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Abstract

Understanding the internal mechanisms of large language models (LLMs) remains
a challenging and complex endeavor. Even fundamental questions, such as how
fine-tuning affects model behavior, often require extensive empirical evaluation. In
this paper, we introduce a novel perspective based on the geometric properties of
contextual latent embeddings to study the effects of training and fine-tuning. To that
end, we measure the local dimensions of a contextual language model’s latent space
and analyze their shifts during training and fine-tuning. We show that the local
dimensions provide insights into the model’s training dynamics and generalization
ability. Specifically, the mean of the local dimensions predicts when the model’s
training capabilities are exhausted, as exemplified in a dialogue state tracking
task, overfitting, as demonstrated in an emotion recognition task, and grokking,
as illustrated with an arithmetic task. Furthermore, our experiments suggest a
practical heuristic: reductions in the mean local dimension tend to accompany
and predict subsequent performance gains. Through this exploration, we aim to
provide practitioners with a deeper understanding of the implications of fine-tuning
on embedding spaces, facilitating informed decisions when configuring models for
specific applications. The results of this work contribute to the ongoing discourse
on the interpretability, adaptability, and generalizability of LLMs by bridging the
gap between intrinsic model mechanisms and geometric properties in embeddings.

1 Introduction

Large language models (LLMs) have transformed natural language processing in recent years,
achieving impressive performance across a variety of tasks (Brown et al.,|2020; |Devlin et al., 2019;
Jiang et al. 2023} [Radford et all [2018} [Touvron et al., [2023). These models learn contextual
token embeddings in high-dimensional latent spaces, whose structure governs how information is
represented and processed. However, most performance diagnostics in LLMs rely on supervised
validation or task-specific probes, with few attempting to understand the geometry of the LLM
embedding spaces. Our paper is motivated by a central question: Can structural changes in the
embedding space yield unsupervised insights into model behavior across language modeling tasks?
We address this question by applying a localized version of the TwoNN estimator (Facco et al.
2017) to quantify the local intrinsic dimension of contextual token embeddings. While the ambient
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dimension of these embeddings is typically large (ranging from hundreds to thousands of dimensions),
our observations show that the local intrinsic dimension reflects a lower-dimensional manifold
structure that varies across data space regions. This heterogeneity allows us to derive model- and data-
specific geometric signatures without relying on labeled validation data or task-specific supervision.

Contributions We present a unified framework for analyzing LLM training dynamics through
dimensionality. Based on this framework, we (i) demonstrate that fine-tuning reshapes the local
intrinsic dimension in a dataset-specific manner, allowing us to infer overlap between training data
used for fine-tuning with validation (or test) data from geometric shifts alone, without requiring
labels; (ii) show that dimensionality anticipates the onset of grokking in synthetic arithmetic tasks,
identifying generalization beyond training data from the dimensionality of the model’s embeddings
of the training data alone; (iii) demonstrate that local intrinsic dimensions can indicate training
convergence, as evidenced in a sequence-tagging-based dialogue state tracking task where stabilizing
dimension correlates with model stabilization; and (iv) show that local intrinsic dimensions detect
overfitting in a sequence classification setting, where an initial drop followed by a rise in dimension
reflects the model’s tradeoff between generalization and memorization. In total, our results suggest
that local intrinsic dimensions serve as a valuable unsupervised signal for practitioners seeking to
interpret and monitor LLM behavior. Beyond offering empirical insights, our work thus highlights
the potential of geometric descriptors to complement traditional evaluation methods and potentially
serve to inform future model design]

2 Related Work

Our work lies at the intersection of geometry-aware language model analysis and dataset-level
representation diagnostics. While prior efforts focus on the intrinsic dimensions of single sequences
or model parameters, our contribution is quantifying local intrinsic dimensions across datasets and
training stages, enabling unsupervised inspection of generalization dynamics and fine-tuning effects.

Notions of intrinsic dimensions of language models In a first qualitative analysis of the internal
representations of transformer models, Ethayarajh| (2019) and |Cai et al.| (2021)) identify clusters
and low-dimensional manifold structures in contextual embedding spaces. Recent work has started
studying relationships between geometric properties of LLMs and corresponding semantics. In
Tulchinskii et al.|(2023)), the authors discover that the average intrinsic global dimension of artificially
generated texts is lower than that of human-written texts. In that work, the points in the latent
space are taken from a single text paragraph, so their work applies to single data input sequences,
not to entire datasets like our approach. |Valeriani et al.[(2023) investigate how the global intrinsic
dimension estimated is altered as data is passed through an LLM. |Aghajanyan et al.|(2021)) define a
notion of intrinsic dimension based on restricting the model’s parameter space and its effect on the
objective function, and show that larger LLMs tend to have smaller intrinsic dimensionality. That
work studies the dimensionality of the model’s parameter space, and not the latent space created from
specific datasets. In|Viswanathan et al.|(2025), the authors analyze token-level intrinsic dimensions,
linking token geometry to model next-token-prediction loss. The difference between their method
and ours is that they always consider the contextual token embeddings of a single, sufficiently long
prompt as making up the embedding space. In contrast, we sub-sample from an entire dataset split.
Lee et al.| (2025a)) identify structural similarities between the token embedding spaces of different
language models, particularly reporting correlations in local intrinsic dimension measures. However,
their analysis is limited to the non-contextual token embedding and unembedding layers, without
considering contextual representations.

Topology-based analysis of models The topological descriptors in|[Kushnareva et al.| (2021); [Lee
et al.|(2025b); [Perez and Reinauer| (2022); |Tulchinskii et al.| (2023)) correspond to entire sequences
of input data, while our proposed estimates are defined on the token level. In|Durrani et al.|(2022),
pre-trained and fine-tuned models are compared using hierarchical clustering and alignment functions.
The results indicate that the latent space in the higher layers adapts to task-specific concepts, while
the lower layers preserve the general concepts learned in the pre-trained model. |Ed-dib et al.
(2024)) introduces a method for fine-tuning large language models by dynamically adjusting LoRA

'Our code is available at https://github.com/aidos-1ab/Topo_LLM_public and https://github,
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ranks based on the intrinsic dimensionality of hidden state representations. Here, the intrinsic
dimension is measured as the rank of an information matrix, and not from the data space as in our
work. In|Chang et al.| (2022), the representational geometry of multilingual language models is
explored, focusing on how they balance encoding language-specific and language-agnostic features
within a shared multilingual space. Ruppik et al.| (2024) utilize topological features derived from
neighborhoods in a contextual embedding space to improve performance in a sequence tagging
task. The definition of their features requires a fixed ambient data corpus, whereas our methods
give an intrinsic measure of the dataset under consideration; thus, our measures are comparable
between different model checkpoints of the feature generation model. Both works are situated in
the nascent field of ropological deep learning (Papamarkou et al.,[2024), employing concepts from
geometry and topology in an observational manner to study machine learning models. In contrast to
mechanistic interpretability (see, for example, the survey by Ferrando et al.[2024)), in which one tries
to explain how a language model’s internal representations fit together into higher-level abstractions,
our approach is more atomic. We study the smallest non-divisible representation in the model (the
contextual embedding of single tokens) and the space created by collections of these.

3 Methods

3.1 Large Language Models

Modern contextual language models are typically either masked language models (MLMs) (Devlin
et al.L|2019; Liu et al., 2019) or autoregressive language models (ALMs) (Radford et al.,[2019). MLMs
predict masked tokens based on bidirectional context, while ALMs generate tokens sequentially,
conditioned on preceding tokens. In both cases, the representation of a token in context is given by a
vector at each model layer, enabling geometric analysis of a data corpus on a layer-wise basis. We
now give an overview of this construction; the whole procedure is summarized in[Algorithm 1]

3.2 Latent Space Modeling

Let D = (sg, $1,---,Sp) be a text corpus and M a language model (MLM or ALM) of depth [ with
tokenizer 7. Each sequence s,, yields tokenized input:

T(sm) = (tg ...t ), 1)
with corresponding contextualized token embeddings at layer ::
Mi(sm) = (Mi(tg"), .., Mi(ty)) - @

We distinguish between regular embeddings (tokens embedded as-is during a forward-pass) and
masked embeddings (specific tokens replaced by [MASK], requiring the model to infer their representa-
tions from the surrounding context). Despite the simplified notation, embeddings are context-sensitive.
The token embedding point cloud at layer ¢ is:

Tz’ - {Mi(t;'n)}mzo,...,D; JELL (3)

with I,,, denoting token indices in the m-th sequence. Distances between points are measured in
the ambient Euclidean space. In practice, T; can contain millions of vectors, making subsequent
neighborhood computation on the full dataset infeasible.

To obtain a representative subset of tokens T, we take a two-step sampling approach: We first sample
M sequences from D, and after de-duplication, we sample N vectors from the resulting token
embedding space. Finally, we compute neighborhoods N, (t;; T) for each token using a locality
parameter L. We assume the dataset is drawn from an underlying text-generating distribution, and
our sampling approximates its geometric structure. We confirm this assumption in our sensitivity

analysis in [Appendix A

3.3 Comparing Latent Spaces Across Models

We compare a base model M with its fine-tuned variant M*, trained on a corpus A. Since both
models share the same architecture and tokenizer, there exists a canonical bijection between M; (D)
and M2 (D), mapping each token’s representation in the base model to its counterpart in the fine-
tuned model. More generally, such a bijection arises whenever the underlying model architectures
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Algorithm 1: COMPUTE LOCAL DIMENSION ESTIMATES

Input : Text corpus D;
Embedding model M (with corresponding tokenizer 7T);
Dimension estimator dim (default dim = TwoNN);
Three parameters:
— Size of text corpus sequence sub-sample M € N;
— Size of token sub-sample N € N;
— Local neighborhood size L € N.
QOutput : Token-level local estimates given as a vector in ]Révo, i.e., one non-negative number for
each of the sub-sampled tokens. B

Take a random sub-sample D.. s of size M of the dataset sequences ;
Compute embeddings for each token in each sequence of Dy ;
De-duplicate the embedding vectors ;
Take token vector sub-sample of size N, call the resulting set of token vectors T ;
forallt; € T do

Compute the L nearest neighbors of ¢; in T, resulting in the neighborhood N7, (¢;; T) ;
L Compute the local estimate dim (N, (¢;; T)) € Rx of this neighborhood ;

return The vector of token-level dimension estimates.

and tokenizers are identical. After identical sub-sampling, this allows for point-wise comparison of
the resulting latent spaces to evaluate geometric changes. Next, we define the local estimates used for
this comparison.

3.4 Local Dimension Estimates

The TwoNN estimator (Facco et al.| 2017) approximates the intrinsic dimension of a point cloud
as a positive real number using only the distances 1 and o of each point to its nearest and second-
nearest neighbors. It turns out that under weak assumptions, the ratio ;—f of these distances is
Pareto-distributed (see [Denti et al. (2021)) for details). Then, the intrinsic dimension can be estimated
from parameters describing this distribution, as long as the density around the points is locally
approximately constant on the scale defined by the distance of the second nearest neighbor.

We turn this into a local measure as follows: Let X be a point cloud and v € X. For L € Ny, we
define the L-local TwoNN estimate of X at v as TwoNN(NL (v; X)), i.e., as the TwoNN estimate
of the local neighborhood Ny (v; X) of v of size L in X. In this way, the parameter L controls
the locality scale of the dimension estimation. In the context of our model M and corpus D, we
take X = T and compute a vector of positive real-valued numbers TwoNN (N, (v; X)),er € RY,,
one for each token v € T. We subsequently aggregate this to a mean estimate per corpus/model
setup. While sensitive to hyperparameters such as L and sample sizes, we show in[Appendix A|that
estimates remain stable under reasonable settings, enabling consistent comparisons across datasets
and models.

4 Experiments

We now apply our method to analyze how embedding spaces evolve during LLM-related learning
tasks. Unless stated otherwise, all results pertain to the model’s final hidden layer, i.e., T_; as

defined in We refer the reader to [Appendix C.2]for results on layers other than the last.

Subsequently, we will focus on four central questions:

(Q1) How does fine-tuning on different datasets alter latent space geometry?
(Q2) How can local dimension estimates detect grokking?

(Q3) How can local dimension estimates detect the limit of training capabilities?
(Q4) How can local dimension estimates detect overfitting?



4.1 Fine-Tuning Induces Dataset-Specific Shifts in Heterogeneous Local Dimensions

To understand how fine-tuning alters model representations, we investigate the distribution of local
intrinsic dimensions across token embeddings. These dimensions, estimated using the method
introduced in reveal nuanced changes in the geometry of the embedding space.

Setup We evaluate models on datasets with 20 = Mean=9.00; Median=9.37; 5td=3.01
. . oqe . Mean=6.67; Median=6.96; Std=2.79
varying domains and familiarity to the base and 2 ;¢
fine-tuned models: MultiW0Z2.1 (Eric et all <Z;>10
2020): Human-human multi-domain dialogues; F s
Schema-Guided Dialogue SGD (Rastogi et al.| ' |
2020): Human—virtual assistant dialogues; Reddit: RoBERTa RoBERTa fine-tuned on MultiwozZ
Reddit comments from the year 2022 mentioning (a) TwoNN estimates on MultiW0Z validation
Tesla, Inc.; ICLR 2024 Submissions: Titles and ab-

stracts of ICLR 2024 papers collected by us; and 40 B Hea-17.55; Medn=17.37: Sti=4 67
Wikipedia: The Hugging Face wikitext-103-vl  z30 e
corpus. g20

[
As can be seen from the selection of pre-training 10
datasets of the respective models (Liu et al., [2019; RoBERTa RoBERTa fine-tuned on MultiwoZ

Radford et al., 2019), this choice allows us to com-
pare: (i) distributions not seen during pre-training or
fine-tuning (e.g., Reddit, ICLR 2024, which were =
released after the pre-training of the model con- 30 Mean=12.80; Median=12.58; Std=5.03

(b) TwoNN estimates on Wikipedia validation

cluded), (ii) distributions seen during pre-training %20
(Wikipedia), and (iii) distributions used for fine- £
tuning (e.g., MultiWO0Z, SGD). This contrast allows 0
us to probe how local intrinsic dimensions behave RoBERTa ROBERTa fine-tuned on Multiwoz

in both seen and unseen data regimes. We split
Reddit and Wikipedia into training (80%), valida-
tion (10%), and test (10%) subsets. Chronologically-  Figure 1: Comparison of local intrinsic dimen-
ordered datasets (e.g., Reddit) are shuffled before sjons (LIDs) across three data modalities. The
splitting to avoid temporal bias. Wikipedia was distribution of the local estimates over tokens
pre-processed by removing headings, empty lines, is shown in the violin plot, together with their
and stripping leading and trailing whitespace. Fur- means and quartiles. The LID of embeddings
ther dataset statistics are available in[Table 1l originating from the fine-tuning distribution

Fine-tuning of the ROBERTa-base models (Liu et al, (MultiW0Z) differs markedly between models,
2019) is performed using masked language model- whereas th.e ]j‘IDS for the oyt—of-dlstrlbutlgn
ing with a masking probability of 0.15. Each model ~C0rpora (Wikipedia, Reddit) are almost in-
is trained for 5 epochs on 10 000 training examples distinguishable.

using a batch size of 8, a learning rate peaking at

5-1075 with 500 warmup steps, and linear decay thereafter. Weight decay of 0.01 is applied through-
out. For evaluation, we embed a subset of the validation split of each dataset using both the base and
fine-tuned model, ensuring the embeddings are out-of-sample relative to the fine-tuning set.

(c) TwoNN estimates on Reddit validation

Our discussion in this section focuses on the masked language model RoBERTa, whose architectures
remain widely used in practice where encoder-based models are needed (Warner et al [2025) and
autoregressive alternatives are less suitable, such as in information retrieval. Results for additional
fine-tuning of the autoregressive models GPT-2-medium, Phi-3.5-mini-instruct, and Llama-3.1-8B

can be found in where similar observations hold.

Results We find that local intrinsic dimensions vary significantly across tokens, as illustrated by the
wide spread of the TwoNN distributions in[Figure I] Here, we choose the parameters M = 7000,
N = 60000, L = 128. This heterogeneity is consistent across different models and datasets. It aligns
with prior observations that numerical data is often not confined to a single manifold of uniform
dimensionality, but is instead composed of multiple regions with varying local geometry (Brown
et al., [2023)). These findings reinforce our decision to favor local over global estimates of embedding
dimensionality.
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Figure 2: Training a model on addition mod p = 197 with different training data fraction selected
from {0.1;0.15;0.2;0.25; 0.3;0.4; 0.5}. The plots show the development for 60 000 batches, with
mean and 95% confidence interval over 5 training seeds per configuration (plots per seed are in

[Appendix C.3). The mean local estimates are computed on the training split for the parameters
N = 3000; L = 64. Dashed lines highlight the runs where grokking did not occur.

Our central observation is that fine-tuning systematically lowers the local intrinsic dimension only on
the dataset used during the fine-tuning process. As shown in[Figure Th, the TwoNN estimates for
the MultiW0Z-validation embeddings are markedly lower for the fine-tuned RoOBERTa model than
for the base model. By contrast, embeddings of unrelated datasets—such as Wikipedia (Figure Tp)
or Reddit comments (Figure Tk)—show no or only minimal changes in their local dimension
distributions. Quantitatively, this observation can be validated by the standardized mean difference
between the respective cohorts, with a value of 1.19 for MultiW0Z, and 0.08 (resp. 0.1) for Reddit
(resp. Wikipedia).

We find this shift to be stable across training, validation, and test splits of the same dataset, suggesting
that it reflects robust structural changes in the latent space rather than artifacts (see for a
thorough sensitivity analysis showing the method’s robustness to the choice of sampling parameters).
This behavior highlights strong dataset-specificity in how local geometry adapts under fine-tuning.
The effect is absent when evaluating on out-of-distribution data, supporting the view that local
dimension reductions correspond to improved fit and specialization on the fine-tuned task, while
leaving unrelated regions of the embedding space unchanged.

4.2 Local Dimensions Detect Grokking

Grokking is the phenomenon that a machine learning model acquires specific skills only after extended
training far beyond overfitting on the training set, which was first discovered by Power et al.[(2022).
In such cases, from the model’s performance on the training set alone, it is a complex problem to
predict under which choices of hyperparameters grokking will occur (Junior et al., [2024).

Setup We here consider the task of learning an arithmetic operation on a small group (addition
modulo p). For example, for p = 197 such an input sequence would be [155, ‘o’, 88, ‘=’],
where the model should predict the result 46. The tokenization is constructed so that every operand in
the group is encoded as a single token, with the addition of the operation token ‘o’ and the equality
token ‘=. A certain fraction of all valid expressions in the group, ranging from 10 percent to 50
percent, is taken as the training set, and the remainder will be taken as the validation set.

We use a tiny decoder-only transformer model with two layers, 128 hidden dimensions, and four
attention heads trained from scratch. Optimization is performed by AdamW (Loshchilov and Hutter,
2017) with learning rate 0.001 (with linear schedule over 400k steps, warmup of 10 steps), batch
size 512, weight decay 0.01. Models are trained for many steps beyond the point where training
performance saturates, keeping the same setup as in the original paper (Power et al.| [2022).

For the local estimates, we set the number of sampled tokens N as the minimum of 3000 and the
maximum number of tokens available, and a neighborhood size L of 64. Since the number of input
sequences is comparatively small, we choose M to encompass everything, and only subsample in
the token selection step. Still, we observe a similar qualitative behavior for other reasonable choices
of these hyperparameters. The hidden states at the last layer are sampled from all available tokens,
which could come from the operands and the operation or equality symbol.



Results Performance measures versus local estimates are shown in for the first 60 000
training steps averaged over seeds (we present plots for individual seeds in|Figure T6]in the appendix).
The training accuracy quickly reaches an almost perfect score in all cases, with the validation accuracy
lagging behind. In the time frame under consideration, the model can generalize and reach almost
perfect validation accuracy only in those runs for which the training data portion exceeds 20%.
Based on the loss and accuracy of the training data alone, one would not be able to predict which
configurations can break out and generalize to the validation data.

A typical pattern for the mean local dimension computed on the training data in all these runs is that
it increases in the first few thousand global steps (see [Figure 2c). But subsequently, the training mean
local dimension starts dropping significantly for those runs that exhibit grokking. Observe that the
timing of this drop coincides with the start of the increasing validation accuracy in We can
conclude that in this setting, a drop in the mean local dimension on the training set strongly indicates
a successful generalization to unseen validation data.

For those runs in which the validation accuracy does not increase beyond the fraction of training
data during the selected training time (with 10% and 15% of training data, highlighted via dashed
lines), the local dimension increases and then stays mostly flat. Quantitatively, the Spearman rank
correlation between the training/validation accuracy and mean local dimension measured over the
training split is positive for those training fractions where the model does not grok (0.880/0.076 and
0.922/0.257 for training fractions 10% and 15%). This behavior suggests that the model only tries to
learn the training examples by heart and fails to generalize to unseen data. For all runs grouped by
training fraction > 20%, which all exhibit grokking, the Spearman rank correlation between both
training/validation accuracy and training mean local dimension is negative.

4.3 Local Dimensions Detect Exhaustion of Training Capabilities

Finding relevant text segments in response to a query, also called span prediction or sequence tagging,
is a highly relevant problem in various natural language processing settings (Jurafsky and Martin,
20235)). One such application is retrieval augmented generation (RAG), where, during the information
retrieval step, relevant passages from a large corpus need to be selected (Fan et al., [2024)) before
generating an answer. Here we study it in the context of dialogue state tracking—a critical task of
dialogue modeling.

Setup To demonstrate the application of our local dimension estimates in this setting, we compute
them for the sequence-tagging-based dialogue state tracking model TripPy-R (Heck et al.| [2022)
trained on the MultiW0Z2. 1 dataset (Eric et al.| |2020). In dialogue state tracking, the task is to
predict the user’s intent from the natural language input utterances, and keep track of the user’s
goal described throughout the conversation by updating the dialogue state (Young et al.,|2010). The
contextualized hidden states for computing our measure are taken from the last layer of the unified
encoder component, which has the RoBERTa architecture. The actual state tracking is performed
based on classifier outputs derived from this encoder’s output. The encoder is fine-tuned during the
TripPy-R training via the loss signal derived from predicting the current dialogue turn’s state update.
We train the models for 20 epochs with Adam, with a linear learning rate schedule up to 5 - 10~° that
starts with one warm-up epoch.

The input data for the local dimension estimates is formatted in the same way as it is used during
training and inference. A single input sequence consists of a dialogue turn, followed by the dialogue
history, where the different sequence components are separated via special tokens. For the local
dimension estimates, we sample M = 7000 sequences from the training, validation, and test split,
with a token subsample size N = 60 000, and neighborhood size L = 128.

Results shows the development of two model performance measures: One is the differen-
tiable model loss, which is used for backpropagation. The other is the non-differentiable joinz-goal
accuracy (JGA), which is used to judge the downstream performance of the state tracking model.

Note that the mean local dimension estimates behave similarly when comparing the training, valida-
tion, and test splits. This is in contrast to the loss and JGA: On the training set, the loss (green) is
monotonically decreasing, while the JGA (orange) is increasing. On the other hand, the loss reaches
a minimum on the validation set after 7500 batches, long before the JGA converges. In this case, the
differentiable model validation loss would give the wrong impression that the model has finished
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Figure 3: Development of TripPy-R performance measures (model loss in green; joint goal accuracy
in orange) compared with mean local dimension estimates (blue) evaluated on the training, validation,
and test split of the MultiW0Z dataset. We show the mean and standard deviation of the measures
evaluated at the end of each epoch over six different model training seeds.

learning generalizable representations. However, from the dimension estimate, we conclude that the
model has not converged at that point. The mean local dimension is still decreasing, and one should
continue training. Notably, we can make this observation on the training data alone and would not
need a separate labeled validation set when relying upon our estimates.

Quantitatively, taken over the whole time series progression and step-wise averaged over six seeds,
the mean local dimension exhibits a strong negative Spearman rank correlation with the JGA of
—0.982/—0.958/—0.905 for the training/validation/test split, respectively. This confirms that pro-
gressive compression of the embedding space directly reflects improvements in generalizable task
performance. Correlation between the mean local dimension and the loss is positive (0.982) on the
training set, and negative (—0.612/—0.734) on the validation and test set, mirroring the fact that the
loss does not align consistently with JGA performance over the different splits.

In another direction, we can see that later in the training, after roughly 25 000 batches, the stabilization
of the local dimension estimates coincides with the convergence of the model performance regarding
JGA on the validation and test sets. This effect of stabilization of the local estimates, indicating that
the training capabilities have been exhausted, can be seen even more clearly for longer training runs

(50 epochs) in [Figure T7]in [Appendix C.4]

4.4 Local Dimensions Detect Overfitting

We now examine the mean local dimension as an indicator of overfitting in a challenging sequence
classification setting.

Setup We use the EmoW0Z dataset (Feng et al., 2022), with the task of classifying dialogue utterances
into one of seven emotion classes. Our experiments employ the ERToD model (Feng et al., [2023)
in its baseline configuration, a linear classifier built upon a bert-base-uncased (Devlin et al.|
2019)) model feature extractor. We intentionally decide on the setup without dialogue history, data
augmentation, or auxiliary predictions, which are modifications proposed by the authors to solve the
problem of classifying rare emotions. The model is trained for 8 epochs using a linear learning rate
schedule with warmup for AdamW and peak learning rate of 2 - 10~°. At the end of each training
epoch, local dimension estimates are computed from hidden states extracted at the last BERT-encoder
layer. Thus, this is the latent space that the model has tuned to aid its subsequent classification. We
select representative subsets of M/ = 7000 sequences from the training, validation, and test split,
with a token subsample size N = 60 000, and neighborhood size L = 128. Model performance is
evaluated using cross-entropy loss and weighted F1 and macro F1 classification scores. To better
capture effects on minority classes, the majority “neutral” class is excluded from the F1-scores.

Results [Figure 4|depicts the model’s performance measures plotted against the mean local estimates.
After the first training epoch, the model’s mean local dimension drops notably to ~ 7.25 from the
base model’s initial dimension of ~ 9.94. Over the subsequent eight training epochs, this dimension
increases to a value of about 8. Note that this behavior of the mean local estimates can be observed
on all three data splits. As expected, the training loss monotonically decreases, while both weighted
and macro F1-scores increase on the train set.



10 10 0.8 104 0.8
c 0.8 L Lo
3 8 84 \_*__*4—0——*—4——0 o7 g \__‘_*_.—o—v—*—O o7 g
o X —e— Mean local dim. x tos ~ tos ®
£6 *” Weighted F1 06 64 4= 6 e ) g
5 -%- Loss o m e m K= SHEE R == [ 0.5 et e 05§
E 4 -»=- Macro F1 0.4 4 =" x 44 » X ]
g Ny P to.4 2 o4
= 2 M~ 2 / 21 e @
e [*2 =™ los f— los
0 T T T T T T T T 0 T T T T T T T T T 0 T T T T T T T T
1 3 5 7 1 3 5 7 1 3 5 7
Epoch Epoch Epoch
(a) EmoW0Z Training split (b) EmoWOZ Validation split (c) EmoWO0Z Test split

Figure 4: Development of emotion recognition model performance measures (loss in green; weighted
F1 in orange; macro F1 in red) compared with mean local dimension estimates (blue) evaluated on the
training, validation, and test split of the EmoWOZ dataset. We show the mean and standard deviation
of the measures evaluated at the end of each epoch over four different training seeds.

However, the minimum of the local dimension, followed by an increase, suggests that the model has
already found an efficient representation after a single training epoch. We previously observed a
connection between rising dimension and memorization in the grokking experiments in
This suspicion is confirmed when considering the performance measures on the validation set in
Figure 4b] After the first epoch, the validation loss increases strongly over the following epochs; thus,
the model is clearly overfitting on the training examples.

In terms of how this influences the classification accuracy, the effect is more nuanced. While the
macro Fl-score increases and plateaus after about three epochs, the weighted F1-score declines
from the end of epoch two onward. This combined behavior implies that the model improves on
minority classes at the expense of performance on the majority classes, potentially memorizing rare
instances and diminishing its generalization capability. This interplay between macro and weighted
F1 suggests that the model is learning a decision boundary that trades off the performance of majority
and minority classes, a phenomenon that may be overlooked when looking at the loss curve alone.
Practitioners monitoring the shifts of local dimensionality on the training set could, therefore, identify
subtler model behavior without requiring labeled validation or test data.

Note that in general, the evaluation criteria are task-specific: In contrast to the observations in
Section 4.3 where the validation loss is not a reliable stopping criterion when aiming for the target
metric JGA, here, the validation loss and weighted F1 are tightly aligned. Hence, the loss serves
as a valid stopping signal here. The local dimension measures support this point, since they are
negatively correlated with the training loss (Spearman rank —0.952), but positively correlated with
the validation (0.952) and test loss (0.976).

4.5 Computational Resources

Fine-tuning of the RoBERTa-base and GPT-2-medium models (in on one of our
selected datasets can be performed efficiently on a single NVIDIA V100 or GTX1080TI-12GB GPU
within a few hours. Additionally, computing the embeddings for a single layer of these models
requires only forward passes, which takes approximately 10 minutes on the same hardware.

For the TwoNN computations, which are CPU-intensive, the computational requirements depend
on the size of the dataset and the dimensionality of the embeddings. The computation is feasible in
20 minutes on an E5-2640v4 (Broadwell) 2.40GHz dual-core machine with 32GB of RAM using
the scikit-dimension package (Bac et al., 2021)) for a typical dataset with tens of thousands of
points in high-dimensional space (ambient dimension in the hundreds). For the grokking experiments,
where we evaluate the local dimension frequently, this amounts to a total of 48 CPU core hours
per run in the depicted range. However, precise timing may vary depending on implementation
optimizations and the chosen neighborhood sizes. For a constant and small neighborhood size L
and ambient embedding dimension d, the computation of the neighborhoods for a subsample of N
using exact search (Johnson et al., [2019) takes O(dN 2). Then, since we already have the ratios
of closest distances available for each neighborhood, the TwoNN local dimension estimation is a
constant overhead of performing a linear fit on values of a transformed cumulative distribution.



4.6 Limitations

While versatile, our framework has several limitations. One drawback is its comparatively high
computational complexity; to get a reliable dimension estimate, we need to build a sufficiently large
sub-sample of the latent space by performing forward passes on the input data and subsequently
computing the neighborhoods and estimates. Being independent of the model training procedure,
these computations can be performed in parallel to any potential fine-tuning, thus not slowing down
the training process. Further work could focus on making the local estimate computation more
efficient and developing local, stable, and computationally efficient descriptors.

An intrinsic limitation arises from the assumptions of our dimension estimates. The TwoNN estimate,
which we apply locally, is known to accurately reflect the true local dimension only under strong
assumptions on the local point sampling distribution: The point sample should come from a Poisson
point process on a subspace of uniform dimension. Note that these assumptions and locally constant
density for the hidden states of transformer models have been empirically demonstrated (Valeriani
et al.} 2023} |Viswanathan et al.| [2025). While the TwoNN method is non-parametric, the precise
absolute value of the mean TwoNN estimate depends on the hyperparameter choices in selecting the
latent space sub-sample and neighborhood size. This implies that our mean of local dimensions is of
a “relative” nature, because we cannot directly compare the dimensions’ values between different
model architectures. However, this is only of secondary importance for our method, as we are more
interested in changes of dimension than in absolute values. Moreover, our framework is general,
permitting the use of other estimation methods. Our working hypothesis is that high-dimensional
neighborhoods reflect over-parameterized and poorly localized behavior, whereas very low LID
indicates over-compression or memorization. Between these extremes lies a “sweet spot” in LID,
where representations retain the essential degrees of freedom required for effective generalization.
Empirically, this intermediate range correlates with peak generalization performance. While this
correlation supports the interpretability of our analysis, establishing a causal link between LID
reduction and improved generalization remains an open question for future work.

5 Conclusion

We introduce a novel geometric perspective on LLM training dynamics by measuring the local
intrinsic dimension of contextual token embeddings. While the latent spaces of contextual language
models exhibit regional variation in dimensionality, the mean local dimension provides a stable,
interpretable summary across dataset splits. Across diverse tasks, a sustained drop in mean local
dimension reliably suggests improved generalization, offering a practical, unsupervised diagnostic
signal that, among other things, enables the detection of grokking. Such a marked reduction in
intrinsic dimension in supervised downstream tasks highlights their strong compressive effect on the
latent space. On the other hand, rising dimensions can point to a tradeoff between generalization
and specialization, typically observed during overfitting. Our approach enables monitoring without
supervision by labels, which is particularly valuable in low-resource settings where validation labels
are limited or unavailable. Thus, our findings highlight the utility of geometric descriptors for
monitoring and interpreting LLM behavior beyond traditional label-based metrics.

Impact and Future Work To our knowledge, we are the first to investigate local dimensional shifts
and their implications in training and fine-tuning contextual language models for different downstream
tasks. The findings of this work enhance the ongoing discussion regarding the interpretability,
adaptability, and generalizability of LLMs. Our work provides a foundation for designing better
model architectures and developing interventions that utilize the insight that lower intrinsic dimensions
benefit machine learning problems. Our measures could inform parameter choices such as LoRA-
ranks in the spirit of (Ed-dib et al.,|2024), and are broadly applicable for other (post)-training phases,
for example, those which involve RL-tuning. While our current dimension estimation method is not
differentiable (due to nearest-neighbor graph construction and the subsequent TwoNN estimator), we
see designing a differentiable surrogate or proxy loss to encourage local compression during training
as an exciting opportunity for future work. The locality of the dimension estimates promises further
applications beyond the scope of the current work. One immediate avenue for investigation is to see
to what extent the dimension can be used to detect which data the model has been trained on. Another
important direction would be to find connections between the underlying meaning that the tokens
carry and their corresponding dimension estimates.
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to [4.4] contain all the details necessary to reproduce the model training runs,
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to make their results reproducible or verifiable.
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While NeurIPS does not require releasing code, the conference does require all submis-
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: To confirm the findings of our main results, we run every experimental setup
for several seeds, and report confidence intervals or standard deviation in [Figures 2|tofd] All
standard deviations in this paper are sample standard deviations, computed with the numpy
and pandas library functions np.std(ddof=1) and pd.std (). Our sensitivity analysis in
studies the effect of sampling size and locality parameters by reporting the
results for multiple sub-sampling seeds per hyperparameter choice. The violin plots of the
local estimates in[Figure I|and[Appendix C.I|show the entire distribution and are reported
together with mean and standard deviations.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
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the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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* The method for calculating the error bars should be explained (closed form formula,
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of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the runtime and computational resources in
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
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Justification: We reviewed the NeurIPS Code of Ethics and confirm that we have followed
every aspect.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational and provides general insights into the training dy-
namics of language models. While we acknowledge the general risks involved in developing
and deploying machine learning models, our insights do not lead to new negative societal
implications. Since we aim to geometrically understand the internal mechanism in a lan-
guage model under different fine-tuning and training regimes, we hope that our work can
help in safety and interpretability research in the future.
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* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe our foundational work does not pose such safety risks.
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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and we provide links to the dataset cards in
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* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code, which is submitted as part of the supplemental material and will be
made public upon publication, is documented in the repository. This includes example hydra
configuration files for the datasets and model selection. The Python package management
system uv is used to reproduce the virtual environment with all dependencies, and run
commands for the most important entry points into the codebase are provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We employ LLMs as standard components of the machine learning models
under consideration, and describe their usage in detail in and[ Our development
process did not involve LLMs in a non-standard way.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Sensitivity Analysis

The following analysis gives insights into the stability of the sampling process in our pipeline of
In particular, we discuss the influence of the following variations on our final mean
local estimate:

* In[Appendix A.T] we show that with increasing sample and neighborhood sizes, the TwoNN
estimates tend to converge in our setting, and already a small portion of samples suffices for
reasonable reliability.

e In we show that the mean local estimates are stable under applying noise to
the embedding vectors.

e In we show that for masked language models, both masked and regular token
embeddings lead to similar mean estimates.

All embeddings in the following analyses are computed using the regular token embeddings from the
last layer of the RoBERTa-base model.

A.1 Dependence on Hyperparameter Choices

Dataset sequence sub-sampling (dependence on M) Text corpora data splits usually contain
different numbers of text sequences, since, for example, the training dataset is larger than the
validation or test dataset. Here, we present experiments to show that our method can be made stable in
the size of text corpus sequence sub-sample M € N, and how it depends on the seed of the sequence
sub-sample.

Note that in our sub-sampling, we shuffle the dataset split using a given seed, and then truncate
to a beginning segment of the specified size. Thus, when comparing different data sequence sub-
sampling sizes for a fixed seed, the smaller sequence sub-samples are subsets of the larger ones. In
all the experiments in this section, the size of token sub-sample is set to N = 60 000, and the local
neighborhood size parameter L = 128. Note that for the smallest sequence sub-sample size M =
2000, not enough non-padding tokens are necessarily available to reach a token sample size of N =
60 000, but with more sequences, we get this common token space size.

We take sequence sub-samples of each given size with 5 different seeds and select a random token
sub-sample for each of these, on which the local TwoNN estimates are based. For the results, see
[Figure 5|and [Figure 6}

For a given sequence sample size, the average of the mean local estimates, calculated across different
sampling seeds, remains consistent between the various dataset splits of the same dataset. This

22



observation indicates that the sampling process is robust to differences in how the data is divided.
Furthermore, the estimates stabilize as the sequence sample size increases, suggesting convergence
of the local mean estimates with larger samples. Based on these observations, we set M to the values
7000 or 10 000 for the natural language-based tasks in[Sections 4.1} .3]and [.4] because it represents
a practical compromise between computation effort and stability of the value at that scale. This value
provides sufficient sampling density to capture the underlying data distribution comparably across
datasets while maintaining computational efficiency.
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Figure 5: Boxplots of the mean local TwoNN estimates for different sequence sample sizes M
ranging from 2000 to 16 000. We compute the mean estimates for 5 different sequence sub-sampling
seeds for the three splits of the MultiW0Z dataset. Here and in all subsequent boxplots, the average of
the mean estimates is depicted as green triangles, their median is the orange line; outliers are shown
as circles.

Token sub-sampling (dependence on V) Here, we want to investigate the influence of the token
sub-sample size on the local TwoNN estimate. We conduct our analysis on the MultiW0Z dataset.
Since here we are interested in the effect of the second sub-sampling process, we want to fix the first
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Figure 6: Mean local estimates for different sequence sample sizes M for splits of the Reddit dataset,
shown for 5 sampling seeds.

sampling step for the sequences: We take the sub-sample of the first A/ = 10 000 sequences from the
MultiWOZ training, validation, and test split. From the resulting token embedding spaces, we then
sample 100 000 points (ignoring padding and end-of-sequence (EOS) tokens). Finally, we compute
the local estimates based on the first N = 10000, 20 000, ..., 90 000, 100 000 points in the given
sub-sample. Note that we are left with slightly fewer points in the local estimation step for the largest
sub-sample size because of our de-duplication step in[ATgorithm 1] This means that in a given token
sub-sample, the beginning segment of the first 10 000 points is the same even when increasing the
sample size, and we compare the mean of the local estimates of this beginning segment.

The analysis of the datasets reveals a clear trend in the behavior of the truncated mean values and their
associated standard deviations as the sample size increases, see|Figure 7| Here, the mean stabilizes
quickly, and the standard deviation is comparatively small. This justifies our choice of N = 60 000
in the natural language dataset settings.
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Figure 7: Distribution of the mean local TwoNN estimates for different cardinalities of token sub-
samples. We compute the mean estimates for 5 different token sub-sampling seeds and show their
distribution for each fixed subsampling cardinality.

Neighborhood size for local estimates (dependence on L) Having fixed sample sizes M and
N, shows the distribution of TwoNN dimension estimates across varying locality scale
parameters, represented by the number of neighbors L. A key observation is the relative stability of the
estimates as the number of neighbors increases, with smaller locality scales (fewer neighbors) yielding
more diverse estimate distributions. This indicates that local properties of the data significantly
influence dimension estimates.

The increasing stability with larger neighborhoods suggests that the embedding space exhibits more
homogeneity at broader locality scales. However, the variability at smaller scales aligns with the
observation in |Brown et al.| (2023) that in many cases, numerical data is not confined to a single
manifold of uniform dimensionality but rather consists of multiple manifolds or regions with varying
local dimensions.
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Our findings provide evidence that token embedding spaces of this nature do not conform to a single,
unique dimension. Instead, they exhibit a complex structure, where local estimates diverge, reflecting
the diverse geometric and topological properties within the space. This emphasizes the importance of
considering locality when evaluating dimension estimates in such embedding spaces.
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Figure 8: Distribution of the local token-wise TwoNN estimates over different locality scales L
(number of neighbors). The mean and quartiles of the resulting measure varying over the different
tokens in a fixed subsample are shown here. The more global the estimates, the smaller the standard
deviation in the resulting distribution.

A.2 Noise Analysis
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Figure 9: Effect of artificial Gaussian noise on masked token embeddings. On the z-axis, we mark
the Hausdorff distance of the noisy embeddings to the clean embeddings, with color denoting the
distortion o in the artificial Gaussian noise.

The following experiments investigate the stability of the TwoNN dimension estimates under small
perturbations of point clouds in a realistic setting of high-dimensional language model embedding
spaces. The original work in [Facco et al.|(2017) studies the influence of artificial noise on the
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global TwoNN estimator for specific toy datasets (points sampled from a 2-dimensional plane in
20-dimensional space, and points sampled from a 2-dimensional Gaussian distribution wrapped
around a Swiss roll). Here, we confirm the stability under noise for our mean local estimates and in
the realistic setting of high-dimensional contextual language model embeddings.

We analyze the effect of Gaussian noise on the embeddings from the MultiWO0Z test set using a fixed
set of parameters and varying noise distortions. Specifically, we use M = 10 000 random sequences
from the MultiW0Z test set and extract the masked token embeddings from the last layer of the
RoBERTa base model, which produces 768-dimensional vectors. To compute local estimates, we
sub-sample N = 60 000 points from the embeddings and set the neighborhood size to L = 128.

Gaussian noise is applied to all dimensions of the embeddings with varying distortion parameters,
o € {0.001;0.002;0.003; 0.004; 0.01}, and multiple random seeds to introduce variability. For each
noise level, we compute the approximate Hausdorff distance between the point cloud of the 60 000
clean embedding vectors and the 60 000 noisy embedding vectors, using the Euclidean distance as
the distance metric.

The results are visualized in where we plot the Hausdorff distance against three measures:
the global TwoNN-estimate of the noisy point cloud, the mean of the local TwoNN estimates, and the
standard deviation of the local TwoNN estimates.

From the plots, we observe the following trends. The Hausdorff distances between the clean and noisy
embeddings and the global and the mean local TwoNN estimates increase with larger noise levels,
and there is a clear correlation between the two. Notably, for a distortion parameter of o = 0.01,
the difference in the dimension estimates exceeds one. As expected, the standard deviation of the
local TwoNN estimates also increases with higher noise levels, reflecting the increased variability
introduced by the noise. Nevertheless, under small noise levels, the mean local estimate remains
relatively stable and has lower variability than the global TwoNN estimate.

A.3 Masked Token Embeddings versus Regular Token Embeddings

The plots in compare the TwoNN estimates for regular tokens (left) and masked tokens
(right) in the MultiWO0Z dataset at the last layer. Each box plot represents the distribution of token-wise
TwoNN estimates.

The estimates for regular tokens have an interquartile range from approximately 5.5 to 8, with a
median near 7. This distribution closely resembles that of masked tokens, which exhibit a similar
range and median. However, the broader spread for regular tokens suggests distinct token-level
geometric behaviors influenced by their role in the learned representation space. In any case, this
justifies the computation of the mean local estimates for the regular token embeddings, which are
cheaper to obtain: Every sequence token must be masked individually to retrieve masked embeddings
with a corresponding model forward pass. In contrast, for the regular embeddings, a single forward
pass of the entire sequence automatically produces embeddings for every input token.

TwoNN estimates

= =

0.0

regular masked

Figure 10: TwoNN estimates for regular and masked tokens in the MultiWO0Z dataset at the last layer.
Both token types show similar distributions.
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B Additional Details on Datasets Used

See for details on the dataset cards and corresponding split sizes.

Table 1: Dataset sizes for various datasets used in the experiments. Some datasets use pre-determined
splits, while others involve random splits.

Dataset Training Size  Validation Size  Test Size
MultiWw0Z2.1 113 556 14748 14744
https://huggingface.co/datasets/ConvLab/multiwoz21

EmoW0Z 66 474 8509 8634
https://paperswithcode.com/dataset/emowoz- 1

SGD 329964 48726 84 594

https://huggingface.co/datasets/google-research-datasets/
schema_guided_dstc8

ICLR 2024 5764 721 720
submissions (titles + abstracts)

Reddit 174 996 21874 21874
(random 80%-10%-10% split)

https://huggingface.co/datasets/SocialGrep/

one-year-of-tsla-on-reddit

Wikipedia 1441 080 180135 180135
(random 80%-10%-10% split)
https://huggingface.co/datasets/Salesforce/wikitext/

viewer/wikitext-103-v1

C Additional Experimental Results

C.1 Additional Fine-Tuning Results

Fine-tuning on unseen data Continuing the discussion in[Section 4.1] in[Figure 11| we provide
additional distribution plots of the local estimates for fine-tuned RoOBERTa-base models. Here and in
the following, the plots labeled with FT correspond to embedding spaces created from the respective
base model fine-tuned on the given dataset (MultiWO0Z, Reddit, Wikipedia).

Fine-tuning an autoregressive language model Moreover, in we show the distribution
of local estimates for the auto-regressive GPT-2-medium model, and their shift under fine-tuning on
a causal language modeling task. The GPT-2-medium fine-tuning here is performed with standard
parameters on the first 10 000 sequences of the given dataset’s train portion, and we show the local
estimates at the checkpoint after 1200 batches.

Interesting cases to note are the ROBERTa and GPT-2-medium models fine-tuned on the Reddit
data: Since the text from the dataset was created in the year 2022, long after the training of RoOBERTa
and GPT-2-medium finished, this combination illustrates the behavior of a model fine-tuned on data
that it has not seen during pre-training. The general observations from hold for the
autoregressive models as well: The LIDs of embeddings originating from the fine-tuning distribution
decrease markedly between models, whereas the LIDs for the out-of-distribution corpora remain
largely unaffected or have increased.

Local estimates for larger models The geometric perspective and methodology we propose are
broadly applicable across model architectures. Local estimates computations for the Phi-3.5-mini-
instruct model in and for Llama-3.1-8B in demonstrate that our sub-sampling
procedure yields meaningful estimates even for latent spaces whose ambient dimension is in the
thousands, a typical setting for modern LLM architectures.

Phi-3.5-mini-instruct is a decoder model with 3.82B parameters and a hidden dimension of 3072 (Ab-
din et al.,2024), while Llama-3.1-8B is even larger with 8.03B parameters and a hidden dimension of
4096 (Al@Meta, |2024)). We fine-tune via LoRA with rank constraint » = 16 on a random subsample
of 10 000 sequences from the MultiWOZ and Reddit training splits, with other hyperparameters as

described in The violin plots in and [14] show the distribution of the LIDs of

the validation split for the model checkpoint after 800 batches.

28


https://huggingface.co/datasets/ConvLab/multiwoz21
https://paperswithcode.com/dataset/emowoz-1
https://huggingface.co/datasets/google-research-datasets/schema_guided_dstc8
https://huggingface.co/datasets/google-research-datasets/schema_guided_dstc8
https://huggingface.co/datasets/SocialGrep/one-year-of-tsla-on-reddit
https://huggingface.co/datasets/SocialGrep/one-year-of-tsla-on-reddit
https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-103-v1
https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-103-v1

Mean / Median / Std

B 9.09/9.37/3.01 (RoBERTa-base)
20 6.67 /6.96 / 2.79 (FT Multiwoz)
B 8.52/8.64/2.61 (FT Reddit)
] W 8.81/9.05/2.99 (FT Wikitext)
0 4

RoBERTa-base  FT MultiwOZz FT Reddit FT Wikitext

=
(O]

TwoNN
=
o

w

(a) TwoNN estimates on MultiW0Z Validation embeddings

20 4 Mean / Median / Std
Il 7.16/7.14/ 2.41 (RoBERTa-base)
5.88/5.96/2.60 (FT MultiwOZ)
15 m 6.91/6.74/2.18 (FT Reddit)
= BN 6.99/7.00/2.41 (FT Wikitext)
=2
g 10+
'_
5 4
0 1 T T T T
RoBERTa-base FT Multiwoz FT Reddit FT Wikitext
(b) TwoNN estimates on SGD Validation embeddings
40 Mean / Median / Std
BN 13.27/13.08/5.24 (RoBERTa-base)
12.80/12.58/5.03 (FT Multiw0z)
304 B 11.69/11.37/4.67 (FT Reddit)
= m 12.88/12.78/4.66 (FT Wikitext)
=2
o 20+
2
10+
0 4

RoBERTa-base FT MultiwOZz FT Reddit FT Wikitext

(c) TwoNN estimates on Reddit Validation embeddings

Mean / Median / Std

401
I 17.56/17.37 / 4.67 (RoBERTa-base)
18.09/17.85/5.12 (FT Multiw0oz)
301 mm 16.50 /16.29 / 4.78 (FT Reddit)
= BN 15.39/15.27 / 5.31 (FT Wikitext)
=2
g 204
'_
10+

RoBERTa-base FT MultiwoZ FT Reddit FT Wikitext

(d) TwoNN estimates on Wikipedia Validation embeddings

Figure 11: Distribution of LIDs of the masked language model RoBERTa-base and fine-tunes (FT).

C.2 Layer-Wise Computation of Local Estimates

Our setup from [Section 3|and [Algorithm I|naturally applies to embeddings derived from arbitrary
layers of the language model. In particular, the mean local estimates can be compared layer-wise
between different checkpoints of a model, as we show in [Figure T3] The main observations here are
that the drop in mean local dimension on the dataset used for fine-tuning is visible over all the model
layers. It appears to be most pronounced in the intermediate and last layers of the model.

C.3 Additional Grokking Results

This section supplements the grokking experiments in[Section 4.2 See|Figure 16|for a plot comparing
model performance and mean local estimates on the training set, shown separately for the training
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run seeds. This representation is useful, as the timing of the onset of grokking can be very dependent
on the model and dataset shuffling seed. It remains true that for individual seeds, the drop in mean
local dimension on the training set coincides with the increase in validation accuracy.

C.4 Additional TripPy-R Dialogue State Tracking Results

We here show additional results for[Section 4.3] where we discuss exhausting model training capa-
bilities. See for longer TripPy-R dialog state tracking runs over 50 epochs. After about
20 training epochs, the mean local estimates stabilize and suggest the convergence of the model
performance on the downstream task.
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Figure 12: Distribution of LIDs of the autoregressive GPT-2-medium model and fine-tunes (FT).
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Figure 13: Distribution of LIDs of the autoregressive Phi-3.5-mini-instruct model and fine-tunes (FT).
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Figure 14: Distribution of LIDs of the autoregressive Llama-3.1-8B model and fine-tunes (FT).
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TwoNN dimension estimates for MultiW0Z-validation
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Figure 15: Comparison of the mean LID development through the different layers of RoOBERTa-base
and a fine-tuned variant. The LID of embeddings from the distribution used for fine-tuning (here
MultiW0Z) differs significantly between the two models, whereas the LID of other data distributions
(here Wikipedia) is indistinguishable.
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Figure 16: Training a model on addition mod p = 197 with different training data fraction selected
from {0.1;0.15; 0.2; 0.25; 0.3; 0.4; 0.5 }. Five seeds per configuration are shown separately, demon-
strating that the onset of grokking and the drop in mean local dimension vary greatly depending
on the specific training run. The plots show the development over 15 000 batches. The mean local
estimates are computed on the training split for NV = 3000; L = 64.
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Figure 17: Longer TripPy-R training runs over 50 epochs with a linear learning rate schedule. Shown
are the mean and standard deviation of the measures over 4 seeds of the training runs.
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