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Abstract. Despite the recent advances in local feature matching, deal-
ing with affine distortions remains a major challenge. While state-of-the-
art methods have shown to perform well in the absence of rotation per-
turbations, some computer vision applications, such as object tracking
and image stitching, require keypoint extraction methods that maintain
high performance regardless of the image orientation. Current approaches
perform extensive data augmentation to artificially acquire a degree of
rotation equivariance. However, this does not only induce redundancy in
the learned feature representations, but also does not provide any geo-
metric guarantees. To address this issue, this work explores an alterna-
tive approach that instead instills rotation equivariance inside the model
itself. Leveraging recent advances in group equivariant deep learning,
we propose C-3PO, a family of feature detection-and-description models
based on steerable group convolutions. We evaluate our method against
prior work, and find that it outperforms its non-equivariant counterparts
for most rotation perturbations. However, presumably due to the task’s
inherent sensitivity to interpolation artifacts, extending a discrete rota-
tion equivariant model to a continuous variant provides only marginal
performance gains.

Keywords: Feature detection and description, local feature matching,
rotation equivariance, steerable CNNs.

1 Introduction

Image correspondence, i.e. determining which parts of one image correspond to
which parts of another image, is a fundamental problem in computer vision1.
Typically, correspondence is framed as detecting and describing similar points
of interest (keypoints) in the given pair of images. This forms a foundation of
several computer vision applications such as 3D reconstruction [11], structure-
from-motion [24], and visual localization [23].

Classical methods, such as Scale-Invariant Feature Transform (SIFT) [14],
address this problem by incorporating handcrafted heuristics within the model
to identify robust keypoints. While these methods have shown to work well, they
have been increasingly outperformed by recent deep learning based approaches

1 As once said by Takeo Kanade when asked about the three most fundamental prob-
lems of computer vision: ‘Correspondence, correspondence, and correspondence!’.
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that instead learn to recognise suitable keypoints [9, 19, 22]. However, these ap-
proaches perform extensive data augmentation to address affine distortions such
as rotations, which does not provide any geometric guarantees such as rotation
equivariance.

In line with the recent developments in the field of geometric deep learning
(as popularised by [4]), we aim to improve local feature matching approaches by
introducing geometric priors to a deep feature detection-and-description model.
Specifically, we introduce rotation equivariance to the model using steerable
group CNNs, where we consider a discrete rotation group Cn and continuous
rotation group SO(2) using steerable CNNs. In summary, we make the following
contributions:

– We propose C-3PO (Correspondence, Correspondence, Correspondence be-
tween Points in different Orientations), a family of rotation equivariant deep
feature detection-and-description models, and show the implications of using
group convolutions on architectural design and computational costs.

– We perform a comprehensive empirical analysis to highlight the viability
of group convolutions for image correspondence. We evaluate these results
through both a quantitative and qualitative analysis to study the effect of
using equivariant layers compared to a non-equivariant baseline.

– We investigate the impact of both discrete and continuous group convolutions
on local feature matching tasks to study the matching performance across
several flavours of rotation equivariance.

2 Background

2.1 Theory

Group theory A group (G, ·) is a pair of a set G and binary operation
· : G×G → G under which the set is closed, that satisfies the group axioms (as-
sociativity, identity, and inverse, see Appendix A.1). Groups are used to describe
the symmetries of objects, such as the changes we can apply to an image without
changing its semantics. A set X is called a G-space if it is equipped with a group
action based on G (Appendix A.1). Two important groups in this research are
the cyclic group Cn of all rotations of 1

n · 360◦, and the 2-dimensional special
orthogonal group SO(2) of all planar rotations.

For two G-spaces X,Y , a function f : X → Y is called equivariant to G if
applying a symmetry transformation g ∈ G and then computing the function
f produces the same result as computing the function f and then applying the
transformation g. Similarly, such a function is called invariant to G if trans-
forming an element does not change its function value. Formally, the two can be
written as

Equivariance: f(g.x) = g.(f(x)), (1)

Invariance: f(g.x) = f(x). (2)
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Group CNNs Standard convolutional networks are equivariant with respect
to translations, but not to other transformations such as rotations [7]. Group
convolutional networks (G-CNNs) [20] are a common tool to introduce such
equivariances by not only determining a response for each translated pixel, but
also for each rotated pixel as described by G:

[k ⋆G f ](g) =

∫
x∈Ω

k(g−1x)f(x)dx, (3)

for some kernel k and function f defined on domain Ω (i.e. the image). In
the case of a 32 × 32 image, introducing 4 rotations gives a tensor response of
shape 32× 32× 4, thereby ‘lifting’ the image to a higher domain. After a series
of such convolutions, where each next convolution integrates over the entire
previous group, it is common to perform a rotation-invariant pooling. In the
case of rotations, the average over all rotation maps is taken to find a final
representation of our image invariant to the initial rotation.

Steerable group CNNs When using G-CNNs, the number of responses is
expanded by convolving over a larger domain, for example a roto-translation
group, rather than just a translation group. An alternative to obtaining more
responses on the image is extending the codomain, i.e. assigning higher dimen-
sional responses to each input feature corresponding to different rotations. To
ensure that our model is still equivariant to rotations, these feature vectors need
to be transformed with the image. This property is referred to as steerability,
and the resulting feature vector is referred to as a fiber. To assure that a convo-
lution is steerable, the kernel k needs to satisfy the steerability constraint (see
Appendix A.2). Similar to the standard group convolution, the arising fiber for
some pixel describes the response for each rotation in the rotation group. Us-
ing this, a steerable CNN is obtained by connecting a series of steerable group
convolutions together.

Continuous steerability Using a feature for each rotation comes with the
immediate disadvantage of only being able to consider a finite number of filters.
By realising that assigning a feature value to each possible rotation implicitly
defines a signal on the circle S1, we can leverage circular harmonics and write
that signal as an infinite series of complex exponents. Using a finite subset of
our Fourier coefficients, the signal s(x) can be approximated as

s(x) ≈
N∑

n=−N

ane
inx, (4)

for some N ∈ N. This allows to indirectly describe the responses for each input
pixel for all rotations using a finite set of Fourier coefficients per point, solving
the initial problem.
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2.2 Related Work

Deep feature matching Feature matching based on robust interest point
detection and local feature description is at the core of several computer vi-
sion algorithms such as image stitching [1], visual localisation [18], structure-
from-motion [25, 28], and 3D reconstruction [30]. Classical approaches such as
SIFT [14], ORB [21], and SURF [3] devise handcrafted features to achieve invari-
ance to local geometric and photometric transformations in a two-stage manner:
detection and description. Modern CNN-powered approaches are based on jointly
learning keypoint locations and their descriptions. For instance, R2D2 [19] pre-
dicts reliability and repeatability maps to extract not only repeating keypoints,
but also those that are reliable for downstream matching. Several recent ap-
proaches also leverage transformer-based attention models for feature match-
ing [12,22,26]. However, these deep neural methods are not robust to rotations.
One solution for ensuring rotation equivariance is using data augmentation, as
is done in methods such as RoRD [15].

Rotation equivariant feature matching Unfortunately, data augmentation
leads to redundancy, since the network has to learn to be robust to each aug-
mented transform. Alternatively, we could introduce geometric priors to the
model architecture itself as is done in rotation equivariant CNNs [6,8]. While ro-
tation equivariant feature extraction has not yet received a lot of attention within
the field of deep feature matching, some papers have very recently started to pick
up on this concept. Notably, [5] replaces the CNN backbone of LoFTR [26] with
steerable CNNs based on discrete groups. While their work is primarily focused
on extending a transformer-based architecture to be rotation equivariant, our
work instead looks into the benefits of applying steerable group convolutions
to a fully-convolutional network architecture. Closest to our work, [17] extends
upon the R2D2 architecture by replacing its fully-convolutional backbone by
a C8 equivariant one, and mainly looks into combining their architecture with
others to create an ensemble with high coverage of different rotation angles. In
contrast, our work focuses on pure equivariant models, and studies the effects of
instilling different levels of rotation equivariance, from the discrete case to the
continuous case.

3 Methodology

In order to make local feature matching robust to rotations, we introduce geo-
metric priors to the model directly. For this purpose, we propose C-3PO, a family
of novel deep feature detection-and-description models based on steerable group
convolutional networks. As illustrated in Figure 1, each network takes an RGB
image I ∈ RH×W×3 as input, and produces (i) a set of dense D-dimensional
feature descriptors X ∈ RH×W×D, (ii) a repeatability map S ∈ [0, 1]H×W , and
(iii) an associated reliability map R ∈ [0, 1]H×W . In the remainder of this sec-
tion, we introduce these models along with the baseline models we used in our
experiments.
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1

Equivariant L2-Net

Fig. 1: C-3PO Network Architecture. The network architecture of the SO(2) vari-
ant of C-3PO. The initial layers comprise an equivariant variant of L2-Net. In line
with [19], the remaining part of the network consists of three heads outputting the
feature descriptors, repeatability map, and reliability map.

R2D2 baseline As our primary baseline, we consider the R2D2 detection-
and-description model for our experimental evaluations [19]. Our formulation is
generic for CNN-based feature detection methods. However, for evaluating rota-
tion equivariance, we choose the R2D2 model for its high performance and well-
documented code. In addition, the R2D2 model consists of a fully-convolutional
network design that enables end-to-end optimisation of both feature extrac-
tion and description. This fully-convolutional structure of R2D2 allows for di-
rect substitution with equivariant convolutional layers. R2D2 uses a modified
L2-Net [27] backbone, consisting of 7 convolutional layers with monotonically
increasing channel-sizes (see [19] for details).

C-3PO The network architecture of C-3PO, shown in Figure 1, largely follows
the R2D2 model. Analogously to [5], we alter the L2-Net backbone of R2D2
by substituting the convolutional blocks with steerable ones, which makes the
backbone equivariant to rotations. Each block applies an equivariant layer, batch
normalisation, and an activation function that is applied either to the signal
directly, or in the Fourier domain, depending on whether the group is finite.

To prevent the basis for the block expansion of the steerable filter from being
empty, we replace the three successive 2 × 2 convolutional blocks at the end
of R2D2 by two successive 3 × 3 equivariant convolutional blocks. After this
sequence of equivariant convolutional blocks, we apply group invariant pooling
by performing a max-pooling operation within each regular field to ensure that
the final keypoint descriptors of the input pixels are invariant to rotations.

We distinguish between three variants of C-3PO that are each based on a
different group. Each variant takes an RGB image as input, and correspond-
ingly, the input types of the first layer are three independent scalar fields in all
cases. In contrast, the intermediate signals transform according to the regular
representations of their respective group. The first two variants are based on the
finite group Cn for n ∈ {4, 8}, and the last variant on the infinite group SO(2).

For the discrete variants, we can use normal ReLU pointwise activation func-
tions to ensure equivariance, since the underlying group is finite. The SO(2)
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variant instead uses a Fourier ELU, which uses the inverse Fourier transform
to sample the function, applies the ELU nonlinearity, and finally recovers the
Fourier coefficients by performing a Fourier transform. As argued in Section 2.1,
we can approximate the Fourier transform using a finite subset of Fourier coeffi-
cients. While increasing the number of coefficients provides a better approxima-
tion of the underlying signal, it also considerably increases the computational
cost to train the network. We empirically found that using 4 coefficients provides
a good balance between approximation precision and computational cost.

The equivariant L2-Net backbone maintains the number of layers, but re-
duces the number of channels per layer. The motivation for this is twofold. First,
because the equivariant layers inherently capture rotated copies of the same fea-
ture, our equivariant backbone theoretically requires less channels than the base
R2D2 model. Second, the addition of the group convolutional layers drastically
increases the number of parameters. Whereas the base R2D2 model required
roughly 0.5M parameters, the C4-variant required 12M and the SO(2)-variant
required roughly 60M parameters.

In line with [29], we reduce the number of channels for most of the layers
such that all models have a similar number of parameters. This does not only
make the increased computational cost tractable, but also allows for a fair com-
parison. Figure 2 shows a comparison of the various models with respect to their
corresponding number of trainable parameters and average inference time per
input image after reducing the number of channels.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Number of trainable parameters ×106
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C-3PO (C8)

C-3PO (SO(2))

Fig. 2: Model Efficiency. We show the computational efficiency of different network
architectures, both in terms of inference time and number of trainable parameters.

Implementation For our experiments, we use the original PyTorch [16] im-
plementation of the R2D2 model2, and modify this framework to adapt to our
C-3PO model architecture. To this end, we employ the escnn E(n)-Equivariant
Steerable CNNs library3 to develop our rotation equivariant C-3PO variants
[6, 29]. In order to enable fair comparison between our equivariant models and

2 https://github.com/naver/r2d2
3 https://pypi.org/project/escnn/

https://github.com/naver/r2d2
https://pypi.org/project/escnn/
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the R2D2 baseline, we keep the R2D2 training pipeline intact and use the same
hyperparameter configuration as the original R2D2 implementation.

4 Experiments

Training configuration In accordance with the default settings for R2D2, we
train for a maximum of 25 epochs using the Adam optimizer [13] with a learning
rate of 1 · 10−4, a weight decay of 5 · 10−4, and a batch size of 8. Additionally,
we adopt an early stopping mechanism where we do not continue training if the
evaluation loss does not decrease for at least 3 consecutive epochs. As a result,
training all the different models, including the R2D2 baseline model, required
approximately 120 hours using a single Nvidia Titan RTX GPU. Performing our
experiments required 16 GPU hours.

Evaluation setup Following [19], we evaluate local feature matching using
the Homography-Patches (HPatches) dataset [2]. This dataset consists of 116
image sequences with each image sequence comprising a source image IS and
M = 5 target images ITj , for j ∈ {1 · · ·M}. Each pair (IS , ITj ) is related via a
homographyHj := H(IS , ITj ), where H is a planar affine transformation between
the two images. For a given pair of images, we first resize both to 300 × 300
following [17], then we use a trained model (e.g. R2D2) to detect and describe
keypoints in each of them independently. These are then matched using a nearest
neighbor search in the feature descriptor space. Next, we apply RANSAC [10]
filtering to remove outlier matches. We then transform the keypoints in the first
image using H, project them onto the second image and compare with those
matched in the second image to compute the metrics. A match is considered
correct if its reprojection error, i.e., the distance between a projected point and
the corresponding point in second image, is within a certain pixel threshold.
For evaluating rotation-robustness, we fix the threshold τ = 3px following [19].
Our primary metric is mean matching accuracy (MMA), which computes the
fraction of correct matches in a given pair, averaged across the dataset. To
study the benefit of using rotation equivariant CNNs instead of standard CNNs,
we compare performance in terms of MMA for input images from the HPatches
dataset across rotations from 0◦ to 360◦ with an interval of 15◦.

Quantitative results The key results of our experiments are summarized in
Figure 3. First, we show that R2D2 [19] is indeed not robust to rotations in the
target image. As rotations are applied incrementally, the MMA drops steeply
to zero at about 60◦. Second, we note that the C4 variant significantly im-
proves upon R2D2 at rotations in and around {90◦, 180◦, 270◦}. This confirms
the effectiveness of rotation equivariance baked into this variant at these special
rotations. Third, to our surprise, both C8 and steerable SO(2) variants follow a
similar performance trend as C4. One reason for this could be the small kernel
sizes that were used, as rotating a 3 × 3 kernel implies only the centre pixel is
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considered for the response. Among these rotation equivariant models, SO(2)
does outperform C8 which in turn outperforms C4, but the performance gains
are marginal. Further, the dip in performance across models in between the 90◦

rotations that are odd-multiples of 45◦ could be a result of rotation artifacts
such as artificial edges introduced due to filling of the unoccupied regions in the
rotated image.

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360
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Rotation-equivariance on HPatches dataset (RANSAC)

Method

R2D2

C-3PO - C4

C-3PO - C8

C-3PO - SO(2)

Fig. 3: Evaluation Rotation-Equivariance. We compare vanilla R2D2 model with
our model variants that endow R2D2 with rotation-equivariance capabilities. At and
around special rotations, SO(2) outperforms other variants but only marginally.

Qualitative analysis As a means to provide a more holistic understanding
and intuition behind the quantitative results, we show feature matching results
on a sample image pair from the HPatches dataset in Figure 4. All models find
robust matches without any rotation of the target image, but with rotation of
90◦, the vanilla R2D2 model struggles while the equivariant models are still able
to find robust matches.

(a) R2D2 (91.0%) (b) C-3PO C4 (59.0%)

(c) C-3PO C8 (68.0%) (d) C-3PO SO(2) (70.0%)

(a) Feature matching with no rotation.

(a) R2D2 (0.00%) (b) C-3PO C4 (59.0%)

(c) C-3PO C8 (68.0%) (d) C-3PO SO(2) (70.0%)

(b) Feature matching with 90◦ rotation.

Fig. 4: Qualitative Matching Results. Matches found for various models for a pair
of images. The percentage in parenthesis shows the fraction of correct matches for
each of the models for this particular image-pair. Blue points denote keypoint detected
by the model. Yellow points on the target image denote the points in source image
transformed by the ground truth homography H. Correct matches are shown in green.
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Furthermore, recall that the R2D2 model jointly detects and describes salient
keypoints in the image. We qualitatively analyse its ability to achieve rotation-
equivariance for plain keypoint detection. To that end, we observe how detected
keypoints vary when applying a 90◦ rotation on a sample set of images in Fig-
ure 5. Upon visual inspection, it seems keypoint detection may be equivariant to
90◦ rotations for all models, including vanilla R2D2. Interestingly, vanilla R2D2
seems to detect a large number of keypoints most of which are likely to be harm-
ful for matching. This relates back to the notion of reliability in the R2D2 model
formulation. Our model variants are not only rotation equivariant to keypoint
detection but also seem to only detect reliable keypoints even with rotations.
We observe this phenomenon in multiple samples and report more examples in
Appendix B.

(a) R2D2 (b) C-3PO – C4 (c) C-3PO – C8 (d) C-3PO – SO(2)

R
ot

at
io

n:
 0
o

R
ot
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io

n:
 9

0o

Fig. 5: Keypoint Detection Robustness. Qualitative evaluation of robustness of
keypoint-detection against 90◦ rotation across all models. Our model variants detect
reliable keypoints while being equivariant to rotations.

5 Conclusion

We have looked into the viability of using steerable group convolutions in fea-
ture detection and description in order to introduce rotation invariance to a
high-performance feature detector and descriptor. To this end, we introduced C-
3PO, a family of rotation equivariant feature detection-and-description models,
and studied its robustness to rotations and homographies. Our results indicate
that using the rotation equivariant models can provide additional robustness,
especially for rotation angles that are multiples of 90◦. However, we also found
that extending the simple discrete equivariant C4 model to C8 and SO(2) archi-
tectures provided only marginal gains.

Limitations & future research While our proposed C-3PO model is able to
achieve considerable performance gains when compared to our R2D2 baseline,
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the experiments and model design have revealed some limitations. Firstly, con-
verting the R2D2 model to a rotation equivariant network using steerable CNN
layers came at a substantially higher computational cost than we initially antici-
pated, due to the large increase in required network parameters. Nonetheless, our
experiments also revealed that reducing the channel sizes of the steerable layers
is an effective solution to mitigate the computational cost without suffering a
performance drop when compared to the baseline. Secondly, our experiments
showed that, whereas using the C4 variant provides a considerable performance
boost for 90 degree rotations, extending the rotation equivariance to the C8 and
SO(2) variants provided minimal additional performance gains.

Future research should investigate why the performance difference between
the discrete and continuous equivariant models is only very minimal, and how
these models can actually be improved to provide reasonable robustness across
all rotation angles. Some interesting directions of improvement could be (i) using
larger kernel sizes for each layer to incorporate a larger context when rotating
the filters and (ii) exploring different interpolation techniques when rotating.
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A Additional theory

A.1 Group theory

Group axioms A group (G, ·) is a set that has an operation · such that two
elements of the group can be combined by that operation leading to a new
element, and that the following axioms hold:

– Closure: for all g, h ∈ G, g · h ∈ G,
– Associativity: for all g, h, k ∈ G, (g · h) · k = g · (h · k),
– Identity: there exists an e ∈ G such that g · e = e · g = g for all g ∈ G,
– Inverse: for all g ∈ G there exists a g−1 ∈ G such that g · g−1 = e.

Common examples of groups are the integers under addition and the group of
symmetries of a regular n-polygon, denoted as (Z,+) and Dn respectively. When
it is unambiguous, we refer to the group as just G. Moreover, we might write
gh = g · h when it is unambiguous. If the cardinality of our group |G| is finite,
we call the group itself finite.

We can equip some set X with a (left) group action based on G. A group
action then is a function G × X → X, (g, x) 7→ g.x, satisfying the following
axioms:

– ∀x ∈ X : e.x = x,
– ∀a, b ∈ G, x ∈ X : a.(b.x) = (a · b).x.

One simple example of a group action is the trivial action. The trivial action
simply maps g.x 7→ x, which trivially satisfies the above axioms.

A.2 Kernel constraint

The general linear group of Rn (notation: GL(Rn)) is the group of all automor-
phisms of Rn, i.e. all invertible matrices M ∈ Rn×n. A real representation ρ of
some group G is a function

ρ : G → GL(Rn)

such that
ρ(g · h) = ρ(g)ρ(h),

for all g, h ∈ G. This function associates a matrix representation to each group
element in a way that the group structure is preserved. In order to assure that
a group convolution is steerable, we change the way in which we convolve as
follows. Instead of convolving a kernel over a larger domain (as done in G-
CNNs), we convolve normally (i.e. over the group of translations) with a kernel
k : Rd → Rdout×din that assigns a linear transformation to each relative position,
where din and dout denote the input and output dimensions respectively. This
convolution is then steerable if the kernel can be written as

k(hx) = ρout(h)k(x)ρin(h
−1), (5)

for all elements h of the rotation group H with corresponding representations
ρin and ρout of the input space and output space respectively.
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A.3 Matching equivariance

Theorem 1. Let M be a G-invariant matching algorithm, F an equivariant
feature detection, and D an equivariant descriptor. Let kx := K(x) and dx :=
D(K(x)). Then,

M(dg.x1 , dg.x2) = M(dx1 , dx2),

i.e. the matches are invariant to a transformation of the image by G.

Proof. Let M be a G-invariant matching algorithm, and let K and D be an
equivariant feature detection algorithm and equivariant feature descriptor re-
spectively. We observe that

M(dg.x1
, dg.x2

) = M(D(kg.x1
), D(kg.x2

)) (definition of descriptor)

= M(D(g.kx1
), D(g.kx2

)) (equivariance K)

= M(g.D(kx1
), g.D(kx2

)) (equivariance D)

= M(g.dx1
, g.dx1

) (definition dx)

= M(dx1
, dx2

), (invariance M)

which concludes the proof.

B Additional Qualitative Matching Results

In this section, we present more examples of qualitative results for feature match-
ing for our main model variants across various rotations of the target image. For
reference, in Figure 6, we show results for the base case with no rotations applied
on the target image. The amount of correct matches (colored in green) indicates
the robustness of the model. We show the results across rotations {15, 45, 75, 90}
in Figure 7. Through these results, we also reinforce our earlier observation of
equivariant models tending to detect more reliable keypoints. In this example,
under all rotations, R2D2 tends to detect keypoints in the sky region. Such key-
points are not reliable for matching since sky is a fairly uniform region without
edges and corners. All equivariant models tend to primarily detect keypoints on
the buildings and less so in the sky indicating a higher degree of reliability for
this points.
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R2D2 at 0◦

C-3PO - C4 at 0◦

C-3PO - C8 at 0◦

C-3PO - SO(2) at 0◦

Fig. 6: Upright Matching Results. Base case with no rotations applied on the target
image. The first two columns show the source and target images with all detected
keypoints. The last two columns show the matches (after RANSAC) with matched
keypoints in dark-blue, green matches denoting correct matches and yellow keypoints
are obtained by projecting source keypoints using ground-truth homography.
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R2D2 at 15◦

C-3PO - C4 at 15◦

C-3PO - C8 at 15◦

C-3PO - SO(2) at 15◦

(a) Rotation: 15◦

R2D2 at 45◦

C-3PO - C4 at 45◦

C-3PO - C8 at 45◦

C-3PO - SO(2) at 45◦

(b) Rotation: 45◦

R2D2 at 75◦

C-3PO - C4 at 75◦

C-3PO - C8 at 75◦

C-3PO - SO(2) at 75◦

(c) Rotation: 75◦

R2D2 at 90◦

C-3PO - C4 at 90◦

C-3PO - C8 at 90◦

C-3PO - SO(2) at 90◦

(d) Rotation: 90◦

Fig. 7: Rotated Matching Results. Matching for rotations {15, 45, 75, 90} of the
target image. The R2D2 performs comparably with the equivariant models for small
rotations (15◦). Both struggle at 45◦ rotation while the equivariant models clearly find
more correct matches for 75◦ and 90◦ rotations. These results are for the sequence
i castle in the HPatches dataset.
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R2D2 at 15◦

C-3PO - C4 at 15◦

C-3PO - C8 at 15◦

C-3PO - SO(2) at 15◦

(a) Rotation: 15◦

R2D2 at 45◦

C-3PO - C4 at 45◦

C-3PO - C8 at 45◦

C-3PO - SO(2) at 45◦

(b) Rotation: 45◦

R2D2 at 75◦

C-3PO - C4 at 75◦

C-3PO - C8 at 75◦

C-3PO - SO(2) at 75◦

(c) Rotation: 75◦

R2D2 at 90◦

C-3PO - C4 at 90◦

C-3PO - C8 at 90◦

C-3PO - SO(2) at 90◦

(d) Rotation: 90◦

Fig. 8: More Rotated Matching Results. Matching for rotations {15, 45, 75, 90} of
the target image. These results are for the sequence i whitebuilding in the HPatches
dataset.
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C Rotational Stability of Different Kernel Sizes

At a rotation of 45◦, for a 3 × 3 kernel, 5 out of 9 cells are inliers (55.6%),
whereas for a 7 × 7 kernel, 37 out of 49 cells are inliers (75.5%). Clearly, there
is a trade-off between model efficiency and robustness to interpolation artifacts.
Future research should investigate the possible interaction effects between steer-
able equivariant layers and the corresponding kernel sizes, and how one can pick
an optimal kernel size for an equivariant CNN.

(a) 3 × 3 kernel (b) 7 × 7 kernel

Fig. 9: Kernel Size Stability. We visualise a kernel along with its rotated manifesta-
tion. Each cell of the original kernel is either marked green if this cell falls within its
45◦ rotated version, and red otherwise.

D Attempts to Increase the Rotation Coverage

Using different interpolation techniques In order to examine whether inter-
polation artifacts could be reduced, we experimented with different interpolation
techniques in our evaluation pipeline, namely (i) nearest neighbour interpola-
tion, and (ii) bilinear interpolation. Interestingly, the type of interpolation did
not seem to affect the performance. Future research could study whether using
other interpolation techniques, such as bicubic interpolation, can have a positive
effect on the final performance. However, given the inconspicuous performance
difference between nearest neighbour and bilinear interpolation, it is unlikely
that using bicubic interpolation will have a significant effect.

Cropping images after rotation When rotating an image, a subset of the
pixels may fall outside the image window after the rotation. This does not only
mean that these keypoints cannot be used to find matches, but it may also dis-
turb the intermediate activations and therefore the final keypoint descriptors.
Therefore, when we rotate an image, we can either decide to keep the entire
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original image after rotation and add black-pixel padding on the remaining cor-
ners, or we can crop a rotated section within the original image such that pixel
padding is not necessary, as shown in Figure 10. Our experiments showed that
using cropping before rotation increased the matching performance for all mod-
els, including the R2D2 baseline. This is likely due to the fact that cropping a
section within the image reduces the number of available keypoints. Still, as the
performance seemed to increase equally for all models and the relative perfor-
mance differences remained roughly equivalent, it is likely that cropping before
rotating is not the deciding factor for the performance ‘dips’ in Figure 3.

Source Target (Transformation: H) Source Target (Transformation: H)

(a) Original

Source Target (Transformation: H)

(b) Rotation without cropping (c) Rotation with cropping

Fig. 10: Cropping after Rotation. Effect of applying cropping after rotation on a
sample pair of images. (a) shows original sample from HPatches with dummy keypoints,
(b) shows rotation without cropping, and (c) shows rotation followed by same cropping
applied on both source and target images.

Using larger rotation augmentation We studied whether using a larger
augmentation could help increase the coverage of rotation angles. Specifically,
during training the input images were augmented with a random rotation of
at most 20◦. We hypothesised that training a rotation equivariant model with
data augmentation would have a complementary effect, as the data augmenta-
tion might help around all the performance spikes of the rotation equivariant
models. In contrast, the non-equivariant R2D2 model would only benefit from
the rotation augmentation for small rotations. Unfortunately, our experiments
showed that the rotation augmentation had a detrimental effect on the training
time to convergence and the final MMA performance of C-3PO.
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