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ABSTRACT

Generalist multimodal large language models (MLLMs) have achieved impressive
performance across a wide range of vision-language tasks. However, their perfor-
mance on medical tasks—particularly in zero-shot settings where generalization is
critical—remains suboptimal. A key research gap is the limited understanding of
why medical MLLMs underperform in medical image interpretation. In this work,
we present a pioneering systematic investigation into the visual grounding capa-
bilities of state-of-the-art medical MLLMs. To disentangle visual grounding from
semantic grounding, we design VGMED, a novel evaluation dataset developed with
expert clinical guidance, explicitly assessing the visual grounding capability of
medical MLLMs. We introduce new quantitative metrics and conduct detailed qual-
itative analyses. Our study across eight state-of-the-art (SOTA) medical MLLMs
validates that they often fail to ground their predictions in clinically relevant image
regions. We note that this finding is specific to medical image analysis; in contrast,
prior work has shown that MLLMs are capable of grounding their predictions in the
correct image regions when applied to natural scene images. Motivated by these
findings, we propose VGRefine, a simple yet effective inference-time method that
refines attention distribution to improve visual grounding in medical settings. Our
approach achieves SOTA performance across 6 diverse Med-VQA benchmarks
(over 110K VQA samples from 8 imaging modalities) without requiring additional
training or external expert models. Overall, our work, for the first time, systemati-
cally validates inadequate visual grounding as one of the key contributing factors
for medical MLLMs’ under-performance. Code and additional experiments are
included in the Supp.

1 INTRODUCTION

Generalist multimodal large language models (MLLMs) have demonstrated strong performance
across a broad range of vision-language tasks, including visual question answering (VQA) (Wang
et al., 2024; Dai et al., 2023; Liu et al., 2023; Chen et al., 2024b; Liu et al., 2024b), image captioning
(Li et al., 2023b; Wu et al., 2024), science and mathematical reasoning (Liu et al., 2024d; Zhuang
et al., 2025; Shi et al., 2024). Recent efforts have extended these models to the medical domain, with
the goal of developing medical MLLMs that can leverage their generalization capabilities to support
diverse clinical decision-making tasks.

Medical MLLMs. Recent work has explored extending general-purpose MLLMs to the medical do-
main, with many approaches focusing on constructing multimodal medical datasets and incorporating
external expert models. In Li et al. (2023a), a large-scale biomedical figure-caption dataset is built
from PubMed Central to fine-tune LLaVA, resulting in LLaVA-Med. However, its performance in
zero-shot settings remains suboptimal and heavily reliant on dataset-specific fine-tuning. HuatuoGPT-
Vision (Chen et al., 2024a) leverages GPT-4V to construct a large image-text dataset with refined
annotations, but also lacks strong zero-shot generalization. VILA-M3 (Nath et al., 2024) incorporates
external medical expert models to assist medical image analysis tasks. Recently, in Xie et al. (2025),
the authors introduce MedTrinity-25M, a dataset comprising 25 million medical images, and propose
LLaVA-Tri, a model pretrained on this dataset to improve regional focus in medical images. (See
Supp. for additional review of related work.)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Q: Is there evidence of fatty infiltration in the liver?

Source HuatuoGPT-V

Q: Is there evidence of air accumulation consistent with pneumothorax?

Q: Is a brain edema shown in the picture?

HuatuoGPT-V-Bio LLaVA-Med LLaVA-Tri

Q: Is the skin lesion visible in the image?

(a)

LLaVA-v1.5Source

Q: What color is the bench?

Q: What color is the bottle?

Q: Is an oven shown in the picture?

Q: Do you see a toothbrush in the picture?

(b)

Figure 1: Visual grounding issues in state-of-the-art medical MLLMs. (a) Column 1 shows
input medical images with expert-annotated ground-truth regions (red boxes). Columns 2–5 display
attention distributions from representative medical MLLMs. (b) Column 1 shows natural scene
images with annotated ground-truth bounding boxes, and column 2 shows attention distributions from
LLaVA-v1.5. For the first time, we systematically validate that state-of-the-art medical MLLMs often
suffer from inadequate visual grounding—they fail to accurately localize and interpret image regions
that are clinically relevant to the question. We note that, in contrast, when applied to natural images,
MLLMs are capable of grounding their predictions in the correct image regions (Zhang et al., 2025a).
Attention maps are taken from the LLM layers identified as most relevant to visual grounding (see
Sec. 2 for details).

Despite these advances, most existing medical MLLMs strongly rely on training or fine-tuning with
samples from downstream datasets. They continue to underperform on medical VQA tasks in the zero-
shot setting—where no downstream task samples are seen during training or fine-tuning—thus falling
short of the goal of developing truly generalist medical MLLMs. This raises a key question: Why do
medical MLLMs struggle with medical image interpretation, despite their success in general-domain
tasks?

Research Gap. There remains a lack of deeper analysis into the underlying causes of medical
MLLMs’ suboptimal performance in the important zero-shot setting. Particularly, there is a lack of
studies to systematically examine the internal failure modes of these models—particularly in terms of
how and where predictions are derived from visual inputs. Without such analysis, it remains unclear
whether performance limitations stem from a lack of clinical task understanding (semantic grounding)
or from an inability to accurately localize and interpret relevant image regions (visual grounding).
Advancing our understanding of these failure modes is essential for building robust generalist medical
MLLMs for real-world clinical deployment.

Our work underscores the importance of explicitly distinguishing between semantic grounding (Lu
et al., 2024; Lyre, 2024) and visual grounding (Xiao et al., 2024) in medical tasks. This distinction
is particularly critical for Med-VQA, which—unlike general-domain VQA—often requires deep
domain-specific reasoning. For example, answering a question like “What diseases are included in
the image?” requires the model to reason about the anatomical structures and visual features that
are relevant to specific pathologies. A model may experience failure in semantic grounding—that
is, it lacks the medical knowledge to determine what to look for. Alternatively, it may experience
failure in visual grounding—it cannot accurately localize and interpret the relevant regions in the
medical image, even when it knows what to look for. As medical MLLMs increasingly incorporate
large-scale biomedical knowledge to enhance semantic grounding, we argue that visual grounding
may emerge as the primary bottleneck limiting further progress.
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Our Contribution. In this work, we present a pioneering systematic investigation aimed at advancing
the understanding of failure modes and the visual grounding capabilities of medical MLLMs (Fig. 1).
To disentangle visual grounding from semantic grounding, we co-create a novel evaluation dataset
with 3 clinicians, named VGMED, a dataset for Visual Grounding analysis of MEDical MLLMs.
VGMED ensures focused evaluation of whether MLLMs can accurately localize and interpret the
relevant regions in medical images. We introduce new quantitative metrics and qualitative analyses to
assess visual grounding performance—that is, the extent to which model predictions are grounded
in clinically relevant visual evidence. Critically, by using VGMED to evaluate eight SOTA medical
MLLMs, we reveal for the first time that even the most advanced models frequently rely on spurious or
irrelevant regions, highlighting inadequate visual grounding as a pervasive and fundamental failure
mode. We note that this finding is specific to medical image analysis; in contrast, prior work has
shown that MLLMs are capable of grounding their predictions in the correct image regions when
applied to natural images (Zhang et al., 2025a).

To address this, we propose VGRefine, a simple yet effective inference-time method that improves
visual grounding by refining internal attention distributions. VGRefine requires no additional training.
Across 6 diverse Med-VQA benchmarks, comprising over 110K VQA samples from 8 imaging
modalities (CT, MRI, X-ray, OCT, dermoscopy, microscopy, fundus, ultrasound), VGRefine con-
sistently achieves improved and SOTA performance. Overall, our work offers new insights into the
failure modes of medical MLLMs and establishes visual grounding analysis as a necessary diagnostic
tool for advancing medical MLLMs in clinical applications.

2 INVESTIGATION OF VISUAL GROUNDING IN MEDICAL MLLMS

Despite recent advances, medical MLLMs continue to underperform on complex medical image
reasoning tasks, particularly in medical VQA (Hu et al., 2024; Jeong et al., 2024). In this work, we
conduct a systematic study to validate that a key limitation lies in inaccurate visual grounding. As a
starting point, we analyze attention maps from the model layers most relevant to visual grounding
(details on layer selection are provided in Sec. 2.4). As shown in Fig. 1, for medical images, MLLMs’
attentions often fail to align with clinically relevant regions.

2.1 A NEW DATASET FOR VISUAL GROUNDING ANALYSIS

Existing medical VQA datasets are ill-suited for visual grounding analysis. To rigorously evaluate
medical MLLMs’ visual grounding, we aim to systematically assess the extent to which their outputs
are supported by clinically relevant regions of the image (e.g., organs, tissues, or lesions essential for
answering a given question). However, existing medical VQA datasets are ill-suited for this purpose,
as illustrated in Fig. 2 (a). Many questions, such as “What diseases are included in the picture?”, can
be answered without referencing specific image regions. In contrast, questions like “What diseases
are included in the picture?” require substantial medical knowledge to determine what to look for,
since different diseases, including their stages or subtypes, can manifest with varied and often subtle
visual patterns. These patterns are not always well-documented in text and may depend on clinical
interpretation, making it difficult to determine whether model failures stem from inadequate semantic
grounding or from visual grounding alone.

VGMED: A new dataset for Visual Grounding analysis of MEDical MLLMs co-created with
clinicians. To address this gap, we build an evaluation dataset VGMED, focusing on visual grounding
analysis, as illustrated in Fig. 2 (b). VGMED was co-created with three certified medical doctors
(general practice, neurology, radiology) to ensure annotation accuracy and clinical relevance, includ-
ing two senior clinicians with over ten years of experience. One expert also serves as Director (AI
and Data Science) at a national medical center. Their contributions included: (1) co-designing GPT
prompts to elicit clinically meaningful and visually grounded questions, (2) reviewing and refining
all samples for clinical relevance and grounding focus, and (3) verifying that all samples require
reference to the annotated region.

Our VGMED dataset is constructed from over 40 publicly available medical image segmentation
datasets, with detailed information summarized in Table C.2. The original segmentation masks are
converted into bounding boxes to support visual grounding analysis. To ensure diversity across
imaging modalities and anatomical regions, we filter 13,962 samples, each consisting of a medical

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

image paired with a ground-truth bounding box. The distributions of modalities and body parts are
illustrated in Fig. 2 (b).

For each image–bbox pair, we construct clinically meaningful questions that target specific anatomical
or pathological regions, guided by input from clinical experts. This allows us to conduct fine-grained
visual grounding analysis. The questions are first generated using GPT-4 and subsequently reviewed
and validated by medical professionals. They fall into two categories: localization and attribute
questions. Localization questions inquire about the presence or identification of a specific organ or
lesion, whereas attribute questions focus on visual properties such as size, shape, or abnormality
(see Fig. 2 for details). GPT-4 is prompted to ensure that questions are both clinically relevant and
visually grounded, requiring attention to the entire annotated region. In total, our dataset contains
approximately 28K image–bbox–question triplets.

As the reference point, we randomly draw the same number of samples from MS COCO (Lin et al.,
2014), using the same question generation pipeline for the evaluation of natural scene images. We
include all prompts used in localization and attribute questions generation in Supp I.

Remark: Co-created with 3 clinicians, VGMED is a dataset for evaluation and analysis of visual
grounding in medical domain. The size of VGMED (28K samples) is comparable to datasets typically
used in general-domain visual grounding evaluation and studies (see Supp C).

Modality-specific Prompt

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.
• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from a
bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.
Guidelines for the questions:
• Focus on visual grounding, without requiring deep medical
semantic grounding.
• Ensure clinical relevance.
••••••
Example questions:
CT: 
• Are there ground glass opacities within the lung?
••••••
Ultrasound:
• Is the breast lesion homogeneous or heterogeneous?
••••••

Now, generate three questions based on the label: {label}.

GPT

(b) Co-creation of VGMED with clinicians(a) Issues with existing dataset

Your task is to generate clinically meaningful
questions for an evaluation dataset to assess
visual grounding capability in medical reasoning,
without requiring deep semantic grounding.

Based on the GPT prompts and
generated questions, our medical
doctors:

1. Refine the GPT prompts to elicit
clinically meaningful and visually
grounded questions, with phrasing
aligned to medical language;

2. Review questions in VGMED to
ensure clinical relevance and
targeted focus on visual grounding;

3. Verify that all samples require
reference to the annotated region.

Question Refinement

Quality
Control

Q: Are there visible
structures such as
dots, globules, or
streaks within the
skin lesion?

Q: Does the
polyp display a
homogeneous or
heterogeneous
color pattern?

VGMED

Modality Distribution Body Parts Distribution

Examples of Modality/Plane Questions

Is this sagittal plane?
What modality is shown in this image?

Feedback from Medical Doctor

Examples of Abnormality/Knowledge Questions

Is this image normal?
What diseases are included in the
picture?
How to treat the most severe disease
in this image?

Limitation
Answering these questions does not require referencing
specific clinically-relevant regions in the image.

"The modality/plane of an image is determined by
taking the entirety of the scan as a whole, including
contrasting the different densities of various tissues."

Answering these questions requires extensive semantic
grounding (i.e., substantial medical knowledge to
determine what to look for).

Limitation

Feedback from Medical Doctor

"For example, 'What diseases are included in the
picture?', it involves visual diagnosis, possibly multiple
pathologies; must link features (e.g., opacities,
enlargements) to disease categories."
"The location of the lesion on the scan tells only part of
the story, we have to draw on our years of medical
knowledge and experience looking at similar patients
with the same disease from which we identify certain
patterns and characteristics that make it pathognomonic
for that disease."

Figure 2: Co-creation of VGMED with clinicians for visual grounding assessment. Existing
Med-VQA datasets often include questions about image modality or plane, which can be answered
without referencing specific image regions. They also contain many abnormality- or knowledge-based
questions that require substantial medical expertise to determine what to look for. As a result, existing
datasets are not well-suited for analyzing visual grounding. In contrast, our dataset leverages LLM
prompting and clinical expert guidance to generate clinically meaningful localization and attribute
questions that are explicitly grounded in annotated image regions, enabling rigorous assessment of
the visual grounding capabilities of medical MLLMs. Best viewed in color and with zoom.

2.2 QUANTIFYING MLLMS’ VISUAL GROUNDING WITH ATTENTION MAPS

Measuring MLLMs’ visual grounding. To evaluate how multimodal large language models
(MLLMs) ground their predictions in visual evidence, we analyze internal attention maps that indicate
which image regions the model attends to. Attention maps are widely used in recent studies to
evaluate visual grounding in general-domain MLLMs (Zhang et al., 2025a; Kang et al., 2025; Kaduri
et al., 2024). Importantly, Zhang et al. (2025a) demonstrated that attention distributions can reliably
capture visual grounding in natural scene images. This enables us to directly compare the visual
grounding in medical images and natural scene images.

Alternative grounding indicators, such as gradient-based saliency and causal perturbation, are in
principle applicable but are considerably more expensive at scale. Gradient-based saliency methods
(Selvaraju et al., 2017; Ismail et al., 2021) require backpropagation for each input, making them
substantially more computation-intensive than directly using attention maps from the forward pass.
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Causal perturbation techniques (Fong & Vedaldi, 2017; Hooker et al., 2019) demand a new forward
pass for each perturbed input (e.g., region masking or token removal), which may quickly become
prohibitive for large-scale medical grounding analysis.

Attention maps in MLLMs. We extract cross-attention weights from the last input text token to
each of the N2 image tokens across all L layers and H attention heads of the LLM (Zhang et al.,
2024; Kang et al., 2025). For each layer ℓ and head h, we denote the attention vector as αℓ,h ∈ RN2

,
and compute the average across heads to obtain a per-layer attention map Aℓ = 1

H

∑H
h=1 α

ℓ,h. Then
we reshape Aℓ into a spatial attention map of size N ×N .

Attention Ratio (AR). We aim to measure the alignment from the model’s attention map to the
ground truth bounding box. For this purpose, we apply attention ratio (AR), defined as the sum of
attention inside the ground truth bounding box divided by the average attention inside the bounding
box of the same size (Zhang et al., 2025a). Let A ∈ RN×N denote the attention map over image patch
tokens, and let M ∈ {0, 1}N×N represent the binary ground-truth mask indicating the annotated
region (e.g., bounding box), where Mij = 1 if patch (i, j) is inside the region, and 0 otherwise.

Formally, AR is defined as AR =
∑N

i=1

∑N
j=1 Aij ·Mij

∥A∥1
N2 ·∥M∥1

, where ∥A∥1 =
∑N

i=1

∑N
j=1 Aij and similarly

for ∥M∥1.

New metrics to quantify model’s attention map alignment. We note that AR only considers the
amount of attention within the bounding box, ignoring how the attention is distributed. Particularly, a
uniform distribution of attention within the bounding box region would be preferable, as questions
in VGMED are specifically designed to require attention to entire bounding box regions. To take
attention distribution into account, we propose to use the Kullback–Leibler (KL) and Jensen–Shannon
(JS) divergence, which measure the difference between the attention map and bounding box by
viewing them as two probability distributions.

Kullback–Leibler (KL) divergence. We compute the KL divergence between the normalized ground-
truth mask M̂ and the normalized attention map Â as DKL(M̂ ∥ Â) =

∑N
i=1

∑N
j=1 M̂ij log

(
M̂ij

Âij

)
,

where Âij = Aij/∥A∥1 and M̂ij = Mij/∥M∥1.

Jensen–Shannon (JS) divergence. To obtain a symmetric and
bounded divergence metric, we compute the JS divergence as
DJS(M̂ ∥ Â) = 1

2DKL(M̂ ∥ R̂) + 1
2DKL(Â ∥ R̂), R̂ij =

1
2

(
M̂ij + Âij

)
. The KL and JS

divergences allow us to quantify not only whether the model attends to the correct region, but also
how its attention is distributed within that region. A lower divergence indicates better alignment and
more consistent attention over clinically relevant areas, offering a complementary perspective to AR.

2.3 EXPERIMENTAL SETUPS

We conduct our analysis on 8 SOTA medical MLLMs, including LLaVA-Med (Li et al., 2023a),
LLaVA-Tri (Xie et al., 2025), HuatuoGPT-Vision-7B/34B (Chen et al., 2024a) (abbreviated as
HuatuoGPT-V), VILA-M3-8B/13B (Nath et al., 2024), MedRegA (Wang et al., 2025), and a variant
of HuatuoGPT-V—referred to as HuatuoGPT-V-Bio—where the original CLIP vision encoder is
replaced with BiomedCLIP, a domain-specific encoder trained on biomedical data (see Supp H for
details). To analyze attention behavior, we compute the mean attention map across all heads in each
LLM layer. Inspired by Zhang et al. (2025a), we normalize the attention map using a reference
attention map obtained from the generic prompt: “Write a general description of the image.”. This
normalization helps highlight regions relevant to the specific question.

We also include LLaVA-v1.5-7B (Liu et al., 2024a) results on natural scene images. As a general-
domain MLLM, LLaVA demonstrates strong performance and exhibits good visual grounding, with
attention distributions that align closely with ground-truth regions (Zhang et al., 2025a; Kang et al.,
2025). This serves as a useful reference point for interpreting attention ratios, KL and JS divergence
associated with effective visual grounding.

2.4 EMPIRICAL ANALYSIS

Medical MLLMs exhibit inadequate visual grounding on medical images. We plot the attention
ratio, KL divergence and JS divergence across all LLM layers for all models in Fig. 3. As shown
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Figure 3: Medical MLLMs demonstrate suboptimal visual grounding when applied to medical
images. Analysis using our proposed VGMED dataset—designed specifically to assess visual
grounding in medical MLLMs—shows that all evaluated medical MLLMs exhibit substantial weaker
alignment between their attention distributions and ground-truth annotations on medical images
compared to natural scene images (from MS COCO). Additional comparison with general domain
MLLM LLaVA-v1.5 on natural images (below the dashed line) further confirms that medical MLLMs
consistently exhibit reduced alignment with annotated regions. Best viewed in color and with zoom.

in the figure, all evaluated medical MLLMs demonstrate weaker alignment between their attention
distributions and ground-truth annotations when applied to medical images, compared to natural
images. This is quantitatively and consistently supported by lower AR and higher values in our
proposed KL and JS divergence metrics for measuring attention alignment. These trends persist
across most network layers and are consistent for both attribute and localization tasks. Further
comparison with LLaVA-v1.5 on natural images reinforces this observation: medical MLLMs show
significantly lower alignment with annotated regions, as measured by AR, KL, and JS—highlighting
deficiencies in visual grounding for medical image analysis.

For qualitative analysis, we visualize the attention map from the layer with the lowest KL divergence
in Fig.1. Lower KL divergence reflects closer alignment between the model’s attention distribution
and the annotated regions, indicating that these layers are most relevant for visual grounding analysis.
Comprehensive qualitative analysis and visualization are included in Supp J.2

3 VISUAL GROUNDING REFINEMENT

Our analysis in Sec. 2 suggests that current medical MLLMs attend to clinically-relevant and irrelevant
regions. In this section, we propose Visual Grounding Refinement (VGRefine), an inference-time
method that enhances visual grounding in medical MLLMs by suppressing attention to clinically
irrelevant regions. Specifically, as shown in Fig. 4 our method consists of two steps: 1) Attention
Triage and 2) Attention Knockout.
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: 

Which organ is abnormal, 
heart or lung?

Lung.

MLLMSTEP II

: 

Which organ is abnormal, 
heart or lung?

Heart.

Filter based on  
Magnitude Masking

MLLM

System

Tokens Types

Image

Question
Mask

STEP I

Figure 4: Illustration of the proposed VGRefine method: a two-step inference-time method to
improve visual grounding in medical MLLMs. In Step I (Attention Triage), we aggregate attention
from the model’s most visually sensitive heads and suppress low-confident attention, obtaining a
binary mask. In Step II (Attention Knockout), we use this mask to refine the model’s attention
distribution, improving its focus on relevant regions during inference. In the lower triangular attention
matrix, each row represents the attention score of a query token to all key tokens.

Step I: Attention Triage — More Focusing on Clinically Relevant Regions. As illustrated in Fig.
1, medical MLLM’s attention maps are often noisy—while they do attend to relevant areas, they
also include a substantial focus on irrelevant regions, which diminishes interpretability and precision.
To better focus on clinically meaningful regions, we move beyond layer-wise average attention and
instead examine visual sensitivity at the head level across all layers. Following the same evaluation in
Sec. 2.4, we identify the top K attention heads that most consistently align with visually relevant
regions, using our proposed evaluation dataset (Sec. 2.1) and metric (Sec. 2.2). We then aggregate
the attention maps from these selected heads with their average. We suppress low-activation regions
based on magnitude of attention, as these are likely to represent irrelevant or noisy attention (see Supp.
for further details and motivation). This results in a sparse attention map with high-confidence. We
convert this filtered attention map into a binary mask M ∈ {0, 1}N2

by simply setting all non-zero
entries to 1 and keeping the zeros unchanged.

Step II: Attention Knockout — Suppressing Irrelevant Visual Input. To enhance the visual
grounding ability of medical MLLMs, we aim to guide the model’s attention toward clinically relevant
regions. Intuitively, improving focus on these regions can suppress distractions from irrelevant areas
and yield more interpretable predictions. Similarly, recent advances in attention manipulation (Zhang
et al., 2024; Geva et al., 2023; Zhang et al., 2025c) have shown that attending to redundant information
potentially detriment to prediction as they distract the model’s focus, they improve model behavior
by preventing attention to uninformative tokens.

Inspired by this, we propose to knock out attention connections between question tokens and clinically
irrelevant visual tokens. Specifically, we apply the binary mask M obtained in Step I to the attention
weights αℓ,h

q , where αℓ,h
q denotes the cross-attention from the qth question token to all visual tokens

at layer ℓ and head h. We compute the masked attention as α̂ℓ,h
q = αℓ,h

q ⊙M, and use α̂ℓ,h
q for the

subsequent attention computation in model’s forward pass. ⊙ denotes element-wise multiplication.
The masking operation explicitly restricts question tokens from receiving information from irrelevant
visual regions at the selected layer. This modification encourages the model to attend selectively
to meaningful regions, reducing distraction from irrelevant areas and therefore enhancing models’
visual grounding capability.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

Baselines. We compared two types of open-source models: (1) Medical MLLMs. We evaluated with
the latest medical MLLMs, including Med-Flamingo (Moor et al., 2023), RadFM (Wu et al., 2023),
LLaVA-Med-7B (Li et al., 2023a), LLaVA-Tri (Xie et al., 2025), MedPLIB (Huang et al., 2025),
VILA-M3(Nath et al., 2024), HuatuoGPT-V (Chen et al., 2024a). (2) General MLLMs. We compared
with two latest models pretrained on natural scene domain, LLaVA-v1.6-7B (Liu et al., 2024a) and
Qwen-VL-Chat (Bai et al., 2023). We include the comparison of larger models in Supp.
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Benchmarks. We follow the exact evaluation protocol of Chen et al. (2024a). Specifically, we adopt
six benchmarks that are designed for biomedical MLLM evaluation, including VQA-RAD (Lau et al.,
2018), SLAKE (Liu et al., 2021a), PathVQA (He et al., 2020), PMC-VQA (Zhang et al., 2023b),
OmniMedVQA (Hu et al., 2024) (open-access split), and MMMU (Health & Medicine track) Yue
et al. (2024). All evaluations were conducted in a zero-shot setting using question templates provided
by LLaVA (details in Supp.).

VGRefine. We applied our inference-time method on HuatuoGPT-V (Chen et al., 2024a). All
experiments are conducted using the same hyperparameters across benchmarks. Specifically, for Step
I, we aggregate the attention maps from the top K heads with the highest alignment to visual relevant
regions, as measured by KL divergence on our curated evaluation set built using COCO images. This
setup prevents data leakage from medical evaluation benchmarks and demonstrates that our method
generalizes from natural images to biomedical domains. Low-activation regions are suppressed based
on a percentile threshold p over attention magnitude. We discuss the choice of K and p in Sec. 4.4.
For Step II we apply the attention knockout only at layer ℓ = 16 layer, which, according to our
analysis in Fig. 3, demonstrates the most relevancy to visual grounding among all the layers.

4.2 EXPERIMENTAL RESULTS

We follow exactly the evaluation setup of HuatuoGPT-V (Chen et al., 2024a) to ensure consistency
across all benchmarks. Since the original papers of HuatuoGPT-V-7B (Chen et al., 2024a) and
VILA-M3-8B (Nath et al., 2024) do not report results on certain benchmarks, we re-evaluate both
models under the same zero-shot setting. For models with complete benchmark results available
in their original publications—such as MedPLIB (Huang et al., 2025) and LLaVA-Tri (Xie et al.,
2025)—we directly report the official numbers. For all other baselines, we use the results provided in
the HuatuoGPT-V paper, as it adopts the same evaluation protocol.

It is important to note that some models include benchmark training sets during pretraining, making
zero-shot evaluation unfair. Specifically, VILA-M3 (Nath et al., 2024) and MedPLIB (Huang et al.,
2025) incorporate training data from VQA-RAD, SLAKE, PathVQA, and PMC-VQA, and thus are
excluded from our zero-shot comparison on those datasets.

Medical VQA Benchmarks. Table 1 shows results on four standard medical VQA datasets. Here, we
report the closed-ended question accuracy and a weighted average (Avg.) that scales by the number of
samples in each benchmark (Additional results are in Supp.). Our inference-time method VGRefine
applied to HuatuoGPT-V consistently improves its performance. We observe notable gains of +5.6%
on VQA-RAD and +11.3% on PathVQA, with the overall average increasing from 65.3% to 68.4%,
outperforming all baselines. These results underscore that enhanced visual grounding contributes to
better performance on medical VQA tasks. On the MMMU benchmark (Table 2), VGRefine achieves
the highest accuracy across all five sub-domains, increasing the overall average from 45.8% to
47.2%. This demonstrates that enhancing visual grounding at inference time also improves complex
multimodal medical reasoning. As shown in Table 3, VGRefine improves performance across all
eight imaging modalities, with significant boosts on CT (+7.5%), MRI (+6.4%), and X-Ray (+8.1%)
on the OmniMedVQA benchmark. These results confirm the generalizability of our visual grounding
refinement across diverse medical imaging tasks. Overall, our method raises average accuracy from
71.3% to 74.4%, demonstrating its robustness and generalizability across a wide range of modalities.

Table 1: Accuracy on medical VQA datasets.
To align with the evaluation protocol with
HuatuoGPT-V (Chen et al., 2024a), we specifi-
cally used the closed-ended subset for evaluation.
Evaluation on other subsets in Supp.

Model VQA-RAD SLAKE PathVQA PMC-VQA Avg.
Qwen-VL-Chat 47.0 56.0 55.1 36.6 48.9
LLaVA-v1.6-7B 52.6 57.9 47.9 35.5 48.5
Med-Flamingo 45.4 43.5 54.7 23.3 41.7
RadFM 50.6 34.6 38.7 25.9 37.5
LLaVA-Med-7B 51.4 48.6 56.8 24.7 45.4
LLaVA-Tri 59.8 43.4 59.0 - -
HuatuoGPT-V-7B 67.4 76.5 60.7 53.9 65.3
VGRefine (Ours) 71.2 76.9 67.6 56.2 68.4

Table 2: Accuracy on MMMU Health &
Medicine benchmark. BMS, CM, DLM, P,
PH denote Basic Medical Science, Clinical
Medicine, Diagnostics & Laboratory Medicine,
Pharmacy, Public Health respectively.

Model BMS CM DLM P PH Avg.
Qwen-VL-Chat 36.5 31.7 32.7 28.4 34.6 32.7
LLaVA-v1.6-7B 40.5 36.9 32.1 32.3 26.9 33.1
Med-Flamingo 29.6 28.1 24.8 25.3 31.2 28.3
RadFM 27.5 26.8 25.8 24.7 29.1 27.0
LLaVA-Med-7B 39.9 39.1 34.6 37.4 34.0 36.9
LLaVA-Tri 37.1 - 27.8 - - -
VILA-M3-8B 39.3 39.7 34.0 32.1 28.7 34.0
HuatuoGPT-V-7B 58.9 57.2 43.8 37.2 38.3 45.8
VGRefine (Ours) 59.5 59.1 45.7 38.6 39.3 47.2
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Table 3: The accuracy of OmniMedVQA within different modalities. Specifically, FP denotes
Fundus Photography, MRI denotes Magnetic Resonance Imaging, OCT denotes Optical Coherence
Tomography, Der denotes Dermoscopy, Mic denotes Microscopy Images, US denotes Ultrasound.

Model CT FP MRI OCT Der Mic X-Ray US Avg.
Qwen-VL-Chat (Bai et al., 2023) 51.5 45.4 43.9 54.0 55.4 49.5 63.1 33.5 49.5
LLaVA-v1.6-7B (Liu et al., 2024a) 40.1 39.5 54.8 58.4 54.0 48.8 53.3 47.9 49.6
Med-Flamingo (Moor et al., 2023) 34.6 33.3 27.5 26.0 28.3 28.1 30.1 33.2 30.2
RadFM (Wu et al., 2023) 33.3 35.0 22.0 31.3 36.3 28.0 31.5 26.1 30.5
LLaVA-Med-7B (Li et al., 2023a) 25.3 48.4 35.9 42.1 45.2 44.0 31.7 34.4 35.8
VILA-M3-8B (Nath et al., 2024) 60.2 35.7 51.5 56.9 51.5 51.7 65.4 46.1 53.0
MedPLIB (Huang et al., 2025) 62.7 65.0 67.0 75.1 51.5 64.4 60.3 38.8 60.6
HuatuoGPT-V-7B (Chen et al., 2024a) 62.6 80.3 67.7 86.2 71.7 74.2 74.2 79.7 71.3
VGRefine (Ours) 67.3 82.4 72.0 86.9 71.7 74.9 80.2 79.5 74.4

Table 4: Ablation study on the choice of top K heads and p precentile of magnitude-based filtering.

K VQA-RAD SLAKE PathVQA PMC-VQA Avg. p (%) VQA-RAD SLAKE PathVQA PMC-VQA Avg.
1 68.62 75.81 64.85 53.65 68.28 30 70.78 76.84 67.55 55.70 68.22
2 69.78 76.63 63.58 53.90 68.21 40 70.70 76.66 67.28 56.00 68.12
5 70.09 76.56 66.52 54.30 68.08 50 71.24 76.88 67.61 56.20 68.42
8 70.70 76.52 66.64 55.60 68.12 60 70.70 76.66 67.28 55.65 68.05
10 70.86 76.81 67.67 56.05 68.34 70 70.47 76.66 67.61 55.80 68.17
15 70.78 76.84 67.43 55.40 68.11 80 70.78 76.73 67.55 55.80 68.21
20 71.24 76.88 67.61 56.20 68.42 90 70.55 76.34 68.11 55.50 68.20

4.3 HUMAN EVALUATION: VGREFINE IMPROVES TRUSTWORTHINESS

We conducted a blinded study with five experienced clinicians using 20 medical VQA cases from
VGMED. Each case presented two attention maps: one from the baseline model and one from the
same model after applying VGRefine. The source of each attention map was not disclosed, and
their order was randomized. Clinicians were asked which map appeared more clinically reasonable
and trustworthy. VGRefine was preferred in 76% of cases, with feedback noting improved focus
and reduced noise. These results suggest that VGRefine enhances clinician trust by producing more
interpretable visual. See human evaluation details in Supp J.1.

4.4 ABLATION STUDIES

Table 4 presents ablations on the number of top attention heads K and the percentile threshold p
used for magnitude-based filtering. Performance improves consistently as K increases, with the best
average accuracy (68.42%) achieved at K = 20, indicating that aggregating more heads helps capture
richer grounding signals. For the percentile p, the model remains stable across values, with optimal
performance also at p = 50%, confirming the effectiveness of moderate filtering in removing noisy
regions without discarding relevant information.

5 CONCLUSION

In this work, we presented the first systematic analysis of visual grounding in medical MLLMs. Using
our clinically guided VGMED dataset and newly introduced metrics, we showed across 8 SOTA
medical MLLMs frequent failures in grounding predictions in clinically relevant regions. This failure
mode persisted even in recent medical MLLMs and contributed to their underperformance in zero-shot
medical image understanding. To address this, we proposed VGRefine, an inference-time attention
refinement method to improve medical MLLMs’ visual grounding. Across 6 diverse Med-VQA
benchmarks, comprising over 110K VQA samples from 8 imaging modalities, VGRefine consistently
achieves SOTA performance. We remark that improvements using VGRefine are achieved without
retraining or introducing any new medical knowledge. If visual grounding were not a limiting
factor, such consistent gains would not occur. Therefore, VGRefine results further support that
visual grounding deficiency is a general, widespread issue. Overall, our proposed VGMED helps
uncover and confirm inadequate visual grounding, while VGRefine experiments demonstrate its
broad prevalence and generalization across different modalities and clinical scenarios. Our findings
underscored the importance of grounding-aware analysis to achieve more reliable and generalizable
medical MLLMs. Additional experiments, limitation and ethical consideration are included in
Supp.
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Pfannenberg, Bernhard Schölkopf, Thomas Küstner, Clemens Cyran, and Daniel Rubin. A whole-
body fdg-pet/ct dataset with manually annotated tumor lesions. Scientific Data, 9(1):601, 2022.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 12216–12235, 2023.

Michal Golovanevsky, William Rudman, Vedant Palit, Ritambhara Singh, and Carsten Eickhoff.
What do vlms notice? a mechanistic interpretability pipeline for noise-free text-image corruption
and evaluation. CoRR, abs/2406.16320, 2024. URL https://doi.org/10.48550/arXiv.
2406.16320.

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
medical visual question answering, 2020. URL https://arxiv.org/abs/2003.10286.

Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore, Heather
Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, Joshua Dean, Michael
Tradewell, Aneri Shah, Resha Tejpaul, Zachary Edgerton, Matthew Peterson, Shaneabbas Raza,
Subodh Regmi, Nikolaos Papanikolopoulos, and Christopher Weight. The kits19 challenge data:
300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes,
2020. URL https://arxiv.org/abs/1904.00445.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
methods in deep neural networks. Advances in neural information processing systems, 32, 2019.

Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa:
A new large-scale comprehensive evaluation benchmark for medical lvlm. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22170–22183,
June 2024.

Rui Huang, Zijie Chen, Yuanyuan Chen, Hongsheng Li, et al. StructSeg2019 Grand Challenge
Dataset. https://structseg2019.grand-challenge.org/Dataset/, 2019. Re-
trieved: September 25, 2025.

Xiaoshuang Huang, Lingdong Shen, Jia Liu, Fangxin Shang, Hongxiang Li, Haifeng Huang, and
Yehui Yang. Towards a multimodal large language model with pixel-level insight for biomedicine.
Proceedings of the AAAI Conference on Artificial Intelligence, 39(4):3779–3787, Apr. 2025. doi: 10.
1609/aaai.v39i4.32394. URL https://ojs.aaai.org/index.php/AAAI/article/
view/32394.

J Igelsias, M Styner, T Langerak, B Landman, Z Xu, and A Klein. Miccai multi-atlas labeling beyond
the cranial vault–workshop and challenge. In Proc. MICCAI Multi-Atlas Labeling Beyond Cranial
Vault—Workshop Challenge, 2015.

Aya Abdelsalam Ismail, Hector Corrada Bravo, and Soheil Feizi. Improving deep learning inter-
pretability by saliency guided training. Advances in Neural Information Processing Systems, 34:
26726–26739, 2021.

Daniel P Jeong, Saurabh Garg, Zachary Chase Lipton, and Michael Oberst. Medical adaptation
of large language and vision-language models: Are we making progress? In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 12143–12170, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.677. URL
https://aclanthology.org/2024.emnlp-main.677/.

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
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MMMUOmniMedVQA

Figure A.1: Our proposed inference-time method VGRefine achieve state-of-the-art performance on
OmniMedVQA (Hu et al., 2024) and MMMU (Health & Medicine track) (Yue et al., 2024). Many
existing medical MLLMs remain to underperform on medical VQA tasks in the zero-shot setting
as shown in this figure, but there is a lack of systematic study to understand the reasons. Compared
to existing medical MLLMs, our proposed VGRefine demonstrates consistently stronger zero-shot
performance across all modalities and sub-domains, highlighting its effectiveness in mitigating the
issue of inadequate visual grounding as revealed in our study.

APPENDIX OVERVIEW

In this supplementary material, we provide additional experiments, ablation studies, and reproducibil-
ity details to support our findings. These sections are not included in the main paper due to space
constraints.

Please find the following anonymous link for code and other resources: https://anonymous.
4open.science/r/Medical_MLLMs_Fail-8120/.
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A MORE DISCUSSION ON RELATED WORK

Medical Multimodal Large Language Models (MLLMs). Recent advances in medical multimodal
large language models (MLLMs) have focused on leveraging image-text pairs from sources like
PubMed central (Zhang et al., 2023b; Moor et al., 2023; Chen et al., 2024a; Li et al., 2023a) and
medical textbooks (Moor et al., 2023) to enable generative VQA and medical reasoning. Models such
as LLaVA-Med (Li et al., 2023a), MedVInT (Zhang et al., 2023b), Med-Flamingo (Moor et al., 2023),
HuatuoGPT-Vision (Chen et al., 2024a), and BioMed-VITAL (Cui et al., 2024) introduce GPT-4
(et al., 2024) generated instruction-following datasets and expert-validated responses to improve
medical VQA performance. More recent studies have begun to explore different ideas to improve
region awareness in biomedical MLLMs: explicit fine-tuning with additional supervision, such as
annotated bounding boxes (Wang et al., 2025; Xie et al., 2025) or segmentation masks (Jeong et al.,
2024), along with architectural modifications to support spatial reasoning. For instance, models
like MedRegA (Wang et al., 2025) and LLaVA-Tri (Xie et al., 2025) rely on additional datasets.
Other recent models focus on scale or domain expertise. VILA-M3 (Nath et al., 2024), for instance,
incorporates domain-specific expert models during training, arguing that generic Vision–Language
Models (VLMs) lack the fine-grained expertise needed for healthcare. Given their dependence
on task-specific fine-tuning (Nath et al., 2024; Xie et al., 2025) and sub-optimal generalization in
zero-shot settings (Li et al., 2023a), it remains unclear whether current medical MLLMs ground their
predictions in meaningful visual evidence within medical images. To our knowledge, no prior work
has conducted a comprehensive analysis of visual grounding of medical MLLMs.

Visual Grounding Analysis in General Domain MLLMs. Some recent studies have investigated
the internal attention mechanisms of general-domain MLLMs, revealing their potential for implicit
visual grounding. Zhang et al. (2025a) demonstrated that MLLMs can identify the correct spatial
regions relevant to a given query, even without explicit grounding supervision. They introduce a
training-free intervention method (e.g., cropping guided by attention or gradient maps) that enhances
performance on general-domain VQA tasks. Broader research into MLLM interpretability has studied
how visual information is fused into language representations. Techniques such as causal intervention
and cross-modal attention visualization have been employed to offer insights into how vision and
language tokens interact through attention mechanisms (Golovanevsky et al., 2024; Zhang et al., 2024;
Yu & Ananiadou, 2025; Palit et al., 2023). These studies suggest that middle layers are especially
crucial for integrating object-level visual cues with textual context, and that cross-modal attention
patterns can encode meaningful spatial alignment signals. However, all of these insights have been
drawn from general-domain visual data, such as natural scene images and standard VQA benchmarks.
In contrast, to our knowledge, no prior work has performed visual grounding analysis of medical
MLLMs.
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B VGMED SCALE COMPARISON WITH RELATED ATTENTION ANALYSIS
WORKS

VGMED comprises approximately 28K image-bbox-question triplets, including 14K samples for
localization questions and another 14K for attribute questions. The scale of VGMED is larger than
or comparable to the number of samples used in the closely related RGB-domain visual grounding
(Zhang et al., 2025a; Kang et al., 2025; Kaduri et al., 2024) / attention analysis work (Yang et al.,
2025; Jiang et al., 2025; Chen et al., 2025a) (see Table B.1). Unlike RGB datasets that can be
constructed by non-experts, our medical datasets require clinical expertise.

Table B.1: Number of samples used in related works.

Related works No. of Samples Data Source
MLLMs Know (Zhang et al., 2025a) 4,370 Text-VQA
Your LVLM (Kang et al., 2025) 1,000 RefCOCO
What’s in the Image (Kaduri et al., 2024) 81 COCO
Hallucination Attribution (Yang et al., 2025) 1,500 COCO
Devils in LVLM (Jiang et al., 2025) 2,000 COCO
FastV (Chen et al., 2025a) 1,000 4 VL Tasks

C DETAILED INFORMATION OF DATASETS USED IN VGMED
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Table C.2: Detailed information about the 44 datasets incorporated into VGMED. In the ”Dataset”
column, names such as ”StructSeg2019 (Task 1)” represent specific task-based subsets. In the
”Anatomical Structures” column, ”Others” signifies datasets lacking detailed anatomical data from
their original sources.

Dataset Modality Anatomical Struc-
tures

AMOS2022 (Ji et al., 2022) CT, MR Abdomen, Thorax,
Pelvic

ATM2022 (Zhang et al., 2023a) CT Thorax
AbdomenomenCT-1K (Ma et al., 2022b) CT Abdomen
BTCV (Igelsias et al., 2015) CT Thorax, Abdomen,

Pelvic
BraTS2013 (Menze et al., 2015) MR Head & neck
BraTS2015 (Menze et al., 2015) MR Head & neck
BraTS2018 (Menze et al., 2015) MR Head & neck
BraTS2019 (Menze et al., 2015) MR Head & neck
BraTS2020 (Menze et al., 2015) MR Head & neck
BraTS2021 (Bakas et al., 2017; Baid et al., 2021) MR Head & neck
CHAOS (Task 4) (Kavur et al., 2021) MR Abdomen
CTPelvic1k (Liu et al., 2021b) CT Pelvic
CVC-ClinicDB (Bernal et al., 2015) Endoscopy Others
Chest Image Pneum (Tianchi, 2020) X-ray Thorax
FLARE21 (Ma et al., 2022a) CT Abdomen
FLARE22 (Ma et al., 2024) CT Abdomen, Thorax
HVSMR2016 (Pace et al., 2015) MR Thorax
ADAM (Task 2) (Fang et al., 2022) Fundus Head & neck
PALM19 (Fu et al., 2019) Fundus Head & neck
ISLES (Maier et al., 2017) MR Head & neck
KiTS2019 (Heller et al., 2020) CT Abdomen
KiTS2021 (Zhao et al., 2021) CT Abdomen
LUNA16 (Setio et al., 2017) CT Thorax
MSD-BrainTumor (Antonelli et al., 2022) MR Head & neck
MSD-Liver (Antonelli et al., 2022) CT Abdomen
MSD-Pancreas (Antonelli et al., 2022) CT Abdomen
MSD-Spleen (Antonelli et al., 2022) CT Abdomen
CT-ORG (Antonelli et al., 2022) CT Head & neck, Tho-

rax, Abdomen
PROMISE09 (Bharatha et al., 2001) MR Pelvic
PROMISE12 (Litjens et al., 2014) MR Pelvic
SIIM-ACR Pneumothorax (Zawacki et al., 2019) X-ray Thorax
StructSeg2019 (Task 1) (Huang et al., 2019) CT Head & neck
StructSeg2019 (Task 2) (Huang et al., 2019) CT Thorax, Abdomen
TotalSegmentator (Wasserthal et al., 2023) CT Head & neck,

Thorax, Abdomen,
Pelvic

Ultrasound Nerve Segmentation (Montoya et al., 2016) Ultrasound Others
WORD (Luo et al., 2022) CT Thorax, Abdomen
autoPET (Gatidis et al., 2022) PET Pelvic
BUSI (Al-Dhabyani et al., 2020) Ultrasound Thorax
Kvasir-SEG (Jha et al., 2019) Endoscopy Others
ISIC18 (Task 1) (Codella et al., 2019) Dermoscopy Skin
ISIC17 (Task 1) (Codella et al., 2018b) Dermoscopy Skin
ISIC16 (Task 1) (Codella et al., 2018a) Dermoscopy Skin
SLAKE (Liu et al., 2021a) CT, MR, X-ray Head & neck, Ab-

domen, Thorax
PolypDB (Jha et al., 2025) Endoscopy Others
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D MORE DETAILS OF VGREFINE

Natural Scene Medical

Figure D.1: We conduct an experiment to analyze the alignment between attention distributions from
different attention heads and layers and the ground truth annotations in the images. This follows
the evaluation setup described in Section 2.3 of the main paper. The medical MLLM evaluated is
HuatuoGPT-V-7B. Each cell in the above figures reflects the degree of alignment, measured using our
proposed KL Divergence metric (lower is better). This analysis helps identify the specific heads and
layers that are most relevant to visual grounding. COCO is used for natural scene image analysis,
and our dataset VGMED is used for medical image analysis. Interestingly, we find that the attention
heads most relevant to visual grounding in natural scene images are often also the most relevant for
medical images. However, despite this overlap, the overall visual grounding performance on medical
images remains lower than on natural scenes, consistent with the findings presented in Figure 3 (main
paper). Based on this analysis, we identify the top K attention heads with the strongest alignment
(i.e., lowest KL divergence) and aggregate their attention distributions to compute a refined attention
map. Notably, we select the top K heads using randomly sampled natural scene images from COCO
dataset, to avoid data leakage from medical evaluation benchmarks. This setup also demonstrates
that our method generalizes effectively from natural images to the biomedical domain.

In this section, we provide more details of our proposed inference-time method VGRefine (introduced
in Sec. 3 of the main paper). Particularly, we discuss how we identify top K attention heads most
relevant to visual grounding and leverage their attention distributions in Step I of VGRefine. Fig. D.1
depict the analysis.

We explore attention distributions from different attention heads across all layers, as prior work
suggests that individual attention heads in transformers specialize in capturing distinct types of
information Voita et al. (2019); Olsson et al. (2022); Gandelsman et al. (2024); Yu et al. (2023); Yang
et al. (2025). This motivates us to examine attention at finer granularity to obtain the attention that
focusing more on clinically relevant regions.

See details in Fig. D.1. Following the same evaluation setup of Sec. 2.3 of main paper, we assess
relevancy to visual grounding of each attention head in HuatuoGPT-V by measuring the alignment
between their attention distributions and ground-truth annotations. We perform this analysis using
both natural scene images (from MS COCO) and medical images (from our VGMED). The alignment
is measured by our proposed KL Divergence (↓) as metric.

As shown in Fig. D.1, the visual relevancy patterns are consistent across domains: heads that are
relevant to visual grounding in natural scenes also show relative relevancy in medical images, despite
exhibiting inadequate visual grounding on medical images compared to natural images (as discussed
in Sec. 2.4). Based on this analysis, we select the top K heads with the highest visual grounding
relevancy (lowest KL) on natural images and average their attention maps to obtain a refined attention
map. This map is used in Step II to guide the model’s improved focus on clinically meaningful areas.
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E EXPERIMENTS ON OPEN-ENDED MEDICAL VQA

We present additional experimental results on the open-ended questions from the Medical VQA
benchmarks. Specifically, we evaluate on VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a),
and PathVQA (He et al., 2020), which include open-ended formats. As shown in Table E.3, our
inference-time method consistently achieve better performance across all datasets, demonstrating its
effectiveness in enhancing open-ended medical VQA.

Table E.3: Performance comparison on full medical VQA datasets for open-ended medical VQA.
We evaluate all models under the zero-shot setting. These results underscore that enhanced visual
grounding with our inference-time method VGRefine contributes to better performance on medical
VQA tasks. It is important to note that VILA-M3 (Nath et al., 2024), MedPLIB (Huang et al., 2025)
and LLaVA-Tri (Xie et al., 2025) incorporate training data from VQA-RAD, SLAKE, and PathVQA,
and thus making zero-shot evaluation unfair, and are excluded from our zero-shot comparison.

Model VQA-RAD SLAKE PathVQA
Metric BLEU-1 BERT OpenRecall Avg. BLEU-1 BERT OpenRecall Avg. BLEU-1 BERT OpenRecall Avg.

Qwen-VL-Chat 28.6 63.4 27.0 39.7 28.9 52.0 33.6 38.2 18.7 45.1 9.9 24.6
LLaVA-v1.6-7B 22.1 58.0 21.9 34.0 30.8 52.7 36.4 40.0 22.8 47.7 11.2 27.2
Med-Flamingo 27.4 61.9 12.7 34.0 11.8 40.2 21.1 24.4 24.3 50.4 2.4 25.7
RadFM 30.5 64.1 41.6 45.4 38.6 61.0 44.2 47.9 24.8 51.4 10.1 29.8
LLaVA-Med-7B 21.6 40.5 28.2 30.1 37.0 58.4 39.2 44.9 28.5 60.1 12.3 33.6
HuatuoGPT-V-7B 49.7 75.0 50.7 58.5 55.0 78.9 55.6 63.2 34.2 65.8 36.5 45.5
VGRefine-7B (Ours) 51.2 76.3 52.3 59.9 56.5 80.0 56.7 64.4 36.1 68.1 36.5 46.9

F COMPARISON WITH OTHER ATTENTION-BASED METHODS

We conducted an additional experiment comparing VGRefine with three very recent attention-based
methods for medical MLLMs. Specifically, PAI (Liu et al., 2024c) and AdaptVis (Chen et al., 2025b)
aim to refine/manipulate attention maps over visual tokens, while ViCrop (Zhang et al., 2025a) uses
attention maps to enhance visual perception.

For a fair comparison, we implemented all methods on HuatuoGPT-V-7B, following their official code
and hyperparameter settings. The experimental results, shown in Tab. F.4, indicate that VGRefine
consistently outperforms all other methods.

Table F.4: Accuracy on closed-ended medical VQA datasets.

Model VQA-RAD SLAKE PathVQA PMC-VQA Avg.
HuatuoGPT-V-7B (Baseline) 67.4 76.5 60.7 53.9 65.3
PAI(Liu et al., 2024c) 43.7 24.48 20.8 52.8 33.3
AdaptVis(Chen et al., 2025b) 68.6 75.1 67.6 52.9 66.7
ViCrop (Zhang et al., 2025a) 68.9 70.9 66.7 54.6 65.5
VGRefine (Ours) 71.2 76.9 67.6 56.2 68.4

G MORE EXPERIMENTS ON LARGER MODELS

In this section, we provide more experimental results on larger models (with parameters > 10B).
We show comparison on all six benchmarks that are designed for biomedical MLLM evaluation,
including VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a), PathVQA (He et al., 2020),
PMC-VQA (Zhang et al., 2023b), OmniMedVQA (Hu et al., 2024) (open-access split), and MMMU
(Health & Medicine track) (Yue et al., 2024). All evaluations were conducted in a zero-shot setting
using question templates provided by LLaVA (see Sec. I).

All experiments are conducted using the same hyperparameters across benchmarks. Specifically, for
Step I, we aggregate the attention maps from the top K = 20 heads with the highest alignment to
visual relevant regions, as measured by KL divergence on our curated evaluation set built using COCO
images. This setup prevents data leakage from medical evaluation benchmarks and demonstrates
that our method generalizes from natural images to biomedical domains. Low-activation regions
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are suppressed based on a percentile threshold p = 50% over attention magnitude. For Step II we
apply the attention knockout only at ℓ = 34, 35, 36 layer, which, according to our analysis in Fig. 3
demonstrates the most relevancy to visual grounding among all the layers. We applied our inference-
time method VGRefine-34B on HuatuoGPT-V-34B (Chen et al., 2024a). The hyperparameters K and
p are kept consistent with the VGRefine-7B setting. In Step II, we apply attention knockout to more
layers, as the 34B model has twice as many layers as the 7B variant and requires deeper intervention
to achieve significant improvements.

Results in Tab. G.5 demonstrate that our proposed method consistently achieves good performance
across all 6 benchmarks, demonstrating its effectiveness in enhancing all types of medical VQA.

Table G.5: Experiment results of larger models (more than 10B parameters). We evaluate all models
under the zero-shot setting. Our inference-time method VGRefine outperforms other state-of-the-art
medical MLLMs in most cases. These results underscore that enhanced visual grounding contributes
to better performance on medical VQA tasks. It is important to note that VILA-M3 (Nath et al., 2024),
MedRegA (Wang et al., 2025) incorporate training data from VQA-RAD (Lau et al., 2018), SLAKE
(Liu et al., 2021a), PathVQA (He et al., 2020), and PMC-VQA (Zhang et al., 2023b), thus making
zero-shot evaluation unfair, and are excluded from our zero-shot comparison of these benchmarks.

Benchmarks Subset Metric LLaVA-v1.6-34B VILA-M3-13B MedRegA-34B HuatuoGPT-V-34B VGRefine-34B (Ours)

VQA-RAD -

CloseAcc 58.6 - - 68.1 72.9
BLEU-1 44.5 - - 50.5 52.6
BERT 69.2 - - 74.8 74.8

OpenRecall 43.6 - - 51.7 52.8

SLAKE -

CloseAcc 67.3 - - 76.9 79.1
BLEU-1 48.6 - - 56.3 57.2
BERT 51.8 - - 77.6 79.5

OpenRecall 54.2 - - 57.5 58.5

PathVQA -

CloseAcc 59.1 - - 63.5 69.7
BLEU-1 28.1 - - 36.6 37.6
BERT 57.7 - - 65.6 65.9

OpenRecall 29.3 - - 36.9 37.1
PathVQA - CloseAcc 44.4 - - 58.2 58.7
Avg. on Med-VQAs - CloseAcc 57.4 - - 67.0 70.7

MMMU

BMS

CloseAcc

56.4 36.8 54.3 64.3 66.0
CM 52.8 38.8 53.5 56.5 58.2

DLM 42.6 29.0 37.7 45.1 45.4
P 41.6 29.3 38.4 43.7 44.0

PH 38.4 32.2 40.7 43.8 44.8
Avg. 45.6 33.3 44.7 50.1 51.3

OmniMedVQA

CT

CloseAcc

50.6 56.9 62.5 69.7 71.7
FP 63.4 50.1 80.4 84.6 84.4

MRI 60.9 52.9 72.7 69.7 73.9
OCT 68.4 41.5 86.2 87.8 87.6
Der 65.7 45.1 79.9 70.2 70.9
Mic 62.8 50.6 71.3 71.1 71.4

X-Ray 74.7 62.5 78.7 83.8 84.7
US 44.5 47.1 49.4 81.7 83.1

Avg. 61.4 52.3 70.3 74.4 76.6
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H HUATUOGPT-VISION-BIO WITH BIOMEDCLIP VISION ENCODER

Model Setup. To evaluate the effect of domain-specific visual encoders, we modified the original
HuatuoGPT-Vision architecture by replacing its CLIP-based vision encoder with BioMedCLIP Zhang
et al. (2025b), a biomedical foundation model pretrained on 15 million scientific image–text pairs.
All other components of the model (including the Qwen2 language model, the cross-modal connector
module, and the training protocol) remain identical to the original configuration. This substitution
allows us to isolate the impact of specialized medical image representations on visual grounding
performance.

Training Details. Since the original training code for HuatuoGPT-Vision was not publicly avail-
able, we replicated the training pipeline using the LLaVA-NeXT Liu et al. (2024b) codebase. We
follow a two-stage training protocol on the same pretraining and instruction-tuning datasets used in
HuatuoGPT-Vision, including LLaVA and PubMedVision. In Stage I, we freeze both the BioMed-
CLIP vision encoder and the Qwen2 language model, training only the connector to align visual
and textual representations. In Stage II, we fine-tune both the connector and the language model
while keeping the vision encoder frozen. The model is trained for 1 epoch. BioMedCLIP processes
images at a fixed resolution of 224× 224 with a patch size of 16, which differs from the resolution
and tokenization settings used in the original CLIP-based HuatuoGPT-Vision.

Analysis Results. As shown in main paper Fig. 1 and Fig. 3, the issue of suboptimal visual grounding
on medical images cannot be solved by using BiomedCLIP vision encoder.
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I PROMPTS FOR VGMED AND QA EVALUATION

I.1 PROMPTS FOR CONSTRUCTING VGMED

Localization Question Set

• Is there a {label} in the image?

• Can you see a {label} in the image?

• Does the image contain a {label}?
• Is a {label} present in this image?

• Do you see a {label} in the picture?

• Is the {label} visible in the image?

• Is there any sign of a {label} in the image?

• Can a {label} be found in this image?

• Does this image show a {label}?
• Is a {label} shown in the picture?

Figure I.2: The question from a predefined question set is sampled for generating localization
questions in both the COCO and VGMED datasets. {label} represents the object (in COCO) or
organ/lesion (in VGMED) identified by a bounding box in the corresponding image.

I.2 PROMPTS FOR ZERO-SHOT EVALUATION

We used the LLaVA prompt template during the evaluation for open, closed-ended, and multiple-
choice questions.

Short Answer (e.g., VQA-RAD, SLAKE, PathVQA)

<question>
Answer the question using a single word or phrase.

Figure I.12: Prompt for evaluating the open and closed-ended questions in VQA-RAD, SLAKE, and
PathVQA benchmarks.

Option-only for multiple-choice (e.g., PMC-VQA, OmniMedVQA, and MMMU)

<question>

A. <option 1>

B. <option 2>

C. <option 3>

D. <option 4>

Answer with the option’s letter from the given choices
directly.

Figure I.13: Prompt for evaluating the multiple-choice VQA benchmarks.
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Prompt for VGMED Attribute Questions (MRI)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "Is the lesion hyper or hypointense?"

• "Is the lesion enhancing?"

• "What does the area of necrosis look like?"

• "What pattern of enhancement does the lesion show?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.3: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (CT)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "Are there ground glass opacities within the lung?"

• "Is the kidney enlarged?"

• "What is the size of the necrosis?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.4: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (Ultrasound)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "Does the thyroid nodule have irregular or microlobulated
margins?"

• "Does the thyroid nodule have marked hypoechogenicity?"

• "Does the thyroid nodule have multiple
microcalcifications?"

• "Is the breast lesion homogeneous or heterogeneous?"

• "Does the breast lesion appear solid or cystic on
ultrasound?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.5: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image. 31
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Prompt for VGMED Attribute Questions (X-ray)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "What is the size of the pneumothorax?"

• "Where is the pneumothorax?"

• "Does the lung field appear more opaque or translucent in
the annotated region?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.6: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (Fundus Photography)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "Is there any pallor observed in the optic disc?"

• "Does the optic disc appear swollen or elevated?"

• "Is there any evidence of swelling or pallor in the optic
disc?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.7: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (Endoscopy)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "What is the size of the polyp?"

• "Does the colorectal polyp have a smooth or lobulated
surface appearance?"

• "What is the mobility of the polyp?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.8: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (PET)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "Does the lesion show increased radiotracer uptake on the
PET scan?"

• "Is the lesion hypo- or hyper-metabolic?"

• "What is the Standardized Uptake Value (SUV) of the
lesion?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.9: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for VGMED Attribute Questions (Dermoscopy)

Your task is to generate clinically meaningful questions for
an evaluation dataset to assess visual grounding capability
in medical reasoning, without requiring deep semantic
grounding.

• Semantic Grounding: Anchors linguistic representations
to domain-specific medical knowledge to inform what to
look for, ensuring accurate reasoning about diseases or
anatomical concepts.

• Visual Grounding: Localizes and interprets specific
regions in medical images based on relevant features,
enabling spatial alignment of language queries to visual
elements for accurate analysis.

We will provide the label of a medical structure (organ,
lesion, or tissue) in a {modality} image, derived from
a bounding box annotation. Your need to generate three
clinically relevant questions about visual attributes of this
structure.

Guidelines for the question:

• Focus on visual grounding, without requiring deep medical
semantic grounding.

• Ensure clinical relevance.

• Require attention to the entire annotated bounding box.

• Address only observable visual characteristics (e.g., size,
shape, density, enhancement, homogeneity).

• Avoid referencing other body parts or surrounding
structures.

• Do not include position, modality, or plane.

• Exclude diagnoses or treatments requiring deep semantic
grounding.

• Avoid compound or multi-condition questions.

• Ensure variety across the three questions.

Example questions:

• "What is the size of the lesion?"

• "Is the lesion hypo- or hyper pigmented?"

• "Does the lesion have peripheral black dots or clods?"

• "Does the skin lesion have thick lines (reticular or
branched)?"

• "Does the lesion have Polymorphous vessels?"

Now, generate three questions based on the label. Return
exactly three questions without any additional text or
formatting.

Label: {label}

Figure I.10: For attribute questions in VGMED, we use a specific prompt for each modality. In the
prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
by a bounding box in the image.
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Prompt for COCO Attribute Questions

Your task is to generate one simple and meaningful question
about a visual attribute of an object identified in an image.

We will provide the label of the object, which comes from a
bounding box annotation in an image from the COCO dataset.

Guidelines for the question:

• Ensure variety in the questions generated.

• Focus only on the visual characteristics (e.g., color,
size, material, etc.) of the given object.

• Do not reference other parts of the image.

• Do not ask questions about the position of the object or
the surrounding structure.

• Avoid compound or multi-condition questions.

Now, generate one question based on the following label:
Label: {label}

Figure I.11: In order to compare the results between our VGMED datasets and natural scene images,
we have also generated the attribute questions for COCO examples. {label} refers to the object label
from the image’s bounding boxes.
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J ADDITIONAL QUALITATIVE EVALUATION

J.1 HUMAN EVALUATION

We conducted a blinded human evaluation involving five experienced clinicians (4 of them have
over 10 years of clinical practice). The study was based on a 20-case questionnaire. For each case,
clinicians were shown a medical image with a VQA question and two corresponding attention maps:
(1) from the baseline model and (2) from the same model after applying VGRefine. The source
of each attention map was not disclosed, and their order was randomized. Clinicians were asked:
“Which model’s attention visualization (shown as heatmap) appears more clinically reasonable and
trustworthy?”.

Figure J.14: Example of a blinded human evaluation case, showing a medical image with a VQA
question, baseline attention map, and VGRefine attention map, assessed by an experienced clinician
for clinical reasonableness. Clinician feedback highlighted that VGRefine attention maps were less
noisy, better localized, and more aligned with expected clinical focus points.
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J.2 ADDITIONAL QUALITATIVE ANALYSIS ON MEDICAL MLLM’S ATTENTION MAPS

Layer 0 Layer 27Layer 20Layer 16Layer 10Layer 5SourceHuatuoGPT-V

Layer 0 Layer 31Layer 25Layer 18Layer 12Layer 6Source
LLaVA-Tri

Do you see a
right kidney in

the picture?

Is there evidence
of fatty infiltration

in the liver?

Can a brain
enhancing tumor be
found in this image?

Do you see a
atelectasis in the

picture?

Layer 0 Layer 31Layer 25Layer 18Layer 14Layer 6Source
LLaVA-v1.5

What shape is the
clock?

Is there a parking
meter in the image?

Figure J.15: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs (Zhang et al., 2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains. Best viewed in color and with zoom. Additional results in Supp J.2.
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SourceHuatuoGPT-V-7B

Is the bladder wall
thickened?

Can a liver be found
in this image?

Is the spleen
enlarged?

Does the brain
enhancing tumor

show heterogeneous
enhancement?

Is there a small bowel
in the image?

Is there a liver in
the image?

Layer 0 Layer 27Layer 20Layer 16Layer 10Layer 5

Layer 18Layer 6Source
LLaVA-v1.5

Do you see a
motorcycle in the

picture?

Is there any sign of a
parking meter in the

image?

Does this image show a
umbrella?

Layer 0 Layer 31Layer 14 Layer 25

Figure J.16: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Is the brain non-
enhancing tumor

visible in the image?

Is the cardiac
silhouette

significantly
enlarged?

Does the lung cancer
show any evidence of

cavitation?

Layer 15 Layer 25

Is the brain edema
visible in the image?

Layer 35

Does the mass
show any signs of
internal necrosis or

heterogeneity?

Layer 45Layer 0 Layer 55Source

Does the image
contain a liver?

HuatuoGPT-V-34B

Layer 18Layer 6Source
LLaVA-v1.5

Does this image show a
truck?

Can a frisbee be found
in this image?

Is a surfboard present
in this image?

Layer 0 Layer 31Layer 14 Layer 25

Figure J.17: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Is there a liver
cancer present in the

image?

Can a brain edema be
found in this image?

Can you see a liver
cancer in the image?

Does the image contain
a lung cancer?

Does the image contain
a atelectasis?

Layer 0 Layer 27Layer 20Layer 15Layer 10Layer 5SourceHuatuoGPT-V-Bio

Layer 0 Layer 31Layer 25Layer 18Layer 14Layer 6Source
LLaVA-v1.5

What color is the dog?

What color is the car?

Do you see a clock in
the picture?

Can you see a effusion
in the image?

Figure J.18: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps of
HuatuoGPT-V-Bio with a specialized vision encoder (BiomedCLIP) show limited alignment with the
ground-truth annotated regions. In contrast, a general-domain MLLM LLaVA-v1.5 applied to natural
images exhibits strong alignment with relevant regions, consistent with other study of general-domain
MLLMs Zhang et al. (2025a).
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MedRegA-34B

Is there a right
mandible in the image?

Does the liver show
any areas of abnormal

density or signal?

Is a right mandible
present in this image?

Is there any evidence of
consolidation in the left

lung?

Is there any evidence of
abnormal enhancement

in the left kidney?

Is there any sign of a
left lung in the image?

Layer 0 Layer 55Layer 45Layer 35Layer 25Layer 15Source

Layer 18Layer 6Source
LLaVA-v1.5

What color is the
baseball bat?

Do you see a handbag
in the picture?

What color are the
leaves of the potted

plant?

Layer 0 Layer 31Layer 14 Layer 25

Figure J.19: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Layer 0 Layer 31Layer 25Layer 18Layer 13Layer 6SourceVILA-M3-8B

Does this image show
a small bowel?

Does this image show
a brain edema?

Is the cardiac
silhouette significantly

enlarged?

Is there any evidence of
abnormal masses or

lesions in the left kidney?

Is there any sign of a
left temporal lobe in

the image?

Does the liver show
any areas of abnormal
density or attenuation?

Layer 0 Layer 31Layer 25Layer 18Layer 14
LLaVA-v1.5

What color is the
person's clothing?

Can you see a sports
ball in the image?

Source

What color are the
skis?

Layer 6

Figure J.20: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Layer 0 Layer 39Layer 32Layer 23Layer 16Layer 8SourceVILA-M3-13B

Is the pneumothorax
visible in the image?

Do you see a liver in
the picture?

Does the spleen
show any evidence

of enlargement?

Does the enhancing
tumor in the brain show

heterogeneous or
uniform enhancement?

Is a right kidney
shown in the picture?

Is there evidence of
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brain edema region?

Layer 18Layer 6Source
LLaVA-v1.5
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traffic light?

Can you see a person
in the image?

Is the cup visible in the
image?

Layer 0 Layer 31Layer 14 Layer 25

Figure J.21: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Layer 0 Laye 31Layer 25Layer 20Layer 15Layer 7SourceLLaVA-Med-v1.5
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in this image?

Can you see a liver in
the image?

Does the brain non-
enhancing tumor have
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cystic change?

Is there evidence of
consolidation in the left
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Is there evidence of
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kidney?
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Figure J.22: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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Figure J.23: Qualitative evaluation. We visualize attention maps across different layers, including
those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
highlights a gap in MLLM’s visual grounding performance between the medical and natural image
domains.
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K LIMITATIONS

While our work provides a systematic and detailed investigation into visual grounding as a key failure
mode in medical MLLMs, it focuses exclusively on this aspect. We do not examine other potential
sources of failure, such as deficiencies in semantic grounding or reasoning capabilities. In practice,
failures may also arise from an inability to recognize what clinical concepts are relevant or to integrate
multimodal information effectively. Additionally, our proposed method, VGRefine, is designed to
improve visual grounding at inference time but does not address other underlying limitations, such as
dataset biases or insufficient domain-specific knowledge. Future work will explore complementary
methods to assess and improve semantic grounding and extend our analysis framework to uncover
other failure modes.

L EXPERIMENTAL SETTING/DETAILS AND COMPUTING RESOURCES

For both VGRefine-7B and VGRefine-34B, we select the top 20 attention heads—ranked by alignment
with visually relevant regions—and average their outputs to obtain the filtered attention map. A
percentile threshold of 50% is used to suppress low-activation regions during attention knockout.
For VGRefine-7B, the attention knockout is applied at layer l = 16, while for VGRefine-34B, it is
applied at layers l = 34, 35, 36, identified through our quantitative analysis as most relevant to visual
grounding. We follow a zero-shot evaluation protocol across six biomedical VQA benchmarks: VQA-
RAD, SLAKE, PathVQA, PMC-VQA, OmniMedVQA, and MMMU (Health & Medicine track).
The full set of prompts used for zero-shot evaluation is provided in Section F.2. All experiments are
conducted on a server with 8×NVIDIA A100 80GB GPUs.

M BROADER IMPACTS AND ETHICAL CONSIDERATIONS

This work involves the analysis of medical MLLMs using publicly available datasets that are de-
identified. No private or sensitive patient data is used. We acknowledge that the deployment of
medical MLLMs carries potential risks, including misinterpretation of clinical images, over-reliance
on automated outputs by clinicians, and disparities in performance across patient populations. Our
work aims to mitigate such risks by improving the reliability of model predictions through better
visual grounding. To promote transparency and reproducibility, we provide open access to code,
evaluation metrics, and the VGMED dataset. This enables the broader research community to
scrutinize and build upon our work responsibly.

N SAFEGUARDS

Our study does not involve training or releasing a new foundation model, but rather evaluates and
analyzes existing medical MLLMs in terms of their visual grounding behavior. While our proposed
inference-time refinement method improves grounding performance, it is designed for research use
only and does not replace expert validation. We do not claim clinical applicability, and no components
of our work should be used for medical diagnosis or decision-making without extensive clinical
evaluation.

If any models or code are released, access will be gated under a research-use license, and accompanied
by usage guidelines clearly stating that they are intended solely for non-commercial, academic use.
The evaluation dataset we construct contains only de-identified medical images drawn from publicly
available datasets, and all visual content has been reviewed to ensure it does not pose safety, privacy,
or dual-use risks.

O LICENSES

All datasets and models used in this work are publicly available and cited appropriately in the main
paper. We do not scrape any new data from the web or repackage any existing datasets; all visual
assets have been used in accordance with their licenses.
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P USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely as a writing aid to improve clarity, grammar, and style. They were not involved
in generating research ideas, designing methodology, analyzing data, or drawing conclusions.
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Figure Q.24: Qualitative evaluation of (i) medical MLLMs HuatuoGPT-V, LLaVA-Tri and MedRegA
on COCO, and (ii) LLaVA-v1.5 on VGMED. We visualize attention maps across different layers,
including those with the lowest KL divergence (highlighted with an orange boundary), which are
indicative of layers most relevant to visual grounding in MLLMs. We observe that LLaVA-v1.5 fails
to ground predictions in clinically relevant regions when operating on medical images and medical
VQA tasks. Furthermore, medical-domain models can ground their predictions when applied to
natural images. This is consistent with our quantitative analysis in Fig. 3 of the main paper. Together,
they show that medical MLLMs possess good visual grounding capabilities in general-domain
settings. Overall, this confirms that the grounding failure is not due to model weakness, but is
fundamentally specific to the medical domain, consistent with our central findings. Inadequate
visual grounding is a medical-domain failure mode.
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Figure Q.25: Quantitative evaluation of LLaVA-v1.5 on VGMED. We observe that LLaVA-v1.5 fails
to ground predictions in clinically relevant regions when operating on medical images and medical
VQA tasks.
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Q: Does this image show a spleen?

Q: Does the nodule show any evidence of calcification?

Q: Does this image show a tennis racket?

Q: What color is the chair?

Source Qwen2.5-VL InternVL3

(a)

(b) Source Qwen2.5-VL InternVL3

Figure Q.26: (a) Quantitative and (b) qualitative evaluation of InternVL3-8B and Qwen2.5-VL-7B
on VGMED and COCO. We observe that the visual grounding deficiency in medical domain persists
even in these latest general-purpose models.
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Q: Are there pulmonary findings? A: No
HuatuoGPT-Vision: Yes VGRefine (ours): Yes 

Q: Is the liver parenchyma normal? A: Yes
HuatuoGPT-Vision: No         VGRefine (ours): No 

HuatuoGPT-Vision VGRefine (ours)Source(b)

(a)

Q: Does the picture contain heart? A: Yes
HuatuoGPT-Vision: No        VGRefine (ours): Yes 

Q: Does the picture contain colon? A: Yes
HuatuoGPT-Vision: No        VGRefine (ours): Yes 

HuatuoGPT-Vision VGRefine (ours)Source LLaVA-v1.5Source

Q: What color is the bench?

Q: What color is the bottle?

Q: Is an oven shown in the picture?

Q: Do you see a toothbrush in the picture?

(c)

Figure Q.27: Representative failure cases of HuatuoGPT-Vision on medical benchmarks. (a)
The model correctly interprets the question but attends to the wrong anatomical region, leading to
an incorrect answer. After applying VGRefine, the model’s attention shifts toward more clinically
relevant region, resulting in the correct prediction. (b) The model misunderstand the question,
resulting in both semantic and visual grounding failure. (c) Additionally, we include examples
from LLaVA-v1.5 on natural images as a reference of accurate visual grounding. While multiple
factors contribute to poor generalization, weak visual grounding consistently emerges as a major and
measurable issue, though not the sole cause.
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Figure Q.28: Comparison of visual grounding when using all input tokens, question-only tokens,
or the last token to derive attention maps. Using two representative MLLMs (HuatuoGPT-V-7B
and LLaVA-v1.5), we evaluate how different token-selection strategies affect attention alignment on
VGMED and COCO. Across all metrics and layers, attention maps computed from the last token
achieves equal or better alignment with ground-truth regions compared to the alternative options.
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R CLINICAL VALIDATION DURING VGMED CURATION

As part of the VGMED curation process, clinicians reviewed each sample to verify that (i) the
question is properly focused on visual grounding, (ii) it does not require deep or diagnostic-level
semantic medical reasoning, and (iii) it remains clinically appropriate and meaningful. An example
of the rating interface used during the curation process is shown in Fig. R.29.

Figure R.29: Example of the clinician rating interface used during VGMED curation.

Clinical Relevance

• 1: Irrelevant or misleading; the question is clinically inappropriate or nonsensical in this context.
• 2: Marginally relevant; the question has limited medical value or loosely pertains to the case.
• 3: Acceptable; the question is reasonable in clinical significance.
• 4: Clinically useful; the question is clearly relevant and meaningful to medical interpretation.
• 5: Highly relevant and valid; the question is well-phrased, accurate, and directly supports clinical

reasoning.

Visual Grounding

• 1: It refers to other anatomy or ignores the boxed area entirely; ignores the region.
• 2: The question has only a weak or incidental connection to the boxed region; the area is largely

irrelevant to the text.
• 3: It reasonably overlaps or implies the boxed region.
• 4: Clear reference to the boxed region.
• 5: Perfectly aligned, the question precisely refers to the boxed region.
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Minimum Semantic Grounding

• 1: Very deep semantic grounding; requires advanced, multi-step clinical reasoning, such as
staging, prognosis, mechanisms, or treatment decisions.
Examples:
“What is the appropriate treatment for this condition?”
“How does this imaging pattern affect the patient’s prognosis?”

• 2: High semantic grounding; requires reasoning about specific diseases or well-defined diagnos-
tic entities. Substantial medical knowledge is needed.
Example:
“What diseases are included in the image?”

• 3: Moderate semantic grounding; requires linking features to broad categories of pathology,
such as distinguishing between growth, inflammation, or degeneration.
Example:
“Do the changes suggest a long-standing damage?”

• 4: Low–moderate semantic grounding; requires recognition of more specific medical descriptors,
but does not involve broad pathology categories or diagnostic reasoning.
Examples:
“Does the structure appear to be pushing against or displacing nearby tissues?”
“Is there a region that appears more diffuse rather than well-demarcated?”

• 5: Low semantic grounding requires only basic clinical or anatomical recognition (e.g., body
parts, organs, simple structures, fractures, nodules).
Examples:
“Does the bone show a visible fracture line?”
“Is there a nodule in this region?”

Therefore, a rating of 3 represents acceptable threshold across all three dimensions: the sample is
clinically relevant, visually grounded, and does not require deep semantic knowledge.

During the benchmark curation process, all samples receiving any score below 3 were discarded.
Consequently, every VGMED sample satisfies 3 or above on all criteria. This ensured that retained
samples genuinely test visual grounding rather than medical reasoning.

Furthermore, as summarized in Tab. R.6, the vast majority of clinician ratings are in the upper
categories (4–5), with only a minor proportion of samples receiving a rating of 3 across any axis.

Table R.6: Percentage distribution of clinician ratings (3–5) across all axes for Attribute and Local-
ization questions.

Type Category Rating 3 (%) Rating 4 (%) Rating 5 (%)

Attribute
Clinical Relevance 3.31 4.11 92.58
Min. Semantic Grounding 0.37 10.38 89.25
Visual Grounding 4.04 12.18 83.77

Localization
Clinical Relevance 0.02 0.52 99.46
Min. Semantic Grounding 0.05 5.76 94.19
Visual Grounding 3.96 11.79 84.25
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