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Abstract

Referring Image Segmentation (RIS) is a challenging
task that requires an algorithm to segment objects referred
by free-form language expressions. Despite significant
progress in recent years, most state-of-the-art (SOTA) meth-
ods still suffer from considerable language-image modality
gap at the pixel and word level. These methods generally
1) rely on sentence-level language features for language-
image alignment and 2) lack explicit training supervision
for fine-grained visual grounding. Consequently, they ex-
hibit weak object-level correspondence between visual and
language features. Without well-grounded features, prior
methods struggle to understand complex expressions that
require strong reasoning over relationships among multiple
objects, especially when dealing with rarely used or am-
biguous clauses. To tackle this challenge, we introduce a
novel Mask Grounding auxiliary task that significantly im-
proves visual grounding within language features, by ex-
plicitly teaching the model to learn fine-grained correspon-
dence between masked textual tokens and their matching
visual objects. Mask Grounding can be directly used on
prior RIS methods and consistently bring improvements.
Furthermore, to holistically address the modality gap, we
also design a cross-modal alignment loss and an accom-
panying alignment module. These additions work syner-
gistically with Mask Grounding. With all these techniques,
our comprehensive approach culminates in MagNet (Mask-
grounded Network), an architecture that significantly out-
performs prior arts on three key benchmarks (RefCOCO,
RefCOCO+ and G-Ref), demonstrating our method’s effec-
tiveness in addressing current limitations of RIS algorithms.
Our code and pre-trained weights will be released.

1. Introduction
Deep learning has greatly improved the performance of vi-
sion algorithms on many image segmentation tasks, such
as semantic segmentation [5, 48], instance segmentation
[2, 12, 24, 42] and panoptic segmentation [8, 36]. These

† Project lead.
B Corresponding author.

diving mandiving man

(b) Fine-grained visual grounding is required to understand
expressions used in uncommon or ambiguous contexts.

Correct Wrong

diving man

Correct

third remote from the left

(a) Fine-grained visual grounding is required to reason over
complicated relationships among multiple objects.

third remote from the left third remote from the left

Correct Wrong Wrong

Figure 1. Importance of Fine-grained Visual Grounding for RIS.
Most RIS algorithms lack well-grounded text features. As a result,
they struggle in difficult cases illustrated in (a) and (b). Red mask
are predictions of LAVT, one of the recent SOTA RIS methods.
Yellow dotted boxes are the ground truths.

tasks require grouping of image pixels under a fixed set of
pre-defined categories and mainly differ in the granularity
of grouping semantics required. In contrast to these uni-
modal segmentation tasks, Referring Image Segmentation
(RIS) [9, 28] is a challenging multi-modal task that requires
an algorithm to simultaneously understand fine-grained hu-
man language expression and make correct pixel-level cor-
respondence to the referred object. Recently, it has gained
widespread research attention due to its potential to im-
prove human-robot interaction [1], interactive image editing
[43, 52] and advanced driver-assistance systems [29].

The key challenge in RIS lies in how to reduce the
modality gap between language and image features [14, 64,
71]. To tackle this challenge, we need to have an effective
alignment between a given language expression and the cor-
responding image pixels for highlighting the referred target.
Ideally, with robust pixel-wise language-image alignment,
language and image features should have high feature simi-
larity when referring to the same object and low feature sim-
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Figure 2. (a) Current SOTA RIS methods mainly focus on designing and improving multi-modal alignment modules and/or alignment
losses. These methods generally 1) do not have explicit training supervision for fine-grained visual grounding and 2) use sentence-
level language features or image/pixel-level image features for alignment. As a result, their language features lack precise visual-textual
object correspondence. (b) Our proposed Mask Grounding remedies this problem by explicitly teaching our model to learn fine-grained
correspondence between masked word tokens and their matching visual objects through an auxiliary alignment task.

ilarity when referring to different objects. However, achiev-
ing such alignment is non-trivial because the language ex-
pression can be highly complex and diverse.

As depicted in Fig. 2, prevailing methods primarily fo-
cus on devising innovative losses [61, 71] or introducing
new network architectures/modules [14, 45, 63, 64, 72] to
bolster language-image alignment. Despite their advance-
ments, two overarching limitations persist. First, these ap-
proaches tend to rely on sentence-level language features
for language-image alignment. Second, they often lack ex-
plicit training supervision for fine-grained visual ground-
ing. These oversights result in their language features be-
coming noisy anchors for RIS prediction [63, 69], inhibit-
ing the effective learning of fine-grained visual grounding.
Consequently, such models face challenges when interpret-
ing referring expressions that require intricate reasoning
across complex inter-object relationships or contain clauses
used in rare or ambiguous contexts, as exemplified in Fig. 1.

To address this challenge, we introduce a novel Mask
Grounding auxiliary task to explicitly teach our model to
make fine-grained correspondence between masked textual
tokens and their matching visual objects. Specifically, dur-
ing training, our model encounters randomly masked tex-
tual tokens and has to predict their identities. Instead of
relying solely on the surrounding textual context to predict
these tokens, our model integrates both visual and segmen-
tation information. This integrated approach is pivotal for
the model to make accurate prediction, as it must discern
and establish the correct linkage between the masked to-
kens and their corresponding visual objects. Learning to do

so ensures that our model acquires a profound proficiency
in the highly-coveted fine-grained visual grounding. The
efficacy of Mask Grounding is empirically validated with
extensive ablation experiments. Moreover, we also show
that Mask Grounding is universal and can be directly used
on prior RIS methods to bring significant improvements.

In addition to Mask Grounding, we also design a cross-
modal alignment loss and an alignment module to holis-
tically bridge the modality gap. With all these enhance-
ments, our resulting MagNet (Mask-grounded Network)
sets new records by significantly outperforming previous
SOTA methods across all key datasets (RefCOCO [67], Re-
fCOCO+ [67] and G-Ref [49, 50]). Notably, our method
consistently outperforms these SOTA methods by large
margins of up to 2.48 points in overall IoU. Visual exam-
ination of MagNet’s predictions reinforces our claim and
shows that our method works well in complex scenarios.

Our main contributions are summarized as follows:

1. We highlight the shortcomings in recent state-of-the-art
(SOTA) RIS algorithms, pinpointing the lack of fine-
grained visual grounding.

2. We introduce the Mask Grounding auxiliary task, a novel
method aimed at enhancing fine-grained visual ground-
ing in existing RIS algorithms. Its effectiveness is vali-
dated through rigorous ablation studies.

3. Using Mask Grounding, together with our specially de-
signed cross-modal alignment loss and an accompanying
alignment module, we present MagNet (Mask-grounded
Network), a new SOTA network for RIS.
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2. Related works
Architecture Design for RIS. Early works [28, 41, 44, 54]
follow a concatenate-then-convolve pipeline, where lan-
guage and image features are fused by concatenation. Sub-
sequent works [4, 41, 44, 65] improve upon this pipeline by
using RNN or dynamic networks [19–21, 23] to progres-
sively refine the segmentation mask. Other works [16, 64]
investigate the position to perform language-image fusion
and conclude that early fusion performs the best. Apart
from designing novel fusion mechanisms, some works
[31, 32, 68] exploit known linguistic structures or ob-
ject relationships to enhance language-image fusion. Rid-
ing on the success of attention architecture [15, 22, 58],
current works mostly use unidirectional [54, 64, 66] or
bidirectional [30, 71] cross-attention modules to perform
language-image fusion. To improve model performance on
novel composition of learned concepts, a recent work [62]
uses meta learning [17]. Driven by the success of large lan-
guage models [3, 57], newer works [10, 46, 74] explore for-
mulating RIS as an auto-regressive vertex generation prob-
lem. Lately, VPD [72] attempts to exploit semantic infor-
mation in diffusion models [27, 51, 55] for RIS, whereas
ReLA [45] and DMMI [29] generalize RIS to support an
arbitrary number of targets. Despite huge progress in RIS
architecture design, prior studies often expect language-
image alignment to be performed implicitly through mask
prediction. We enhance this by introducing an auxiliary task
for explicit language-image feature alignment.
Loss Design for RIS. Early works train RIS models with
simple binary cross entropy loss. Inspired by the suc-
cess of prior works [59, 73] in adopting contrastive loss
[6, 18, 25, 53] for semantic segmentation tasks, recent
works [14, 71] start to use contrastive loss in order to regu-
larize the segmentation embedding space and achieve good
results. Contrary to prior works that use global-pooled lan-
guage features for loss computation, we focus on learning
fine-grained object correspondence at the pixel-word level.
Masked Language Modeling. Masked language modeling
(MLM) is a powerful technique for natural language pro-
cessing that trains a model to restore missing or corrupted
tokens in an input text. It was introduced by BERT [13] and
has become a popular technique for pre-training language
[11, 70] and visual language [35, 39, 56] models. Recently,
it has been shown to scale excellently [3, 33] and generalize
well to various downstream tasks [3, 57]. A work closely
related to ours is MaskedVLM [37], which is a multi-modal
adaptation of MLM that jointly performs masked vision
and language modeling. It does so by reconstructing the
masked signal of one modality with the help from the an-
other modality. Mask Grounding differs from MaskedVLM
by using extra mask signals that directly match the missing
words to ensure clear and meaningful reconstructions, so
that fine-grained visual grounding can be effectively learnt.

3. Method
In this section, we first describe our architecture overview
(Sec. 3.1). Then, we explain our proposed Mask Ground-
ing (Sec. 3.2) auxiliary task, cross-modal alignment module
(Sec. 3.3) and alignment loss (Sec. 3.4). Finally, we give the
overall loss function Sec. 3.5 for our model.

3.1. Architecture Overview

MagNet (Mask-grounded Network) adopts a unified ap-
proach that integrates three inter-linked modules to enhance
visual-textual object correspondence and segmentation ac-
curacy. Mask Grounding is the first of these integrated
modules, designed to improve fine-grained visual ground-
ing in language features. It accomplishes this by teach-
ing the model to predict masked textual tokens, using a
combination of visual cues, linguistic context, and segmen-
tation information. Building upon Mask Grounding’s en-
riched language features, Cross-modal Alignment Module
(CAM) steps in to fine-tune the bi-directional interaction
between the refined language and image features. By incor-
porating global contextual information from multiple im-
age scales, CAM ensures that the multi-modal features are
in sync, addressing the granularity discrepancies between
textual descriptions and visual information. Finally, Cross-
modal Alignment Loss (CAL) cohesively weaves together
pixel-to-pixel and pixel-to-text alignments. By simultane-
ously considering these alignments, CAL ensures that seg-
ments created by the model are not only accurate in shape
but also correctly match their referring textual descriptions.

3.2. Mask Grounding

Inspired by prior works [13, 26, 60] that have shown the
effectiveness of using masked input modeling to learn good
feature representation, we propose a novel Mask Grounding
auxiliary task to improve the learning of fine-grained visual
grounding information in language features. As shown in
Fig. 3, given an input image, its corresponding referring
expression and segmentation mask, we randomly replace
some tokens in the tokenized referring expression with a
special learnable mask token and train our model to predict
the actual tokens being masked. By successfully predicting
the identities of masked tokens, our model will acquire the
ability to understand which parts of the text correspond to
which parts of the image, thus learning fine-grained visual
grounding in the process. Specifically, to perform this auxil-
iary task, we first encode the segmentation mask into a mask
embedding by first extracting the center coordinates of the
mask region and passing it through a 2-layer MLP. At the
same time, we use a linear layer to project the language em-
bedding into the same dimension as the image embedding.
Then, we employ the proposed Masked Token Predictor to
jointly process all these concatenated embeddings with at-
tention mechanism for masked token prediction. Finally, a
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Figure 3. Overview of Mask Grounding. This task enriches fine-grained visual grounding in language features by guiding the model to
learn detailed textual-visual associations. To perform this task, we first use an MLP-based Mask Encoder to encode center-coordinates
of segmentation masks. Then, we randomly mask textual tokens in language inputs before extracting their features. Finally, we pass the
encoded language, image and mask features to a Transformer-based Masked Token Predictor to perform masked token prediction.

cross-entropy loss Lgrounding is used to compare the final pre-
dicted distribution with the target distribution. The large-
scale BERT [13] vocabulary is adopted as our word class
list, as it is generally accepted to have open-vocabulary ca-
pability. Although additional forward pass through the lan-
guage encoder is required to process the masked expres-
sion, overall computational cost only increase by 4.76% as
the language encoder is very small. We believe this slight
increase in computational cost is an acceptable trade-off to
improve visual grounding in language features.

A brief mathematical formulation for Mask Grounding
can be given as follows: Let T, I, M be the input to the
language encoder, image encoder and mask encoder,

O = LanguageEncoder(Mask(T)), (1)
P = ImageEncoder(I), (2)
C = MaskEncoder(M), (3)

Lgrounding = LCE(ygt,Predictor(Concat([O,P,C]), (4)

where Predictor is a BERT [13]-like encoder, M is the cen-
ter coordinates of ground truth masks, ygt is the label of the
masked token and LCE is the cross entropy loss. In our ex-
periments, we use Swin-B [47] as our image encoder, and
BERT-base [13] as our language encoder, but our approach
is not specifically bound to these encoders.
Discussion. In Tab. 3(a), we demonstrate Mask Ground-
ing’s superiority over both the standard masked language
modeling (MLM) [3, 13, 33, 57] and masked-vision lan-
guage modeling (MaskedVLM) [37], highlighting our ap-
proach’s effectiveness. Our advantages over these tech-
niques include: 1) Modality Integration: Traditional MLM
is uni-modal and lacks correspondence between referring
expressions and their matching visual objects.. While

MaskedVLM is multi-modal, Mask Grounding surpasses
it by introducing an additional masking signal that aligns
with the masked words and their matching visual objects,
enabling a more coherent reconstruction. This approach ex-
poses word-object correspondence and allows fine-grained
visual grounding to be learnt. 2) Task Nature: MLM and
MaskedVLM serve as general pre-training tasks and require
fine-tuning for specific downstream applications. In con-
trast, Mask Grounding is designed as a specialized auxil-
iary task for RIS, enhancing fine-grained visual grounding
within language features right from the training phase. Con-
sequently, there is no need for additional fine-tuning. 3)
Prediction Context: While MLM and MaskedVLM predict
using textual or textual-visual contexts, Mask Grounding in-
corporates both with additional segmentation information.
By leveraging this additional information, our model can
outperform prior methods in complex scenarios where text
and visual elements are closely intertwined. For instance,
consider the scenario illustrated in Fig. 3. When the term
“apples” in “piles of apples behind the grapes” is masked,
a model lacking precise word-object correlation might fal-
ter in predicting the appropriate term. Several other words
might yield a semantically consistent sentence, but they
would not be accurate in the given visual context.

3.3. Cross-modal Alignment Module

To further improve the performance of our model, we
also make a meaningful improvement to the popular cross-
modal alignment mechanism proposed by prior work [64].
As depicted in Fig. 4, our cross-modal alignment module
(CAM) improves language-image alignment by injecting
global contextual prior into image features before perform-
ing language-image fusion. CAM first uses pooling oper-
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Figure 4. Cross-modal Alignment Module. This module enables
bidirectional language-image interaction and addresses granular-
ity mismatches between language and image features, thereby
enhancing segmentation accuracy for RIS. X-MHA denotes bi-
directional cross-modal multi-head attention. Pi and Pi+1 denote
input and output image features, whereas Oi and Oi+1 denote in-
put and output language features. Up denotes upsampling.

ations with different window sizes to generate K feature
maps of different pyramid scales. Then, each of these fea-
ture maps passes through a 3-layer MLP to better extract
global information, before cross-attending with the opposite
modality. After that, all the output features are upsampled to
the original feature map via bilinear interpolation and con-
catenated along the channel dimension. A 2-layer MLP is
subsequently used to to reduce the channel dimension of
this concatenated feature back to the original one. To pre-
vent the multi-modal signal from overwhelming the original
signal, a gate with Tanh nonlinearity is used to modulate the
final output. Finally, this post-gate feature is added back to
the input feature before being passed to the next stage of the
image or language encoder. We split language encoder into
4 stages with an equal number of layers and add CAM to
the end of every stage of image and language encoder.

Mathematically, CAM can be represented as follows:
Let Ti and Ii be the text/image input to each stage of the
language and image encoder. At each stage,

Oi = LanguageStage(Ti), Pi = ImageStage(Ii), (5)

Pk
i = MLPk(Poolk(Pi)), (6)

OK
i,p2t,Pk

i,t2p = X-MHAk(Oi,Pk
n), (7)

Oi,p2t = Concat([Oi
i,p2t, ...,ON

i,p2t], (8)

Pi,t2p = Concat([Up(P1
i,t2p, ...,Up(PN

i,t2p)], (9)

Oi+1 = Oi + tanh(MLP(Oi,p2t)), (10)
Pi+1 = Pi + tanh(MLP(Pi,t2p)), (11)

where Up denotes upsampling and X-MHA [40] denotes bi-
directional cross-modal multi-head attention.

CAM enhances cross-modal alignment by enabling bi-
directional language-image interaction, which stands in
contrast to the widely-used one-way language to im-
age alignment module proposed by LAVT [64]. More-

over, CAM adopts a pyramid pooling technique to utilize
multi-scale average-pooled image features. This technique
adeptly resolves the granularity mismatch issue by captur-
ing image features at multiple scales, allowing our network
to handle the varied levels of detail present in language de-
scriptions. This is particularly beneficial for RIS, where the
model must accurately interpret and segment according to a
diverse range of descriptive queries.

3.4. Cross-modal Alignment Loss

On top of that, similar to previous works [61, 71], we also
use cross-modal alignment loss to explicitly align language
and image features. Our cross-modal alignment loss (CAL)
is holistic and consider both pixel-to-pixel (LP2P) and pixel-
to-text (LP2T) consistency.

Mathematically, CAL is computed as follows: Given
language feature T ∈ RM×D produced by the lan-
guage encoder and final pixel decoder mask feature I ∈
RCL×HL×WL with |P| positive pixel features, |N | negative
pixel features, let I+i be the ith pixel feature in the positive
set P , I−j be the jth pixel feature in the background set N
and Tk be the kth language token, then

LCAL = LP2P + LP2T (12)

LP2P = − 1

|P|

|P|∑
i

eI+i ·I+avg/τ1

eI+i ·I+avg/τ1 +
∑|N |

j eI+i ·I−j /τ1

+− 1

|N |

|N |∑
j

eI−j ·I−avg/τ1

eI−j ·I−avg/τ1 +
∑|P|

i eI−j ·I+i /τ1
,

(13)

LP2T = − 1

|P|

|P|∑
i

eI+i ·Tavg/τ2

eI+i ·Tavg/τ2 +
∑|N |

j eI+i ·I−j /τ2
, (14)

where I+avg = 1
|P|

∑|P|
i I+i and I−avg = 1

|N |
∑|N |

j I−j are
the average pooled positive and negative pixel features,
Tavg = proj( 1

M

∑M
m Tk) is the average pooled and linearly

projected word feature and τ1, τ2 are hyper-parameters that
affect the sharpness of the probability distribution. Note
that all language and image features are L2-normalized be-
fore any dot product computation, but not explicitly shown
in the equations above for brevity.

CAL differs from alignment losses used in prior works
[61, 71] by holistically integrating both pixel-to-pixel and
pixel-to-text alignments within a single cohesive system.
Precise pixel-to-pixel alignment ensures that segmentation
outputs have accurate shapes and boundaries, whereas pre-
cise pixel-to-text alignment enables our model to correctly
associate textual descriptions with their matching image re-
gions. This dual alignment mechanism allows our model
to effectively parse and interpret the nuanced interplay be-
tween image details and language cues, leading to more ac-
curate and contextually relevant segmentation outputs.
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Method Backbone RefCOCO (easy) RefCOCO+ (medium) G-Ref (hard)
val test A test B val test A test B val (U) test (U) val (G)

VLT [14] Darknet-53 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
ReSTR [34] ViT-B-16 67.22 69.30 64.45 55.78 60.44 48.27 - - 54.48
CRIS [61] ResNet-101 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 -
LAVT [64] Swin-B 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50

Single VPD [72] Swin-B 73.46 - - 63.93 - - 63.12 - -
Dataset CoupAlign [71] Swin-B 74.70 77.76 70.58 62.92 68.34 56.69 62.84 62.22 -

PVD [10] Swin-B 74.82 77.11 69.52 63.38 68.60 56.92 63.13 63.62 61.33
SADLR [65] Swin-B 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16
MCRES [62] Swin-B 74.92 76.98 70.84 64.32 69.68 56.64 63.51 64.90 61.63
ReLA [45] Swin-B 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.70

MagNet (Ours) Swin-B 75.24 78.24 71.05 66.16 71.32 58.14 65.36 66.03 63.13

SEEM† [75] Focal-T - - - - - - 65.7 - -
Multiple / Extra LISA-7B† [38] SAM-H 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5 -

Datasets PolyFormer† [46] Swin-B 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05 -

MagNet‡ (Ours) Swin-B 76.55 78.27 72.15 68.10 73.64 61.81 67.79 69.29 -

Table 1. Comparison with SOTA methods using the oIoU metric. Single dataset refers to strictly following the predefined train/test splits
of the original RefCOCO, RefCOCO+ and G-Ref datasets. Multiple datasets refers to combining the train splits from these 3 datasets with
test images removed to prevent data leakage. Extra datasets refers to using additional data beyond RefCOCO, RefCOCO+ and G-Ref. †

indicates models that use extra datasets. ‡ indicates that our model only uses multiple datasets. Bold indicates best.

3.5. Loss Function

Our loss function is a weighted combination of the follow-
ing 4 different losses:

L = λBCELBCE + λDiceLDice+

λCALLCAL + λgroundingLgrounding,
(15)

with λBCE = 2.0, λDice = 2.0, λCAL = 0.5, and λgrounding =
1.0 for all our experiments.

4. Experiments
In this section, we first describe the datasets and evalua-
tion metrics (Sec. 4.1). Then, we compare our method with
SOTA RIS methods (Sec. 4.2). Finally, we show some visu-
alization results (Sec. 4.3) and ablate our proposed method
(Sec. 4.4). Due to space limitation, exact implementation
details of our method are relegated to the Supplementary.

4.1. Datasets and Evaluation Metrics

We evaluate our proposed method on three standard bench-
mark datasets: RefCOCO [67], RefCOCO+ [67], and G-
Ref [49, 50] using three commonly used metrics: over-
all intersection-over-union (oIoU), mean intersection-over-
union (mIoU), and precision values at 0.5, 0.7, and 0.9
IoU threshold levels (P@X). More details regarding these
datasets and metrics can be found in the Supplementary.

4.2. Main Results

In Tab. 1, we evaluate MagNet against other SOTA meth-
ods on RefCOCO [67], RefCOCO+,[67] and G-Ref [49, 50]
datasets using the oIoU metric. Under the single dataset

setting, MagNet is the first method that consistently out-
performs all previous methods on all evaluation subsets of
these datasets. Previous methods usually overfit to one of
these benchmarks and perform worse in others. Remark-
ably, on RefCOCO, MagNet outperforms the very recent
SOTA RIS method ReLA [45] by considerable margins of
1.42, 1.76, and 0.87 points on the validation, testA, and
testB subsets, respectively. To have a more comprehen-
sive evaluation of our method, we also assess MagNet using
other metrics and display the results on Tab. 2. As shown,
MagNet has much better mIoU and P@X performance than
all previous SOTA methods. In particular, our method sur-
passes previous SOTA methods by 0.32 points on the oIoU
metric, 0.91 points on the mIoU metric and 0.89, 1.25, 1.41
points on the precision metric at 0.5, 0.7 and 0.9 IoU thresh-
old levels. Under the multiple / extra datasets setting, our
method also surpasses recent SOTA methods [38, 46] that
use large language models [57] or has much slower infer-
ence speed, by large margins of up to 2.48 points.

Method RefCOCO val
oIoU mIoU P@0.5 P@0.7 P@0.9

LAVT [64] 72.73 74.46 84.46 75.28 34.30
ReLA [45] 73.82 75.61 85.82 77.71 34.99

CoupAlign [71] 74.70 75.49 86.40 77.59 32.40
MCRES [62] 74.92 - 86.23 77.25 35.61
SADLR [65] 74.24 76.52 86.90 78.76 37.36

MagNet (ours) 75.24 77.43 87.79 80.01 38.77

Table 2. Comparison with SOTA methods on RefCOCO val using
oIoU, mIoU and P@X (Precision at IoU threshold value X). Bold
indicates best and underline indicates second best.
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Figure 5. Visualization of MagNet’s predictions. Compared to one of the state-of-the-art method, LAVT, our method performs much better
in various complex scenerios, suggesting its impressive capability to reason about various complex visual-object relationships.

4.3. Visualizations

In Fig. 5, we show some representative mask predictions of
MagNet and LAVT [64] on RefCOCO validation set. Here,
we only compare with LAVT because it is a SOTA method
that provides reproducible codes and pre-trained weights.
MagNet outperforms LAVT in scenes that involve complex
visual-object relationships, contain uncommon expressions
or require strong visual grounding information. Impres-
sively, MagNet demonstrates ability to grasp complex vi-
sual cues such as reflection, leading and running.

4.4. Ablation Studies

In this section, we investigate the effectiveness of all core
components of our model. For experimental efficiency, we
use a shorter training schedule of 10 epochs and smaller in-
put images of 224× 224, causing the results to be different
from Tab. 1. Other experimental settings are kept the same.
We reproduce the numbers for LAVT [64], ReLA [45] and
CRIS [61] using their official codes. All ablations are per-
formed on validation splits of RefCOCO and RefCOCO+.

4.4.1 Ablating Different Aspects of Mask Grounding

Effect on RIS Performance. In Tab. 3(a), we show
that both masked language modeling (MLM) and masked
vision-language modeling (MaskedVLM) fail to deliver
meaningful performance gains. In contrast, our proposed
Mask Grounding improves over MLM by encouraging our
model to learn fine-grained visual grounding in language
features through usage of additional visual and segmenta-

tion information. When added to LAVT, Mask Grounding
yields a significant performance gains of 1.44 points on Re-
fCOCO and 1.28 points on RefCOCO+.

-0.331

-0.859

(a) Average cosine similarity between
positive language-image pairs on RefCOCO

LAVT

+ MG

(b) Average cosine similarity between
negative language-image pairs on RefCOCO

-0.528

0.567

0.729

LAVT

+ MG +0.162

Figure 6. Mask Grounding Improves Language-Image Alignment.

Effect on Language-Image Alignment. Next, we check
if Mask Grounding can help to improve language-image
alignment in RIS models. Effective alignment is indicated
by high feature similarity for matching language-image
pairs and low similarity for non-matching pairs. To ver-
ify this property, we compare the average normalized cosine
similarity for all language-image pairs in the RefCOCO val-
idation dataset before and after Mask Grounding is added to
LAVT. Since language and image features have different di-
mensions, we first train a linear layer with contrastive loss
to project language features to the same dimension as image
features before computing this metric. This method is simi-
lar to linear-probing widely used in self-supervised learning
[7, 25]. All other weights are frozen in the process. As il-
lustrated in Fig. 6, Mask Grounding can indeed significantly
improve language-image alignment in existing RIS models.
Mask Encoder Design. In Tab. 3(b), we compare passing
two different types of mask input to the mask encoder in
Mask Grounding. As shown, using center coordinates of
masked region gives slightly better performance.
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Model RefCOCO RefCOCO+

Baseline 67.08 55.98
Baseline + MLM 67.31 (+0.23) 55.69 (-0.29)
Baseline + MaskedVLM 67.33 (+0.25) 56.13 (+0.15)
Baseline + MG 68.52 (+1.44) 57.26 (+1.28)

(a) Effectiveness of Mask Grounding over
masked language modeling (MLM) and

masked vision-language modeling
(MaskedVLM).

Type RefCOCO RefCOCO+

None 67.08 55.98
Average 68.19 (+1.11) 56.98 (+1.00)
Center 68.52 (+1.44) 57.26 (+1.28)

(b) Comparing different mask encoder input in
Mask Grounding. Center denotes center co-
ordinates of masked region. Average denotes
average visual features within masked region.

MLP layers RefCOCO RefCOCO+

None 67.08 55.98
4 67.14 (+0.06) 57.19 (+1.21)
8 68.52 (+1.44) 57.26 (+1.28)
12 66.92 (-0.16) 55.95 (-0.03)

(c) Sensitivity of Mask Grounding’s masked
token predictor to different MLP layers.

Model RefCOCO RefCOCO+

LAVT [64] 67.08 55.98
LAVT + MG 68.52 (+1.44) 57.26 (+1.28)

ReLA [45] 66.23 53.69
ReLA + MG 67.33 (+1.10) 55.21 (+1.52)

CRIS [61] 64.67 54.84
CRIS + MG 65.56 (+0.89) 56.23 (+1.39)

(d) Universality of Mask Grounding.

Pyramid scales RefCOCO RefCOCO+

None 67.08 55.98
{1} 67.18 (+0.10) 56.20 (+0.22)
{1,2} 67.44 (+0.36) 56.46 (+0.48)
{1,2,3} 67.79 (+0.71) 56.74 (+0.76)
{1,2,3,6} 68.06 (+0.98) 57.04 (+1.06)

(e) Effectiveness of language-image Cross-
modal Alignment Module at different scales.

LP2P LP2T RefCOCO RefCOCO+

✗ ✗ 67.08 55.98
✓ ✗ 67.63 (+0.55) 56.87 (+0.89)
✗ ✓ 68.27 (+1.19) 57.22 (+1.24)
✓ ✓ 68.44 (+1.36) 57.61 (+1.63)

(f) Effectiveness of language-image
Cross-modal Alignment Loss.

Table 3. Ablation Experiments. All experiments are run with a shorter training schedule of 10 epochs, causing the results here to be
different from the main results. Rows marked in gray indicate options that are used in the main results. MG denotes Mask Grounding.

Mask Token Predictor Design. In Tab. 3(c), we evaluate
the sensitivity of Mask Grounding’s masked token predictor
to different MLP layers. We observe that a sufficiently deep
masked token predictor is important for good performance.
As shown, performance is the best when 8 layers are used.
When more layers are added, performance slightly drops,
as the model starts to overfit to the auxiliary task.
Universality of Mask Grounding. In Tab. 3(d), we show
that Mask Grounding is also compatible with other repre-
sentative RIS methods. As shown, when Mask Grounding
is added, on RefCOCO and RefCOCO+, we can obtain a
performance gain of 0.89 and 1.29 points for CRIS and a
performance gain of of 1.10 and 1.52 points for ReLA.

4.4.2 Ablating Other Components of Our Method

Effectiveness of CAM. Cross-modal Alignment Module
(CAM) improves language-image alignment by injecting
global contextual prior into image features. As shown in
Tab. 3(e), when CAM is used, we can improve RefCOCO’s
and RefCOCO+’s oIoU by 0.98 and 1.06 points respec-
tively. Additionally, Tab. 3(e) also shows that using more
pyramid scales is helpful in boosting performance.
Effectiveness of CAL. Cross-modal Alignment Loss
(CAL) provides additional pixel-to-pixel (LP2P) and pixel-
to-text (LP2T) alignment supervision to further reduce
language-image modality gap. As shown in Tab. 3(f), both
LP2P and LP2T alone can bring noticeable oIoU improve-
ment on RefCOCO and RefCOCO+. When the both are
added together, we can surpass the baseline by 1.36 points
on RefCOCO and 1.63 points on RefCOCO+.
Compatibility of all MagNet components. As shown in
Fig. 7, all components of MagNet are highly compatible as
they progressively improves the LAVT’s performance when
added incrementally. When all components are added, we

can improve LAVT by 3.15 points on RefCOCO+.

56 57 58 59

58.33

57.61

56.87

55.98

59.13

LAVT

+CAM

+MG

+0.89

+0.74 (+1.63)

+0.72 (+2.35)

+0.80 (+3.15)

RefCOCO+ oIoU

+

+

Figure 7. Compatibility of MagNet components.

5. Conclusion

In this paper, we present Mask Grounding, an novel method
designed to enhance RIS by teaching our model to predict
randomly masked textual tokens based on their surround-
ing textual, visual and segmentation information. This task
requires our model to learn fine-grained visual-textual ob-
ject correspondence, thus learning visual grounding in the
process. When plugged into existing RIS algorithms, Mask
Grounding can improve their performance consistently. To
holistically address the modality gap, we also design a
cross-modal alignment loss and an accompanying align-
ment module. When all these techniques are used together,
our newly proposed MagNet achieves SOTA performance
in all RIS benchmarks. We believe that Mask Grounding
can also be used in other multi-modal dense prediction tasks
and will explore that in future work.
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