (2021) has demonstrated empirically
that collective outliers hurt AL performances under Visual Question Answering (VQA) tasks. Furthermore,
selecting and querying OOD samples that are irrelevant to the target task can lead to wasted labeling costs
and reduce the effectiveness of the AL sampling process(Du et al., 2021). In this paper, we focus on the latter
type of OOD data during AL, where the unlabeled data pool contains instances that do not belong to the
classes of the target classification task.

There is a natural conflict between AL sampling process and OOD data detection. Most AL methods,
especially uncertainty-based measures, prefer selecting data that are hardest to be classified by the current
basic learner, e.g., high entropy of predicted class probabilities. However, in AL, if a basic learner (e.g.,
Neural Network with softmax output) performs poorly on ID data, it is more likely to provide non-informative
predicted probabilities (i.e., close to uniform probabilities) on OOD data (Vaze et al., 2021). During AL
processes, the basic learner is not well-trained due to the insufficient labeled data, and insufficient epochs in the
case of deep AL. Therefore, the samples selected by AL may contain high informative ID and OOD samples.
For instance, consider the Maximum Entropy (ENT) approach for AL, which is a classic uncertainty-based
method (Lewis & Catlett, 1994; Shannon, 2001) that selects data samples whose predicted class probabilities
have the largest entropy. Meanwhile, ENT is also a typical OOD detection method – high entropy of the
predicted class distribution suggests that the input may be OOD (Ren et al., 2019). Fig. 1a shows an example
on EX8 data (Ng, 2008), which further illustrates this conflict, that is, a large percentage of data with
high entropy scores are OOD, and thus ENT-based AL will likely to select OOD data for labeling. Thus,
additional measures are needed to detect OOD samples so that they are not selected for AL. Fig. 1b is an
example shows that the negative Mahalanobis distance (Lee et al., 2018) has a certain negative correlation
with entropy and thus could be used as an ID confidence score.

Although the OOD problem has been demonstrated to affect AL in realistic scenarios (Karamcheti et al.,
2021), there are only a few studies about it (Kothawade et al., 2021; Du et al., 2021). SIMILAR (Submodular
Information Measures Based Active Learning) (Kothawade et al., 2021) adopted the submodular conditional
mutual information (SCMI) function as the acquisition function. They jointly model the similarity between
unlabeled and labeled ID data sets and their dissimilarity with labeled OOD data sets. The estimation
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might not be accurate initially since labeled ID and OOD data sets are insufficient in the early stages of AL.
Additionally, calculating SCMI on large-scale data is time/memory-consuming. CCAL (Contrastive Coding
AL) (Du et al., 2021) needs to pre-train extra self-supervised models like SimCLR (Chen et al., 2020), and
also introduces hyper-parameters to trade-off between semantic and distinctive scores, whose values affect the
final performance (see Section 4.3 in (Du et al., 2021)). These two factors limit the range of its application.

In this paper, we advocate simultaneously considering the AL criterion and ID confidence when designing
AL sampling strategies to address the above issues. Since the two objectives conflict, we define the AL
sampling process under OOD data scenarios as a multi-objective optimization problem (Seferlis & Georgiadis,
2004). Unlike traditional methods for handling multiple-criteria-based AL, such as weighed-sum optimization
(Zhan et al., 2022a) or two-stage optimization (Shen et al., 2004; Zhan et al., 2022a), we propose a novel
and flexible batch-mode Pareto Optimization Active Learning (POAL) framework. The contributions and
summarization of this paper are as follows:

1. We propose AL under OOD data scenarios within a multi-objective optimization framework.
2. Our framework is flexible and can accommodate different combinations of AL and OOD detection methods

according to various target tasks. Our experiments use ENT as the AL objective and Mahalanobis
distance as ID confidence scores.

3. Naively applying Pareto optimization to AL will result in a Pareto Front with a non-fixed size, which
can introduce high computational costs. To enable efficient Pareto optimization, we propose a Monte-
Carlo (MC) Pareto optimization algorithm for fixed-size batch-mode AL. MCPOAL could also provide
near-optimal Pareto curves, as shown in Fig. 1c.

4. Our framework works well on classical ML and DL tasks. We propose pre-selecting and early-stopping
techniques to reduce the computational cost of large-scale datasets.

5. Our framework has no trade-off hyper-parameter for balancing AL and OOD objectives. It is crucial since
i) AL is data-insufficient, there might be no validation set for tuning parameters; ii) hyper-parameter
tuning in AL can be label-expensive since every change of hyper-parameter causes AL to label new data,
thus provoking substantial labeling inefficiency (Ash et al., 2020).

2 Related Work

We discuss the related work in the following categories separately. We briefly introduced pool-based AL, OOD
and distribution shift data problems, how OOD data influence AL processes and multi-objection optimization.

2.1 Pool-based Active Learning

Pool-based AL has been well-studied in recent years (Settles, 2009; Zhan et al., 2021b; Ren et al., 2021;
Zhan et al., 2022a) and widely adopted in various tasks (Duong et al., 2018; Yoo & Kweon, 2019; Dor et al.,
2020; Haussmann et al., 2020). Most AL methods rely on fixed heuristic sampling strategies, which follow
two main branches: uncertainty- and representative/diversity-based measures (Ren et al., 2021; Zhan et al.,
2022a). Uncertainty-based approaches select data that maximally reduce the uncertainty of the target basic
learner (Ash et al., 2020). Typical uncertainty-based measures that perform well on classical ML tasks
like Query-by-Committee (QBC) (Seung et al., 1992), Bayesian Active Learning by Disagreement (BALD)
(Houlsby et al., 2011) have also been generalized to DL tasks (Wang & Shang, 2014; Gal et al., 2017; Beluch
et al., 2018; Zhan et al., 2022a). Representative/diversity-based methods like k-Means (Zhan et al., 2022a)
and Core-Set approach (Sener & Savarese, 2018) select a batch of unlabeled data most representative of the set.
Uncertainty/representative-based measures could be combined with weighted-sum or multi-stage optimization
(Zhan et al., 2022a). Weighted-sum optimization combines multiple objectives through linear combination
with trade-off weights. (Yin et al., 2017) is a typical method that adopts weighted-sum optimization, selecting
the most uncertain and least redundant samples as well as the most diverse. Two-stage (or multi-stage)
optimization first ranks data or selects a subset based on one objective, then makes final decisions based on
the other objective (Shen et al., 2004; Zhao et al., 2019; Zhan et al., 2022a). (Ash et al., 2020) computes
gradient embedding of unlabeled data in the first stage (uncertainty), then clusters by KMeans++ in the
second stage (diversity).
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2.2 Out-of-Distribution Data and Distribution Shift

OOD data detection. Detecting OOD data is vital in ensuring the reliability and safety of ML systems
in real-life applications (Yang et al., 2021) since the OOD problem severely influences real-life decisions.
For example, in medical diagnosis, the trained classifier could wrongly classify a healthy OOD sample as
pathogenic (Ren et al., 2019; Cui et al., 2020). Existing methods compute ID/OOD confidence scores based
on the predictions of (ensembles of) classifiers trained on ID data, e.g., the ID confidence can be the entropy of
the predictive class distribution (Ren et al., 2019). Hendrycks & Gimpel (2017) observed that a well-trained
neural network assigns higher softmax scores to ID data than OOD data, i.e., predictions for ID data have
lower entropy. Follow-up work ODIN (Liang et al., 2017) amplifies the effectiveness of OOD detection with
softmax score by considering temperature scaling and input pre-processing. Others (Lee et al., 2018) propose
simple and effective methods for detecting both OOD and adversarial data samples based on Mahalanobis
distance. Due to its superior performance compared with other OOD strategies (see Table 1 in (Ren et al.,
2019)), our POAL framework uses Mahalanobis distance as the primary criterion for calculating the ID
confidence score. Nonetheless, our framework is general, and any ID confidence score could be adopted.

How OOD influences AL methods? As discussed in Section 1, uncertainty-based AL measures
like ENT are not robust to OOD data scenarios since OOD data are naturally difficult to be classified.
Representative/diversity-based methods are also not robust to OOD data since outliers/OOD samples are far
from ID data and thus more likely to be selected first to cover the whole unlabeled data pool. Combined
AL strategies that integrate uncertainty and representative-based measures will also be susceptible to OOD
data. Weighted-sum optimization will select data with high uncertainty and representativeness scores, which
are likely to be OOD. The multi-stage optimization adopts uncertainty-based measures to select a subset
and then uses representative-based measures for the final selection (or vice versa). For both variants, a
large proportion of OOD data will be selected in the first stage. To address these issues, we proposed our
POAL, which can be adapted to various AL sampling schemes with OOD data. We conducted experiments
on multiple highly-cited AL methods to validate our viewpoints, as shown in Section 4, Fig. 4.

Distribution shift. AL with OOD data scenarios and AL with distribution shift scenarios share a common
characteristic of a gap between the true underlying data distribution and the estimated distribution from
labeled and unlabeled data (Zhan et al., 2022b). The main difference is in the specific nature of the distribution
gap. Distribution shift (aka dataset shift), refers to the discrepancy between the data distributions of the
training and testing sets (or true underlying data distribution). There are several branches of AL with
distribution shift: 1) where both labeled and unlabeled data are from the same domain but the labeled set
is not sampled independently and identically distributed (i.i.d.) from the true data distribution due to the
data collection process in AL, often addressed using fixed heuristics for data sampling (Beygelzimer et al.,
2009; Sawade et al., 2010; Ganti & Gray, 2012; Farquhar et al., 2021; Zhan et al., 2022b); and 2) where the
distribution shift occurs between the unlabeled data pool and the target tasks, such as when the target task
is to classify Domestic Shorthair/Longhair cats while the unlabeled data pool contains various types of cats.
In the former case, some works model the discrepancy between the labeled data and the true underlying
data distribution, leveraging techniques like importance sampling to train unbiased basic learners. Other
approaches focus on modeling the difference between the labeled and unlabeled sets or the full data pool
to inform AL sampling strategies. For instance, Shui et al. (2020) utilizes unlabeled data information by
training a discriminator to distinguish between labeled and unlabeled data sets.

In the second case, some works model the discrepancy between source and target domain of labeled/unlabeled
data pools to select more target-task-related data samples. Mahmood et al. (2021) minimizes the Wasserstein
distance between the unlabeled set and the set to be labeled as AL sampling strategy. de Mathelin et al.
(2021) discusses AL under domain shift for general loss functions and provides a generalization bound of
the target risk based on localized discrepancy distances between sample points. Zhao et al. (2021) presents
an AL framework for addressing label shift problems by combining importance weighting and sub-sampling
techniques. Distribution shifts can be further applied to train better basic classifiers (Imberg et al., 2020;
Farquhar et al., 2021; Zhan et al., 2022b). In these AL approaches under distribution shift, distribution shift
is useful for training AL. However, in AL with OOD data scenarios, OOD samples are hard to utilize for
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model training since OOD samples are not in the classes of interest of the target classification task. Thus,
the current research aims to detect OOD samples and avoid sampling them in the first place.

2.3 Multi-objective Optimization

Many real-life applications require optimizing multiple objectives that conflict with each other. For example,
in the sensor placement problem, the goal is to maximize sensor coverage while minimizing deployment costs
(Watson et al., 2004). Since there is no single solution that simultaneously optimizes each objective, Pareto
optimization can be used to find a set of “Pareto optimal” solutions with optimal trade-offs of the objectives
(Miettinen, 2012). A decision maker can then select a final solution based on their requirements. Compared
with traditional optimization methods for multiple objectives (e.g., weighted-sum (Marler & Arora, 2010)),
Pareto optimization algorithms are designed via different meta-heuristics without any trade-off parameters
(Zhou et al., 2011; Liu et al., 2021). In our work, besides optimization of the two conflicting objectives
(AL score and ID confidence), we also need to perform batch-mode subset selection. Pareto Optimization
Subset Selection (POSS) (Qian et al., 2015) solves the subset selection problem by optimizing two objectives
simultaneously: maximizing the criterion function and minimizing the subset size. However, POSS does
not support more than one criterion and cannot work with fixed subset size, thus not suitable for our task.
Therefore, we propose Monte-Carlo POAL, which achieves: 1) optimization of multiple objectives; 2) no extra
trade-off parameters for tuning; 3) subset selection with a fixed size.

3 Methodology

In this section we introduce the problem definition of AL under OOD data scenarios, and details of POAL.

3.1 Problem Definition and Overview

We consider a general pool-based AL process for a K-class classification task with feature space X , label space
Y ∈ {1, ..., K} under OOD data scenarios. We assume that the oracle can provide a fixed number of labels,
denoted as budget B. When an OOD sample, which does not belong to one of the K classes, is queried, the
oracle will return an “OOD” label1 to represent data outside of the specified task. We aim to select the most
informative B instances with fewer OOD samples to obtain the best classification performance. To reduce
the computational cost, we consider batch-mode AL, where batches of samples with fixed size b are selected
and queried. We denote the AL acquisition function as α(x; A), where A refers to AL sampling strategy, and
the basic learner/classifier as fθ(x). We denote the current labeled set as Dl = {(xi, yi)}N

i=1 and the large
unlabeled data pool as Du = {xi}M

i=1. The labeled data are sampled i.i.d. over In-Distribution (ID) data D,
i.e., Dl ⊂ D, and N ≪ M . Under OOD data scenarios, active learners may query OOD samples whose labels
are not in Y . To simplify the problem settings, we ignore the queried OOD data and only add ID samples to
Dl. Although OOD data could be used to improve model robustness,(Wei et al., 2021) demonstrated that
this requires very large-scale OOD/noisy data (> 160k samples). However, in the AL settings, the size of
Dl is limited, especially for DOOD

l , and thus we do not consider using OOD data for training in this paper.
Selecting high-informative ID samples while preventing OOD data selection benefits more the AL processes.

Motivated by the natural conflict between AL and OOD data detection, as illustrated in Fig. 1b, we propose
POAL as outlined in Fig. 2. In each AL iteration, we firstly utilize the clean labeled set that only contains
ID data for training a basic classifier fθ(x) and constructing class-conditional Gaussian Mixture Models
(GMMs) for detecting OOD samples in Du. Based on classifier fθ(x), AL acquisition function α(x; A) and
the GMMs, we calculate the informativeness/uncertainty score U(xi) and ID confidence score M(xi) for
each unlabeled sample xi in Du. Let s ∈ {0, 1}M be a binary vector whose element si = 1 indicates that
the i-th unlabeled sample is selected, and si = 0 indicates unselected. In each AL stage, the multi-objective
optimization goal is to find an optimal subset s∗ with b selected samples, that simultaneously maximizes the
informativeness/uncertainty and ID confidence score:

1In our implementation, the label of OOD data is −1.
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Figure 2: Overview of POAL. In each iteration, we train the basic learner and estimate GMMs (in DL tasks, we
estimate multivariate Gaussian distributions with low-/high- feature levels) to calculate the AL and Mahalanobis
distance-based ID confidence score for unlabeled data. We then construct POAL by randomly generating candidate
solutions with fixed batch size and updating the Pareto set iteratively to get the optimal solution.

s∗ = arg maxs∈{0,1}M (U(s), M(s)) s.t.
∑

si = b, (1)

where U(s) =
∑M

i=1 siU(xi) is shorthand for the aggregated AL score for the selected samples, and likewise
for M(s). U(·) and M(·) will be introduced in Sections 3.2 and 3.3.

3.2 Active Learning Score

AL selects data by maximizing the acquisition function a(x; A), i.e., x∗ = arg maxx∈Du
a(x; A) (Gal et al.,

2017). In our work, we use the AL scores for the whole unlabeled pool Du for the subsequent Pareto
optimization. Thus, inspired by (Fredlund et al., 2010; Zhan et al., 2022b), we convert the acquisition
function to a querying density function via U(xi) = α(xi;A)∑M

j=1
α(xj ;A)

. In our experiments, we use ENT as our

basic AL sampling strategy, and the acquisition function is αENT(x) = −
∑K

k=1 pθ(y = k|x) log pθ(y = k|x)),
where pθ(y|x) is the posterior class probability using classifier fθ(x). Our framework is flexible because
it can incorporate various AL sampling strategies if their acquisition function can convert to a querying
density function. In general, AL methods that explicitly provide per-sample scores (e.g., class prediction
uncertainty) or inherently provide pair-wise rankings among the unlabeled pool (e.g., k-Means) can convert to
a querying density. Thus, many uncertainty-based measures like QBC (Seung et al., 1992), BALD (Houlsby
et al., 2011; Gal et al., 2017), and Loss Prediction Loss (LPL) (Yoo & Kweon, 2019) are applicable since
they explicitly provide uncertainty information per sample. Also, k-Means and Core-Set (Sener & Savarese,
2018) approaches are applicable since they provide pair-wise similarity information for ranking. On the other
hand, AL approaches that only provide overall scores for the candidate subsets, such as Determinantal Point
Processes (Bıyık et al., 2019; Zhan et al., 2021a), are unable to be adopted in our framework.

3.3 In-Distribution Confidence Score via Mahalanobis Distance

Intuitively, ID unlabeled data can be distinguished from OOD unlabeled data since the ID unlabeled data
should be closer to the ID labeled data (Dl) in the feature space. One possible solution is to calculate the
minimum distance between an unlabeled sample and the labeled data of its predicted pseudo label provided
by f(θ) (Du et al., 2021). If this minimum distance is large, the unlabeled sample will likely be OOD and vice
versa. However, calculating pair-wise distances between all labeled and unlabeled data is computationally
expensive. A more efficient method is to summarize the labeled ID data via a data distribution (probability
density function) and then compute the distances of the unlabeled data to the ID distribution. Mukhoti et al.
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(2021) adopts a GMM as generative classifier to estimate the feature-space density, which is further used to
capture epistemic uncertainty. Using GMMs on ID data to calculate ID confidence score for OOD detection
in AL tasks has been shown to be a feasible solution in (Mukhoti et al., 2021). Furthermore, motivated by
(Lee et al., 2018), we adopt GMMs to represent the data distribution, and then our ID confidence score is
based on Mahalanobis distance. AL for classical ML tasks focuses on training basic learner fθ(x) with fixed
feature representations, while AL for DL jointly optimizes the feature representation X and classifier fθ(x)
simultaneously (Ren et al., 2021). Considering that these differences can influence the data distributions and
further influence the Mahalanobis distance calculations, we adopt different settings for classical ML and DL.

Classical ML tasks. We represent the data distribution estimated from Dl with GMMs. Specifically, since
we have labels of Dl, we represent each class k with a class-conditional GMM,

pGMM(x|y = k) =
∑Ck

c=1
π(k)

c N (x|µ(k)
c , Σ(k)

c ), (2)

where (π(k)
c , µ

(k)
c , Σ(k)

c ) are the mixing coefficient, mean vector and covariance matrix of the c-th Gaussian
component with the k-th class, and N (x|µ, Σ) is a multivariate Gaussian distribution with mean µ and
covariance Σ. The class-conditional GMM for class k is estimated from the labeled data for class k,
D(k)

l = {xi|yi = k} using a maximum likelihood estimation (Reynolds, 2009) and the EM algorithm
(Dempster et al., 1977). We then define the ID confidence score M(x) as the Mahalanobis distance between
the unlabeled sample and its closest Gaussian component in any class,

MML(x) = max
k

max
c

−||x − µ(k)
c ||2

Σ(k)
c

. (3)

DL tasks. For DL, we follow (Lee et al., 2018) to calculate M(x), since it makes good use of both low-
and high-level features generated by the deep neural network (DNN) and also applies calibration techniques,
e.g., input-preprocessing (Liang et al., 2018) and feature ensembles Lee et al. (2018) to improve the OOD
detection capability. Specifically, denote fℓ(x) as the output of the ℓ-th layer of a DNN for input x. A
class-conditional Gaussian distribution with shared covariance is estimated for each layer and for each class k

by calculating the empirical mean and shared covariance (µ̂(k)
ℓ , Σ̂ℓ):

µ̂
(k)
ℓ = 1

|D(k)
l

|

∑
x∈D(k)

l

fℓ(x), Σ̂ℓ = 1
|Dl|

∑
k

∑
x∈D(k)

l

(fℓ(x) − µ̂
(k)
ℓ )(fℓ(x) − µ̂

(k)
ℓ )T . (4)

Next we find the closest class for each layer ℓ via k̂ℓ = arg mink ||fℓ(x) − µ̂
(k)
ℓ ||2Σℓ

. To make the ID and
OOD data more separable, an input pre-processing step is applied by adding a small perturbation to x,
x̂ = x+εsign(∇x||fℓ(x)− µ̂

(k̂ℓ)
ℓ ||2Σ̂ℓ

), where ε controls the perturbation magnitude2. Finally, the ID confidence
score is the average Mahalanobis distance for x̂ over the L layers,

MDL(x) = 1
L

∑L

ℓ=1
maxk −||fℓ(x̂) − µ̂

(k)
ℓ ||2Σ̂ℓ

. (5)

Both AL and ID confidence score calculations will suffer from problems of insufficient training data. Insufficient
training data is a common issue in AL, which can lead to bias in the AL score calculations. This bias problem
is most prevalent in the initial AL iterations, as the insufficiently trained basic learners may provide inaccurate
predictions. As the amount of training data increases, the bias problem caused by insufficient data gradually
diminishes (Zhan et al., 2022b). For OOD detection, the Mahalanobis distance calculation is influenced by the
capability of the basic classifier used as a feature extractor for estimating the Mahalanobis distance (in DL
tasks), and the size of the ID labeled set. More data results in more accurate ID data distribution estimation,
so ID/OOD confidence score calculation may also suffer from insufficient training data in the initial stages.

3.4 Monte-Carlo Pareto Optimization Active Learning

Our framework for AL for OOD data contains two criteria, AL score and ID confidence score. As discussed in
Section 2, weighted-sum and multi(two)-stage optimization are widely used in multiple-criteria AL problems.

2In our experiments we follow (Lee et al., 2018) and set ε = 0.01.
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However, both have drawbacks when applied to AL for the OOD data scenario. In weighted-sum optimization,
the objective functions are summed up with weight η: αWeightedSum(x) = ηU(x) + (1 − η)M(x), e.g., as
adopted by CCAL (Du et al., 2021). This introduces an extra trade-off parameter η for tuning, but the
true proportion of OOD data in Du is unknown; thus, we cannot tell which criterion is more important.
Furthermore, due to the lack of data, there is not enough validation data for properly tuning η. For two-stage
optimization (Haneveld & van der Vlerk, 1999; Ahmed et al., 2004; Bindewald et al., 2020; Salo et al., 2022),
a subset of possible ID samples is first selected with threshold M(x) < δ, and then the most informative b
samples in the subset are selected by maximizing U(x). However, suppose δ has not been properly selected.
In that case, we might i) select OOD samples in the first stage (when δ is too large), and these OOD samples
will be more likely to be selected first due to their higher AL score in the second stage; ii) select ID samples
that are close to existing samples (when δ is too small), and due to the natural conflict between the two
criteria, the resulting subset will be non-informative, thus influencing the AL performance (Zhao et al., 2019).

Considering this contradiction between AL and OOD criteria, it is vital to develop a combined optimization
strategy that does not require manual tuning of this trade-off. Therefore, we propose POAL for balancing
U(x) and M(x) automatically without requiring trade-off parameters. Consider one iteration of the AL
process, where we must select b samples from Du. The search space size is the number of combinations M
choose b, C(M, b), and the search is an NP-hard problem in general. Inspired by (Qian et al., 2015), we
use a binary vector representation of candidate subset: s ∈ {0, 1}M , where si = 1 represents i-th sample is
selected, and si = 0 otherwise. For the unlabeled set Du, we denote the vector of AL scores as u = [U(xi)]Mi=1
and ID confidence scores as m = [M(xi)]Mi=1. The two criteria scores for the subset s are then computed as
oU (s) = sT u and oM (s) = sT m.3 The ranking relationships between two candidate subsets s and s′ are as
follows:

• s′ ⪯ s denotes that s′ is dominated by s, such that both scores for s′ are no better than those of s, i.e.,
oU (s′) ≤ oU (s) and oM (s′) ≤ oM (s).

• s′ ≺ s denotes that s′ is strictly dominated by s, such that s′ has one strictly smaller score (e.g.,
oU (s′) < oU (s)) and one score that is not better (e.g., oM (s′) ≤ oM (s)).

• s and s′ are incomparable if both s is not dominated by s′ and s′ is not dominated by s.

Our goal (see Eq. 1) is to find an optimal subset solution s that is not dominated by other subset solutions,with∑
s′

i = b. The large search space makes traversing all possible subset solutions impossible. Thus we propose
Monte-Carlo POAL for fixed-size subset selection. Monte-Carlo POAL iteratively generates a candidate
solution s at random, and checks it against the current Pareto set P = {s1, s2, · · · }. If there are no candidate
solution in P that strictly dominates s, then s is added to P and all candidate solutions in P that are
dominated by s are removed. In this way, a Pareto set P is maintained to include the solution(s) that
dominate all other candidate solutions so far, while the solution(s) in P are incomparable with each other.

3.4.1 Early-stopping

We adopt an early-stopping strategy to automatically terminate POAL when there is no significant change
in P after many successive iterations, which indicates that a randomly generated s has little probability of
changing P since most non-dominated solutions are included in P (Saxena et al., 2016). Firstly, we need
to define the difference between two Pareto sets, P and P ′. We represent each candidate solution s as a
2-dimensional feature vector, v(s) = (oU (s), oM (s)). The two Pareto sets can then be compared via their
feature vector distributions, V(P) = {v(s)}s∈P and V(P ′) = {v(s′)}s′∈P′ . We employed the maximum mean
discrepancy (MMD) (Gretton et al., 2006) to measure the difference:

MMD(P, P ′) =
∥∥∥ 1

|P|

∑
s∈P

v(s) − 1
|P′|

∑
s′∈P′

v(s′)
∥∥∥

H
. (6)

MMD is based on embedding probabilities in reproducing kernel Hilbert space H, and here we use the RBF
kernel with various bandwidths (i.e., multiple kernels). At iteration t, we compute the mean and standard
deviation (SD) of the MMD scores in a sliding window of the previous sw iterations,

Mt = 1
sw

∑t

i=t−sw+1
MMD(Pi−1, Pi), St = 1

sw

∑t

i=t−sw+1
(MMD(Pi−1, Pi) − Mt)2. (7)

3To keep the two criteria consistent, we normalize the ID confidence scores: m← max(m)−m.
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If there is no significant difference in the mean and SD after several iterations, e.g., Mt and St do not change
within two decimal points, then we assume that P has converged, and we stop iterating.

3.4.2 Final selection

After obtaining the converged set P, we need to pick one s ∈ P as the final solution (i.e., final subset for
querying). Selecting a final solution is an open question in multi-objective optimization. Typical strategies
(Chaudhari et al., 2010) to obtain a final solution include: (i) reformulate the problem as a single objective
problem using additional information as required by the decision-makers, such as the relative importance or
weights of the objectives, goal levels for the objectives, values functions, etc. (ii) Decision makers interact
with the optimization procedure typically by specifying preferences between pairs of presented solutions. (iii)
Output a representative set of non-dominated solutions approximating the Pareto front, e.g., regarding the
candidate solutions as data points, performing clustering, and outputting the centroid as a final solution.

In our work, we regard candidate solutions as data points and use the cluster centroid as the final solution:

s∗ = arg mins∈P
∑

s′∈P
∥s′ − s∥T = arg maxs∈P

∑
s′∈P

sT s′, (8)

where we use the property sT s = s′T s′ = b. Eq. 8) is equivalent to selecting the solution with a maximum
intersection with other non-dominated solutions, i.e., we find the solution whose selected samples are commonly
used in all other solutions in P.

Each solution in P represents a particular ID-OOD trade-off since an appropriate choice of weight η in the
weighted-sum objective will lead to its selection. Thus, the maximum intersection operation selects the
samples that are common to all settings of the ID-OOD trade-off. In this sense, POAL bypasses the tuning
of ID-OOD trade-off hyper-parameters by selecting samples that work well for all trade-offs.

POAL with early stopping and final selection strategies is summarized in Algorithm 1.

Algorithm 1 Monte-Carlo POAL with early stopping under OOD data scenarios.
Require: Unlabeled data pool Du with size M , criteria U(x) and M(x), batch size b, maximum repeat time

T , population interval pinv, sliding window size sw and final decision function F .
Ensure: A subset Ds of Du where |Ds| = b.

1: Let s = {0}M , P = {s} and t = 1.
2: for t in 1, ..., T do
3: Generate a random solution s with condition

∑
si = b.

4: if ∄z ∈ P such that s ≺ z then
5: Q = {z ∈ P|z ⪯ s}.
6: P = (P \ Q) ∪ {s}.
7: end if

{Terminate the loop early if the pareto set P converged.}
8: if t ̸= 0 then
9: Calculate MMDt according to Equation 6.

10: if MOD(t, pinv) = 0 then
11: Calculate Mt and St with interval pinv according to Equation 7 respectively4.
12: M̂t = ROUND(Mt, 2), Ŝt = ROUND(St, 2).
13: if M̂t = M̂t−1 = ... = M̂t−sw and Ŝt = Ŝt−1 = ... = Ŝt−sw then
14: Break
15: end if
16: end if
17: end if
18: end for
19: return arg maxs∈P F(s).
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3.4.3 Pre-selection for large-scale unlabeled data pool

We next consider how to use POAL on large datasets. The search space of size C(M, b) is vast for a
large unlabeled data pool. We propose an optional pre-selection technique to decrease the search size by
pre-selecting a subset of candidates. We select an optimistic subset Dsub from Du, based on the dominant
relationships between different samples from the original unlabeled data pool. Firstly, an initial Pareto front
Ppre, a set of non-dominated data points, is selected according to two objectives U(x) and M(x). Since the
size of Ppre is not fixed and might not meet our requirement of the minimum pre-selected subset size sm, we
iteratively update Dsub by firstly adding the data points in Ppre to Dsub, and then excluding Dsub from Du

for the next round of selection. The iteration terminates when |Dsub| ≥ sm. The pre-selected subset size sm

is set according to personal requirements (i.e., the computing resources and time budget). In our experiment,
we set sm = 6b. The pseudo-code of POAL with the pre-selection strategy is summarized in Algorithm 2.

Algorithm 2 Pre-selecting technique on large-scale datasets.
Require: Unlabeled data pool Du, criteria U and M, minimum size of subset sm of pre-selection.
Ensure: A pre-selected subset Dsub of Du with |Dsub| ≥ sm.

1: Let Dsub = ∅. i = 0.
2: while |Dsub| < sm do
3: Let Dp = ∅.
4: for i in 0, ..., |Du| do
5: if ∄x ∈ Dp such that Di

u ≺ x then
6: Q = {x ∈ Dp| x ⪯ Di

u}.
7: Dp = (Dp \ Q) ∪ {Di

u}.
8: end if
9: end for

10: Du = Du \ Dp.
11: Dsub = Dsub ∪ Dp.
12: end while
13: return Dsub.

3.4.4 POAL vs. POSS

Our Monte-Carlo POAL is inspired by Subset Selection by Pareto Optimization (POSS) (Qian et al., 2015).
POSS selects a subset S ⊆ V such that f is optimized with the constraint |S| ≤ k, where V = {X1, ..., Xn}
is a set of variables, f is a criterion function, and k is a positive integer. POSS is NP-hard in general (Davis
et al., 1997). POSS has two conflicting objectives: maximizing the criterion function and minimizing the
subset size. POSS first initializes Pareto set P with a random solution and then selects a solution from P
to generate a new solution by flipping each bit with probability 1/n. The new solution would add to P
if it is not strictly dominated by any solution in P, and the solutions in P that is dominated by the new
solution would be excluded. POSS repeats the iteration T times, and it is proved to achieve the optimal
approximation guarantee of (1 − 1/e) with E[T ] ≤ 2ek2n expected running time (Qian et al., 2015).

Compared with POSS, POAL solves a more challenging problem, which has two essential differences: the
number of objectives (or criteria in AL) and the constraint. Firstly, although POSS is in the form of
bi-objective optimization, it supports only one criterion function, e.g., only U(x), while another criterion is
that the subset size does not exceed b (i.e.,

∑
i si ≤ b). In contrast, POAL needs to solve multiple criterion

functions. Secondly, POSS solves the problem with the constraint |S| ≤ k, where as our setting involves
fixed-size solutions |S| = k. Due to these differences, the theoretical guarantees in POSS cannot hold if we
just adapt the POSS algorithm to our problem because: 1) Lemma 1 in POSS (Qian et al., 2015) is extracted
from the proof of Theorem 3.2 in (Das & Kempe, 2011), which solves a Subset Selection problem as a single
objective optimization problem with a greedy algorithm. If we simply add another objective, the theoretical

4General multi-objective evolutionary algorithms generate a population of solutions to update the Pareto set P at each
iteration (Saxena et al., 2016), but our POAL only generates one solution at each iteration, which hardly improves P. Thus, two
successive Pareto sets Pi−1 and Pi at the iterations i− pinv and i are compared in our POAL.
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optimal approximation guarantee (Theorem 1 in (Qian et al., 2015)) cannot hold; 2) the POSS algorithm
finds some optimal solution with the size |S| < k, which does not satisfy our solution requirement.

Considering the above issues, we devise our POAL to randomly generate candidate solutions with fixed batch
sizes. As a result, this 1) controls all candidate solutions in P to have the same fixed size; 2) compared
with POSS, Monte Carlo POAL does not depend on previous selections, which keeps the method free from
initialization problems. Due to these differences in how candidate solutions are generated and the number of
criteria, the theoretical bound on the number of iterations T needed for convergence of POSS (Qian et al.,
2015) cannot be applied to MCPOAL. Thus, when should the iterations of our Monte-Carlo POAL terminate?
(Qian et al., 2017) has proved that the Pareto set empirically converges much faster than E[T ] (see Fig. 2 in
(Qian et al., 2017)). Based on (Qian et al., 2017) and (Saxena et al., 2016), we also propose an early-stopping
technique. For the calculation of E[T ] in POAL, see Section A in Appendix.

4 Experiments

In the experiments we aim to: 1) evaluate the effectiveness of POAL on both classical ML and DL tasks
under various scales of OOD data scenarios; 2) compare different multi-objective optimization strategies, i.e.,
weighted-sum, two-stage, and Pareto optimization; 3) observe how OOD data influence typical AL methods
as discussed in Section 2.

4.1 Experimental Design

Datasets. For classical ML tasks, we use pre-processed data from LIBSVM (Chang & Lin, 2011):

• Synthetic data: EX8 uses EX8a as ID data and EX8b as OOD data (Ng, 2008).
• Real-life data: Vowel (Asuncion & Newman, 2007; Aggarwal & Sathe, 2015) has 11 classes, and we use 7

classes as ID data and the remaining for OOD data. Letter (Frey & Slate, 1991; Asuncion & Newman,
2007) has 26 classes, and we use 10 classes (a-j) as ID data and the remaining 16 classes (k-z) as OOD
data. We also construct 16 datasets with increasing ID:OOD ratios, denoted as letter(a-k), letter(a-l),...,
letter(a-z).

For DL tasks, we adopt the following image datasets:

• CIFAR10 (Krizhevsky et al., 2009) has 10 classes, and we construct two datasets: CIFAR10-04 splits
the classes with ID:OOD ratio of 6:4, and CIFAR10-06 splits data with ratio as 4:6.

• CIFAR100 (Krizhevsky et al., 2009) has 100 classes, and we construct CIFAR100-04 and CIFAR100-06
using the same ratios as CIFAR10.

Baselines. POAL helps existing AL methods select high informative ID data samples while preventing OOD
data selection. In our experiments, we adopt ENT as our basic AL sampling strategy. We compare against
three baseline methods considering OOD data: CCAL (Du et al., 2021), Deep Deterministic Uncertainty (DDU)
(Mukhoti et al., 2021) with GMM density and SIMILAR (with FLVMI submodular function) (Kothawade
et al., 2021). SIMILAR has many variants with different submodular functions. According to the experiments
in (Kothawade et al., 2021), SIMILAR (FLCMI) perform better on OOD data scenarios, but it is memory-
/time-consuming. We compared POAL with SIMILAR (FLCMI) in down-sampled CIFAR10 dataset, followed
the experimental settings in (Kothawade et al., 2021), as shown in Section C.2 in Appendix. We compare
against five normal AL methods without OOD detection: ENT, BALD (Gal et al., 2017) and LPL (Yoo &
Kweon, 2019) as uncertainty-based measures; k-Means as representative-based measure and BADGE (Ash
et al., 2020) as combined strategy. From the aspect of multi-objective optimization, we compared MCPOAL
against two alternative combination strategies: weighted sum optimization (WeightedSum-η) using weights
η = {1.0, 5.0, 0.2}, where η refers to the ratio between the coefficients for the AL objective and OOD objective,
and two-stage optimization (TwoStage) using threshold δ = mean(m). Additionally, we add random sampling
(RAND) and Mahalanobis distance (MAHA) as baselines. Finally, we report the oracle results of ENT where
only ID data is selected first (IDEAL-ENT), which serves as ideal performance of POAL.
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Implementation details. The training/test split of the datasets is fixed in the experiments, while the
initial label set and the unlabeled set is randomly generated from the training set. Experiments are repeated
100 times for classical ML tasks and 3 times for DL tasks. We use the same basic classifier for each dataset,
as shown in Table 7 in Appendix. To evaluate model performance, we measure accuracy and plot accuracy
vs. budget curves to present the performance change with increasing labeled samples. To calculate average
performance, we compute the area under the accuracy-budget curve (AUBC) (Zhan et al., 2021b), with
higher values reflecting better overall performance under varying budgets.
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Figure 3: (a)-(g) are accuracy vs. budget curves for classical ML tasks. The AUBC performances are shown in
parentheses in the legend. To observe the effect of increasing ID:OOD ratio on letter datasets, we plot AUBC vs.
dataset curves in (h).
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Figure 4: Results of POAL with Pre-Selection on DL datasets. (a-d) are accuracy vs. budget curves. We present the
mean and standard deviation (in parentehsis) of AUBC. (e-h) plot the ratio of OOD samples selected.
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4.2 Experimental Result Analysis

4.2.1 Overall Performance

We present the overall performance of classical ML and DL tasks in Fig. 3 and Fig. 4, respectively. We next
analyze the overall performance from different aspects:

Performance on classical ML tasks. Considering each dataset (see data visualization in Appendix B.2),
the ideal performance of POAL is shown on the synthetic dataset EX8 (Fig. 3a), the ID data is non-linearly
separable, and the OOD data is far from ID data. These properties make the calculation of M very accurate.
Meanwhile, OOD and ID data close to the decision boundaries have high entropy scores. The curve of our
POAL is the closest to IDEAL-ENT, which indicates that POAL selects the most informative ID data while
excluding the OOD samples. For real-life classical ML datasets like vowel and letter (Fig. 3b-e), POAL also
demonstrates its superiority. In letter, we fixed the ID data (letters a-j) and gradually increase the OOD
data (letters k-z), and plot the result in Fig. 3h. We observe that except for IDEAL-ENT, all methods are
influenced by increasing OOD data, e.g., the AUBC of RAND is 0.718 in Fig. 3c, 0.692 in Fig. 3d. Although
our method is also influenced by increasing OOD data, it is still superior to all baselines.

The performance of POAL is influenced by the Mahalanobis distance calculation, we observe from Fig. 7,
Fig. 8, and Fig. 9 that the capability of Mahalanobis distance is limited by the distinction between ID
data distribution and OOD data distribution. EX8 has distinct ID/OOD data distributions (see Fig. 7a),
thus the Mahalanobis distance well distinguishes ID and OOD data, and reaches the optimal performance
(Fig. 9a, MAHA has the same curve with IDEAL-ENT). However, for vowel and letter dataset, the ID/OOD
data distributions are not as distinct as EX8 (see Fig. 7b-r), thus the performance of MAHA is influenced.
Furthermore, it affects the performance of our POAL. It makes our POAL behaves less perfectly on vowel
and letter datasets than on the EX8 dataset. Similar conclusions appear in (Ren et al., 2019).

Performance on DL tasks. POAL also works on large-scale data with DL tasks. Fig. 4 shows the
accuracy-budget curves (along with the AUBC (acc) values) for CIFAR10 and CIFAR100 with ID:OOD
ratios 6:4 and 4:6, together with the number of OOD samples selected during AL processes. Compared with
normal AL methods, POAL outperforms both uncertainty-, representative/diversity-based and combined AL
baselines like LPL, BALD, k-Means and BADGE on all tasks. As shown in Fig. 4e-h, the three AL under
OOD data scenario methods, POAL, CCAL and SIMILAR effectively reduce the amount of OOD data that is
selected. Both POAL and CCAL perform better than normal AL sampling schemes (i.e., ENT, LPL, BALD,
k-Means, BADGE and RAND) on both CIFAR10-04 and CIFAR10-06 datasets.

POAL outperforms CCAL, SIMILAR (FLVMI) and DDU by large margins on more challenging situations
(i.e., ID:OOD ratio is 4:6), POAL selects fewer OOD samples and achieves better AUBC performance (e.g.,
the AUBC value of POAL on CIFAR100-06 is 0.525, while the highest baseline SIMILAR is 0.451). SIMILAR
selects data samples close to labeled ID data and dissimilar to OOD data. It prevents selecting the OOD
data, but the selected ID data may not be informative enough. CCAL utilized weighted-sum optimization to
balance the informative and distinctive selections, and the trade-off parameter heavily affects its performance
(also see Section 4.3 in (Du et al., 2021)). The idea of DDU (GMM) is similar to MAHA, the difference
is DDU (GMM) does not use shared covariance as Eq. 4 while MAHA constructs class-conditional data
distribution that follows the multivariate Gaussian distribution. Overall, DDU selects less OOD data than
MAHA, especially in early stages. But both two methods select more OOD samples than POAL, CCAL and
SIMILAR.

To observe the efficiency of each AL sampling strategy in our experiments of DL tasks, we summarized the
overall performance across all models and datasets we adopted, including the mean and standard deviation
(SD) of AUBC performance and running time. We record the running time from the start of the AL process
to the output of the final basic learner. From Table 1, we can observe that our model outperforms all baselines
(except for the ideal model – IDEAL-ENT) in terms of AUBC performance. For running time, POAL searches
the near-optimal solution from the subset level, CCAL first extract semantic and distinctive features then
calculates the pair-wise distance between large-scale unlabeled and labeled data. This results in the high
computational costs of CCAL and POAL. The running time of POAL could be reduced by decreasing the
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sliding window size sw, although there may be some variations due to the Monte-Carlo sampling in MC
POAL. Among POAL, CCAL and SIMILAR (FLVMI), which are designed specific to AL under OOD data
scenarios, the running cost of our POAL is affordable.

Figure 4 also demonstrates the conflict between ID and OOD data in the unlabeled data pool within the
current learning stage. The slope of the OOD-budget curve shows the degree of conflict between ID and
OOD data, where a larger slope indicates a more severe conflict (more OOD data is sampled). Figure 4e&g
have lower OOD ratios compared to Figure 4f&h, and we observed that standard AL measures, such as ENT,
generally have higher slopes in situations with larger OOD ratios. This suggests that the degree of conflict is
heavier in situations with larger OOD ratios. Additionally, we found that the slopes for all baselines, including
POAL, are higher in previous learning stages and slow down in the middle and final stages, indicating that
the degree of conflict decreases as the learning stage progresses (Figure 4e-h). Also note that at the beginning,
all types of AL approaches are likely to encounter data insufficiency problems. Therefore, we first compared
our AL approach with passive learning (RAND) and then compared our proposed method with other AL
strategies. Our POAL consistently outperformed the baselines on DL tasks. In summary, while insufficient
training data can be a problem in AL under OOD data scenarios, our approach effectively addresses this
issue and performs well in comparison to other methods by selecting the near-optimal subsets in the current
learning stages.

POAL vs. other multi-objective optimization strategies. We compared our Pareto optimization
against weighted-sum, two-stage optimization, and each single objective, i.e., ENT and MAHA. Both ENT and
MAHA are ineffective when used as a single selection strategy under OOD scenarios – in Fig 3a, ENT always
selects OOD data with higher entropy until all OOD data are selected (EX8 contains 210 OOD samples), and
it performs even worse than RAND. MAHA prefers to select ID samples first (see Appendix Fig. 9), but the
data samples with smaller Mahalanobis distance are also easily classified and far from the decision boundary,
and thus not informative. POAL outperforms the other combination strategies, WeightedSum for different η
values and TwoStage, on all tasks. This demonstrates that joint Pareto optimization better handles the two
conflicting criteria. Considering WeightedSum optimization with different η values, we observe from Figure 3
that η = 1.0, i.e., treat each objective with the same importance, performs better than other η settings on
various tasks. This observation is consistent with (Du et al., 2021; Ebert et al., 2012).

POAL vs. normal AL. We run experiments on normal AL methods, including uncertainty-based (ENT,
LPL and BALD), diversity-based (k-Means) and combined methods (BADGE). Although LPL performs
fairly well on standard CIFAR10 and CIFAR100 datasets (Yoo & Kweon, 2019; Zhan et al., 2022a), in OOD
scenarios, OOD data have larger predicted loss values and thus influence the selection. Similar phenomena
were observed with BALD and ENT. The performances of k-Means are close to RAND since both methods
sampled ID/OOD data with the same ratio. Although k-Means will not select OOD samples first like
uncertainty-based measures, it still failed to provide comparable performances. POAL performs well by
selecting fewer OOD samples during the AL iterations, as shown in Fig. 4(e-h). BADGE performed similar to
k-Means. The first stage of BADGE calculates the gradient embedding per sample, and use k-Means++ for
clustering. These operations results in both high informative ID and OOD data are mixed together with high
gradient values, therefore, BADGE failed to distinguish ID/OOD data. In DL tasks, we adopted pre-selection
to deal with large-scale datasets. Although it makes the search space smaller, i.e., changes the global solutions
to local solutions, POAL-PS still performs significantly better than baseline AL methods.

4.3 Visualization of the Subset Selection of POAL

A direct way to validate the efficacy of POAL is to measure the difference between the selected subset by
POAL and true Pareto set. However, on normal datasets, the searching space of the optimal subset selection
is too large, as analysed in Section 3.4, it is a combination-level, C(M, b). Therefore, we use the subset
selected by typical Pareto optimization (the operation is the same as the operation of the first round of
pre-selection technique in Section 3.4) to represent the optimal subset selection instead. We visualize the
subset selection on data and multi-objective space, as shown in Fig. 5. Using typical Pareto optimization
will: i) select a subset with non-fixed subset size, and ii) possibly include many OOD data samples since the
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Table 1: Overall comparison across all AL sampling strategies of all DL tasks, including mean and standard
deviation (SD) of AUBC performance and running time (in seconds) across three repeated trials. The experimental
environment deployed on DDU and MAHA are different from other methods. To maintain fairness, we use symbol “−”
instead of running times.

CIFAR10-04 CIFAR10-06
AUBC Time AUBC Time

RAND 0.7500 (0.0014) 10805.3 (148.0) 0.8080 (0.0008) 5217.7 (348.0)
IDEAL-ENT 0.8007 (0.0029) 14578.0 (838.2) 0.8737 (0.0019) 9398.0 (696.4)
POAL (sw = 20) 0.7620 (0.0033) 62082.7 (7371.9) 0.8400 (0.0029) 34946.0 (4860.2)
POAL (sw = 10) 0.7613 (0.0024) 56107.0 (3364.2) 0.8403 (0.0029) 47362.0 (188.7)
CCAL 0.7543 (0.0009) 76129.3 (5853.7) 0.8190 (0.0037) 35715.3 (328.5)
SIMILAR (FLVMI) 0.7397 (0.0012) 13942.7 (116.2) 0.7947 (0.0037) 8550.0 (231.3)
DDU (GMM) 0.7207 (0.0038) − − 0.7957 (0.0025) − −
ENT 0.7350 (0.0029) 10155.3 (872.3) 0.7960 (0.0057) 5485.7 (655.4)
MAHA 0.7313 (0.0021) − − 0.8013 (0.0021) − −
LPL 0.7510 (0.0071) 12384.7 (1555.9) 0.7873 (0.0103) 3783.3 (326.9)
BADGE 0.7437 (0.0029) 41646.0 (12723.5) 0.8063 (0.0037) 17539.3 (628.0)
KMeans 0.7440 (0.0014) 18785.7 (2571.3) 0.8100 (0.0022) 8627.3 (407.2)
BALD 0.7480 (0.0022) 10478.3 (679.7) 0.8060 (0.0022) 4158.3 (431.1)
TwoStage 0.7300 (0.0029) 8342.3 (1059.4) 0.7970 (0.0028) 5524.7 (821.3)
WeightedSum-1.0 0.7337 (0.0019) 9489.7 (454.5) 0.8033 (0.0033) 2006.3 (13.8)
WeightedSum-5.0 0.7327 (0.0029) 11892.3 (1733.9) 0.8060 (0.0045) 7998.3 (81.6)
WeightedSum-0.2 0.7340 (0.0045) 8249.3 (2019.2) 0.8063 (0.0012) 5751.0 (795.3)

CIFAR100-04 CIFAR100-06
AUBC Time AUBC Time

RAND 0.4560 (0.0016) 11563.3 (985.5) 0.4453 (0.0026) 11075.3 (1198.2)
IDEAL-ENT 0.5250 (0.0008) 17736.7 (1694.7) 0.5707 (0.0017) 19098.0 (1458.8)
POAL (sw = 20) 0.4807 (0.0009) 66880.7 (1583.5) 0.5253 (0.0005) 62762.0 (4277.4)
POAL (sw = 10) 0.4797 (0.0017) 4932.3 (1891.2) 0.5270 (0.0008) 55955.3 (5162.4)
CCAL 0.4400 (0.0008) 21253.0 (2171.9) 0.4467 (0.0024) 65303.0 (1676.6)
SIMILAR (FLVMI) 0.4377 (0.0026) 20732.7 (662.1) 0.4510 (0.0024) 13137.0 (396.7)
DDU (GMM) 0.4510 (0.0022) − − 0.4483 (0.0012) − −
ENT 0.4267 (0.0034) 11202.3 (2484.7) 0.4100 (0.0036) 10940.0 (1318.4)
MAHA 0.4283 (0.0026) − − 0.4090 (0.0008) − −
LPL 0.4140 (0.0037) 17797.0 (4093.8) 0.4087 (0.0042) 5633.0 (252.3)
BADGE 0.4530 (0.0000) 58877.7 (13876.3) 0.4430 (0.0008) 58046.3 (17296.9)
KMeans 0.4527 (0.0005) 34944.3 (4121.3) 0.4413 (0.0021) 17465.0 (3570.3)
BALD 0.4467 (0.0040) 14699.0 (2675.9) 0.4313 (0.0061) 4574.3 (140.5)
TwoStage 0.4347 (0.0021) 11484.3 (4360.1) 0.4137 (0.0017) 3234.3 (91.1)
WeightedSum-1.0 0.4267 (0.0025) 12722.0 (4164.8) 0.4103 (0.0005) 9455.3 (468.5)
WeightedSum-5.0 0.4287 (0.0039) 14822.3 (6249.7) 0.4073 (0.0050) 11309.3 (1303.4)
WeightedSum-0.2 0.4290 (0.0022) 11736.7 (4394.3) 0.4097 (0.0033) 8865.7 (1230.1)

entropy score of OOD data samples are relatively large. In contrast, POAL selects more informative ID data
and less OOD samples based on current basic learners in Fig. 5.

We conduct a toy experiments to show whether the subset selection generated by POAL is similar to the
output generated by True Pareto Optimization for subset selection, based on exhaustive search, as shown
in Figures 6 and 1c. We down-sampled the unlabeled data pool to size of 50 and set the batch size as 5.
The resulting search space is of size C(50, 5) = 2, 118, 760, which is acceptable. We traverse the whole search
space and use the same Final-selection method as in POAL to generate a single final solution. As shown in
Fig. 1c, we observe that the candidate Pareto set P generated by POAL is close to the selection by True
Pareto Optimization. In v, the solutions generated by POAL are located on Pareto Curve (or very close to
the Pareto Curve), in which Pareto Curve is generated by the True Pareto Optimization. Observing Fig. 6a-f,
the subset selection generate by POAL is better. This is because True Pareto Optimization finally selects the
subset with higher entropy and lower ID score, which might select OOD samples.
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Figure 5: The subset selection generated by POAL and Typical Pareto Optimization. The selection results are
presented on data space and multi-objective space respectively. The experimental settings are the same as Fig. 1.

True Pareto Optimization

OOD data
ID positive data
ID negative data
selected data

(a) True Pareto Optimization

Typical Pareto Optimization

OOD data
ID positive data
ID negative data
selected data

(b) Typical Pareto Optimization

POAL

OOD data
ID positive data
ID negative data
selected data

(c) POAL

entropy

ne
ga

tiv
e 

m
ah

al
an

ob
is

 d
is

ta
nc

e

True Pareto Optimization

ID positive data
ID negative data
OOD data
selected data

(d) True Pareto Optimization

entropy

ne
ga

tiv
e 

m
ah

al
an

ob
is

 d
is

ta
nc

e

Typical Pareto Optimization

ID positive data
ID negative data
OOD data
selected data

(e) Typical Pareto Optimization

entropy

ne
ga

tiv
e 

m
ah

al
an

ob
is

 d
is

ta
nc

e
POAL

ID positive data
ID negative data
OOD data
selected data

(f) POAL

Figure 6: The subset selection generated by POAL, True Pareto Optimization (via exhaustive search) and Typical
Pareto Optimization on down-sampled EX8 dataset. The selection results are presented on data space and multi-
objective space respectively. a-f are based on single data point level. The x-axis and y-axis are U and M respectively.

4.4 Sensitivity Analysis

In our work, we have a hyper-parameter sw (sliding window size) to control the early stopping condition.
Large sw applies to a more strict early stop condition and vice versa. If there is no significant change within
sw × pinv iterations, then we can stop early. In our experiments, we set sw = 20. In this section, we conduct
an ablation study to see if less strict or more strict conditions influence the final performance, as shown
in Table 1, 3rd and 4th rows of each table. We found that sw = 10 (less strict) does not affect the model
performance (there is no significant difference of AUBC performance between sw = 20 and sw = 10). Less
strict early stopping also usually requires less running time, e.g., in CIFAR100-04 dataset, we have 66,880.7
seconds average running time with sw = 20 and 4,932.3 seconds average running time with sw = 10.

Besides sw, we have another hyper-parameter sm, which controls the minimum pre-selected subset size. sm

is designed to adapt to various computational resource constraints, but not for controlling the AL/OOD
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trade-off. Larger sm can be used when more computational resources/time are available, while smaller sm can
save computational cost but may lead to slightly sub-optimal solutions. In our experiments, we set sm = 6b
based on our computational resource situation, which works well in practice.

Although the numbers of hyper-parameters of POAL are similar to the weighted-sum optimization, their
purposes are fundamentally different. In the weighted-sum optimization, hyper-parameters relate to the
weighting of the two objectives, and thus significantly influence the result. In contrast, the two hyper-
parameters of POAL are about the efficient approximation (concerning computational resources), which
mainly affects the initialization and stopping criteria, possibly resulting in sub-optimal approximate solutions.
Note that we do not need to tune these parameters for various tasks.

5 Conclusion

In this paper, we proposed an effective and flexible Monte Carlo POAL framework for improving AL when
encountering OOD data in the unlabeled data pool. Our POAL framework i) incorporates various AL
sampling strategies; ii) handles large-scale datasets; iii) supports batch-mode AL with fixed batch size; iv)
does not require tuning a trade-off hyper-parameter; and v) works well on both classical ML and DL tasks.
Future work could improve the OOD detection criterion by introducing OOD-specific feature representations
and other techniques for better distinguishing ID/OOD distributions.

Author Contributions

The first two authors, Xueying Zhan and Zeyu Dai, are equally contributed this paper. Xueying Zhan
contributed the model implementation, draft manuscript preparation, analysis and interpretation of results
and study conception and design parts. Zeyu Dai contributed the study conception and design, analysis and
interpretation of results and draft manuscript preparation parts.

Acknowledgments

The work was supported by a Strategic Research Grant from City University of Hong Kong (Project No.
7005840).

References
Charu C Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensembles. Acm

sigkdd explorations newsletter, 17(1):24–47, 2015.

Shabbir Ahmed, Mohit Tawarmalani, and Nikolaos V Sahinidis. A finite branch-and-bound algorithm for
two-stage stochastic integer programs. Mathematical Programming, 100(2):355–377, 2004.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of ensembles for
active learning in image classification. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 9368–9377, 2018.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 49–56, 2009.

Viktor Bindewald, Fabian Dunke, and Stefan Nickel. Modeling multi-stage decision making under incomplete
and uncertain information. Technical report, Technical report, 2020.

Erdem Bıyık, Kenneth Wang, Nima Anari, and Dorsa Sadigh. Batch active learning using determinantal
point processes. arXiv preprint arXiv:1906.07975, 2019.

17



Published in Transactions on Machine Learning Research (06/2023)

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011.

PM Chaudhari, RV Dharaskar, and VM Thakare. Computing the most significant solution from pareto
front obtained in multi-objective evolutionary. International Journal of Advanced Computer Science and
Applications, 1(4), 2010.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Yufei Cui, Wuguannan Yao, Qiao Li, Antoni B Chan, and Chun Jason Xue. Accelerating monte carlo
bayesian prediction via approximating predictive uncertainty over the simplex. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

Abhimanyu Das and David Kempe. Submodular meets spectral: greedy algorithms for subset selection,
sparse approximation and dictionary selection. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, pp. 1057–1064, 2011.

Geoff Davis, Stephane Mallat, and Marco Avellaneda. Adaptive greedy approximations. Constructive
approximation, 13(1):57–98, 1997.

Antoine de Mathelin, François Deheeger, Mathilde Mougeot, and Nicolas Vayatis. Discrepancy-based active
learning for domain adaptation. In International Conference on Learning Representations, 2021.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Liat Ein Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. Active learning for bert: an empirical study. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7949–7962,
2020.

Pan Du, Suyun Zhao, Hui Chen, Shuwen Chai, Hong Chen, and Cuiping Li. Contrastive coding for active
learning under class distribution mismatch. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8927–8936, 2021.

Long Duong, Hadi Afshar, Dominique Estival, Glen Pink, Philip R Cohen, and Mark Johnson. Active learning
for deep semantic parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 43–48, 2018.

Sandra Ebert, Mario Fritz, and Bernt Schiele. Ralf: A reinforced active learning formulation for object class
recognition. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3626–3633. IEEE,
2012.

Sebastian Farquhar, Yarin Gal, and Tom Rainforth. On statistical bias in active learning: How and when to
fix it. arXiv preprint arXiv:2101.11665, 2021.

Richard Fredlund, Richard M Everson, and Jonathan E Fieldsend. A bayesian framework for active learning.
In The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2010.

Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers. Machine learning,
6(2):161–182, 1991.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In
International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

18



Published in Transactions on Machine Learning Research (06/2023)

Ravi Ganti and Alexander Gray. Upal: Unbiased pool based active learning. In Artificial Intelligence and
Statistics, pp. 422–431. PMLR, 2012.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method
for the two-sample-problem. Advances in neural information processing systems, 19, 2006.

Willem K Klein Haneveld and Maarten H van der Vlerk. Stochastic integer programming: General models
and algorithms. Annals of operations research, 85:39, 1999.

Elmar Haussmann, Michele Fenzi, Kashyap Chitta, Jan Ivanecky, Hanson Xu, Donna Roy, Akshita Mittel,
Nicolas Koumchatzky, Clement Farabet, and Jose M Alvarez. Scalable active learning for object detection.
In 2020 IEEE intelligent vehicles symposium (iv), pp. 1430–1435. IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification
and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Henrik Imberg, Johan Jonasson, and Marina Axelson-Fisk. Optimal sampling in unbiased active learning. In
International Conference on Artificial Intelligence and Statistics, pp. 559–569. PMLR, 2020.

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and Christopher D Manning. Mind your outliers!
investigating the negative impact of outliers on active learning for visual question answering. arXiv preprint
arXiv:2107.02331, 2021.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frederic Branchaud-Charron,
and Yarin Gal. Stochastic batch acquisition for deep active learning. arXiv preprint arXiv:2106.12059,
2021.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Submodular information
measures based active learning in realistic scenarios. Advances in Neural Information Processing Systems,
34, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. Advances in neural information processing systems, 31,
2018.

David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In Machine
Learning, Proceedings of the Eleventh International Conference, Rutgers University, New Brunswick, NJ,
USA, July 10-13, 1994, pp. 148–156. Morgan Kaufmann, 1994.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image detection in
neural networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Shengcai Liu, Ning Lu, Cheng Chen, Chao Qian, and Ke Tang. Hydratext: Multi-objective optimization for
adversarial textual attack. arXiv preprint arXiv:2111.01528, 2021.

Rafid Mahmood, Sanja Fidler, and Marc T Law. Low budget active learning via wasserstein distance: An
integer programming approach. arXiv preprint arXiv:2106.02968, 2021.

19



Published in Transactions on Machine Learning Research (06/2023)

R Timothy Marler and Jasbir S Arora. The weighted sum method for multi-objective optimization: new
insights. Structural and multidisciplinary optimization, 41(6):853–862, 2010.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business Media, 2012.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr, and Yarin Gal. Deep deterministic
uncertainty: A simple baseline. arXiv e-prints, pp. arXiv–2102, 2021.

Andrew Ng. Stanford cs229 - machine learning - andrew ng. 2008.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset selection by pareto optimization. Advances in neural
information processing systems, 28, 2015.

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Optimizing ratio of monotone set
functions. In IJCAI, pp. 2606–2612, 2017.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and Balaji
Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in Neural Information
Processing Systems, 32, 2019.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin
Wang. A survey of deep active learning. ACM Computing Surveys (CSUR), 54(9):1–40, 2021.

Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663), 2009.

Ahti Salo, Juho Andelmin, and Fabricio Oliveira. Decision programming for mixed-integer multi-stage
optimization under uncertainty. European Journal of Operational Research, 299(2):550–565, 2022.

Christoph Sawade, Niels Landwehr, Steffen Bickel, and Tobias Scheffer. Active risk estimation. In ICML,
2010.

Dhish Kumar Saxena, A. Sinha, João A. Duro, and Q. Zhang. Entropy-based termination criterion for
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(4):485–498,
2016.

Panos Seferlis and Michael C Georgiadis. The integration of process design and control. Elsevier, 2004.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Burr Settles. Active learning literature survey. 2009.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of the fifth
annual workshop on Computational learning theory, pp. 287–294, 1992.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile computing
and communications review, 5(1):3–55, 2001.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew Lim Tan. Multi-criteria-based active learning for
named entity recognition. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, 21-26 July, 2004, Barcelona, Spain, pp. 589–596. ACL, 2004.

Changjian Shui, Fan Zhou, Christian Gagné, and Boyu Wang. Deep active learning: Unified and principled
method for query and training. In International Conference on Artificial Intelligence and Statistics, pp.
1308–1318. PMLR, 2020.

20



Published in Transactions on Machine Learning Research (06/2023)

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good closed-set
classifier is all you need. arXiv preprint arXiv:2110.06207, 2021.

Dan Wang and Yi Shang. A new active labeling method for deep learning. In 2014 International joint
conference on neural networks (IJCNN), pp. 112–119. IEEE, 2014.

Jean-Paul Watson, Harvey J Greenberg, and William E Hart. A multiple-objective analysis of sensor placement
optimization in water networks. In Critical transitions in water and environmental resources management,
pp. 1–10. 2004.

Hongxin Wei, Lue Tao, Renchunzi Xie, and Bo An. Open-set label noise can improve robustness against
inherent label noise. Advances in Neural Information Processing Systems, 34:7978–7992, 2021.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey.
arXiv preprint arXiv:2110.11334, 2021.

Changchang Yin, Buyue Qian, Shilei Cao, Xiaoyu Li, Jishang Wei, Qinghua Zheng, and Ian Davidson. Deep
similarity-based batch mode active learning with exploration-exploitation. In 2017 IEEE International
Conference on Data Mining (ICDM), pp. 575–584. IEEE, 2017.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 93–102, 2019.

Xueying Zhan, Qing Li, and Antoni B Chan. Multiple-criteria based active learning with fixed-size determi-
nantal point processes. arXiv preprint arXiv:2107.01622, 2021a.

Xueying Zhan, Huan Liu, Qing Li, and Antoni B. Chan. A comparative survey: Benchmarking for pool-based
active learning. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 4679–4686, 2021b.

Xueying Zhan, Qingzhong Wang, Kuan-hao Huang, Haoyi Xiong, Dejing Dou, and Antoni B Chan. A
comparative survey of deep active learning. arXiv preprint arXiv:2203.13450, 2022a.

Xueying Zhan, Yaowei Wang, and Antoni B Chan. Asymptotic optimality for active learning processes. In
The 38th Conference on Uncertainty in Artificial Intelligence, 2022b.

Eric Zhao, Anqi Liu, Animashree Anandkumar, and Yisong Yue. Active learning under label shift. In
International Conference on Artificial Intelligence and Statistics, pp. 3412–3420. PMLR, 2021.

Yu Zhao, Zhenhui Shi, Jingyang Zhang, Dong Chen, and Lixu Gu. A novel active learning framework for
classification: Using weighted rank aggregation to achieve multiple query criteria. Pattern Recognition, 93:
581–602, 2019.

Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, and Qingfu
Zhang. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and evolutionary
computation, 1(1):32–49, 2011.

21



Published in Transactions on Machine Learning Research (06/2023)

Appendix

A Computational Complexity Analysis of POAL

A.1 Monte-Carlo POAL

Our proposed Monte-Carlo POAL for fixed-size subset selection used unordered sampling with replacement.
Denote the ground set A with size N . At each iteration, B (batch size, B < N) samples are randomly
selected. So the search space contains S = CB

N combinations. The worst case of POAL is to find all Pareto
optimal solutions P = {s1, s2, · · · } out of S combinations (each solution is a subset of B distinct samples
out of N samples). Let |P| = M (M ≤ S). Hence, the computational complexity is the expected number of
iterations that all of the M Pareto optimal solutions have been selected at least once, which is calculated
below:

At each iteration, there is a probability S−1
S that one particular solution si is not selected. So after k iterations,

there is probability ( S−1
S )k that solution si has not been selected. Thus, the probability that solution si has

been selected at least once after k iterations is 1 − (S−1
S )k. For all M solutions, the probability that they

have all been selected at least once after k iterations is (1 − ( S−1
S )k)M . To obtain the probability that these

M solutions have been selected at least once exactly after k iterations (i.e., not before k iterations), we need
to subtract the probability that it is completed after k − 1 iterations: (1 − (S−1

S )k)M − (1 − (S−1
S )k−1)M .

Hence, the expected number of iterations is:

E[T ] =
∞∑

k=0
k · ((1 − (S − 1

S
)k)M − (1 − (S − 1

S
)k−1)M )

=
∞∑

k=0
1 − (1 − (S − 1

S
)k)M .

For small datasets, the size is tolerable, so the ground set A is just the unlabeled dataset Du with size n, and
the search space size S = CB

n . In practice, we applied an early-stopping strategy, which can obtain a good
enough solution with much fewer iterations.

A.2 Pre-selection for large-scale datasets

We designed a pre-selection technique for large-scale datasets to reduce the search space of POAL. As
introduced in the last paragraph in Section 3.4, we iteratively select Pareto optimal samples from the
unlabeled data. The worst case is that all unlabeled samples are Pareto optimal samples, so the number of
comparisons is 0 + 1 + 2 + · · · + (n − 1) = n2

2 − n. The computational complexity of the pre-selection is O(n2).

We pre-selected sm = αB samples out of n unlabeled samples (α is set according to the computing resources
and time budget, we set α = 6 in our experiment) for the subsequent Monte-Carlo POAL. Therefore,
N = αB ≪ n, and the search space size S is reduced from CB

n to CB
αB . Also, with an early-stopping strategy,

our POAL can achieve a good enough solution with an acceptable number of iterations in practice.

B Experimental Settings

B.1 Datasets

We summarize the datasets we adopted in our experiments in Table 2, including how to split the datasets
(initial labeled data, unlabeled data pool, and test set), dataset information (number of categories, number of
feature dimensions), and task-concerned information (maximum budget, batch size, numbers of repeated
trials and basic learners adopted in each task). Primarily, we recorded the ID : OOD ratio in each task. We
down-sampled the letter dataset and controlled that each category only has 50 data samples in the training
set.
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Table 2: Datasets used in the experiments.

Dataset # of
ID

classes

# of
feature

dimension

# of
initial

labeled
set

# of
unla-
beled
pool

# of
test set

# of
Maxi-
mum

Budget

ID :
OOD
Ratio

batch
size b

# of
re-

peat
trials

basic
learner

EX8 2 2 20 650 306 500 46 : 21 10 100 GPC
vowel 7 10 25 503 294 500 336 : 192 10 100 GPC
letter(a-k) 10 16 30 520 500 550 10 : 1 10 100 LR
letter(a-l) 10 16 30 570 500 550 10 : 2 10 100 LR
letter(a-m) 10 16 30 620 500 550 10 : 3 10 100 LR
letter(a-n) 10 16 30 670 500 550 10 : 4 10 100 LR
letter(a-o) 10 16 30 720 500 550 10 : 5 10 100 LR
letter(a-p) 10 16 30 770 500 550 10 : 6 10 100 LR
letter(a-q) 10 16 30 720 500 550 10 : 7 10 100 LR
letter(a-r) 10 16 30 870 500 550 10 : 8 10 100 LR
letter(a-s) 10 16 30 920 500 550 10 : 9 10 100 LR
letter(a-t) 10 16 30 970 500 550 10 : 10 10 100 LR
letter(a-u) 10 16 30 1020 500 550 10 : 11 10 100 LR
letter(a-v) 10 16 30 1070 500 550 10 : 12 10 100 LR
letter(a-w) 10 16 30 1120 500 550 10 : 13 10 100 LR
letter(a-x) 10 16 30 1170 500 550 10 : 14 10 100 LR
letter(a-y) 10 16 30 1220 500 550 10 : 15 10 100 LR
letter(a-z) 10 16 30 1270 500 550 10 : 16 10 100 LR
CIFAR10-04 6 32 × 32 × 3 1000 49000 6000 20000 6 : 4 500 3 ResNet18
CIFAR10-06 4 32 × 32 × 3 1000 49000 4000 15000 4 : 6 500 3 ResNet18
CIFAR100-04 60 32 × 32 × 3 1000 49000 6000 25000 6 : 4 500 3 ResNet18
CIFAR100-06 40 32 × 32 × 3 1000 49000 4000 20000 4 : 10 500 3 ResNet18
Down-sampled CIFAR10 8 32 × 32 × 3 1600 14000 8000 2250 8:2 125 3 ResNet18

B.2 Visualization of Datasets

B.2.1 Classical ML tasks.

We visualize the datasets of classical ML tasks using t-Distributed Stochastic Neighbor Embedding (t-SNE)5,
as shown in Fig. 7. We split ID/OOD data by setting OOD data samples as semitransparent grey dots to
better observe the distinction between the ID and OOD data distributions. On EX8 dataset, there is a large
distinction between ID and OOD samples, thus the calculation of Mahalanobis distance score would be very
accurate, see Fig. 9a as example. In contrast, if the gap between ID and OOD data is small, like letter(a-z),
the ability of Mahalanobis distance score for distinguishing ID and OOD data will be limited, as shown in
Fig. 9r.

B.2.2 DL tasks.

We also visualize the discrepancy using MMD in DL tasks since the raw features of DL tasks are hard to
visualize, like Fig. 7. We calculate the MMD distance within the ID data and the MMD distance between
the ID and OOD data. To extract the feature representations in DL tasks, we utilized a ResNet50 which is
pre-trained on ImageNet dataset6. After extracting the features (the output of the penultimate layer of the
pre-trained ResNet50) of ID and OOD samples, we next calculate the MMD scores, which is the same as
the MMD settings in our early-stopping technique. Calculating the MMD score between these ID and OOD
data samples is memory-consuming (CIFAR10 and CIFAR100 have 50, 000 training sets). To calculate the
ID-ID MMD score, we randomly sampled 1, 000 × 2 instances in ID data and calculated the MMD score. We
repeated this operation 100 times and took the average score. For calculating the ID-OOD score, we perform
the same operation.

The MMD scores of CIFAR10-04, CIFAR10-06, CIFAR100-04 and CIFAR100-06 are shown in Table 3.
The distance between ID and OOD data are 1.5x/ 2.5x larger compared with the in-between distance of ID
data, which indicates that using the Mahalanobis distance for distinguishing ID and OOD data is feasible
on CIFAR10 and CIFAR100 datasets. Note that we did not calculate the MMD scores of ID-ID and
ID-OOD during each stage of the AL process, since calculating the MMD scores on large-scale data with
high-dimensional feature representations is time- and memory-consuming.

B.3 Baselines and Implementations

We introduce the baselines and the implementation details in this section.

5https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
6https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
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Figure 7: Visualization of data sets in classical ML tasks by t-SNE. We set the semitransparent grey dots to represent
OOD data samples, the remaining colorful dots are ID data samples.

For the basic learner/classifier, we adopted Gaussian Process Classifier (GPC), Logistic Regression (LR), and
ResNet18 in our experiments. We did not choose GPC in the letter dataset since the accuracy-budget curves
based on GPC are not monotonically increasing. The requirement of selecting a basic classifier is: that the
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Table 3: MMD scores of ID-ID and ID-OOD data in DL tasks.

ID-ID ID-OOD
CIFAR10-04 0.00608 0.04645
CIFAR10-06 0.00596 0.03565
CIFAR100-04 0.00603 0.01305
CIFAR100-06 0.00604 0.01659

basic classifier can provide soft outputs, that is, predictive class probabilities to calculate the uncertainty of
each unlabeled sample, e.g., entropy. We use the implementation of the GPC with RBF kernel7 and LR8

of scikit-learn library (Pedregosa et al., 2011) with default settings. For ResNet18, we employed ResNet18
(He et al., 2016) based on PyTorch with Adam optimizer (learning rate: 1e − 3) as the basic learner in DL
tasks. In CIFAR10 and CIFAR100 tasks, we set the number of training epochs as 30, the kernel size of
the first convolutional layer in ResNet18 is 3 × 3 (consistent with PyTorch CIFAR implementation9). Input
pre-processing steps include random crop (pad = 4), random horizontal flip (p = 0.5) and normalization.

For the implementation of the classical ML baselines, we have introduced it in the main paper.

For the baselines in DL tasks, we use the implementation of DeepAL+10(Zhan et al., 2022a). We provide
simple introductions of BALD, LPL and BADGE as follows:

• Bayesian Active Learning by Disagreements (BALD) (Houlsby et al., 2011; Gal et al., 2017): it chooses
the data points that are expected to maximize the information gained from the model parameters, i.e.,
the mutual information between predictions and model posterior.

• Loss Prediction Loss (LPL) (Yoo & Kweon, 2019): it is a loss prediction strategy by attaching a small
parametric module that is trained to predict the loss of unlabeled inputs concerning the target model by
minimizing the loss prediction loss between predicted loss and target loss. LPL picks the top b data
samples with the highest predicted loss.

• Batch Active learning by Diverse Gradient Embeddings (BADGE) (Ash et al., 2020): it first measures
uncertainty as the gradient magnitude for the parameters in the output layer in the first stage; it then
clusters the samples by k-Means++ in the second stage.

For CCAL, We utilize the open-source code implementation of CCAL11. We train SimCLR (Chen et al.,
2020), the semantic/distinctive feature extractor, which is provided by CCAL’s source code. We train the
two feature extractors with 700 epochs and a batch size of 32 on a single V100 GPU.

We run all our experiments on a single Tesla V100-SXM2 GPU with 16GB memory except for running
SIMILAR (FLCMI) related experiments. Since SIMILAR (FLCMI) needs much memory. We run the
experiments (SIMILAR on down-sampled CIFAR10 ) on another workstation with Tesla V100-SXM2 GPU
with 94GB memory in total.

C Experiments

This section is an extension of Section 4 in the main paper. We provide additional experimental results
analysis and more experiments that do not appear in the main paper.

C.1 Complete Experiments of POAL on Classical ML Tasks

We present the complete accuracy vs. budget curves and numbers of OOD samples selected vs. budget curves
during AL processes in Fig. 8 and Fig. 9 respectively.

7https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
8https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
9https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

10https://github.com/SineZHAN/deepALplus
11https://github.com/RUC-DWBI-ML/CCAL/
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Figure 8: Accuracy vs. budget curves for classical ML tasks. The AUBC performances are shown in parentheses in
the legend.
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Figure 9: Numbers of OOD samples selected vs. budget curves for classical ML tasks during AL processes.

C.2 POAL vs. SIMILAR (FLCMI)

In the main paper, we have compared the SIMILAR with FLVMI as submodular mutual information.
Referring to its comparable performance on CIFAR10 dataset (see Figure 5a and Figure 5b in (Kothawade
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et al., 2021) as reference). We choose FLVMI as baselines in our main paper since it is both time and
memory efficient. However, FLVMI performs worse than FLCMI, since FLCMI is specially designed for AL
under OOD data scenarios. However, FLCMI is both time and memory-consuming. In (Kothawade et al.,
2021), they adopted down-sampled experiments. Although the partition trick could be applied to solve this
time/memory-consuming problem, the partition will influence the final performance due to the randomness.
To provide a fair comparison. We conduct additional experiments on the down-sampled CIFAR10 dataset on
SIMILAR (FLCMI), following the experimental settings in (Kothawade et al., 2021).

The comparison experiments are shown in Fig. 10. Besides our POAL and SIMILAR (FLCMI), we also
provide more baselines as reference, i.e., IDEAL-ENT, ENT, Margin (Wang & Shang, 2014) and RAND. As
shown in Fig. 10, both SIMILAR (FLCMI) and POAL have better performance than normal AL sampling
strategies. From the aspect AUBC evaluation metric, our model has comparable performance with SIMILAR,
0.667 vs 0.669. Nevertheless, we have a lower standard deviation value than SIMILAR, so our POAL is more
stable. From the aspect of Accuracy vs. Budget curves, in early stages (e.g., Budget < 2,500), our POAL is
better than SIMILAR (FLCMI) and in latter stages SIMILAR (FLCMI) exceeds POAL. The reason is that
in SIMILAR (FLCMI), they calculate the similarities between the ID labeled set and the unlabeled pool and
the dissimilarities between the OOD labeled set and the unlabeled pool. In the early stages, the OOD data
is insufficient. Thus SIMILAR(FLCMI) will select more OOD samples, as shown in Fig. 10-b. From this
experiment, we find that SIMILAR (FLCMI) only performs well when we have enough information on both
ID and OOD data samples, which results in more OOD data sample selection. Our POAL only considers the
distance between unlabeled samples and labeled ID samples, so we are more efficient in preventing OOD
sample selection. Additionally, our POAL is more widely adopted since we could be adopted on large-scale
datasets. However, SIMILAR is limited by the computation condition. Our method is also more time efficient
than SIMILAR (FLCMI), as shown in Table 4. SIMILAR (FLCMI) runs five times longer than our POAL.
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Figure 10: The comparative experiments between our model and SIMILAR on down-sampled CIFAR10 dataset.

Table 4: The mean and standard deviation of running time (in seconds) of the comparative experiments with 3
repeated trials between our POAL and SIMILAR.

Method POAL-PS SIMILAR IDEAL-ENT ENT Random Margin
Time 6419.0 (109.9) 32837.7 (897.7) 2225.0 (12.6) 1690.0 (15.3) 1507.7 (5.8) 1573.7 (9.8)

C.2.1 Enlarged Figures

To increase the readability of our experimental results, we enlarged the Figures 3, 4, 5 and 6, as shown in
Figures 11, 12, 13 and 14.
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Figure 11: This is a enlarged version of Figure 3 in our main paper.
29



Published in Transactions on Machine Learning Research (06/2023)

2500 5000 7500 10000 12500 15000 17500 20000

Budget
0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

CIFAR10_04(ID:OOD ratio - 6:4)

POAL-PS (0.762±0.003)
CCAL (0.754±0.001)
SIMILAR (FLVMI) (0.74±0.001)
DDU (0.721±0.004)
IDEAL-ENT (0.801±0.003)
ENT (0.735±0.003)
MAHA (0.731±0.002)
Random (0.75±0.001)
LPL (0.751±0.007)
BALD (0.748±0.002)
KMeans (0.744±0.001)
BADGE (0.744±0.003)
TwoStage (0.73±0.003)
WeightedSum-0.5 (0.734±0.002)

(a) CIFAR10-04

2000 4000 6000 8000 10000 12000 14000 16000

Budget

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

CIFAR10_06(ID:OOD ratio - 4:6)

POAL-PS (0.84±0.003)
CCAL (0.819±0.004)
SIMILAR (FLVMI) (0.795±0.004)
DDU (0.796±0.003)
IDEAL-ENT (0.874±0.002)
ENT (0.796±0.006)
MAHA (0.801±0.002)
Random (0.808±0.001)
LPL (0.787±0.01)
BALD (0.806±0.002)
KMeans (0.81±0.002)
BADGE (0.806±0.004)
TwoStage (0.797±0.003)
WeightedSum-0.5 (0.803±0.003)

(b) CIFAR10-06

0 5000 10000 15000 20000 25000

Budget
0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

CIFAR100_04(ID:OOD ratio - 6:4)

POAL-PS (0.481±0.001)
CCAL (0.44±0.001)
SIMILAR (FLVMI) (0.438±0.003)
DDU (0.451±0.002)
IDEAL-ENT (0.525±0.001)
ENT (0.427±0.003)
MAHA (0.428±0.003)
Random (0.456±0.002)
LPL (0.414±0.004)
BALD (0.447±0.004)
KMeans (0.453±0.001)
BADGE (0.453±0.0)
TwoStage (0.435±0.002)
WeightedSum-0.5 (0.427±0.003)

(c) CIFAR100-04

2500 5000 7500 10000 12500 15000 17500 20000

Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

CIFAR100_06(ID:OOD ratio - 4:6)

POAL-PS (0.525±0.001)
CCAL (0.447±0.002)
SIMILAR (FLVMI) (0.451±0.002)
DDU (0.448±0.001)
IDEAL-ENT (0.571±0.002)
ENT (0.41±0.004)
MAHA (0.409±0.001)
Random (0.445±0.003)
LPL (0.409±0.004)
BALD (0.431±0.006)
KMeans (0.441±0.002)
BADGE (0.443±0.001)
TwoStage (0.414±0.002)
WeightedSum-0.5 (0.41±0.001)

(d) CIFAR100-06

2500 5000 7500 10000 12500 15000 17500 20000

Budget

0.0

0.1

0.2

0.3

0.4

0.5

R
at

io
 o

f O
O

D
 sa

m
pl

es
 se

le
ct

ed

OOD data selected in CIFAR10_04

POAL-PS
CCAL
SIMILAR (FLVMI)
DDU
IDEAL-ENT
ENT
MAHA
RAND
LPL
BALD
KMeans
BADGE

(e) CIFAR10-04 OOD

2000 4000 6000 8000 10000 12000 14000 16000

Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at

io
 o

f O
O

D
 sa

m
pl

es
 se

le
ct

ed

OOD data selected in CIFAR10_06

POAL-PS
CCAL
SIMILAR (FLVMI)
DDU
IDEAL-ENT
ENT
MAHA
RAND
LPL
BALD
KMeans
BADGE

(f) CIFAR10-06 OOD

0 5000 10000 15000 20000 25000

Budget

0.0

0.1

0.2

0.3

0.4

0.5

R
at

io
 o

f O
O

D
 sa

m
pl

es
 se

le
ct

ed

OOD data selected in CIFAR100_04

POAL-PS
CCAL
SIMILAR (FLVMI)
DDU
IDEAL-ENT
ENT
MAHA
RAND
LPL
BALD
KMeans
BADGE

(g) CIFAR100-04 OOD

2500 5000 7500 10000 12500 15000 17500 20000

Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
 o

f O
O

D
 sa

m
pl

es
 se

le
ct

ed

OOD data selected in CIFAR100_06

POAL-PS
CCAL
SIMILAR (FLVMI)
DDU
IDEAL-ENT
ENT
MAHA
RAND
LPL
BALD
KMeans
BADGE

(h) CIFAR100-06 OOD

Figure 12: This is a enlarged version of Figure 4 in our main paper.
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Figure 13: This is a enlarged version of Figure 5 in our main paper.
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Figure 14: This is a enlarged version of Figure 6 in our main paper.
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C.2.2 Supplementary Experiments vs. Stochastic Acquisition

To explore whether the stochastic acquisition strategy (Kirsch et al., 2021) can be used for AL under OOD
detection scenarios, we consider a simple experiment using the same experimental settings as Figure 1.
We add Gumbel-distributed random perturbations based on G(0; β−1) to the AL score function ENT. The
visualization of densities with different β settings are shown in Figure 15. Adding random perturbations
could indeed increase the number of ID samples selected, compared with selection with only ENT. Larger β
settings could result in better performance, but it still could not distinguish ID and OOD samples, as there is
still significant overlap between the ID and OOD score distributions.
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Figure 15: Densities when adding Entropy score with Gumbel-distributed random perturbations with different
hyper-parameter settings. The experimental settings are the same as Figure 1.
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