

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW DO MEDICAL MLLMs FAIL? A STUDY ON VISUAL GROUNDING IN MEDICAL IMAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Generalist multimodal large language models (MLLMs) have achieved impressive performance across a wide range of vision-language tasks. However, their performance on medical tasks—particularly in zero-shot settings where generalization is critical—remains suboptimal. A key research gap is the limited understanding of why medical MLLMs underperform in medical image interpretation. **In this work**, we present a pioneering systematic investigation into the visual grounding capabilities of state-of-the-art medical MLLMs. To disentangle *visual grounding* from *semantic grounding*, we design VGMED, a novel evaluation dataset developed with expert clinical guidance, explicitly assessing the visual grounding capability of medical MLLMs. We introduce new quantitative metrics and conduct detailed qualitative analyses. Our study across **eight** state-of-the-art (SOTA) medical MLLMs validates that they often fail to ground their predictions in clinically relevant image regions. We note that this finding is specific to medical image analysis; in contrast, prior work has shown that MLLMs are capable of grounding their predictions in the correct image regions when applied to natural scene images. Motivated by these findings, we propose VGRefine, a simple yet effective inference-time method that refines attention distribution to improve visual grounding in medical settings. Our approach achieves SOTA performance across 6 diverse Med-VQA benchmarks (over 110K VQA samples from 8 imaging modalities) without requiring additional training or external expert models. Overall, our work, for the first time, systematically validates inadequate visual grounding as one of the key contributing factors for medical MLLMs’ under-performance. Code and additional experiments are included in the Supp.

1 INTRODUCTION

Generalist multimodal large language models (MLLMs) have demonstrated strong performance across a broad range of vision-language tasks, including visual question answering (VQA) (Wang et al., 2024; Dai et al., 2023; Liu et al., 2023; Chen et al., 2024b; Liu et al., 2024b), image captioning (Li et al., 2023b; Wu et al., 2024), science and mathematical reasoning (Liu et al., 2024d; Zhuang et al., 2025; Shi et al., 2024). Recent efforts have extended these models to the medical domain, with the goal of developing medical MLLMs that can leverage their generalization capabilities to support diverse clinical decision-making tasks.

Medical MLLMs. Recent work has explored extending general-purpose MLLMs to the medical domain, with many approaches focusing on constructing multimodal medical datasets and incorporating external expert models. In Li et al. (2023a), a large-scale biomedical figure-caption dataset is built from PubMed Central to fine-tune LLaVA, resulting in LLaVA-Med. However, its performance in zero-shot settings remains suboptimal and heavily reliant on dataset-specific fine-tuning. HuatuoGPT-Vision (Chen et al., 2024a) leverages GPT-4V to construct a large image-text dataset with refined annotations, but also lacks strong zero-shot generalization. VILA-M3 (Nath et al., 2024) incorporates external medical expert models to assist medical image analysis tasks. Recently, in Xie et al. (2025), the authors introduce MedTrinity-25M, a dataset comprising 25 million medical images, and propose LLaVA-Tri, a model pretrained on this dataset to improve regional focus in medical images. (See Supp. for additional review of related work.)

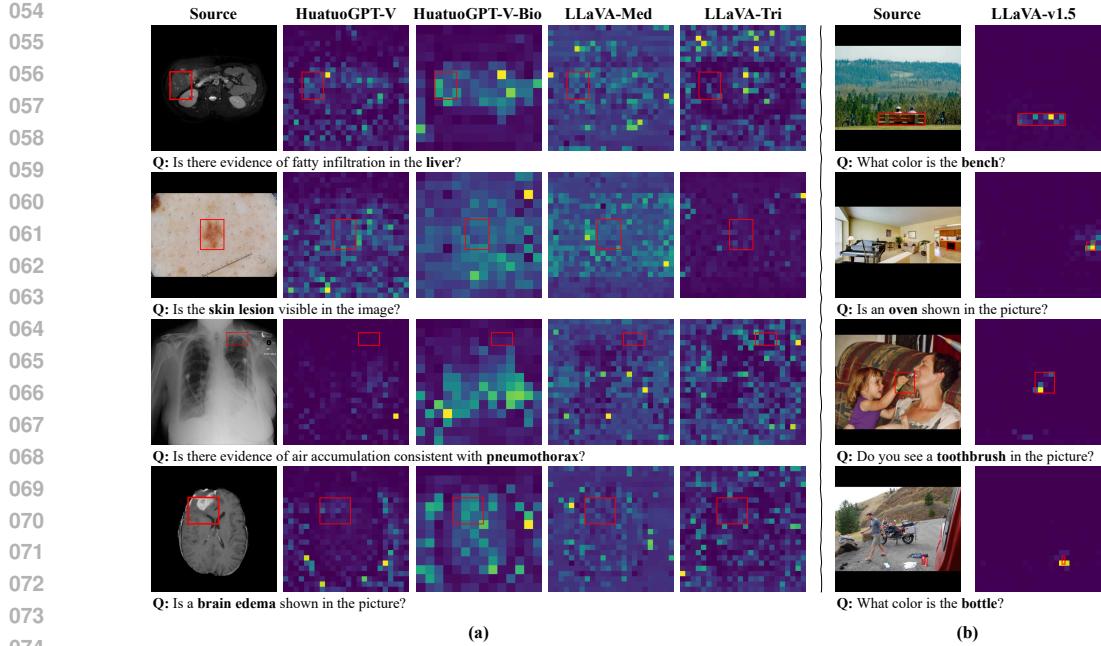


Figure 1: **Visual grounding issues in state-of-the-art medical MLLMs.** (a) Column 1 shows input medical images with expert-annotated ground-truth regions (red boxes). Columns 2–5 display attention distributions from representative medical MLLMs. (b) Column 1 shows natural scene images with annotated ground-truth bounding boxes, and column 2 shows attention distributions from LLaVA-v1.5. For the first time, we systematically validate that state-of-the-art medical MLLMs often suffer from *inadequate visual grounding*—they fail to accurately localize and interpret image regions that are clinically relevant to the question. We note that, in contrast, when applied to natural images, MLLMs are capable of grounding their predictions in the correct image regions (Zhang et al., 2025a). Attention maps are taken from the LLM layers identified as most relevant to visual grounding (see Sec. 2 for details).

Despite these advances, most existing medical MLLMs strongly rely on training or fine-tuning with samples from downstream datasets. They continue to underperform on medical VQA tasks in the zero-shot setting—where no downstream task samples are seen during training or fine-tuning—thus falling short of the goal of developing truly generalist medical MLLMs. This raises a key question: *Why do medical MLLMs struggle with medical image interpretation, despite their success in general-domain tasks?*

Research Gap. There remains a lack of deeper analysis into the underlying causes of medical MLLMs’ suboptimal performance in the important zero-shot setting. Particularly, there is a lack of studies to systematically examine the internal failure modes of these models—particularly in terms of *how* and *where* predictions are derived from visual inputs. Without such analysis, it remains unclear whether performance limitations stem from a lack of clinical task understanding (semantic grounding) or from an inability to accurately localize and interpret relevant image regions (visual grounding). Advancing our understanding of these failure modes is essential for building robust generalist medical MLLMs for real-world clinical deployment.

Our work underscores the importance of explicitly distinguishing between *semantic grounding* (Lu et al., 2024; Lyre, 2024) and *visual grounding* (Xiao et al., 2024) in medical tasks. This distinction is particularly critical for Med-VQA, which—unlike general-domain VQA—often requires deep domain-specific reasoning. For example, answering a question like “What diseases are included in the image?” requires the model to reason about the anatomical structures and visual features that are relevant to specific pathologies. A model may experience *failure in semantic grounding*—that is, it lacks the medical knowledge to determine *what* to look for. Alternatively, it may experience *failure in visual grounding*—it cannot accurately *localize and interpret* the relevant regions in the medical image, even when it knows what to look for. As medical MLLMs increasingly incorporate large-scale biomedical knowledge to enhance semantic grounding, we argue that visual grounding may emerge as the primary bottleneck limiting further progress.

108 **Our Contribution.** In this work, we present a pioneering systematic investigation aimed at advancing
 109 the understanding of failure modes and the visual grounding capabilities of medical MLLMs (Fig. 1).
 110 To disentangle visual grounding from semantic grounding, we co-create a novel evaluation dataset
 111 with 3 clinicians, named VGMED, a dataset for Visual Grounding analysis of MEDical MLLMs.
 112 VGMED ensures focused evaluation of whether MLLMs can accurately localize and interpret the
 113 relevant regions in medical images. We introduce new quantitative metrics and qualitative analyses to
 114 assess visual grounding performance—that is, the extent to which model predictions are grounded
 115 in clinically relevant visual evidence. *Critically, by using VGMED to evaluate eight SOTA medical*
 116 *MLLMs, we reveal for the first time that even the most advanced models frequently rely on spurious or*
 117 *irrelevant regions, highlighting inadequate visual grounding as a pervasive and fundamental failure*
 118 *mode.* We note that this finding is specific to medical image analysis; in contrast, prior work has
 119 shown that MLLMs are capable of grounding their predictions in the correct image regions when
 120 applied to natural images (Zhang et al., 2025a).

121 To address this, we propose VGRefine, a simple yet effective inference-time method that improves
 122 visual grounding by refining internal attention distributions. VGRefine requires no additional training.
 123 Across 6 diverse Med-VQA benchmarks, comprising over 110K VQA samples from 8 imaging
 124 modalities (CT, MRI, X-ray, OCT, dermoscopy, microscopy, fundus, ultrasound), VGRefine con-
 125 sistently achieves improved and SOTA performance. Overall, our work offers new insights into the
 126 failure modes of medical MLLMs and establishes visual grounding analysis as a necessary diagnostic
 127 tool for advancing medical MLLMs in clinical applications.

128 2 INVESTIGATION OF VISUAL GROUNDING IN MEDICAL MLLMs

131 Despite recent advances, medical MLLMs continue to underperform on complex medical image
 132 reasoning tasks, particularly in medical VQA (Hu et al., 2024; Jeong et al., 2024). In this work, we
 133 conduct a systematic study to validate that a key limitation lies in inaccurate visual grounding. As a
 134 starting point, we analyze attention maps from the model layers most relevant to visual grounding
 135 (details on layer selection are provided in Sec. 2.4). As shown in Fig. 1, for medical images, MLLMs’
 136 attentions often fail to align with clinically relevant regions.

137 2.1 A NEW DATASET FOR VISUAL GROUNDING ANALYSIS

138 **Existing medical VQA datasets are ill-suited for visual grounding analysis.** To rigorously evaluate
 139 medical MLLMs’ visual grounding, we aim to systematically assess the extent to which their outputs
 140 are supported by clinically relevant regions of the image (e.g., organs, tissues, or lesions essential for
 141 answering a given question). However, existing medical VQA datasets are ill-suited for this purpose,
 142 as illustrated in Fig. 2 (a). Many questions, such as “*What diseases are included in the picture?*”, can
 143 be answered without referencing specific image regions. In contrast, questions like “*What diseases*
 144 *are included in the picture?*” require substantial medical knowledge to determine what to look for,
 145 since different diseases, including their stages or subtypes, can manifest with varied and often subtle
 146 visual patterns. These patterns are not always well-documented in text and may depend on clinical
 147 interpretation, making it difficult to determine whether model failures stem from inadequate semantic
 148 grounding or from visual grounding alone.

149 **VGMED: A new dataset for Visual Grounding analysis of MEDical MLLMs co-created with**
 150 **clinicians.** To address this gap, we build an evaluation dataset VGMED, focusing on visual grounding
 151 analysis, as illustrated in Fig. 2 (b). VGMED was co-created with three certified medical doctors
 152 (general practice, neurology, radiology) to ensure annotation accuracy and clinical relevance, includ-
 153 ing two senior clinicians with over ten years of experience. One expert also serves as Director (AI
 154 and Data Science) at a national medical center. Their contributions included: (1) co-designing GPT
 155 prompts to elicit clinically meaningful and visually grounded questions, (2) reviewing and refining
 156 all samples for clinical relevance and grounding focus, and (3) verifying that all samples require
 157 reference to the annotated region.

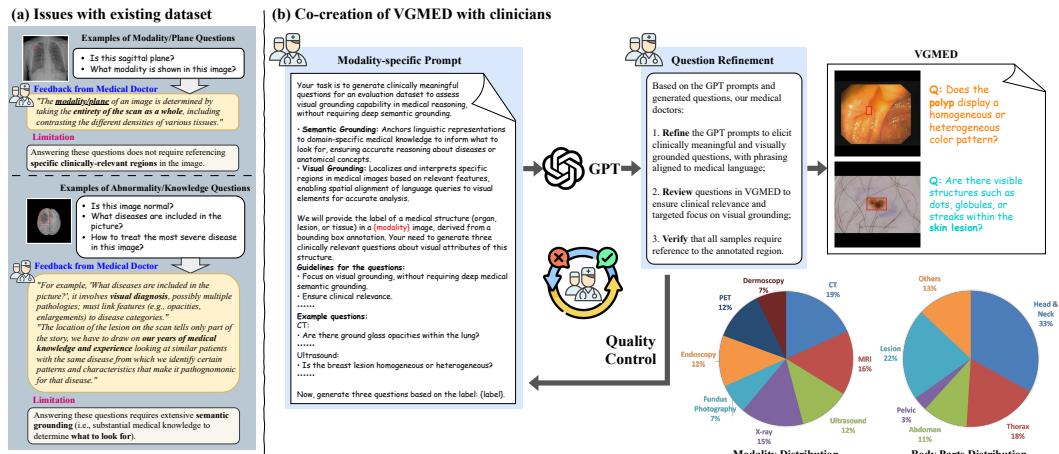
158 Our VGMED dataset is constructed from over 40 publicly available medical image segmentation
 159 datasets, with detailed information summarized in Table C.2. The original segmentation masks are
 160 converted into bounding boxes to support visual grounding analysis. To ensure diversity across
 161 imaging modalities and anatomical regions, we filter 13,962 samples, each consisting of a medical

162 image paired with a ground-truth bounding box. The distributions of modalities and body parts are
 163 illustrated in Fig. 2 (b).
 164

165 For each image–bbox pair, we construct clinically meaningful questions that target specific anatomical
 166 or pathological regions, guided by input from clinical experts. This allows us to conduct fine-grained
 167 visual grounding analysis. The questions are first generated using GPT-4 and subsequently reviewed
 168 and validated by medical professionals. They fall into two categories: *localization* and *attribute*
 169 questions. Localization questions inquire about the presence or identification of a specific organ or
 170 lesion, whereas attribute questions focus on visual properties such as size, shape, or abnormality
 171 (see Fig. 2 for details). GPT-4 is prompted to ensure that questions are both clinically relevant and
 172 visually grounded, requiring attention to the entire annotated region. In total, our dataset contains
 173 approximately 28K image–bbox–question triplets.
 174

175 As the reference point, we randomly draw the same number of samples from MS COCO (Lin et al.,
 176 2014), using the same question generation pipeline for the evaluation of natural scene images. We
 177 include all prompts used in localization and attribute questions generation in Supp I.
 178

179 **Remark:** Co-created with 3 clinicians, VGMED is a dataset for *evaluation and analysis* of visual
 180 grounding in medical domain. The size of VGMED (28K samples) is comparable to datasets typically
 181 used in general-domain visual grounding evaluation and studies (see Supp C).
 182



196 **Figure 2: Co-creation of VGMED with clinicians for visual grounding assessment.** Existing
 197 Med-VQA datasets often include questions about image modality or plane, which can be answered
 198 without referencing specific image regions. They also contain many abnormality- or knowledge-based
 199 questions that require substantial medical expertise to determine what to look for. As a result, existing
 200 datasets are not well-suited for analyzing visual grounding. In contrast, our dataset leverages LLM
 201 prompting and clinical expert guidance to generate clinically meaningful localization and attribute
 202 questions that are explicitly grounded in annotated image regions, enabling rigorous assessment of
 203 the visual grounding capabilities of medical MLLMs. **Best viewed in color and with zoom.**
 204

2.2 QUANTIFYING MLLMs’ VISUAL GROUNDING WITH ATTENTION MAPS

205 **Measuring MLLMs’ visual grounding.** To evaluate how multimodal large language models
 206 (MLLMs) ground their predictions in visual evidence, we analyze internal attention maps that indicate
 207 which image regions the model attends to. Attention maps are widely used in recent studies to
 208 evaluate visual grounding in general-domain MLLMs (Zhang et al., 2025a; Kang et al., 2025; Kaduri
 209 et al., 2024). Importantly, Zhang et al. (2025a) demonstrated that attention distributions can reliably
 210 capture visual grounding in natural scene images. This enables us to directly compare the visual
 211 grounding in medical images and natural scene images.
 212

213 Alternative grounding indicators, such as gradient-based saliency and causal perturbation, are in
 214 principle applicable but are considerably more expensive at scale. Gradient-based saliency methods
 215 (Selvaraju et al., 2017; Ismail et al., 2021) require backpropagation for each input, making them
 216 substantially more computation-intensive than directly using attention maps from the forward pass.
 217

216 Causal perturbation techniques (Fong & Vedaldi, 2017; Hooker et al., 2019) demand a new forward
 217 pass for each perturbed input (e.g., region masking or token removal), which may quickly become
 218 prohibitive for large-scale medical grounding analysis.

219 **Attention maps in MLLMs.** We extract cross-attention weights from the last input text token to
 220 each of the N^2 image tokens across all L layers and H attention heads of the LLM (Zhang et al.,
 221 2024; Kang et al., 2025). For each layer ℓ and head h , we denote the attention vector as $\alpha^{\ell,h} \in \mathbb{R}^{N^2}$,
 223 and compute the average across heads to obtain a per-layer attention map $A^\ell = \frac{1}{H} \sum_{h=1}^H \alpha^{\ell,h}$. Then
 224 we reshape A^ℓ into a spatial attention map of size $N \times N$.

225 **Attention Ratio (AR).** We aim to measure the alignment from the model’s attention map to the
 226 ground truth bounding box. For this purpose, we apply attention ratio (AR), defined as the sum of
 227 attention inside the ground truth bounding box divided by the average attention inside the bounding
 228 box of the same size (Zhang et al., 2025a). Let $A \in \mathbb{R}^{N \times N}$ denote the attention map over image patch
 229 tokens, and let $M \in \{0, 1\}^{N \times N}$ represent the binary ground-truth mask indicating the annotated
 230 region (e.g., bounding box), where $M_{ij} = 1$ if patch (i, j) is inside the region, and 0 otherwise.
 231 Formally, AR is defined as $\text{AR} = \frac{\sum_{i=1}^N \sum_{j=1}^N A_{ij} \cdot M_{ij}}{\|A\|_1 \cdot \|M\|_1}$, where $\|A\|_1 = \sum_{i=1}^N \sum_{j=1}^N A_{ij}$ and similarly
 232 for $\|M\|_1$.

233 **New metrics to quantify model’s attention map alignment.** We note that AR only considers the
 234 amount of attention within the bounding box, ignoring how the attention is distributed. Particularly, a
 235 uniform distribution of attention within the bounding box region would be preferable, as questions
 236 in VGMED are specifically designed to require attention to entire bounding box regions. To take
 237 attention distribution into account, we propose to use the Kullback–Leibler (KL) and Jensen–Shannon
 238 (JS) divergence, which measure the difference between the attention map and bounding box by
 239 viewing them as two probability distributions.

240 **Kullback–Leibler (KL) divergence.** We compute the KL divergence between the normalized ground-
 241 truth mask \hat{M} and the normalized attention map \hat{A} as $D_{\text{KL}}(\hat{M} \parallel \hat{A}) = \sum_{i=1}^N \sum_{j=1}^N \hat{M}_{ij} \log \left(\frac{\hat{M}_{ij}}{\hat{A}_{ij}} \right)$,
 242 where $\hat{A}_{ij} = A_{ij} / \|A\|_1$ and $\hat{M}_{ij} = M_{ij} / \|M\|_1$.

243 **Jensen–Shannon (JS) divergence.** To obtain a symmetric and
 244 bounded divergence metric, we compute the JS divergence as
 245 $D_{\text{JS}}(\hat{M} \parallel \hat{A}) = \frac{1}{2} D_{\text{KL}}(\hat{M} \parallel \hat{R}) + \frac{1}{2} D_{\text{KL}}(\hat{A} \parallel \hat{R})$,
 246 where $\hat{R}_{ij} = \frac{1}{2} (\hat{M}_{ij} + \hat{A}_{ij})$. The KL and JS
 247 divergences allow us to quantify not only whether the model attends to the correct region, but also
 248 how its attention is distributed within that region. A lower divergence indicates better alignment and
 249 more consistent attention over clinically relevant areas, offering a complementary perspective to AR.

250 2.3 EXPERIMENTAL SETUPS

251 We conduct our analysis on 8 SOTA medical MLLMs, including LLaVA-Med (Li et al., 2023a),
 252 LLaVA-Tri (Xie et al., 2025), HuatuoGPT-Vision-7B/34B (Chen et al., 2024a) (abbreviated as
 253 HuatuoGPT-V), VILA-M3-8B/13B (Nath et al., 2024), MedRegA (Wang et al., 2025), and a variant
 254 of HuatuoGPT-V—referred to as HuatuoGPT-V-Bio—where the original CLIP vision encoder is
 255 replaced with BiomedCLIP, a domain-specific encoder trained on biomedical data (see Supp H for
 256 details). To analyze attention behavior, we compute the mean attention map across all heads in each
 257 LLM layer. Inspired by Zhang et al. (2025a), we normalize the attention map using a reference
 258 attention map obtained from the generic prompt: “*Write a general description of the image.*”. This
 259 normalization helps highlight regions relevant to the specific question.

260 We also include LLaVA-v1.5-7B (Liu et al., 2024a) results on *natural scene images*. As a general-
 261 domain MLLM, LLaVA demonstrates strong performance and exhibits good visual grounding, with
 262 attention distributions that align closely with ground-truth regions (Zhang et al., 2025a; Kang et al.,
 263 2025). This serves as a useful reference point for interpreting attention ratios, KL and JS divergence
 264 associated with effective visual grounding.

265 2.4 EMPIRICAL ANALYSIS

266 **Medical MLLMs exhibit inadequate visual grounding on medical images.** We plot the attention
 267 ratio, KL divergence and JS divergence across all LLM layers for all models in Fig. 3. As shown

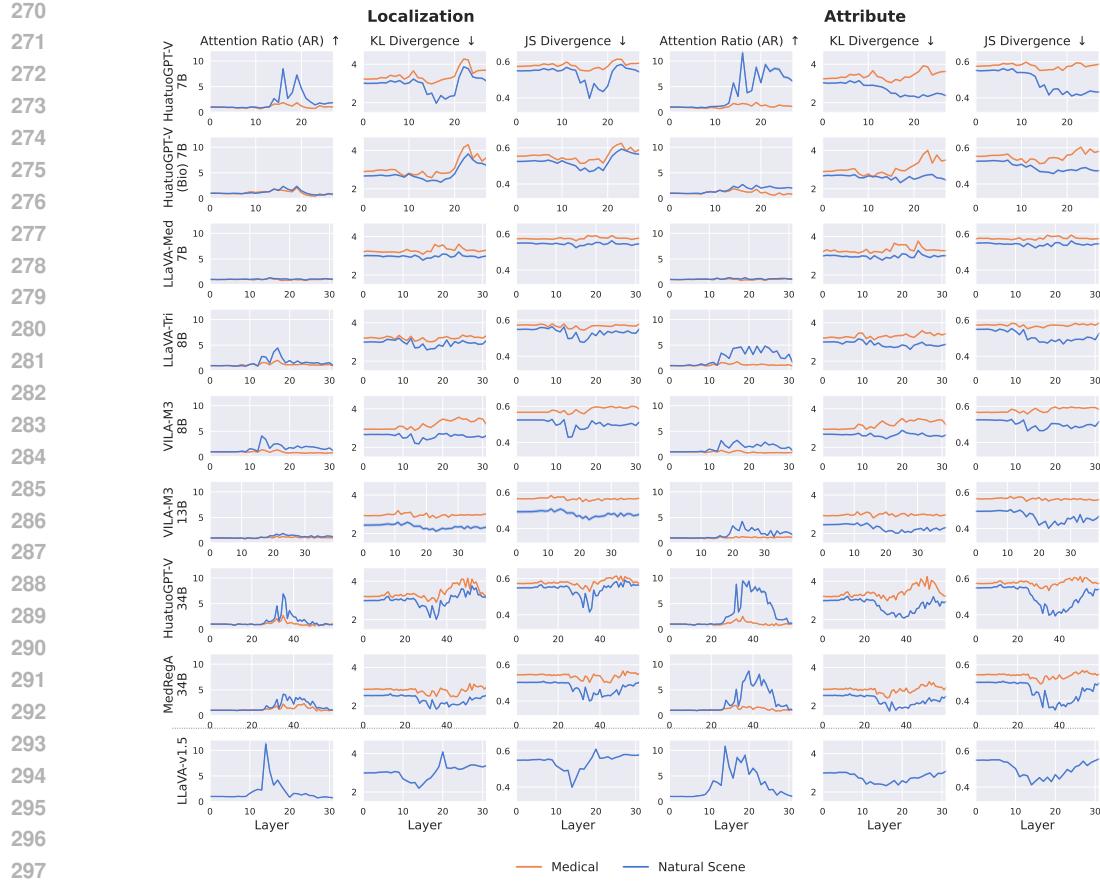


Figure 3: **Medical MLLMs demonstrate suboptimal visual grounding when applied to medical images.** Analysis using our proposed VGMED dataset—designed specifically to assess visual grounding in medical MLLMs—shows that all evaluated medical MLLMs exhibit substantial weaker alignment between their attention distributions and ground-truth annotations on **medical images** compared to **natural scene images** (from MS COCO). Additional comparison with general domain MLLM LLaVA-v1.5 on natural images (below the dashed line) further confirms that medical MLLMs consistently exhibit reduced alignment with annotated regions. **Best viewed in color and with zoom.**

in the figure, all evaluated medical MLLMs demonstrate weaker alignment between their attention distributions and ground-truth annotations when applied to medical images, compared to natural images. This is quantitatively and consistently supported by lower AR and higher values in our proposed KL and JS divergence metrics for measuring attention alignment. These trends persist across most network layers and are consistent for both attribute and localization tasks. Further comparison with LLaVA-v1.5 on natural images reinforces this observation: medical MLLMs show significantly lower alignment with annotated regions, as measured by AR, KL, and JS—highlighting deficiencies in visual grounding for medical image analysis.

For qualitative analysis, we visualize the attention map from the layer with the lowest KL divergence in Fig. 1. Lower KL divergence reflects closer alignment between the model’s attention distribution and the annotated regions, indicating that these layers are most relevant for visual grounding analysis. **Comprehensive qualitative analysis and visualization are included in Supp J.2**

3 VISUAL GROUNDING REFINEMENT

Our analysis in Sec. 2 suggests that current medical MLLMs attend to clinically-relevant and irrelevant regions. In this section, we propose Visual Grounding Refinement (VGRefine), an inference-time method that enhances visual grounding in medical MLLMs by suppressing attention to clinically irrelevant regions. Specifically, as shown in Fig. 4 our method consists of two steps: 1) Attention Triage and 2) Attention Knockout.

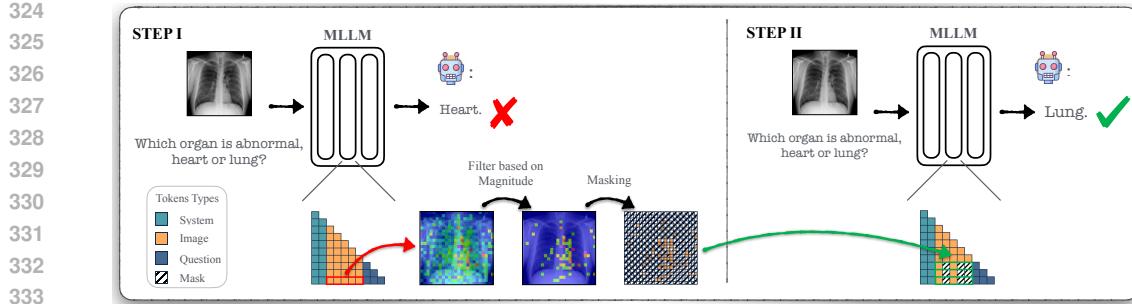


Figure 4: **Illustration of the proposed VGRefine method:** a two-step inference-time method to improve visual grounding in medical MLLMs. In **Step I (Attention Triage)**, we aggregate attention from the model’s most visually sensitive heads and suppress low-confident attention, obtaining a binary mask. In **Step II (Attention Knockout)**, we use this mask to refine the model’s attention distribution, improving its focus on relevant regions during inference. In the lower triangular attention matrix, each row represents the attention score of a query token to all key tokens.

Step I: Attention Triage — More Focusing on Clinically Relevant Regions. As illustrated in Fig. 1, medical MLLM’s attention maps are often noisy—while they do attend to relevant areas, they also include a substantial focus on irrelevant regions, which diminishes interpretability and precision. To better focus on clinically meaningful regions, we move beyond layer-wise average attention and instead examine visual sensitivity at the head level across all layers. Following the same evaluation in Sec. 2.4, we identify the top K attention heads that most consistently align with visually relevant regions, using our proposed evaluation dataset (Sec. 2.1) and metric (Sec. 2.2). We then aggregate the attention maps from these selected heads with their average. We suppress low-activation regions based on magnitude of attention, as these are likely to represent irrelevant or noisy attention (see Supp. for further details and motivation). *This results in a sparse attention map with high-confidence.* We convert this filtered attention map into a binary mask $\mathcal{M} \in \{0, 1\}^{N^2}$ by simply setting all non-zero entries to 1 and keeping the zeros unchanged.

Step II: Attention Knockout — Suppressing Irrelevant Visual Input. To enhance the visual grounding ability of medical MLLMs, we aim to guide the model’s attention toward clinically relevant regions. Intuitively, improving focus on these regions can suppress distractions from irrelevant areas and yield more interpretable predictions. Similarly, recent advances in attention manipulation (Zhang et al., 2024; Geva et al., 2023; Zhang et al., 2025c) have shown that attending to redundant information potentially detriment to prediction as they distract the model’s focus, they improve model behavior by preventing attention to uninformative tokens.

Inspired by this, we propose to knock out attention connections between question tokens and clinically irrelevant visual tokens. Specifically, we apply the binary mask \mathcal{M} obtained in Step I to the attention weights $\alpha_q^{\ell, h}$, where $\alpha_q^{\ell, h}$ denotes the cross-attention from the q th question token to all visual tokens at layer ℓ and head h . We compute the masked attention as $\hat{\alpha}_q^{\ell, h} = \alpha_q^{\ell, h} \odot \mathcal{M}$, and use $\hat{\alpha}_q^{\ell, h}$ for the subsequent attention computation in model’s forward pass. \odot denotes element-wise multiplication. The masking operation explicitly restricts question tokens from receiving information from irrelevant visual regions at the selected layer. This modification encourages the model to attend selectively to meaningful regions, reducing distraction from irrelevant areas and therefore enhancing models’ visual grounding capability.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

Baselines. We compared two types of open-source models: (1) Medical MLLMs. We evaluated with the latest medical MLLMs, including Med-Flamingo (Moor et al., 2023), RadFM (Wu et al., 2023), LLaVA-Med-7B (Li et al., 2023a), LLaVA-Tri (Xie et al., 2025), MedPLIB (Huang et al., 2025), VILA-M3(Nath et al., 2024), HuatuoGPT-V (Chen et al., 2024a). (2) General MLLMs. We compared with two latest models pretrained on natural scene domain, LLaVA-v1.6-7B (Liu et al., 2024a) and Qwen-VL-Chat (Bai et al., 2023). We include the comparison of larger models in Supp.

Benchmarks. We follow the exact evaluation protocol of Chen et al. (2024a). Specifically, we adopt six benchmarks that are designed for biomedical MLLM evaluation, including VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a), PathVQA (He et al., 2020), PMC-VQA (Zhang et al., 2023b), OmniMedVQA (Hu et al., 2024) (open-access split), and MMMU (Health & Medicine track) Yue et al. (2024). All evaluations were conducted in a zero-shot setting using question templates provided by LLaVA (details in Supp.).

VGRefine. We applied our inference-time method on HuatuoGPT-V (Chen et al., 2024a). All experiments are conducted using the same hyperparameters across benchmarks. Specifically, for Step I, we aggregate the attention maps from the top K heads with the highest alignment to visual relevant regions, as measured by KL divergence on our curated evaluation set built using COCO images. This setup prevents data leakage from medical evaluation benchmarks and demonstrates that our method generalizes from natural images to biomedical domains. Low-activation regions are suppressed based on a percentile threshold p over attention magnitude. We discuss the choice of K and p in Sec. 4.4. For Step II we apply the attention knockout only at layer $\ell = 16$ layer, which, according to our analysis in Fig. 3, demonstrates the most relevancy to visual grounding among all the layers.

4.2 EXPERIMENTAL RESULTS

We follow exactly the evaluation setup of HuatuoGPT-V (Chen et al., 2024a) to ensure consistency across all benchmarks. Since the original papers of HuatuoGPT-V-7B (Chen et al., 2024a) and VILA-M3-8B (Nath et al., 2024) do not report results on certain benchmarks, we re-evaluate both models under the same zero-shot setting. For models with complete benchmark results available in their original publications—such as MedPLIB (Huang et al., 2025) and LLaVA-Tri (Xie et al., 2025)—we directly report the official numbers. For all other baselines, we use the results provided in the HuatuoGPT-V paper, as it adopts the same evaluation protocol.

It is important to note that some models include benchmark training sets during pretraining, making zero-shot evaluation unfair. Specifically, VILA-M3 (Nath et al., 2024) and MedPLIB (Huang et al., 2025) incorporate training data from VQA-RAD, SLAKE, PathVQA, and PMC-VQA, and thus are excluded from our zero-shot comparison on those datasets.

Medical VQA Benchmarks. Table 1 shows results on four standard medical VQA datasets. Here, we report the closed-ended question accuracy and a weighted average (Avg.) that scales by the number of samples in each benchmark (Additional results are in Supp.). Our inference-time method VGRefine applied to HuatuoGPT-V consistently improves its performance. We observe notable gains of +5.6% on VQA-RAD and +11.3% on PathVQA, with the overall average increasing from 65.3% to 68.4%, outperforming all baselines. These results underscore that enhanced visual grounding contributes to better performance on medical VQA tasks. On the MMMU benchmark (Table 2), VGRefine achieves the highest accuracy across all five sub-domains, increasing the overall average from 45.8% to 47.2%. This demonstrates that enhancing visual grounding at inference time also improves complex multimodal medical reasoning. As shown in Table 3, VGRefine improves performance across all eight imaging modalities, with significant boosts on CT (+7.5%), MRI (+6.4%), and X-Ray (+8.1%) on the OmniMedVQA benchmark. These results confirm the generalizability of our visual grounding refinement across diverse medical imaging tasks. Overall, our method raises average accuracy from 71.3% to 74.4%, demonstrating its robustness and generalizability across a wide range of modalities.

Table 1: Accuracy on medical VQA datasets. To align with the evaluation protocol with HuatuoGPT-V (Chen et al., 2024a), we specifically used the closed-ended subset for evaluation. Evaluation on other subsets in Supp.

Table 2: Accuracy on MMMU Health & Medicine benchmark. **BMS**, **CM**, **DLM**, **P**, **PH** denote Basic Medical Science, Clinical Medicine, Diagnostics & Laboratory Medicine, Pharmacy, Public Health respectively.

Model	VQA-RAD	SLAKE	PathVQA	PMC-VQA	Avg.
Qwen-VL-Chat	47.0	56.0	55.1	36.6	48.9
LLaVA-v1.6-7B	52.6	57.9	47.9	35.5	48.5
Med-Flamingo	45.4	43.5	54.7	23.3	41.7
RadFM	50.6	34.6	38.7	25.9	37.5
LLaVA-Med-7B	51.4	48.6	56.8	24.7	45.4
LLaVA-Tri	59.8	43.4	59.0		
HuatuoGPT-V-7B	67.4	76.5	60.7	53.9	65.3
VGRefine (Ours)	71.2	76.9	67.6	56.2	68.4

Model	BMS	CM	DLM	P	PH	Avg.
Qwen-VL-Chat	36.5	31.7	32.7	28.4	34.6	32.7
LLaVA-v1.6-7B	40.5	36.9	32.1	32.3	26.9	33.1
Med-Flamingo	29.6	28.1	24.8	25.3	31.2	28.3
RadFM	27.5	26.8	25.8	24.7	29.1	27.0
LLaVA-Med-7B	39.9	39.1	34.6	37.4	34.0	36.9
LLaVA-Tri	37.1	-	27.8	-	-	-
VILA-M3-8B	39.3	39.7	34.0	32.1	28.7	34.0
HuatuoGPT-V-7B	58.9	57.2	43.8	37.2	38.3	45.8
VGRefine (Ours)	59.5	59.1	45.7	38.6	39.3	47.2

432 Table 3: The accuracy of OmniMedVQA within different modalities. Specifically, **FP** denotes
 433 *Fundus Photography*, **MRI** denotes *Magnetic Resonance Imaging*, **OCT** denotes *Optical Coherence*
 434 *Tomography*, **Der** denotes *Dermoscopy*, **Mic** denotes *Microscopy Images*, **US** denotes *Ultrasound*.
 435

436	Model	CT	FP	MRI	OCT	Der	Mic	X-Ray	US	Avg.
437	Qwen-VL-Chat (Bai et al., 2023)	51.5	45.4	43.9	54.0	55.4	49.5	63.1	33.5	49.5
438	LLaVA-v1.6-7B (Liu et al., 2024a)	40.1	39.5	54.8	58.4	54.0	48.8	53.3	47.9	49.6
439	Med-Flamingo (Moor et al., 2023)	34.6	33.3	27.5	26.0	28.3	28.1	30.1	33.2	30.2
440	RadFM (Wu et al., 2023)	33.3	35.0	22.0	31.3	36.3	28.0	31.5	26.1	30.5
441	LLaVA-Med-7B (Li et al., 2023a)	25.3	48.4	35.9	42.1	45.2	44.0	31.7	34.4	35.8
442	VILA-M3-8B (Nath et al., 2024)	60.2	35.7	51.5	56.9	51.5	51.7	65.4	46.1	53.0
443	MedPLIB (Huang et al., 2025)	62.7	65.0	67.0	75.1	51.5	64.4	60.3	38.8	60.6
	HuatuoGPT-V-7B (Chen et al., 2024a)	62.6	80.3	67.7	86.2	71.7	74.2	74.2	79.7	71.3
	VGRefine (Ours)	67.3	82.4	72.0	86.9	71.7	74.9	80.2	79.5	74.4

444 Table 4: Ablation study on the choice of top K heads and p precentile of magnitude-based filtering.

446	K	VQA-RAD	SLAKE	PathVQA	PMC-VQA	Avg.	\parallel	p (%)	VQA-RAD	SLAKE	PathVQA	PMC-VQA	Avg.
447	1	68.62	75.81	64.85	53.65	68.28	\parallel	30	70.78	76.84	67.55	55.70	68.22
448	2	69.78	76.63	63.58	53.90	68.21	\parallel	40	70.70	76.66	67.28	56.00	68.12
449	5	70.09	76.56	66.52	54.30	68.08	\parallel	50	71.24	76.88	67.61	56.20	68.42
450	8	70.70	76.52	66.64	55.60	68.12	\parallel	60	70.70	76.66	67.28	55.65	68.05
	10	70.86	76.81	67.67	56.05	68.34	\parallel	70	70.47	76.66	67.61	55.80	68.17
	15	70.78	76.84	67.43	55.40	68.11	\parallel	80	70.78	76.73	67.55	55.80	68.21
	20	71.24	76.88	67.61	56.20	68.42	\parallel	90	70.55	76.34	68.11	55.50	68.20

451 4.3 HUMAN EVALUATION: VGREFINE IMPROVES TRUSTWORTHINESS

452 We conducted a blinded study with five experienced clinicians using 20 medical VQA cases from
 453 VGMED. Each case presented two attention maps: one from the baseline model and one from the
 454 same model after applying VGRefine. The source of each attention map was not disclosed, and
 455 their order was randomized. Clinicians were asked which map appeared more clinically reasonable
 456 and trustworthy. VGRefine was preferred in 76% of cases, with feedback noting improved focus
 457 and reduced noise. These results suggest that VGRefine enhances clinician trust by producing more
 458 interpretable visual. See human evaluation details in Supp J.1.

461 4.4 ABLATION STUDIES

462 Table 4 presents ablations on the number of top attention heads K and the percentile threshold p
 463 used for magnitude-based filtering. Performance improves consistently as K increases, with the best
 464 average accuracy (68.42%) achieved at $K = 20$, indicating that aggregating more heads helps capture
 465 richer grounding signals. For the percentile p , the model remains stable across values, with optimal
 466 performance also at $p = 50\%$, confirming the effectiveness of moderate filtering in removing noisy
 467 regions without discarding relevant information.

470 5 CONCLUSION

471 In this work, we presented the first systematic analysis of visual grounding in medical MLLMs. Using
 472 our clinically guided VGMED dataset and newly introduced metrics, we showed across 8 SOTA
 473 medical MLLMs frequent failures in grounding predictions in clinically relevant regions. This failure
 474 mode persisted even in recent medical MLLMs and contributed to their underperformance in zero-shot
 475 medical image understanding. To address this, we proposed VGRefine, an inference-time attention
 476 refinement method to improve medical MLLMs’ visual grounding. Across 6 diverse Med-VQA
 477 benchmarks, comprising over 110K VQA samples from 8 imaging modalities, VGRefine consistently
 478 achieves SOTA performance. We remark that improvements using VGRefine are achieved without
 479 retraining or introducing any new medical knowledge. If visual grounding were not a limiting
 480 factor, such consistent gains would not occur. Therefore, VGRefine results further support that
 481 visual grounding deficiency is a general, widespread issue. Overall, our proposed VGMED helps
 482 uncover and confirm inadequate visual grounding, while VGRefine experiments demonstrate its
 483 broad prevalence and generalization across different modalities and clinical scenarios. Our findings
 484 underscored the importance of grounding-aware analysis to achieve more reliable and generalizable
 485 medical MLLMs. **Additional experiments, limitation and ethical consideration are included in**
Supp.

486 REFERENCES
487

488 W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy. Dataset of breast ultrasound images. *Data in*
489 *Brief*, 28:104863, February 2020. doi: 10.1016/j.dib.2019.104863. Retrieved: September 25, 2025.

490 Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider,
491 Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, et al.
492 The medical segmentation decathlon. *Nature communications*, 13(1):4128, 2022.

493 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
494 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
495 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

496 Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol Colak,
497 Keyvan Farahani, Jayashree Kalpathy-Cramer, Felipe C. Kitamura, Sarthak Pati, Luciano M.
498 Prevedello, Jeffrey D. Rudie, Chiharu Sako, Russell T. Shinohara, Timothy Bergquist, Rong Chai,
499 James Eddy, Julia Elliott, Walter Reade, Thomas Schaffter, Thomas Yu, Jiaxin Zheng, Ahmed W.
500 Moawad, Luiz Otavio Coelho, Olivia McDonnell, Elka Miller, Fanny E. Moron, Mark C. Oswood,
501 Robert Y. Shih, Loizos Siakallis, Yulia Bronstein, James R. Mason, Anthony F. Miller, Gagandeep
502 Choudhary, Aanchal Agarwal, Cristina H. Besada, Jamal J. Derakhshan, Mariana C. Diogo,
503 Daniel D. Do-Dai, Luciano Farage, John L. Go, Mohiuddin Hadi, Virginia B. Hill, Michael Iv,
504 David Joyner, Christie Lincoln, Eyal Lotan, Asako Miyakoshi, Mariana Sanchez-Montano, Jaya
505 Nath, Xuan V. Nguyen, Manal Nicolas-Jilwan, Johanna Ortiz Jimenez, Kerem Ozturk, Bojan D.
506 Petrovic, Chintan Shah, Lubdha M. Shah, Manas Sharma, Onur Simsek, Achint K. Singh, Salil
507 Soman, Volodymyr Statsevych, Brent D. Weinberg, Robert J. Young, Ichiro Ikuta, Amit K. Agarwal,
508 Sword C. Cambron, Richard Silbergliit, Alexandru Dusoi, Alida A. Postma, Laurent Letourneau-
509 Guillon, Gloria J. Guzman Perez-Carrillo, Atin Saha, Neetu Soni, Greg Zaharchuk, Vahe M.
510 Zohrabian, Yingming Chen, Milos M. Cekic, Akm Rahman, Juan E. Small, Varun Sethi, Christos
511 Davatzikos, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, John B.
512 Freymann, Justin S. Kirby, Benedikt Wiestler, Priscila Crivellaro, Rivka R. Colen, Aikaterini
513 Kotrotsou, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Hassan Fathallah-Shaykh, Roland
514 Wiest, Andras Jakab, Marc-Andre Weber, Abhishek Mahajan, Bjoern Menze, Adam E. Flanders,
515 and Spyridon Bakas. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation
516 and radiogenomic classification, 2021. URL <https://arxiv.org/abs/2107.02314>.

517 Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycski, Justin S Kirby,
518 John B Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the cancer genome atlas
519 glioma mri collections with expert segmentation labels and radiomic features. *Scientific data*, 4(1):
520 1–13, 2017.

521 Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Rodríguez, and
522 Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.
523 saliency maps from physicians. *Computerized medical imaging and graphics*, 43:99–111, 2015.

524 Aditya Bharatha, Masanori Hirose, Nobuhiko Hata, Simon K. Warfield, Matthieu Ferrant, Kelly H.
525 Zou, Eduardo Suarez-Santana, Juan Ruiz-Alzola, Anthony D’Amico, Robert A. Cormack, Ron
526 Kikinis, Ferenc A. Jolesz, and Clare M. C. Tempany. Evaluation of three-dimensional finite
527 element-based deformable registration of pre- and intraoperative prostate imaging. *Medical
528 Physics*, 28(12):2551–2560, 2001. doi: <https://doi.org/10.1118/1.1414009>. URL <https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1414009>.

529 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xi-
530 dong Wang, Zhenyang Cai, Ke Ji, Xiang Wan, and Benyou Wang. Towards injecting medical
531 visual knowledge into multimodal LLMs at scale. In Yaser Al-Onaizan, Mohit Bansal, and
532 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natu-
533 ral Language Processing*, pp. 7346–7370, Miami, Florida, USA, November 2024a. Associa-
534 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.418. URL <https://aclanthology.org/2024.emnlp-main.418/>.

535 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
536 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
537 language models. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,

540 and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*, pp. 19–35, Cham, 2025a. Springer Nature
 541 Switzerland. ISBN 978-3-031-73004-7.

542

543 Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
 544 Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for vlm? an attention
 545 mechanism perspective on focus areas. In *Forty-second International Conference on Machine
 546 Learning*, 2025b.

547 Zhe Chen, Jiamnan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 548 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 549 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
 550 Vision and Pattern Recognition*, pp. 24185–24198, 2024b.

551 Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, Stephen Dusza, David
 552 Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, Harald Kittler, and
 553 Allan Halpern. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by
 554 the international skin imaging collaboration (isic), 2019. URL <https://arxiv.org/abs/1902.03368>.

555

556 Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W.
 557 Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, and Allan Halpern. Skin
 558 lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on
 559 biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In *2018
 560 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)*, pp. 168–172, 2018a. doi:
 561 10.1109/ISBI.2018.8363547.

562

563 Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W.
 564 Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, and Allan Halpern. Skin
 565 lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on
 566 biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In *2018
 567 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)*, pp. 168–172, 2018b. doi:
 568 10.1109/ISBI.2018.8363547.

569 Hejie Cui, Lingjun Mao, Xin Liang, Jieyu Zhang, Hui Ren, Quanzheng Li, Xiang Li, and Carl
 570 Yang. Biomedical visual instruction tuning with clinician preference alignment. 6 2024. doi:
 571 10.48550/arXiv.2406.13173. URL <https://arxiv.org/abs/2406.13173v3>.

572 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
 573 Pascale Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models
 574 with instruction tuning. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 575 2023. URL <https://openreview.net/forum?id=vvoWPYqZJA>.

576

577 OpenAI et al. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

578 Huihui Fang, Fei Li, Huazhu Fu, Xu Sun, Xingxing Cao, Fengbin Lin, Jaemin Son, Sunho Kim,
 579 Gwenole Quellec, Sarah Matta, Sharath M. Shankaranarayana, Yi-Ting Chen, Chuen-Heng Wang,
 580 Nisarg A. Shah, Chia-Yen Lee, Chih-Chung Hsu, Hai Xie, Baiying Lei, Ujjwal Baid, Shubham
 581 Innani, Kang Dang, Wenxiu Shi, Ravi Kamble, Nitin Singhal, Ching-Wei Wang, Shih-Chang
 582 Lo, José Ignacio Orlando, Hrvoje Bogunović, Xiulan Zhang, and Yanwu Xu. Adam challenge:
 583 Detecting age-related macular degeneration from fundus images. *IEEE Transactions on Medical
 584 Imaging*, 41(10):2828–2847, 2022. doi: 10.1109/TMI.2022.3172773.

585 Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturba-
 586 tion. In *Proceedings of the IEEE international conference on computer vision*, pp. 3429–3437,
 587 2017.

588 Huazhu Fu, Fei Li, José Ignacio Orlando, Hrvoje Bogunovic, Xu Sun, Jingan Liao, Yanwu Xu,
 589 Shaochong Zhang, and Xiulan Zhang. ichallenge-palm: Pathologic myopia challenge, 07 2019.
 590 URL <https://cir.nii.ac.jp/crid/1880020692683121792>.

591

592 Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation via
 593 text-based decomposition. In *The Twelfth International Conference on Learning Representations*,
 2024.

594 Sergios Gatidis, Tobias Hepp, Marcel Früh, Christian La Fougère, Konstantin Nikolaou, Christina
 595 Pfannenberg, Bernhard Schölkopf, Thomas Küstner, Clemens Cyran, and Daniel Rubin. A whole-
 596 body fdg-pet/ct dataset with manually annotated tumor lesions. *Scientific Data*, 9(1):601, 2022.
 597

598 Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
 599 associations in auto-regressive language models. In *Proceedings of the 2023 Conference on*
 600 *Empirical Methods in Natural Language Processing*, pp. 12216–12235, 2023.

601 Michal Golovanevsky, William Rudman, Vedant Palit, Ritambhara Singh, and Carsten Eickhoff.
 602 What do vlms notice? a mechanistic interpretability pipeline for noise-free text-image corruption
 603 and evaluation. *CoRR*, abs/2406.16320, 2024. URL <https://doi.org/10.48550/arXiv.2406.16320>.

605 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 606 medical visual question answering, 2020. URL <https://arxiv.org/abs/2003.10286>.
 607

608 Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore, Heather
 609 Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, Joshua Dean, Michael
 610 Tradewell, Aneri Shah, Resha Tejpaul, Zachary Edgerton, Matthew Peterson, Shaneabbas Raza,
 611 Subodh Regmi, Nikolaos Papanikolopoulos, and Christopher Weight. The kits19 challenge data:
 612 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes,
 613 2020. URL <https://arxiv.org/abs/1904.00445>.

614 Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
 615 methods in deep neural networks. *Advances in neural information processing systems*, 32, 2019.

616 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa:
 617 A new large-scale comprehensive evaluation benchmark for medical lvm. In *Proceedings of the*
 618 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22170–22183,
 619 June 2024.

621 Rui Huang, Zijie Chen, Yuanyuan Chen, Hongsheng Li, et al. StructSeg2019 Grand Challenge
 622 Dataset. <https://structseg2019.grand-challenge.org/Dataset/>, 2019. Re-
 623 trieved: September 25, 2025.

624 Xiaoshuang Huang, Lingdong Shen, Jia Liu, Fangxin Shang, Hongxiang Li, Haifeng Huang, and
 625 Yehui Yang. Towards a multimodal large language model with pixel-level insight for biomedicine.
 626 *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(4):3779–3787, Apr. 2025. doi: 10.
 627 1609/aaai.v39i4.32394. URL <https://ojs.aaai.org/index.php/AAAI/article/view/32394>.

629 J Igelsias, M Styner, T Langerak, B Landman, Z Xu, and A Klein. Miccai multi-atlas labeling beyond
 630 the cranial vault—workshop and challenge. In *Proc. MICCAI Multi-Atlas Labeling Beyond Cranial*
 631 *Vault—Workshop Challenge*, 2015.

633 Aya Abdelsalam Ismail, Hector Corrada Bravo, and Soheil Feizi. Improving deep learning inter-
 634 pretability by saliency guided training. *Advances in Neural Information Processing Systems*, 34:
 635 26726–26739, 2021.

636 Daniel P Jeong, Saurabh Garg, Zachary Chase Lipton, and Michael Oberst. Medical adaptation
 637 of large language and vision-language models: Are we making progress? In Yaser Al-Onaizan,
 638 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical*
 639 *Methods in Natural Language Processing*, pp. 12143–12170, Miami, Florida, USA, November
 640 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.677. URL
 641 <https://aclanthology.org/2024.emnlp-main.677>.

642 Debesh Jha, Pia H Smedsrød, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
 643 and Håvard D Johansen. Kvasir-seg: A segmented polyp dataset. In *International conference on*
 644 *multimedia modeling*, pp. 451–462. Springer, 2019.

645 Debesh Jha, Nikhil Kumar Tomar, Vanshali Sharma, Quoc-Huy Trinh, Koushik Biswas, Hongyi
 646 Pan, Ritika K. Jha, Gorkem Durak, Alexander Hann, Jonas Varkey, Hang Viet Dao, Long Van
 647 Dao, Binh Phuc Nguyen, Nikolaos Papachrysos, Brandon Rieders, Peter Thelin Schmidt, Enrik

648 Geissler, Tyler Berzin, Pál Halvorsen, Michael A. Riegler, Thomas de Lange, and Ulas Bagci.
 649 Polypdb: A curated multi-center dataset for development of ai algorithms in colonoscopy, 2025.
 650 URL <https://arxiv.org/abs/2409.00045>.

651
 652 Yuanfeng Ji, Haotian Bai, Chongjian GE, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
 653 Zhanng, Wanling Ma, Xiang Wan, and Ping Luo. Amos: A large-scale abdominal multi-
 654 organ benchmark for versatile medical image segmentation. In S. Koyejo, S. Mohamed,
 655 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information
 656 Processing Systems*, volume 35, pp. 36722–36732. Curran Associates, Inc., 2022.
 657 URL https://proceedings.neurips.cc/paper_files/paper/2022/file/ee604e1bedbd069d9fc9328b7b9584be-Paper-Datasets_and_Benchmarks.pdf.

658
 659 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle
 660 layers of large vision-language models: Interpreting, detecting and mitigating object hallucinations
 661 via attention lens. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 662 Recognition (CVPR)*, pp. 25004–25014, June 2025.

663
 664 Omri Kaduri, Shai Bagon, and Tali Dekel. What’s in the image? a deep-dive into the vision of vision
 665 language models, 2024. URL <https://arxiv.org/abs/2411.17491>.

666
 667 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. Your large vision-language model
 668 only needs a few attention heads for visual grounding, 2025. URL <https://arxiv.org/abs/2503.06287>.

669
 670 A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza,
 671 Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov,
 672 Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan,
 673 Debdoot Sheet, Gurbandur Dovletov, Oliver Speck, Andreas Nürnberg, Klaus H. Maier-
 674 Hein, Gözde Bozdağı Akar, Gözde Ünal, Oğuz Dicle, and M. Alper Selver. Chaos challenge -
 675 combined (ct-mr) healthy abdominal organ segmentation. *Medical Image Analysis*, 69:101950,
 676 2021. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2020.101950>. URL <https://www.sciencedirect.com/science/article/pii/S1361841520303145>.

677
 678 Jason J. Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 679 generated visual questions and answers about radiology images. *Scientific Data*, 5:1–10, 11 2018.

680
 681 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang,
 682 Tristan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large
 683 language-and-vision assistant for biomedicine in one day. In A. Oh, T. Naumann,
 684 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information
 685 Processing Systems*, volume 36, pp. 28541–28564. Curran Associates, Inc., 2023a.
 686 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcf8ecdacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf.

687
 688 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
 689 pre-training with frozen image encoders and large language models. In Andreas Krause, Emma
 690 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 691 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings
 692 of Machine Learning Research*, pp. 19730–19742. PMLR, 23–29 Jul 2023b. URL
 693 <https://proceedings.mlr.press/v202/li23q.html>.

694
 695 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 696 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 697 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp.
 698 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

699
 700 Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerkstra, Bram van Ginneken,
 701 Graham Vincent, Gwenaël Guillard, Neil Birbeck, Jindang Zhang, Robin Strand, Filip Malmberg,
 Yangming Ou, Christos Davatzikos, Matthias Kirschner, Florian Jung, Jing Yuan, Wu Qiu, Qinquan
 Gao, Philip “Eddie” Edwards, Bianca Maan, Ferdinand van der Heijden, Soumya Ghose, Jhimli

702 Mitra, Jason Dowling, Dean Barratt, Henkjan Huisman, and Anant Madabhushi. Evaluation of
 703 prostate segmentation algorithms for mri: The promise12 challenge. *Medical Image Analysis*, 18(2):
 704 359–373, 2014. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2013.12.002>. URL <https://www.sciencedirect.com/science/article/pii/S1361841513001734>.
 705

706 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 707 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 708 International Symposium on Biomedical Imaging (ISBI)*, pp. 1650–1654, 2021a. doi: 10.1109/
 709 ISBI48211.2021.9434010.
 710

711 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 712 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=w0H2xGH1kw>.
 713

714 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 715 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 716 (CVPR)*, pp. 26296–26306, June 2024a.
 717

718 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 719 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 720

721 Pengbo Liu, Hu Han, Yuanqi Du, Heqin Zhu, Yinhao Li, Feng Gu, Honghu Xiao, Jun Li, Chunpeng
 722 Zhao, Li Xiao, et al. Deep learning to segment pelvic bones: large-scale ct datasets and baseline
 723 models. *International Journal of Computer Assisted Radiology and Surgery*, 16(5):749–756,
 724 2021b.
 725

726 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 727 for alleviating hallucination in l1lms. In *European Conference on Computer Vision*, pp. 125–140.
 728 Springer, 2024c.
 729

730 Wentao Liu, Qianjun Pan, Yi Zhang, Zhuo Liu, Ji Wu, Jie Zhou, Aimin Zhou, Qin Chen, Bo Jiang,
 731 and Liang He. Cmm-math: A chinese multimodal math dataset to evaluate and enhance the
 732 mathematics reasoning of large multimodal models. *CoRR*, abs/2409.02834, 2024d. URL <https://doi.org/10.48550/arXiv.2409.02834>.
 733

734

735 Jiaying Lu, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Baochen Sun, Carl Yang, and
 736 Jie Yang. Evaluation and enhancement of semantic grounding in large vision-language models.
 737 In *AAAI-24 Workshop on Responsible Language Models*, 2024. URL <https://arxiv.org/abs/2309.04041>.
 738

739

740 Xiangde Luo, Wenjun Liao, Jianghong Xiao, Jieneng Chen, Tao Song, Xiaofan Zhang, Kang Li,
 741 Dimitris N. Metaxas, Guotai Wang, and Shaoting Zhang. Word: A large scale dataset, bench-
 742 mark and clinical applicable study for abdominal organ segmentation from ct image. *Medi-
 743 cal Image Analysis*, 82:102642, 2022. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2022.102642>. URL <https://www.sciencedirect.com/science/article/pii/S1361841522002705>.
 745

746 Holger Lyre. Understanding ai: Semantic grounding in large language models, 2024. URL <https://arxiv.org/abs/2402.10992>.
 747

748

749 Jun Ma, Yao Zhang, Song Gu, Xingle An, Zhihe Wang, Cheng Ge, Congcong Wang, Fan Zhang,
 750 Yu Wang, Yinan Xu, Shuiping Gou, Franz Thaler, Christian Payer, Darko Štern, Edward G.A.
 751 Henderson, Dónal M. McSweeney, Andrew Green, Price Jackson, Lachlan McIntosh, Quoc-
 752 Cuong Nguyen, Abdul Qayyum, Pierre-Henri Conze, Ziyan Huang, Ziqi Zhou, Deng-Ping Fan,
 753 Huan Xiong, Guoqiang Dong, Qiongjie Zhu, Jian He, and Xiaoping Yang. Fast and low-gpu-
 754 memory abdomen ct organ segmentation: The flare challenge. *Medical Image Analysis*, 82:102616,
 755 2022a. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2022.102616>. URL <https://www.sciencedirect.com/science/article/pii/S1361841522002444>.
 756

756 Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An, Congcong Wang,
 757 Qiyuan Wang, Xin Liu, Shucheng Cao, Qi Zhang, Shangqing Liu, Yunpeng Wang, Yuhui Li, Jian
 758 He, and Xiaoping Yang. Abdomenct-1k: Is abdominal organ segmentation a solved problem?
 759 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(10):6695–6714, 2022b. doi:
 760 10.1109/TPAMI.2021.3100536.

761

762 Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Shihao Mae, Adamo Young, Cheng Zhu, Xin Yang,
 763 Kangkang Meng, Ziyan Huang, et al. Unleashing the strengths of unlabelled data in deep learning-
 764 assisted pan-cancer abdominal organ quantification: the flare22 challenge. *The Lancet Digital
 765 Health*, 6(11):e815–e826, 2024.

766

767 Oskar Maier, Bjoern H. Menze, Janina von der Gablentz, Levin Häni, Mattias P. Heinrich, Matthias
 768 Liebrand, Stefan Winzeck, Abdul Basit, Paul Bentley, Liang Chen, Daan Christiaens, Francis
 769 Dutil, Karl Egger, Chaolu Feng, Ben Glocker, Michael Götz, Tom Haeck, Hanna-Leena Halme,
 770 Mohammad Havaei, Khan M. Iftekharuddin, Pierre-Marc Jodoin, Konstantinos Kamnitsas, Elias
 771 Kellner, Antti Korvenoja, Hugo Larochelle, Christian Ledig, Jia-Hong Lee, Frederik Maes, Qaiser
 772 Mahmood, Klaus H. Maier-Hein, Richard McKinley, John Muschelli, Chris Pal, Linmin Pei,
 773 Janaki Raman Rangarajan, Syed M.S. Reza, David Robben, Daniel Rueckert, Eero Salli, Paul
 774 Suetens, Ching-Wei Wang, Matthias Wilms, Jan S. Kirschke, Ulrike M. Krämer, Thomas F.
 775 Münte, Peter Schramm, Roland Wiest, Heinz Handels, and Mauricio Reyes. Isles 2015 - a
 776 public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri.
 777 *Medical Image Analysis*, 35:250–269, 2017. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2016.07.009>. URL <https://www.sciencedirect.com/science/article/pii/S1361841516301268>.

778

779 Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin
 780 Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi, Elizabeth
 781 Gerstner, Marc-André Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia,
 782 D. Louis Collins, Nicolas Cordier, Jason J. Corso, Antonio Criminisi, Tilak Das, Hervé Delingette,
 783 Çağatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana Festa, Florence
 784 Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo, Andac Hamamci, Khan M.
 785 Iftekharuddin, Raj Jena, Nigel M. John, Ender Konukoglu, Danial Lashkari, José António Mariz,
 786 Raphael Meier, Sérgio Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M. S.
 787 Reza, Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo-Chang Shin, Jamie Shotton,
 788 Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Székely, Thomas J. Taylor, Owen M.
 789 Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang
 790 Zhao, Binsheng Zhao, Darko Zikic, Marcel Prastawa, Mauricio Reyes, and Koen Van Leemput. The
 791 multimodal brain tumor image segmentation benchmark (brats). *IEEE Transactions on Medical
 792 Imaging*, 34(10):1993–2024, 2015. doi: 10.1109/TMI.2014.2377694.

793

794 Anna Montoya, Hasnin, kaggle446, shirzad, Will Cukierski, and yffud. Ul-
 795 trasound Nerve Segmentation. <https://kaggle.com/competitions/ultrasound-nerve-segmentation>, 2016. Retrieved: September 25, 2025.

796

797 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 798 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical
 799 few-shot learner. In Stefan Hegselmann, Antonio Parziale, Divya Shanmugam, Shengpu Tang,
 800 Mercy Nyamewaa Asiedu, Serina Chang, Tom Hartvigsen, and Harvineet Singh (eds.), *Proceedings
 801 of the 3rd Machine Learning for Health Symposium*, volume 225 of *Proceedings of Machine
 802 Learning Research*, pp. 353–367. PMLR, 10 Dec 2023. URL <https://proceedings.mlr.press/v225/moor23a.html>.

803

804 Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhijian Liu,
 805 Hongxu Yin, Yee Man Law, Yucheng Tang, et al. Vila-m3: Enhancing vision-language models
 806 with medical expert knowledge. *arXiv preprint arXiv:2411.12915*, 2024.

807

808 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 809 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

810 Danielle F Pace, Adrian V Dalca, Tal Geva, Andrew J Powell, Mehdi H Moghari, and Polina Golland.
 811 Interactive whole-heart segmentation in congenital heart disease. In *International Conference on*
 812 *Medical Image Computing and Computer-Assisted Intervention*, pp. 80–88. Springer, 2015.
 813

814 Vedant Palit, Rohan Pandey, Aryaman Arora, and Paul Pu Liang. Towards vision-language mechanis-
 815 tic interpretability: A causal tracing tool for blip. In *Proceedings of the IEEE/CVF International*
 816 *Conference on Computer Vision (ICCV) Workshops*, pp. 2856–2861, October 2023.

817 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 818 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 819 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 820 2017.

821 Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira S.N. Berens, Cas van den
 822 Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, Rob-
 823 ert van der Gugten, Pheng Ann Heng, Bart Jansen, Michael M.J. de Kaste, Valentin Kotov,
 824 Jack Yu-Hung Lin, Jeroen T.M.C. Manders, Alexander Sónora-Mengana, Juan Carlos García-
 825 Naranjo, Evgenia Papavasileiou, Mathias Prokop, Marco Saletta, Cornelia M Schaefer-Prokop,
 826 Ernst T. Scholten, Luuk Scholten, Miranda M. Snoeren, Ernesto Lopez Torres, Jef Vandemeule-
 827 broucke, Nicole Walasek, Guido C.A. Zuidhof, Bram van Ginneken, and Colin Jacobs. Vali-
 828 dation, comparison, and combination of algorithms for automatic detection of pulmonary nod-
 829 ules in computed tomography images: The luna16 challenge. *Medical Image Analysis*, 42:
 830 1–13, 2017. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2017.06.015>. URL <https://www.sciencedirect.com/science/article/pii/S1361841517301020>.

831 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
 832 Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
 833 models. *CoRR*, abs/2406.17294, 2024. URL <https://doi.org/10.48550/arXiv.2406.17294>.

834 Aliyun Tianchi. Chest image dataset for pneumothorax segmentation. <https://tianchi.aliyun.com/dataset/83075>, 2020. Accessed: September 25, 2025.

835 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 836 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. *arXiv preprint*
 837 *arXiv:1905.09418*, 2019.

838 Lehan Wang, Haonan Wang, Honglong Yang, Jiaji Mao, Zehong Yang, Jun Shen, and Xiaomeng
 839 Li. Interpretable bilingual multimodal large language model for diverse biomedical tasks. In
 840 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=YuHQTo6G9S>.

841 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 842 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 843 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 844 perception of the world at any resolution, 2024. URL <https://arxiv.org/abs/2409.12191>.

845 Jakob Wasserthal, Hanns-Christian Breit, Manfred T. Meyer, Maurice Pradella, Daniel Hinck,
 846 Alexander W. Sauter, Tobias Heye, Daniel T. Boll, Joshy Cyriac, Shan Yang, Michael Bach,
 847 and Martin Segneroth. Totalsegmentator: Robust segmentation of 104 anatomic structures in ct
 848 images. *Radiology: Artificial Intelligence*, 5(5):e230024, 2023. doi: 10.1148/ryai.230024. URL
 849 <https://doi.org/10.1148/ryai.230024>.

850 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Towards generalist foundation
 851 model for radiology. *CoRR*, abs/2308.02463, 2023. URL <https://doi.org/10.48550/arXiv.2308.02463>.

852 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. NExT-GPT: Any-to-any
 853 multimodal LLM. In *Proceedings of the International Conference on Machine Learning*, pp.
 854 53366–53397, 2024.

864 Linhui Xiao, Xiaoshan Yang, Xiangyuan Lan, Yaowei Wang, and Changsheng Xu. Towards visual
 865 grounding: A survey, 2024. URL <https://arxiv.org/abs/2412.20206>.

866

867 Yunfei Xie, Ce Zhou, Lang Gao, Juncheng Wu, Xianhang Li, Hong-Yu Zhou, Sheng Liu, Lei Xing,
 868 James Zou, Cihang Xie, and Yuyin Zhou. Medtrinity-25m: A large-scale multimodal dataset with
 869 multigranular annotations for medicine. In *The Thirteenth International Conference on Learning
 870 Representations*, 2025. URL <https://openreview.net/forum?id=IwgmgidYPS>.

871

872 Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Mitigating hallucination in large vision-language
 873 models via modular attribution and intervention. In *Adaptive Foundation Models: Evolving AI for
 874 Personalized and Efficient Learning*, 2025.

875

876 Qinan Yu, Jack Merullo, and Ellie Pavlick. Characterizing mechanisms for factual recall in language
 877 models. In *The Conference on Empirical Methods in Natural Language Processing*, 2023.

878

879 Zeping Yu and Sophia Ananiadou. Understanding multimodal llms: the mechanistic interpretability
 880 of llava in visual question answering, 2025. URL <https://arxiv.org/abs/2411.10950>.

881

882 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 883 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 884 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 885 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert
 886 agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 887 (CVPR)*, pp. 9556–9567, June 2024.

888

889 Anna Zawacki, Carol Wu, George Shih, Julia Elliott, Mikhail Fomitchev, Mohannad Hussain, Paras
 890 Lakhani, Phil Culliton, and Shunxing Bao. Siim-acr pneumothorax segmentation. <https://kaggle.com/competitions/siim-acr-pneumothorax-segmentation>, 2019.
 891 Kaggle.

892

893 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to look:
 894 Training-free perception of small visual details with multimodal llms. In *The Thirteenth Interna-
 895 tional Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=DgaY5mDdmT>
https://github.com/saccharomycetes/mllms_know.

896

897 Minghui Zhang, Yangqian Wu, Hanxiao Zhang, Yulei Qin, Hao Zheng, Wen Tang, Corey Arnold,
 898 Chenhao Pei, Pengxin Yu, Yang Nan, Guang Yang, Simon Walsh, Dominic C. Marshall, Matthieu
 899 Komorowski, Puyang Wang, Dazhou Guo, Dakai Jin, Ya'nan Wu, Shuiqing Zhao, Runsheng
 900 Chang, Boyu Zhang, Xing Lu, Abdul Qayyum, Moona Mazher, Qi Su, Yonghuang Wu, Ying'ao
 901 Liu, Yufei Zhu, Jiancheng Yang, Ashkan Pakzad, Bojidar Rangelov, Raul San Jose Estepar,
 902 Carlos Cano Espinosa, Jiayuan Sun, Guang-Zhong Yang, and Yun Gu. Multi-site, multi-domain
 903 airway tree modeling. *Medical Image Analysis*, 90:102957, 2023a. ISSN 1361-8415. doi:
<https://doi.org/10.1016/j.media.2023.102957>. URL <https://www.sciencedirect.com/science/article/pii/S1361841523002177>.

904

905 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Preston,
 906 Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Andrea Tupini, Yu Wang, Matt Mazzola,
 907 Swadheen Shukla, Lars Liden, Jianfeng Gao, Angela Crabtree, Brian Piening, Carlo Bifulco,
 908 Matthew P. Lungren, Tristan Naumann, Sheng Wang, and Hoifung Poon. A multimodal biomedical
 909 foundation model trained from fifteen million image–text pairs. *NEJM AI*, 2(1):A1oa2400640,
 910 2025b. doi: 10.1056/A1oa2400640. URL <https://ai.nejm.org/doi/full/10.1056/A1oa2400640>.

911

912 Xiaofeng Zhang, Yihao Quan, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang,
 913 Chaochen Gu, Hao Tang, and Jieping Ye. From redundancy to relevance: Enhancing explainability
 914 in multimodal large language models. *Annual Conference of the Nations of the Americas Chapter
 915 of the Association for Computational Linguistics*, 2025c.

916

917 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi Xie.
 918 Pmc-vqa: Visual instruction tuning for medical visual question answering. *CoRR*, abs/2305.10415,
 919 2023b. URL <https://doi.org/10.48550/arXiv.2305.10415>.

918 Zhi Zhang, Srishti Yadav, Fengze Han, and Ekaterina Shutova. Cross-modal information flow in
919 multimodal large language models. *arXiv preprint arXiv:2411.18620*, 2024.
920

921 Zhongchen Zhao, Huai Chen, and Lisheng Wang. A coarse-to-fine framework for
922 kidney and kidney tumor segmentation challenge. In *Kidney and Kidney Tumor Segmentation:
923 MICCAI 2021 Challenge, KiTS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France,
924 September 27, 2021, Proceedings*, pp. 53–58, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-
925 3-030-98384-0. doi: 10.1007/978-3-030-98385-7_8. URL https://doi.org/10.1007/978-3-030-98385-7_8.
926

927 Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin Zeng. Math-puma: Progressive upward
928 multimodal alignment to enhance mathematical reasoning. *Proceedings of the AAAI Conference
929 on Artificial Intelligence*, 39(24):26183–26191, Apr. 2025. doi: 10.1609/aaai.v39i24.34815. URL
930 <https://ojs.aaai.org/index.php/AAAI/article/view/34815>.
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

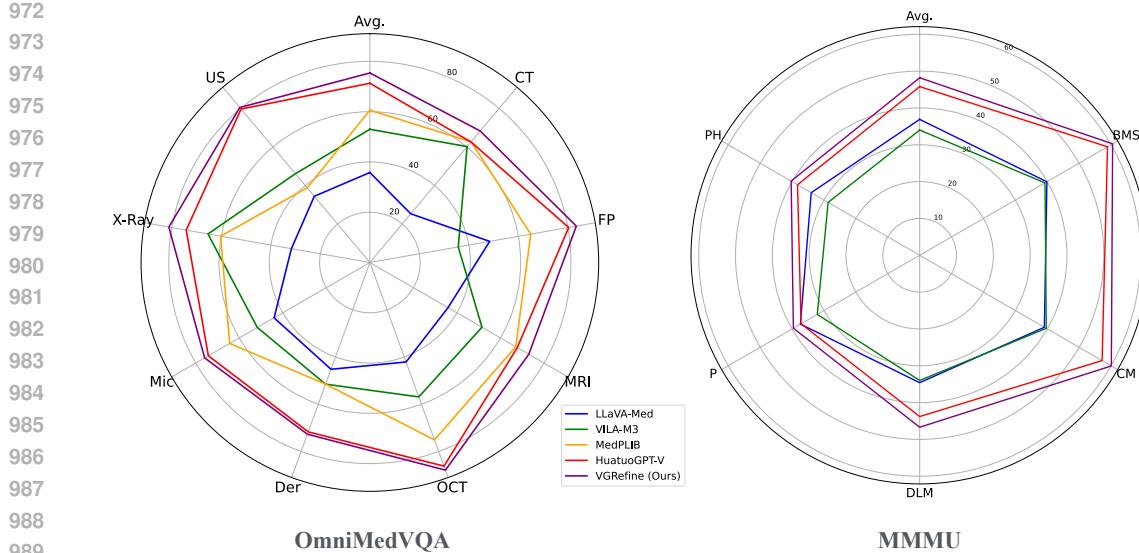


Figure A.1: Our proposed inference-time method VGRefine achieve state-of-the-art performance on OmniMedVQA (Hu et al., 2024) and MMMU (Health & Medicine track) (Yue et al., 2024). Many existing medical MLLMs remain to underperform on medical VQA tasks in the zero-shot setting as shown in this figure, but there is a lack of systematic study to understand the reasons. Compared to existing medical MLLMs, our proposed VGRefine demonstrates consistently stronger zero-shot performance across all modalities and sub-domains, highlighting its effectiveness in mitigating the issue of inadequate visual grounding as revealed in our study.

APPENDIX OVERVIEW

In this supplementary material, we provide additional experiments, ablation studies, and reproducibility details to support our findings. These sections are not included in the main paper due to space constraints.

Please find the following anonymous link for code and other resources: https://anonymous.4open.science/r/Medical_MLLMs_Fail-8120/.

CONTENTS

A More Discussion on Related Work	21
B VGMED Scale Comparison with Related Attention Analysis Works	22
C Detailed Information of Datasets Used in VGMED	22
D More details of VGRefine	24
E Experiments on Open-ended Medical VQA	25
F Comparison with Other Attention-based Methods	25
G More Experiments on Larger Models	25
H HuatuoGPT-Vision-Bio with BiomedCLIP Vision Encoder	27

1026	I Prompts for VGMED and QA evaluation	28
1027	I.1 Prompts for constructing VGMED	28
1028	I.2 Prompts for Zero-shot Evaluation	28
1029		
1030		
1031	J Additional Qualitative Evaluation	38
1032	J.1 Human Evaluation	38
1033	J.2 Additional Qualitative Analysis on Medical MLLM’s Attention Maps	39
1034		
1035		
1036	K Limitations	48
1037		
1038	L Experimental Setting/Details and Computing Resources	48
1039		
1040		
1041	M Broader Impacts and Ethical Considerations	48
1042		
1043	N Safeguards	48
1044		
1045	O Licenses	48
1046		
1047	P Use of Large Language Models (LLMs)	49
1048		
1049		
1050	Q New Figures During Rebuttal	50
1051		
1052	R Clinical Validation During VGMED Curation	56
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

1080
1081

A MORE DISCUSSION ON RELATED WORK

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Medical Multimodal Large Language Models (MLLMs). Recent advances in medical multimodal large language models (MLLMs) have focused on leveraging image-text pairs from sources like PubMed central (Zhang et al., 2023b; Moor et al., 2023; Chen et al., 2024a; Li et al., 2023a) and medical textbooks (Moor et al., 2023) to enable generative VQA and medical reasoning. Models such as LLaVA-Med (Li et al., 2023a), MedViNT (Zhang et al., 2023b), Med-Flamingo (Moor et al., 2023), HuatuoGPT-Vision (Chen et al., 2024a), and BioMed-VITAL (Cui et al., 2024) introduce GPT-4 (et al., 2024) generated instruction-following datasets and expert-validated responses to improve medical VQA performance. More recent studies have begun to explore different ideas to improve region awareness in biomedical MLLMs: explicit fine-tuning with additional supervision, such as annotated bounding boxes (Wang et al., 2025; Xie et al., 2025) or segmentation masks (Jeong et al., 2024), along with architectural modifications to support spatial reasoning. For instance, models like MedRegA (Wang et al., 2025) and LLaVA-Tri (Xie et al., 2025) rely on additional datasets. Other recent models focus on scale or domain expertise. VILA-M3 (Nath et al., 2024), for instance, incorporates domain-specific expert models during training, arguing that generic Vision-Language Models (VLMs) lack the fine-grained expertise needed for healthcare. Given their dependence on task-specific fine-tuning (Nath et al., 2024; Xie et al., 2025) and sub-optimal generalization in zero-shot settings (Li et al., 2023a), *it remains unclear whether current medical MLLMs ground their predictions in meaningful visual evidence within medical images.* To our knowledge, no prior work has conducted a comprehensive analysis of visual grounding of medical MLLMs.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

Visual Grounding Analysis in General Domain MLLMs. Some recent studies have investigated the internal attention mechanisms of general-domain MLLMs, revealing their potential for implicit visual grounding. Zhang et al. (2025a) demonstrated that MLLMs can identify the correct spatial regions relevant to a given query, even without explicit grounding supervision. They introduce a training-free intervention method (e.g., cropping guided by attention or gradient maps) that enhances performance on general-domain VQA tasks. Broader research into MLLM interpretability has studied how visual information is fused into language representations. Techniques such as causal intervention and cross-modal attention visualization have been employed to offer insights into how vision and language tokens interact through attention mechanisms (Golovanevsky et al., 2024; Zhang et al., 2024; Yu & Ananiadou, 2025; Palit et al., 2023). These studies suggest that middle layers are especially crucial for integrating object-level visual cues with textual context, and that cross-modal attention patterns can encode meaningful spatial alignment signals. However, all of these insights have been drawn from general-domain visual data, such as natural scene images and standard VQA benchmarks. *In contrast, to our knowledge, no prior work has performed visual grounding analysis of medical MLLMs.*

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **B VGMED SCALE COMPARISON WITH RELATED ATTENTION ANALYSIS**
1135 **WORKS**
1136

1137 VGMED comprises approximately 28K image-bbox-question triplets, including 14K samples for
1138 localization questions and another 14K for attribute questions. The scale of VGMED is larger than
1139 or comparable to the number of samples used in the closely related RGB-domain visual grounding
1140 (Zhang et al., 2025a; Kang et al., 2025; Kaduri et al., 2024) / attention analysis work (Yang et al.,
1141 2025; Jiang et al., 2025; Chen et al., 2025a) (see Table B.1). Unlike RGB datasets that can be
1142 constructed by non-experts, our medical datasets require clinical expertise.
1143

Table B.1: Number of samples used in related works.

Related works	No. of Samples	Data Source
MLLMs Know (Zhang et al., 2025a)	4,370	Text-VQA
Your LVLM (Kang et al., 2025)	1,000	RefCOCO
What's in the Image (Kaduri et al., 2024)	81	COCO
Hallucination Attribution (Yang et al., 2025)	1,500	COCO
Devils in LVLM (Jiang et al., 2025)	2,000	COCO
FastV (Chen et al., 2025a)	1,000	4 VL Tasks

1153
1154 **C DETAILED INFORMATION OF DATASETS USED IN VGMED**
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192

Table C.2: Detailed information about the 44 datasets incorporated into VGMED. In the "Dataset" column, names such as "StructSeg2019 (Task 1)" represent specific task-based subsets. In the "Anatomical Structures" column, "Others" signifies datasets lacking detailed anatomical data from their original sources.

1193
1194
1195
1196
1197
1198
1199
1200

Dataset	Modality	Anatomical Structures
AMOS2022 (Ji et al., 2022)	CT, MR	Abdomen, Thorax, Pelvic
ATM2022 (Zhang et al., 2023a)	CT	Thorax
AbdomenomenCT-1K (Ma et al., 2022b)	CT	Abdomen
BTCV (Igelsias et al., 2015)	CT	Thorax, Abdomen, Pelvic
BraTS2013 (Menze et al., 2015)	MR	Head & neck
BraTS2015 (Menze et al., 2015)	MR	Head & neck
BraTS2018 (Menze et al., 2015)	MR	Head & neck
BraTS2019 (Menze et al., 2015)	MR	Head & neck
BraTS2020 (Menze et al., 2015)	MR	Head & neck
BraTS2021 (Bakas et al., 2017; Baid et al., 2021)	MR	Head & neck
CHAOS (Task 4) (Kavur et al., 2021)	MR	Abdomen
CTPelvic1k (Liu et al., 2021b)	CT	Pelvic
CVC-ClinicDB (Bernal et al., 2015)	Endoscopy	Others
Chest_Image_Pneum (Tianchi, 2020)	X-ray	Thorax
FLARE21 (Ma et al., 2022a)	CT	Abdomen
FLARE22 (Ma et al., 2024)	CT	Abdomen, Thorax
HVSMR2016 (Pace et al., 2015)	MR	Thorax
ADAM (Task 2) (Fang et al., 2022)	Fundus	Head & neck
PALM19 (Fu et al., 2019)	Fundus	Head & neck
ISLES (Maier et al., 2017)	MR	Head & neck
KiTS2019 (Heller et al., 2020)	CT	Abdomen
KiTS2021 (Zhao et al., 2021)	CT	Abdomen
LUNA16 (Setio et al., 2017)	CT	Thorax
MSD-BrainTumor (Antonelli et al., 2022)	MR	Head & neck
MSD-Liver (Antonelli et al., 2022)	CT	Abdomen
MSD-Pancreas (Antonelli et al., 2022)	CT	Abdomen
MSD-Spleen (Antonelli et al., 2022)	CT	Abdomen
CT-ORG (Antonelli et al., 2022)	CT	Head & neck, Thorax, Abdomen
PROMISE09 (Bharatha et al., 2001)	MR	Pelvic
PROMISE12 (Litjens et al., 2014)	MR	Pelvic
SIIM-ACR Pneumothorax (Zawacki et al., 2019)	X-ray	Thorax
StructSeg2019 (Task 1) (Huang et al., 2019)	CT	Head & neck
StructSeg2019 (Task 2) (Huang et al., 2019)	CT	Thorax, Abdomen
TotalSegmentator (Wasserthal et al., 2023)	CT	Head & neck, Thorax, Abdomen, Pelvic
Ultrasound Nerve Segmentation (Montoya et al., 2016)	Ultrasound	Others
WORD (Luo et al., 2022)	CT	Thorax, Abdomen
autoPET (Gatidis et al., 2022)	PET	Pelvic
BUSI (Al-Dhabayani et al., 2020)	Ultrasound	Thorax
Kvasir-SEG (Jha et al., 2019)	Endoscopy	Others
ISIC18 (Task 1) (Codella et al., 2019)	Dermoscopy	Skin
ISIC17 (Task 1) (Codella et al., 2018b)	Dermoscopy	Skin
ISIC16 (Task 1) (Codella et al., 2018a)	Dermoscopy	Skin
SLAKE (Liu et al., 2021a)	CT, MR, X-ray	Head & neck, Abdomen, Thorax
PolypDB (Jha et al., 2025)	Endoscopy	Others

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

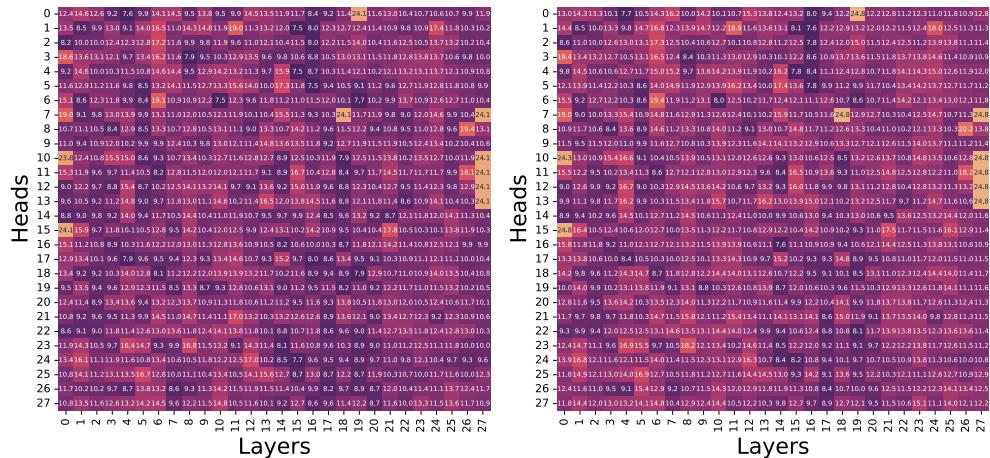
1242
1243
1244

D MORE DETAILS OF VGREFINE

1245

Natural Scene

1246



1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Figure D.1: We conduct an experiment to analyze the alignment between attention distributions from different attention heads and layers and the ground truth annotations in the images. This follows the evaluation setup described in Section 2.3 of the main paper. The medical MLLM evaluated is HuatuoGPT-V-7B. Each cell in the above figures reflects the degree of alignment, measured using our proposed KL Divergence metric (lower is better). *This analysis helps identify the specific heads and layers that are most relevant to visual grounding.* COCO is used for natural scene image analysis, and our dataset VGMED is used for medical image analysis. Interestingly, we find that the attention heads most relevant to visual grounding in natural scene images are often also the most relevant for medical images. However, despite this overlap, the overall visual grounding performance on medical images remains lower than on natural scenes, consistent with the findings presented in Figure 3 (main paper). Based on this analysis, we identify the top K attention heads with the strongest alignment (i.e., lowest KL divergence) and aggregate their attention distributions to compute a refined attention map. *Notably, we select the top K heads using randomly sampled natural scene images from COCO dataset, to avoid data leakage from medical evaluation benchmarks.* This setup also demonstrates that our method generalizes effectively from natural images to the biomedical domain.

In this section, we provide more details of our proposed inference-time method VGRefine (introduced in Sec. 3 of the main paper). Particularly, we discuss how we identify top K attention heads most relevant to visual grounding and leverage their attention distributions in Step I of VGRefine. Fig. D.1 depict the analysis.

We explore attention distributions from different attention heads across all layers, as prior work suggests that individual attention heads in transformers specialize in capturing distinct types of information Voita et al. (2019); Olsson et al. (2022); Gandelsman et al. (2024); Yu et al. (2023); Yang et al. (2025). This motivates us to examine attention at finer granularity to obtain the attention that focusing more on clinically relevant regions.

See details in Fig. D.1. Following the same evaluation setup of Sec. 2.3 of main paper, we assess relevancy to visual grounding of each attention head in HuatuoGPT-V by measuring the alignment between their attention distributions and ground-truth annotations. We perform this analysis using both natural scene images (from MS COCO) and medical images (from our VGMED). The alignment is measured by our proposed KL Divergence (\downarrow) as metric.

As shown in Fig. D.1, the visual relevancy patterns are consistent across domains: heads that are relevant to visual grounding in natural scenes also show relative relevancy in medical images, despite exhibiting inadequate visual grounding on medical images compared to natural images (as discussed in Sec. 2.4). Based on this analysis, we select the top K heads with the highest visual grounding relevancy (lowest KL) on natural images and average their attention maps to obtain a refined attention map. This map is used in Step II to guide the model’s improved focus on clinically meaningful areas.

1296

E EXPERIMENTS ON OPEN-ENDED MEDICAL VQA

1298 We present additional experimental results on the open-ended questions from the Medical VQA
 1299 benchmarks. Specifically, we evaluate on VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a),
 1300 and PathVQA (He et al., 2020), which include open-ended formats. As shown in Table E.3, our
 1301 inference-time method consistently achieve better performance across all datasets, demonstrating its
 1302 effectiveness in enhancing open-ended medical VQA.

1303 Table E.3: Performance comparison on full medical VQA datasets for open-ended medical VQA.
 1304 We evaluate all models under the zero-shot setting. These results underscore that enhanced visual
 1305 grounding with our inference-time method VGRefine contributes to better performance on medical
 1306 VQA tasks. It is important to note that VILA-M3 (Nath et al., 2024), MedPLIB (Huang et al., 2025)
 1307 and LLaVA-Tri (Xie et al., 2025) incorporate training data from VQA-RAD, SLAKE, and PathVQA,
 1308 and thus making zero-shot evaluation unfair, and are excluded from our zero-shot comparison.

Model	VQA-RAD				SLAKE				PathVQA			
	Metric	BLEU-1	BERT	OpenRecall	Avg.	BLEU-1	BERT	OpenRecall	Avg.	BLEU-1	BERT	OpenRecall
Qwen-VL-Chat	28.6	63.4	27.0	39.7	28.9	52.0	33.6	38.2	18.7	45.1	9.9	24.6
LLaVA-v1.6-7B	22.1	58.0	21.9	34.0	30.8	52.7	36.4	40.0	22.8	47.7	11.2	27.2
Med-Flamingo	27.4	61.9	12.7	34.0	11.8	40.2	21.1	24.4	24.3	50.4	2.4	25.7
RadFM	30.5	64.1	41.6	45.4	38.6	61.0	44.2	47.9	24.8	51.4	10.1	29.8
LLaVA-Med-7B	21.6	40.5	28.2	30.1	37.0	58.4	39.2	44.9	28.5	60.1	12.3	33.6
HuatuoGPT-V-7B	49.7	75.0	50.7	58.5	55.0	78.9	55.6	63.2	34.2	65.8	36.5	45.5
VGRefine-7B (Ours)	51.2	76.3	52.3	59.9	56.5	80.0	56.7	64.4	36.1	68.1	36.5	46.9

1316

F COMPARISON WITH OTHER ATTENTION-BASED METHODS

1317 We conducted an additional experiment comparing VGRefine with three very recent attention-based
 1318 methods for medical MLLMs. Specifically, PAI (Liu et al., 2024c) and AdaptVis (Chen et al., 2025b)
 1319 aim to refine/manipulate attention maps over visual tokens, while ViCrop (Zhang et al., 2025a) uses
 1320 attention maps to enhance visual perception.

1321 For a fair comparison, we implemented all methods on HuatuoGPT-V-7B, following their official code
 1322 and hyperparameter settings. The experimental results, shown in Tab. F.4, indicate that VGRefine
 1323 consistently outperforms all other methods.

1324 Table F.4: Accuracy on closed-ended medical VQA datasets.

Model	VQA-RAD	SLAKE	PathVQA	PMC-VQA	Avg.
HuatuoGPT-V-7B (Baseline)	67.4	76.5	60.7	53.9	65.3
PAI(Liu et al., 2024c)	43.7	24.48	20.8	52.8	33.3
AdaptVis(Chen et al., 2025b)	68.6	75.1	67.6	52.9	66.7
ViCrop (Zhang et al., 2025a)	68.9	70.9	66.7	54.6	65.5
VGRefine (Ours)	71.2	76.9	67.6	56.2	68.4

1336

G MORE EXPERIMENTS ON LARGER MODELS

1337 In this section, we provide more experimental results on larger models (with parameters $> 10B$).
 1338 We show comparison on all six benchmarks that are designed for biomedical MLLM evaluation,
 1339 including VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a), PathVQA (He et al., 2020),
 1340 PMC-VQA (Zhang et al., 2023b), OmniMedVQA (Hu et al., 2024) (open-access split), and MMMU
 1341 (Health & Medicine track) (Yue et al., 2024). All evaluations were conducted in a zero-shot setting
 1342 using question templates provided by LLaVA (see Sec. I).

1343 *All experiments are conducted using the same hyperparameters across benchmarks.* Specifically, for
 1344 Step I, we aggregate the attention maps from the top $K = 20$ heads with the highest alignment to
 1345 visual relevant regions, as measured by KL divergence on our curated evaluation set built using COCO
 1346 images. This setup prevents data leakage from medical evaluation benchmarks and demonstrates
 1347 that our method generalizes from natural images to biomedical domains. Low-activation regions

1350
 1351 are suppressed based on a percentile threshold $p = 50\%$ over attention magnitude. For Step II we
 1352 apply the attention knockout only at $\ell = 34, 35, 36$ layer, which, according to our analysis in Fig. 3
 1353 demonstrates the most relevancy to visual grounding among all the layers. We applied our inference-
 1354 time method VGRefine-34B on HuatuoGPT-V-34B (Chen et al., 2024a). The hyperparameters K and
 1355 p are kept consistent with the VGRefine-7B setting. In Step II, we apply attention knockout to more
 1356 layers, as the 34B model has twice as many layers as the 7B variant and requires deeper intervention
 1357 to achieve significant improvements.

1358 Results in Tab. G.5 demonstrate that our proposed method consistently achieves good performance
 1359 across all 6 benchmarks, demonstrating its effectiveness in enhancing all types of medical VQA.

1360 Table G.5: Experiment results of larger models (more than 10B parameters). We evaluate all models
 1361 under the zero-shot setting. Our inference-time method VGRefine outperforms other state-of-the-art
 1362 medical MLLMs in most cases. These results underscore that enhanced visual grounding contributes
 1363 to better performance on medical VQA tasks. It is important to note that VILA-M3 (Nath et al., 2024),
 1364 MedRegA (Wang et al., 2025) incorporate training data from VQA-RAD (Lau et al., 2018), SLAKE
 1365 (Liu et al., 2021a), PathVQA (He et al., 2020), and PMC-VQA (Zhang et al., 2023b), thus making
 1366 zero-shot evaluation unfair, and are excluded from our zero-shot comparison of these benchmarks.

Benchmarks	Subset	Metric	LLaVA-v1.6-34B	VILA-M3-13B	MedRegA-34B	HuatuoGPT-V-34B	VGRefine-34B (Ours)
VQA-RAD	-	CloseAcc	58.6	-	-	68.1	72.9
		BLEU-1	44.5	-	-	50.5	52.6
		BERT	69.2	-	-	74.8	74.8
		OpenRecall	43.6	-	-	51.7	52.8
SLAKE	-	CloseAcc	67.3	-	-	76.9	79.1
		BLEU-1	48.6	-	-	56.3	57.2
		BERT	51.8	-	-	77.6	79.5
		OpenRecall	54.2	-	-	57.5	58.5
PathVQA	-	CloseAcc	59.1	-	-	63.5	69.7
		BLEU-1	28.1	-	-	36.6	37.6
		BERT	57.7	-	-	65.6	65.9
		OpenRecall	29.3	-	-	36.9	37.1
PathVQA	-	CloseAcc	44.4	-	-	58.2	58.7
Avg. on Med-VQAs	-	CloseAcc	57.4	-	-	67.0	70.7
MMMU	BMS	CloseAcc	56.4	36.8	54.3	64.3	66.0
		CM	52.8	38.8	53.5	56.5	58.2
		DLM	42.6	29.0	37.7	45.1	45.4
		P	41.6	29.3	38.4	43.7	44.0
		PH	38.4	32.2	40.7	43.8	44.8
		Avg.	45.6	33.3	44.7	50.1	51.3
OmniMedVQA	CT	CloseAcc	50.6	56.9	62.5	69.7	71.7
		FP	63.4	50.1	80.4	84.6	84.4
		MRI	60.9	52.9	72.7	69.7	73.9
		OCT	68.4	41.5	86.2	87.8	87.6
		Der	65.7	45.1	79.9	70.2	70.9
		Mic	62.8	50.6	71.3	71.1	71.4
		X-Ray	74.7	62.5	78.7	83.8	84.7
		US	44.5	47.1	49.4	81.7	83.1
		Avg.	61.4	52.3	70.3	74.4	76.6

1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404 H HUATUOGPT-VISION-BIO WITH BIOMEDCLIP VISION ENCODER
14051406 **Model Setup.** To evaluate the effect of domain-specific visual encoders, we modified the original
1407 HuatuoGPT-Vision architecture by replacing its CLIP-based vision encoder with BioMedCLIP Zhang
1408 et al. (2025b), a biomedical foundation model pretrained on 15 million scientific image–text pairs.
1409 All other components of the model (including the Qwen2 language model, the cross-modal connector
1410 module, and the training protocol) remain identical to the original configuration. *This substitution*
1411 *allows us to isolate the impact of specialized medical image representations on visual grounding*
1412 *performance.*1413 **Training Details.** Since the original training code for HuatuoGPT-Vision was not publicly avail-
1414 able, we replicated the training pipeline using the LLaVA-NeXT Liu et al. (2024b) codebase. We
1415 follow a two-stage training protocol on the same pretraining and instruction-tuning datasets used in
1416 HuatuoGPT-Vision, including LLaVA and PubMedVision. In Stage I, we freeze both the BioMed-
1417 CLIP vision encoder and the Qwen2 language model, training only the connector to align visual
1418 and textual representations. In Stage II, we fine-tune both the connector and the language model
1419 while keeping the vision encoder frozen. The model is trained for 1 epoch. BioMedCLIP processes
1420 images at a fixed resolution of 224×224 with a patch size of 16, which differs from the resolution
1421 and tokenization settings used in the original CLIP-based HuatuoGPT-Vision.1422 **Analysis Results.** As shown in main paper Fig. 1 and Fig. 3, *the issue of suboptimal visual grounding*
1423 *on medical images cannot be solved by using BiomedCLIP vision encoder.*1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 **I PROMPTS FOR VGMED AND QA EVALUATION**
14591460 **I.1 PROMPTS FOR CONSTRUCTING VGMED**
14611462 **Localization Question Set**
1463

- 1464 • Is there a {label} in the image?
- 1465 • Can you see a {label} in the image?
- 1466 • Does the image contain a {label}?
- 1467 • Is a {label} present in this image?
- 1468 • Do you see a {label} in the picture?
- 1469 • Is the {label} visible in the image?
- 1470 • Is there any sign of a {label} in the image?
- 1471 • Can a {label} be found in this image?
- 1472 • Does this image show a {label}?
- 1473 • Is a {label} shown in the picture?

1478 Figure I.2: The question from a predefined question set is sampled for generating localization
1479 questions in both the COCO and VGMED datasets. {label} represents the object (in COCO) or
1480 organ/lesion (in VGMED) identified by a bounding box in the corresponding image.
14811482 **I.2 PROMPTS FOR ZERO-SHOT EVALUATION**
14831484 We used the LLaVA prompt template during the evaluation for open, closed-ended, and multiple-
1485 choice questions.
14861487 **Short Answer (e.g., VQA-RAD, SLAKE, PathVQA)**
1488

```

<question>
Answer the question using a single word or phrase.

```

1493 Figure I.12: Prompt for evaluating the open and closed-ended questions in VQA-RAD, SLAKE, and
1494 PathVQA benchmarks.
14951496 **Option-only for multiple-choice (e.g., PMC-VQA, OmniMedVQA, and MMMU)**
1497

```

<question>
A. <option_1>
B. <option_2>
C. <option_3>
D. <option_4>

```

1506 Answer with the option's letter from the given choices
1507 directly.
1508

1509 Figure I.13: Prompt for evaluating the multiple-choice VQA benchmarks.
1510

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Prompt for VGMED Attribute Questions (MRI)

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.
- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

Guidelines for the question:

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

- "Is the lesion hyper or hypointense?"
- "Is the lesion enhancing?"
- "What does the area of necrosis look like?"
- "What pattern of enhancement does the lesion show?"

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

Label: {label}

Figure I.3: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1566

1567

1568

Prompt for VGMED Attribute Questions (CT)

1569

1570

1571

1572

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

1573

1574

1575

1576

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.

1577

1578

1579

1580

- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

1581

1582

1583

1584

1585

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

1586

1587

Guidelines for the question:

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

1605

1606

1607

1608

1609

1610

1611

1612

- "Are there ground glass opacities within the lung?"
- "Is the kidney enlarged?"
- "What is the size of the necrosis?"

1613

1614

1615

1616

1617

1618

1619

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

Label: {label}

Figure I.4: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1620
1621**Prompt for VGMED Attribute Questions (Ultrasound)**1622
1623
1624
1625

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

1626
1627
1628
1629

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.
- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673**Guidelines for the question:**

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

- "Does the thyroid nodule have irregular or microlobulated margins?"
- "Does the thyroid nodule have marked hypoechogenicity?"
- "Does the thyroid nodule have multiple microcalcifications?"
- "Is the breast lesion homogeneous or heterogeneous?"
- "Does the breast lesion appear solid or cystic on ultrasound?"

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

Label: {label}

Figure I.5: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Prompt for VGMED Attribute Questions (X-ray)

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.
- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

Guidelines for the question:

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

- "What is the size of the pneumothorax?"
- "Where is the pneumothorax?"
- "Does the lung field appear more opaque or translucent in the annotated region?"

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

Label: {label}

Figure I.6: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1728

1729

Prompt for VGMED Attribute Questions (Fundus Photography)

1730

1731

1732

1733

1734

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

1735

1736

1737

1738

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.

1739

1740

1741

1742

- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

1743

1744

1745

1746

1747

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

1748

1749

Guidelines for the question:

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

1766

1767

1768

1769

1770

- "Is there any pallor observed in the optic disc?"
- "Does the optic disc appear swollen or elevated?"
- "Is there any evidence of swelling or pallor in the optic disc?"

1771

1772

1773

1774

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

1775

1776

1777

1778

1779

1780

1781

Label: {label}

Figure I.7: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1782

1783

1784

1785 Your task is to generate clinically meaningful questions for
 1786 an evaluation dataset to assess visual grounding capability
 1787 in medical reasoning, without requiring deep semantic
 1788 grounding.

1789

1790

1791

1792

1793

1794

1795

1796

Prompt for VGMED Attribute Questions (Endoscopy)

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.
- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

Guidelines for the question:

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:

- "What is the size of the polyp?"
- "Does the colorectal polyp have a smooth or lobulated surface appearance?"
- "What is the mobility of the polyp?"

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

Label: {label}

Figure I.8: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1836
1837**Prompt for VGMED Attribute Questions (PET)**1838
1839
1840
1841

Your task is to generate clinically meaningful questions for an evaluation dataset to assess visual grounding capability in medical reasoning, without requiring deep semantic grounding.

1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

- Semantic Grounding: Anchors linguistic representations to domain-specific medical knowledge to inform what to look for, ensuring accurate reasoning about diseases or anatomical concepts.
- Visual Grounding: Localizes and interprets specific regions in medical images based on relevant features, enabling spatial alignment of language queries to visual elements for accurate analysis.

We will provide the label of a medical structure (organ, lesion, or tissue) in a {modality} image, derived from a bounding box annotation. Your need to generate three clinically relevant questions about visual attributes of this structure.

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872**Guidelines for the question:**

- Focus on visual grounding, without requiring deep medical semantic grounding.
- Ensure clinical relevance.
- Require attention to the entire annotated bounding box.
- Address only observable visual characteristics (e.g., size, shape, density, enhancement, homogeneity).
- Avoid referencing other body parts or surrounding structures.
- Do not include position, modality, or plane.
- Exclude diagnoses or treatments requiring deep semantic grounding.
- Avoid compound or multi-condition questions.
- Ensure variety across the three questions.

Example questions:1874
1875
1876
1877
1878
1879

- "Does the lesion show increased radiotracer uptake on the PET scan?"
- "Is the lesion hypo- or hyper-metabolic?"
- "What is the Standardized Uptake Value (SUV) of the lesion?"

1880
1881
1882
1883

Now, generate three questions based on the label. Return exactly three questions without any additional text or formatting.

1884
1885

Label: {label}

1886
1887
1888
1889

Figure I.9: For attribute questions in VGMED, we use a specific prompt for each modality. In the prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled by a bounding box in the image.

1890 **Prompt for VGMED Attribute Questions (Dermoscopy)**

1891

1892 Your task is to generate clinically meaningful questions for
 1893 an evaluation dataset to assess visual grounding capability
 1894 in medical reasoning, without requiring deep semantic
 1895 grounding.

1896 • Semantic Grounding: Anchors linguistic representations
 1897 to domain-specific medical knowledge to inform what to
 1898 look for, ensuring accurate reasoning about diseases or
 1899 anatomical concepts.

1900 • Visual Grounding: Localizes and interprets specific
 1901 regions in medical images based on relevant features,
 1902 enabling spatial alignment of language queries to visual
 1903 elements for accurate analysis.

1904 We will provide the label of a medical structure (organ,
 1905 lesion, or tissue) in a {modality} image, derived from
 1906 a bounding box annotation. Your need to generate three
 1907 clinically relevant questions about visual attributes of this
 1908 structure.

1909

1910 **Guidelines for the question:**

1911 • Focus on visual grounding, without requiring deep medical
 1912 semantic grounding.

1913 • Ensure clinical relevance.

1914 • Require attention to the entire annotated bounding box.

1915 • Address only observable visual characteristics (e.g., size,
 1916 shape, density, enhancement, homogeneity).

1917 • Avoid referencing other body parts or surrounding
 1918 structures.

1919 • Do not include position, modality, or plane.

1920 • Exclude diagnoses or treatments requiring deep semantic
 1921 grounding.

1922 • Avoid compound or multi-condition questions.

1923 • Ensure variety across the three questions.

1924

1925

1926 **Example questions:**

1927 • "What is the size of the lesion?"

1928 • "Is the lesion hypo- or hyper pigmented?"

1929 • "Does the lesion have peripheral black dots or clods?"

1930 • "Does the skin lesion have thick lines (reticular or
 1931 branched)?"

1932 • "Does the lesion have Polymorphous vessels?"

1933

1934 Now, generate three questions based on the label. Return
 1935 exactly three questions without any additional text or
 1936 formatting.

1937

1938 **Label:** {label}

1942 Figure I.10: For attribute questions in VGMED, we use a specific prompt for each modality. In the
 1943 prompt, {modality} denotes the modality of the image. {label} denotes the organ or lesion labeled
 by a bounding box in the image.

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

Prompt for COCO Attribute Questions

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Your task is to generate one simple and meaningful question about a visual attribute of an object identified in an image.

We will provide the label of the object, which comes from a bounding box annotation in an image from the COCO dataset.

Guidelines for the question:

- Ensure variety in the questions generated.
- Focus only on the visual characteristics (e.g., color, size, material, etc.) of the given object.
- Do not reference other parts of the image.
- Do not ask questions about the position of the object or the surrounding structure.
- Avoid compound or multi-condition questions.

Now, generate one question based on the following label:

Label: {label}

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure I.11: In order to compare the results between our VGMED datasets and natural scene images, we have also generated the attribute questions for COCO examples. {label} refers to the object label from the image's bounding boxes.

1998
1999

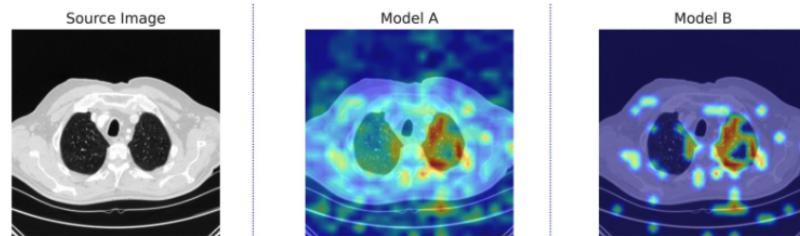
J ADDITIONAL QUALITATIVE EVALUATION

2000
2001

J.1 HUMAN EVALUATION

2002
2003
2004
2005
2006
2007
2008

We conducted a blinded human evaluation involving five experienced clinicians (4 of them have over 10 years of clinical practice). The study was based on a 20-case questionnaire. For each case, clinicians were shown a medical image with a VQA question and two corresponding attention maps: (1) from the baseline model and (2) from the same model after applying VGRefine. The source of each attention map was not disclosed, and their order was randomized. Clinicians were asked: “*Which model’s attention visualization (shown as heatmap) appears more clinically reasonable and trustworthy?*”.

2009
2010
2011
2012
2013
2014
2015
2016

2017

- Which model’s highlighted region appears more clinically reasonable and trustworthy?

Model A

Model B

2018
2019
2020
2021
2022

Please share any comments on what influenced your choice (optional):

appears to have less noise

2024

Figure J.14: Example of a blinded human evaluation case, showing a medical image with a VQA question, baseline attention map, and VGRefine attention map, assessed by an experienced clinician for clinical reasonableness. Clinician feedback highlighted that VGRefine attention maps were less noisy, better localized, and more aligned with expected clinical focus points.

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052
2053

J.2 ADDITIONAL QUALITATIVE ANALYSIS ON MEDICAL MLLM'S ATTENTION MAPS

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

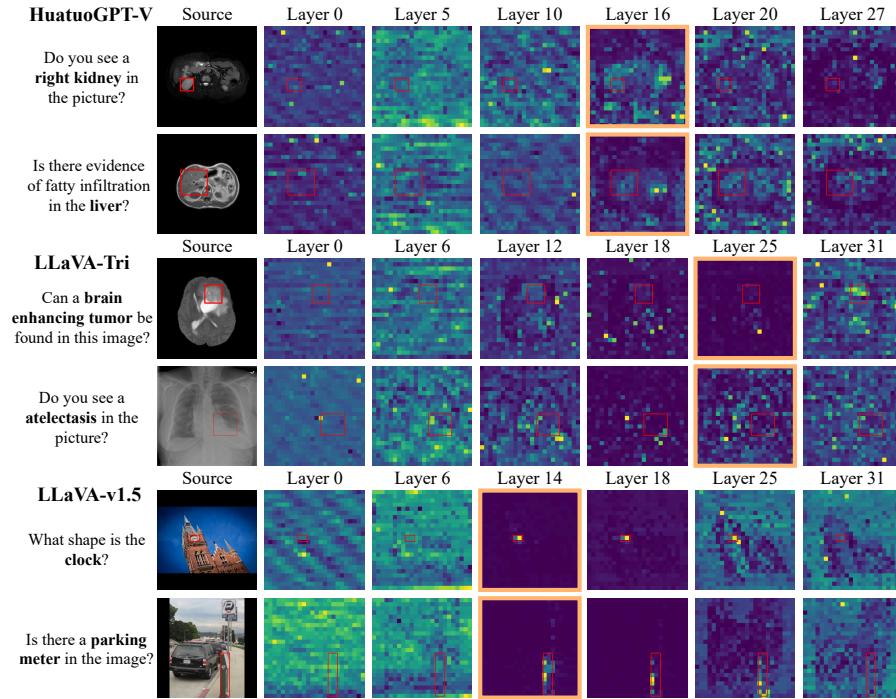


Figure J.15: **Qualitative evaluation.** We visualize attention maps across different layers, including those with the lowest KL divergence (highlighted with an orange boundary), which are indicative of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast, a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with relevant regions, consistent with other study of general-domain MLLMs (Zhang et al., 2025a). This highlights a gap in MLLM's visual grounding performance between the medical and natural image domains. Best viewed in color and with zoom. **Additional results in Supp J.2.**

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

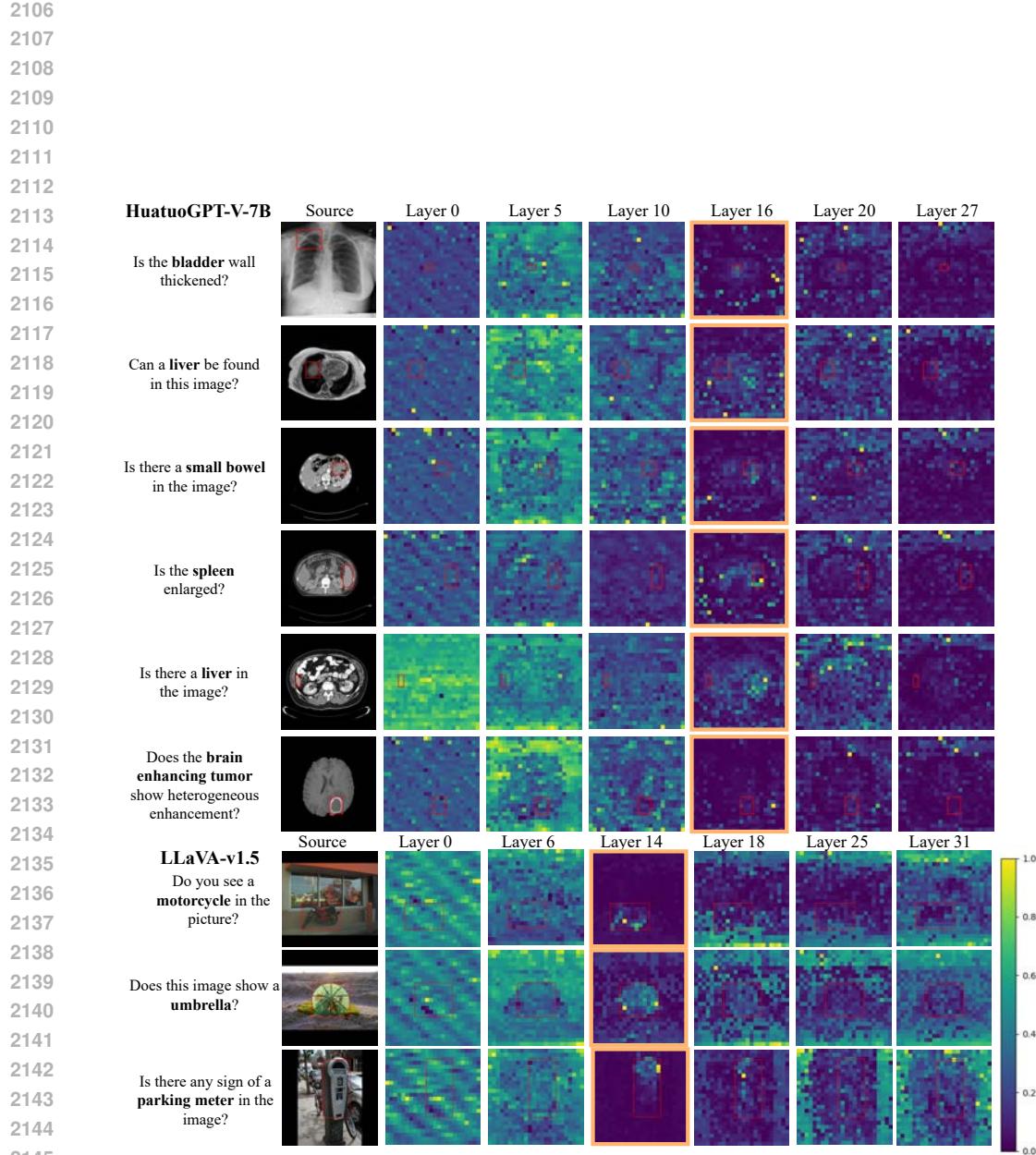
2101

2102

2103

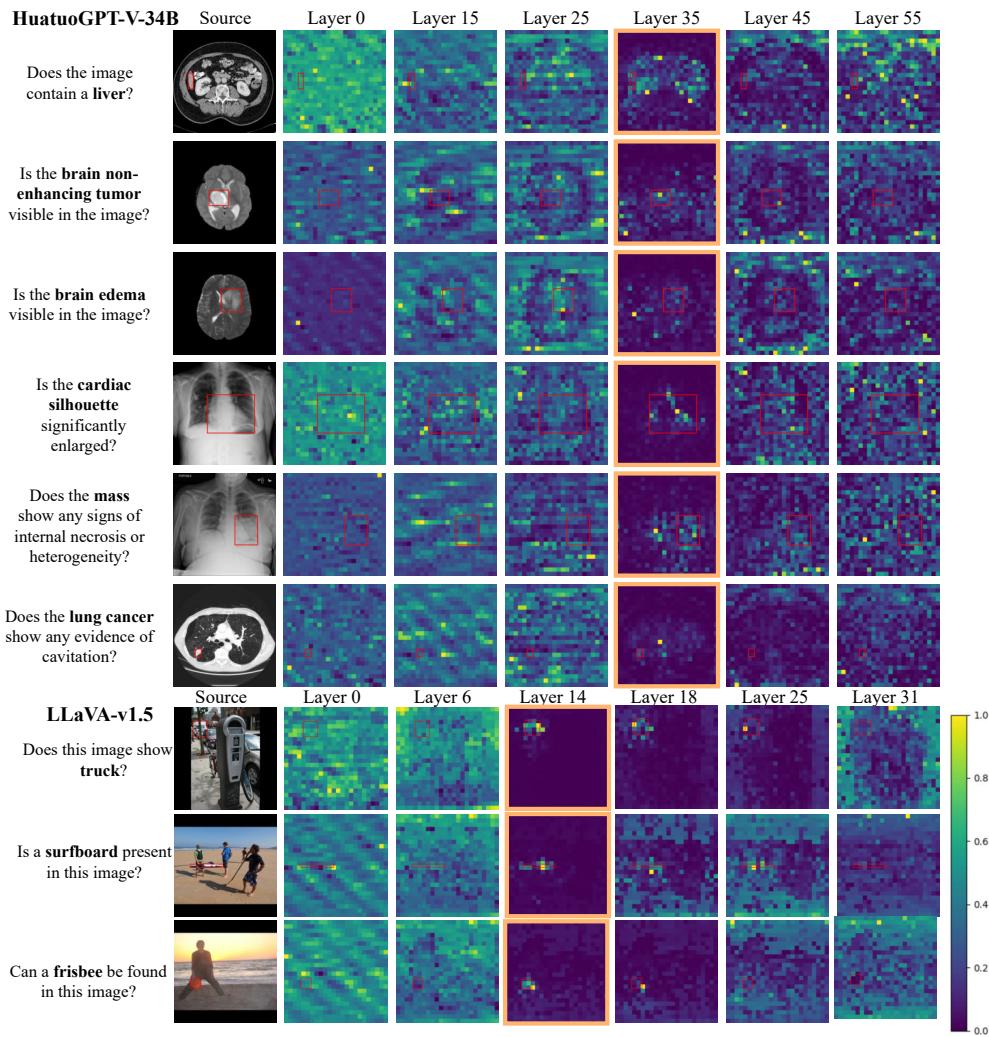
2104

2105



2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

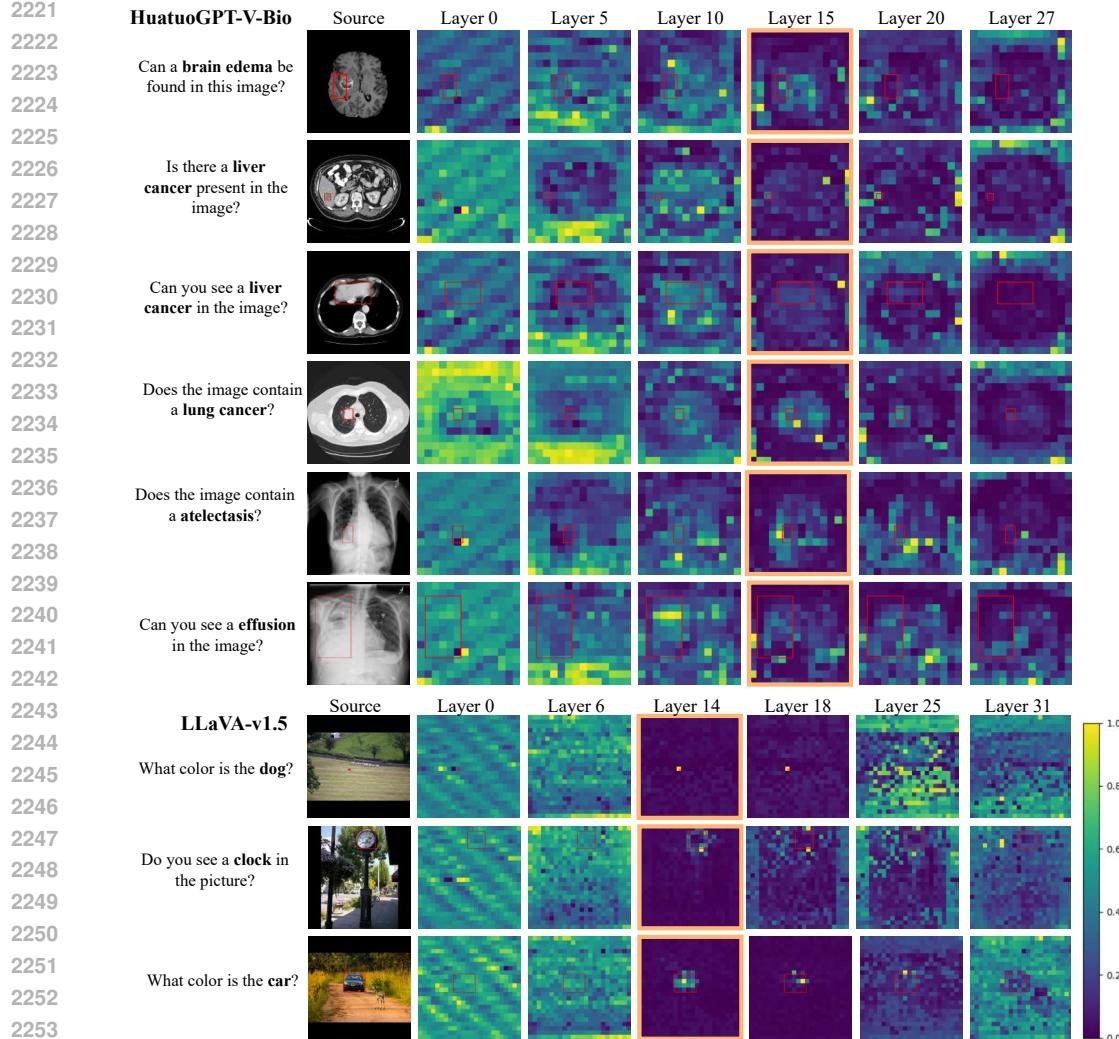
2160
2161
2162
2163
2164
2165
2166



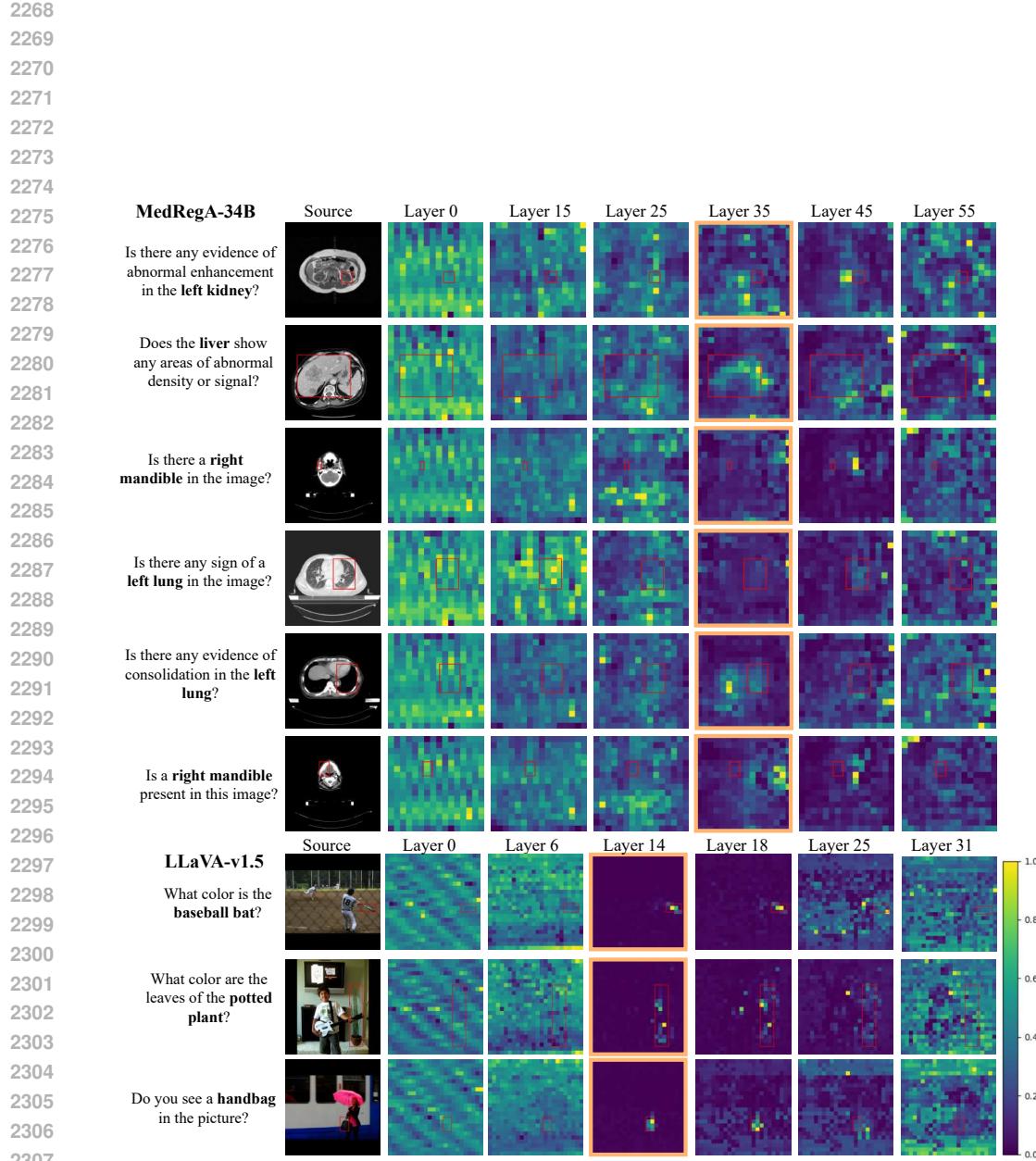
2201 **Figure J.17: Qualitative evaluation.** We visualize attention maps across different layers, including
2202 those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
2203 of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
2204 of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
2205 a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
2206 relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
2207 highlights a gap in MLLM’s visual grounding performance between the medical and natural image
2208 domains.

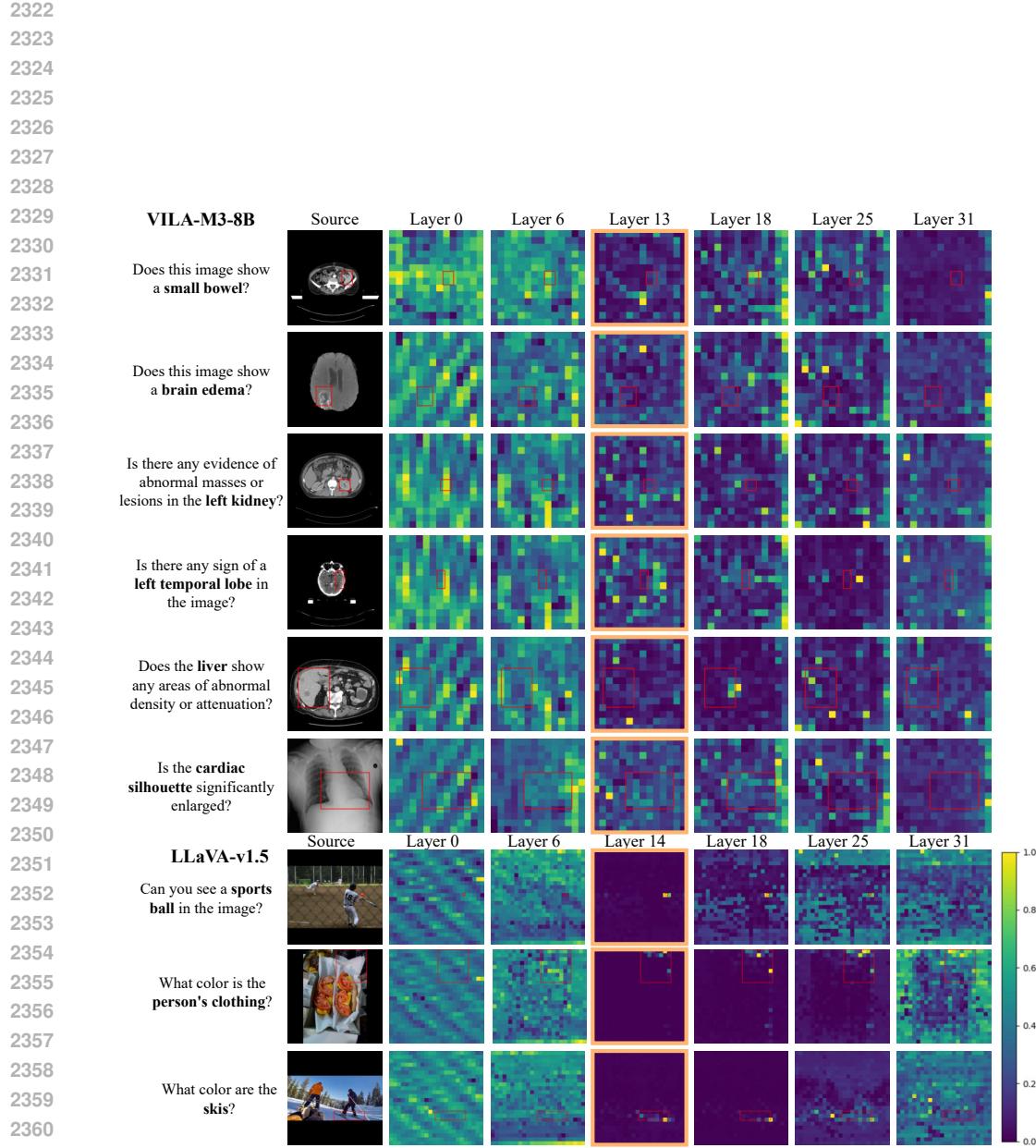
2209
2210
2211
2212
2213

2214
2215
2216
2217
2218
2219
2220

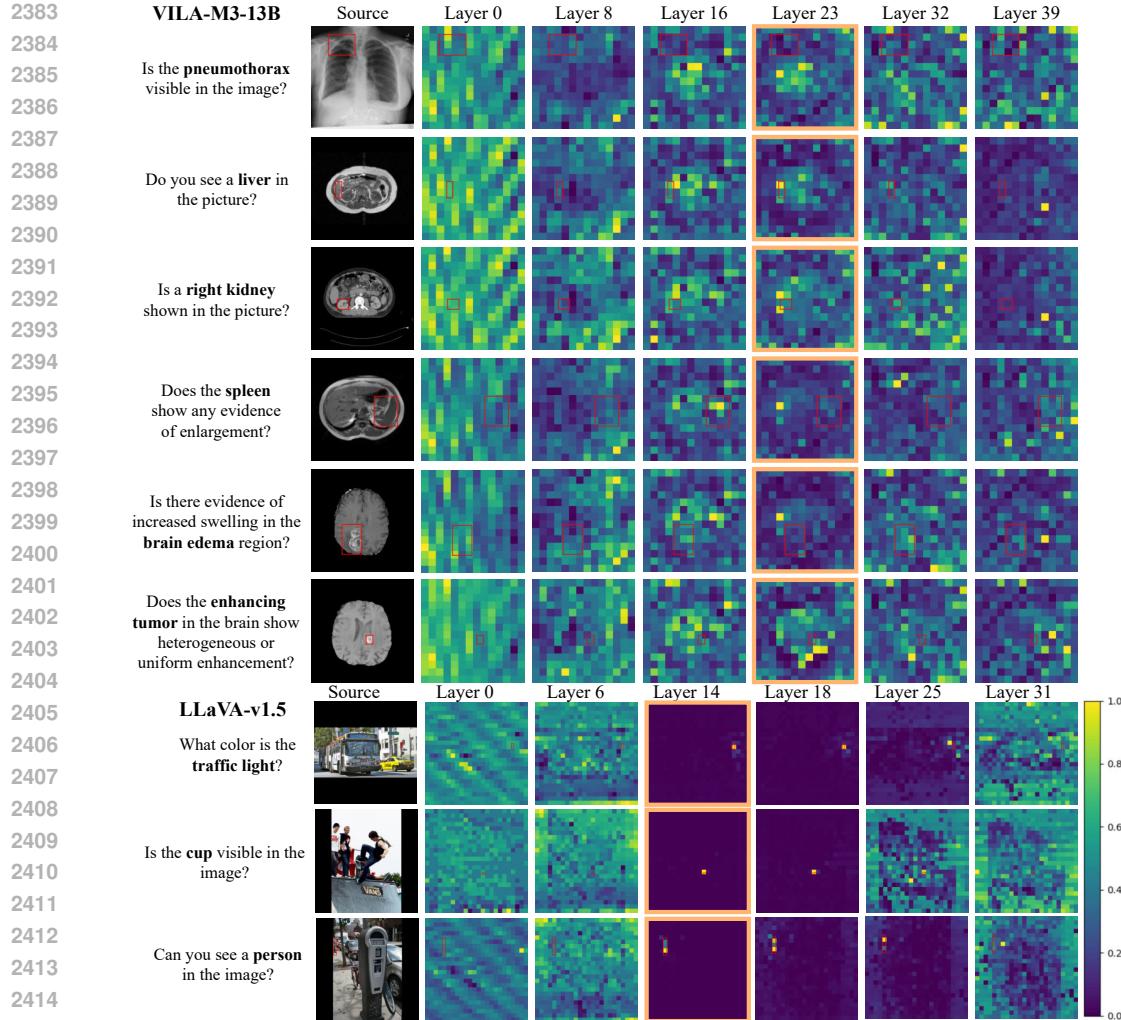


2256 **Figure J.18: Qualitative evaluation.** We visualize attention maps across different layers, including
2257 those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
2258 of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps of
2259 HuatuoGPT-V-Bio with a specialized vision encoder (BiomedCLIP) show limited alignment with the
2260 ground-truth annotated regions. In contrast, a general-domain MLLM LLaVA-v1.5 applied to natural
2261 images exhibits strong alignment with relevant regions, consistent with other study of general-domain
2262 MLLMs Zhang et al. (2025a).



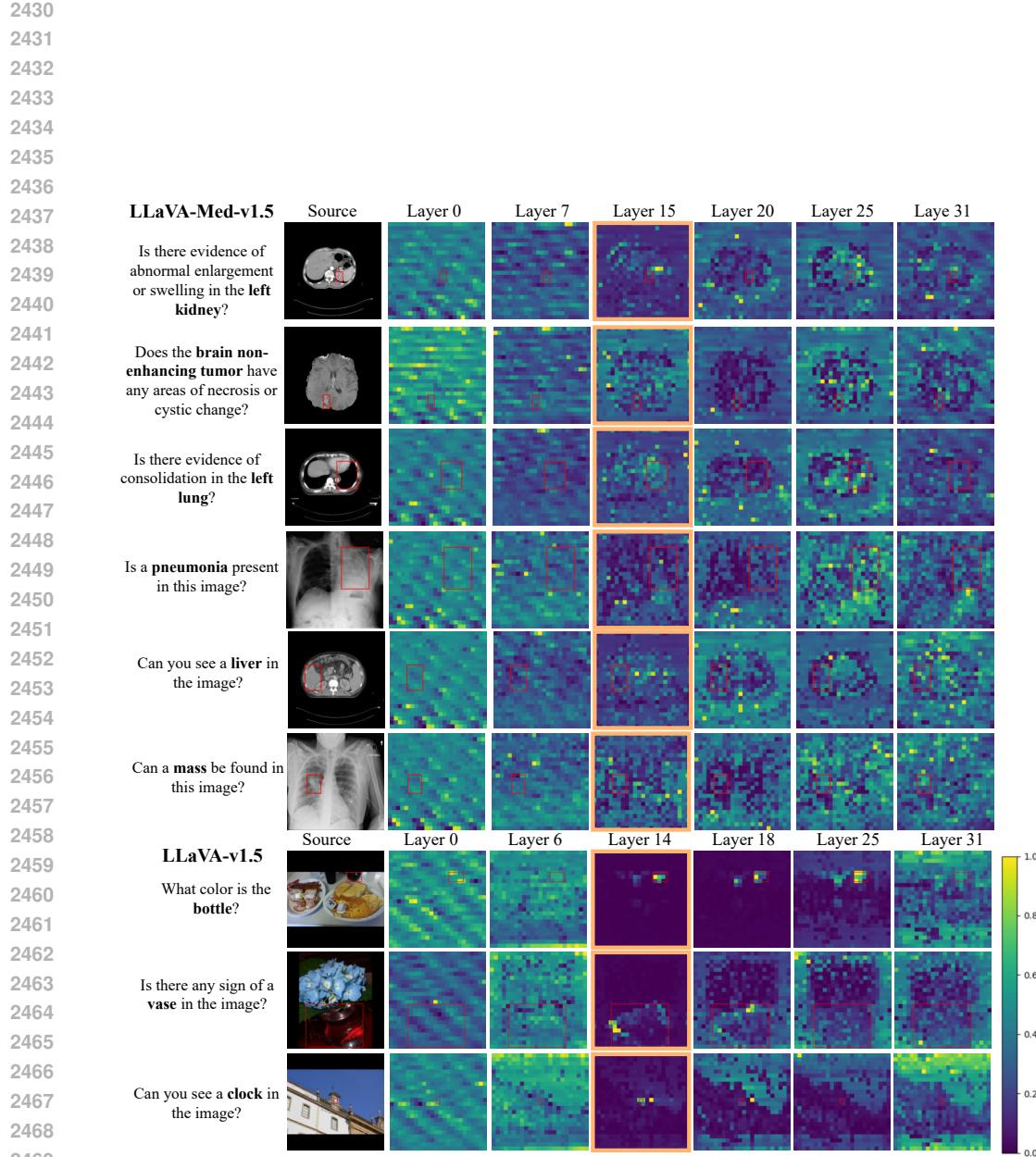


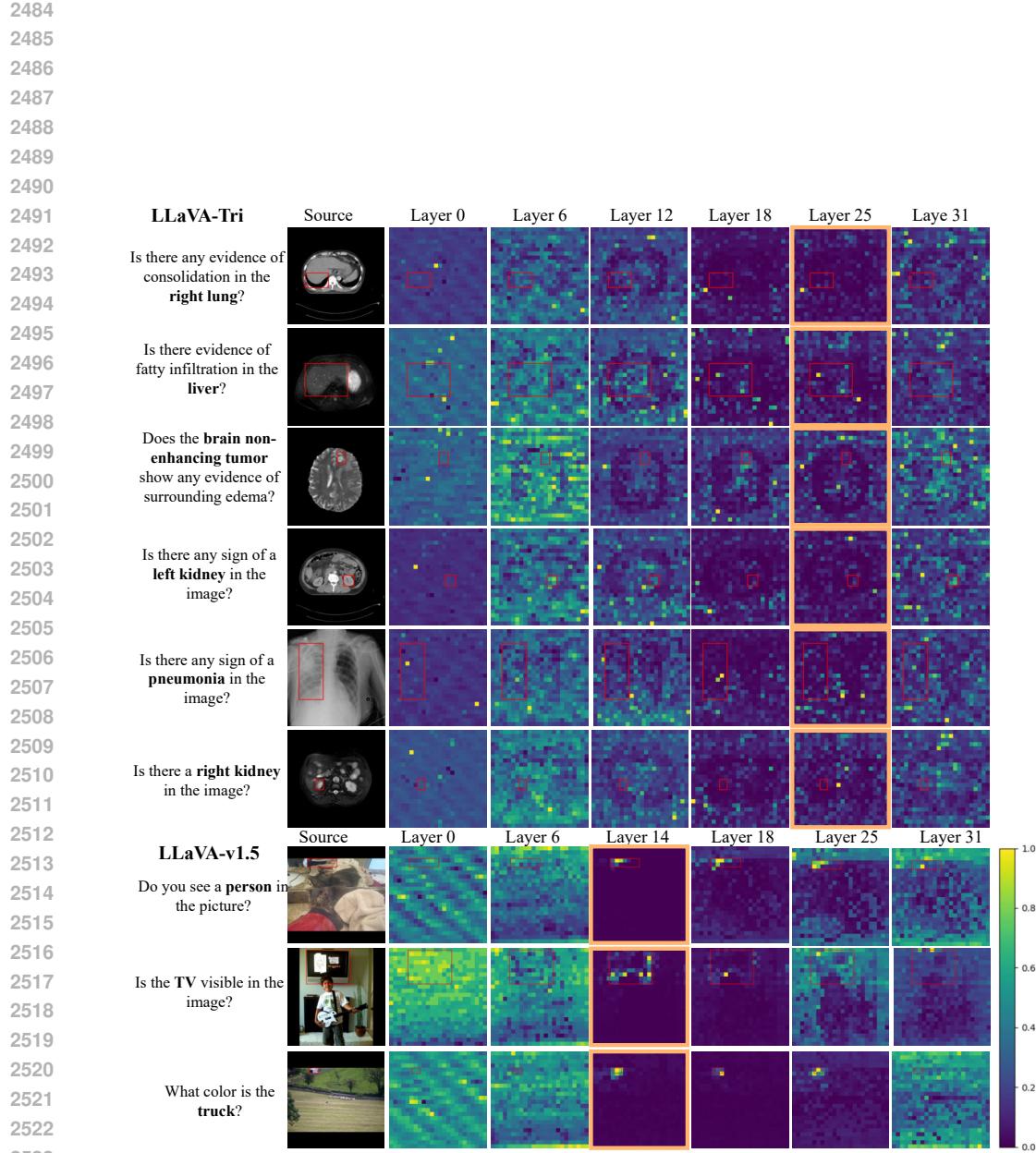
2376
2377
2378
2379
2380
2381
2382



2417 **Figure J.21: Qualitative evaluation.** We visualize attention maps across different layers, including
2418 those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
2419 of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
2420 of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
2421 a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
2422 relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
2423 highlights a gap in MLLM’s visual grounding performance between the medical and natural image
2424 domains.

2425
2426
2427
2428
2429





2525 **Figure J.23: Qualitative evaluation.** We visualize attention maps across different layers, including
2526 those with the lowest KL divergence (highlighted with an orange boundary), which are indicative
2527 of layers most relevant to visual grounding in MLLMs. For medical images, the attention maps
2528 of medical MLLMs show limited alignment with the ground-truth annotated regions. In contrast,
2529 a general-domain MLLM LLaVA-v1.5 applied to natural images exhibits strong alignment with
2530 relevant regions, consistent with other study of general-domain MLLMs Zhang et al. (2025a). This
2531 highlights a gap in MLLM’s visual grounding performance between the medical and natural image
2532 domains.

2538 **K LIMITATIONS**
25392540 While our work provides a systematic and detailed investigation into visual grounding as a key failure
2541 mode in medical MLLMs, it focuses exclusively on this aspect. We do not examine other potential
2542 sources of failure, such as deficiencies in semantic grounding or reasoning capabilities. In practice,
2543 failures may also arise from an inability to recognize what clinical concepts are relevant or to integrate
2544 multimodal information effectively. Additionally, our proposed method, VGRefine, is designed to
2545 improve visual grounding at inference time but does not address other underlying limitations, such as
2546 dataset biases or insufficient domain-specific knowledge. Future work will explore complementary
2547 methods to assess and improve semantic grounding and extend our analysis framework to uncover
2548 other failure modes.
25492550 **L EXPERIMENTAL SETTING/DETAILS AND COMPUTING RESOURCES**
25512552 For both VGRefine-7B and VGRefine-34B, we select the top 20 attention heads—ranked by alignment
2553 with visually relevant regions—and average their outputs to obtain the filtered attention map. A
2554 percentile threshold of 50% is used to suppress low-activation regions during attention knockout.
2555 For VGRefine-7B, the attention knockout is applied at layer $l = 16$, while for VGRefine-34B, it is
2556 applied at layers $l = 34, 35, 36$, identified through our quantitative analysis as most relevant to visual
2557 grounding. We follow a zero-shot evaluation protocol across six biomedical VQA benchmarks: VQA-
2558 RAD, SLAKE, PathVQA, PMC-VQA, OmniMedVQA, and MMMU (Health & Medicine track).
2559 The full set of prompts used for zero-shot evaluation is provided in Section F.2. All experiments are
2560 conducted on a server with 8×NVIDIA A100 80GB GPUs.
25612562 **M BROADER IMPACTS AND ETHICAL CONSIDERATIONS**
25632564 This work involves the analysis of medical MLLMs using publicly available datasets that are de-
2565 identified. No private or sensitive patient data is used. We acknowledge that the deployment of
2566 medical MLLMs carries potential risks, including misinterpretation of clinical images, over-reliance
2567 on automated outputs by clinicians, and disparities in performance across patient populations. Our
2568 work aims to mitigate such risks by improving the reliability of model predictions through better
2569 visual grounding. To promote transparency and reproducibility, we provide open access to code,
2570 evaluation metrics, and the VGMED dataset. This enables the broader research community to
2571 scrutinize and build upon our work responsibly.
25722573 **N SAFEGUARDS**
25742575 Our study does not involve training or releasing a new foundation model, but rather evaluates and
2576 analyzes existing medical MLLMs in terms of their visual grounding behavior. While our proposed
2577 inference-time refinement method improves grounding performance, it is designed for research use
2578 only and does not replace expert validation. We do not claim clinical applicability, and no components
2579 of our work should be used for medical diagnosis or decision-making without extensive clinical
2580 evaluation.
25812582 If any models or code are released, access will be gated under a research-use license, and accompanied
2583 by usage guidelines clearly stating that they are intended solely for non-commercial, academic use.
2584 The evaluation dataset we construct contains only de-identified medical images drawn from publicly
2585 available datasets, and all visual content has been reviewed to ensure it does not pose safety, privacy,
2586 or dual-use risks.
25872588 **O LICENSES**
25892590 All datasets and models used in this work are publicly available and cited appropriately in the main
2591 paper. We do not scrape any new data from the web or repackage any existing datasets; all visual
2592 assets have been used in accordance with their licenses.
2593

2592 **P USE OF LARGE LANGUAGE MODELS (LLMs)**

2593
2594 LLMs were used solely as a writing aid to improve clarity, grammar, and style. They were not involved
2595 in generating research ideas, designing methodology, analyzing data, or drawing conclusions.
2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646 **Q NEW FIGURES DURING REBUTTAL**

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

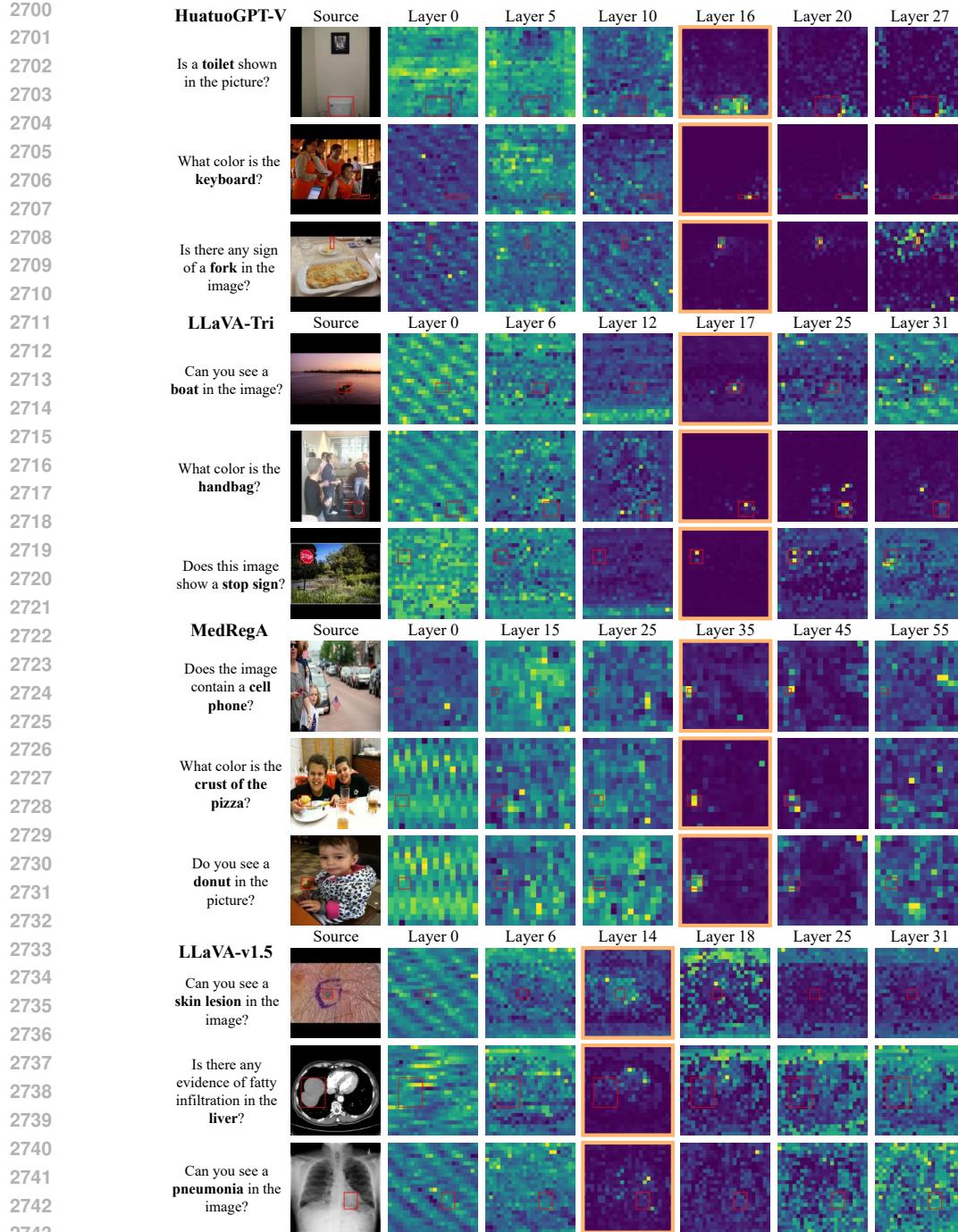


Figure Q.24: Qualitative evaluation of (i) medical MLLMs HuatuoGPT-V, LLaVA-Tri and MedRegA on COCO, and (ii) LLaVA-v1.5 on VGMED. We visualize attention maps across different layers, including those with the lowest KL divergence (highlighted with an orange boundary), which are indicative of layers most relevant to visual grounding in MLLMs. We observe that LLaVA-v1.5 fails to ground predictions in clinically relevant regions when operating on medical images and medical VQA tasks. Furthermore, medical-domain models can ground their predictions when applied to natural images. This is consistent with our quantitative analysis in Fig. 3 of the main paper. Together, they show that medical MLLMs possess good visual grounding capabilities in general-domain settings. **Overall, this confirms that the grounding failure is not due to model weakness, but is fundamentally specific to the medical domain, consistent with our central findings. Inadequate visual grounding is a medical-domain failure mode.**

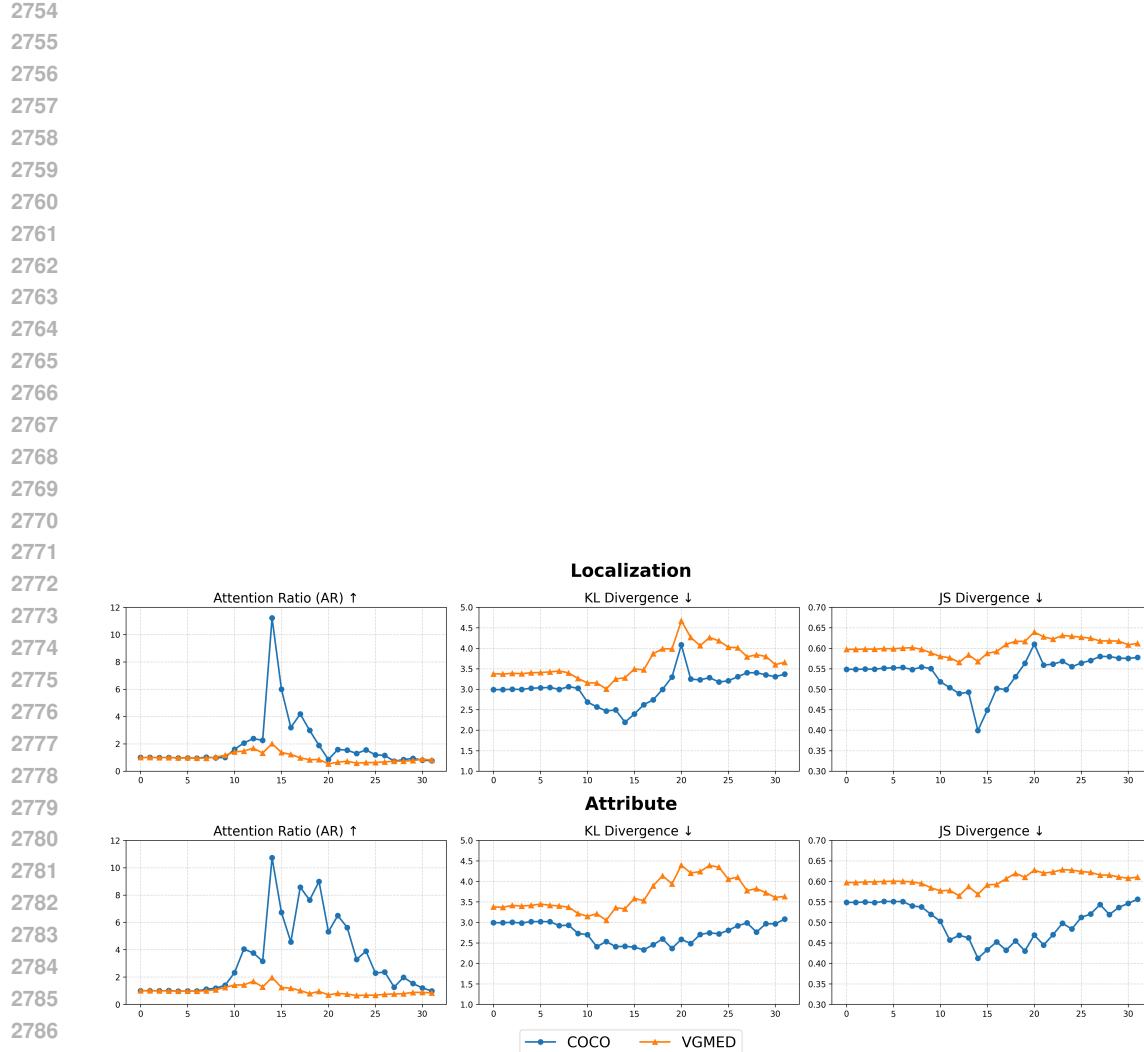
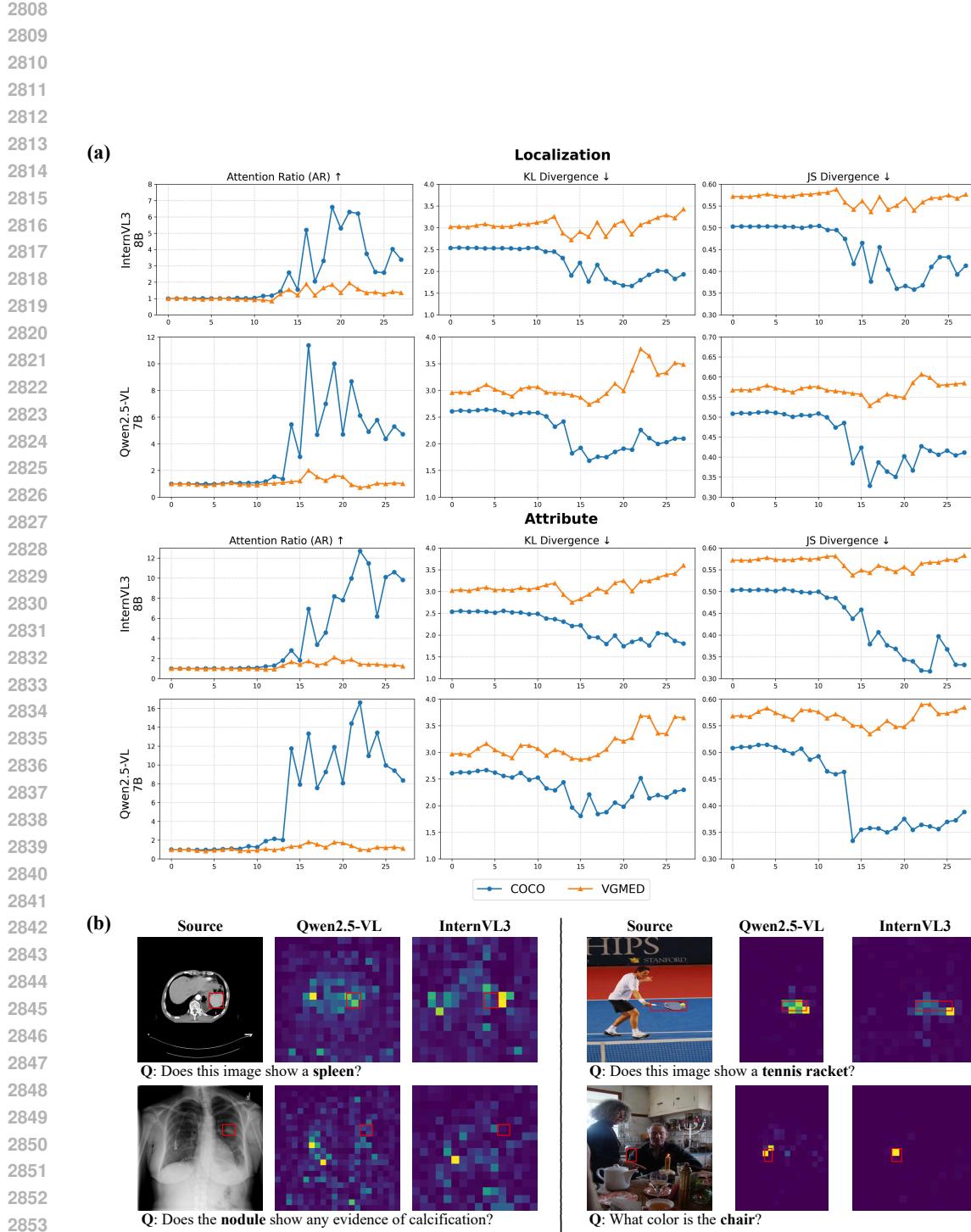


Figure Q.25: **Quantitative evaluation of LLaVA-v1.5 on VGMED.** We observe that LLaVA-v1.5 fails to ground predictions in clinically relevant regions when operating on medical images and medical VQA tasks.



2854 Figure Q.26: (a) **Quantitative** and (b) **qualitative** evaluation of InternVL3-8B and Qwen2.5-VL-7B
2855 on VGMED and COCO. We observe that the visual grounding deficiency in medical domain persists
2856 even in these latest general-purpose models.
2857
2858
2859
2860
2861

2862
2863
2864
2865
2866
2867
2868
2869
2870

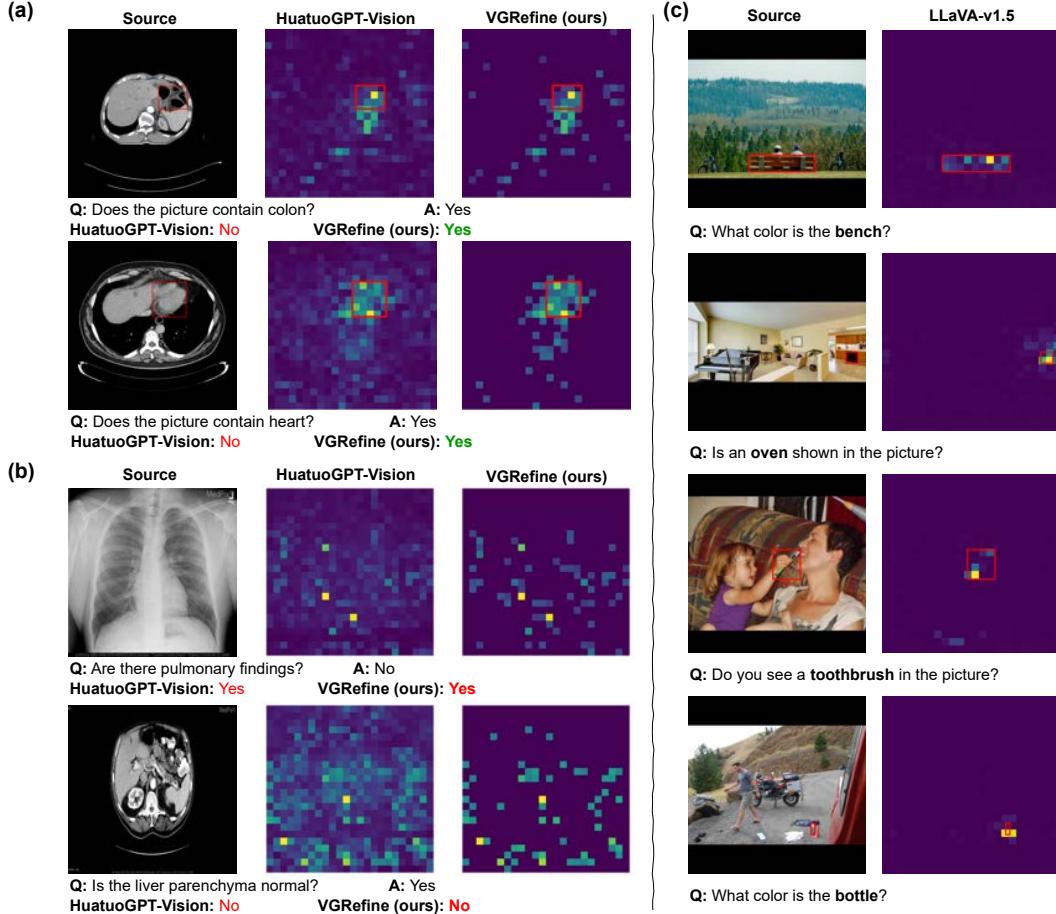
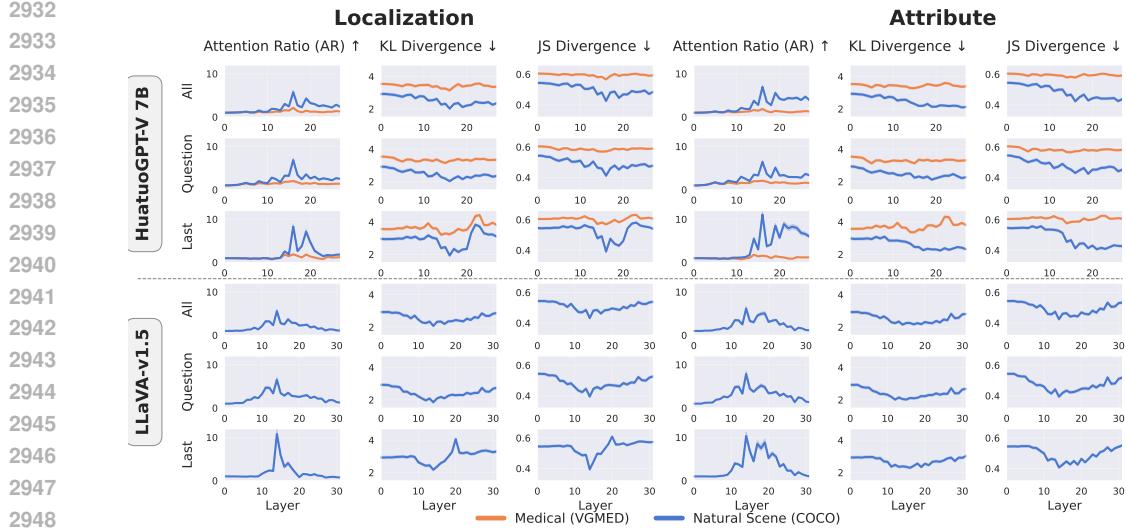


Figure Q.27: Representative failure cases of HuatuoGPT-Vision on medical benchmarks. (a) The model correctly interprets the question but attends to the wrong anatomical region, leading to an incorrect answer. After applying VGRefine, the model’s attention shifts toward more clinically relevant region, resulting in the correct prediction. (b) The model misunderstand the question, resulting in both semantic and visual grounding failure. (c) Additionally, we include examples from LLaVA-v1.5 on natural images as a reference of accurate visual grounding. While multiple factors contribute to poor generalization, weak visual grounding consistently emerges as a major and measurable issue, though not the sole cause.

2908
2909
2910
2911
2912
2913
2914
2915

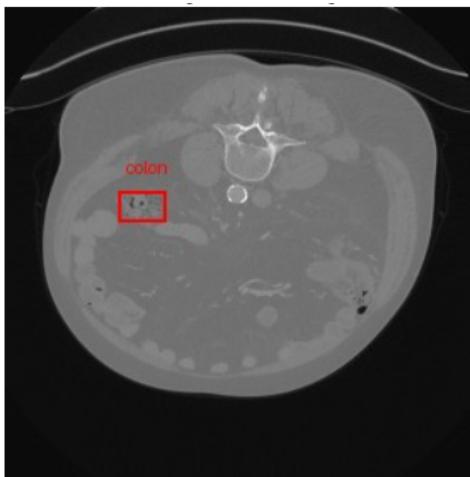
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931



2949
2950 **Figure Q.28: Comparison of visual grounding when using *all input tokens*, *question-only tokens*,
2951 or the *last token* to derive attention maps.** Using two representative MLLMs (HuatuoGPT-V-7B
2952 and LLaVA-v1.5), we evaluate how different token-selection strategies affect attention alignment on
2953 VGMED and COCO. Across all metrics and layers, attention maps computed from the *last token*
2954 achieves equal or better alignment with ground-truth regions compared to the alternative options.
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

2970 R CLINICAL VALIDATION DURING VGMED CURATION
2971

2972 As part of the VGMED curation process, clinicians reviewed each sample to verify that (i) the
2973 question is properly focused on visual grounding, (ii) it does not require deep or diagnostic-level
2974 semantic medical reasoning, and (iii) it remains clinically appropriate and meaningful. An example
2975 of the rating interface used during the curation process is shown in Fig. R.29.



2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992 **Attribute Question:**
2993 Is there evidence of abnormal density or masses in the colon?
2994 Clinical Relevance: 1 2 3 4 5
2995 Visual Grounding: 1 2 3 4 5
2996 Minimum Semantic Grounding: 1 2 3 4 5
2997
2998 **Localization Question:**
2999 Does this image show a colon?
3000 Clinical Relevance: 1 2 3 4 5
3001 Visual Grounding: 1 2 3 4 5
3002 Minimum Semantic Grounding: 1 2 3 4 5
3003
3004
3005

Figure R.29: Example of the clinician rating interface used during VGMED curation.

3006
3007 **Clinical Relevance**
3008

- 3009 • **1:** Irrelevant or misleading; the question is clinically inappropriate or nonsensical in this context.
- 3010 • **2:** Marginally relevant; the question has limited medical value or loosely pertains to the case.
- 3011 • **3:** Acceptable; the question is reasonable in clinical significance.
- 3012 • **4:** Clinically useful; the question is clearly relevant and meaningful to medical interpretation.
- 3013 • **5:** Highly relevant and valid; the question is well-phrased, accurate, and directly supports clinical
3014 reasoning.

3016
3017 **Visual Grounding**

- 3018 • **1:** It refers to other anatomy or ignores the boxed area entirely; ignores the region.
- 3019 • **2:** The question has only a weak or incidental connection to the boxed region; the area is largely
3020 irrelevant to the text.
- 3021 • **3:** It reasonably overlaps or implies the boxed region.
- 3022 • **4:** Clear reference to the boxed region.
- 3023 • **5:** Perfectly aligned, the question precisely refers to the boxed region.

3024 **Minimum Semantic Grounding**

3025

- 3026 • **1:** Very deep semantic grounding; requires advanced, multi-step clinical reasoning, such as
 3027 staging, prognosis, mechanisms, or treatment decisions.

3028 Examples:

3029 “What is the appropriate treatment for this condition?”

3030 “How does this imaging pattern affect the patient’s prognosis?”

3031

- 3032 • **2:** High semantic grounding; requires reasoning about specific diseases or well-defined diagnostic
 3033 entities. Substantial medical knowledge is needed.

3034 Examples:

3035 “What diseases are included in the image?”

3036

- 3037 • **3:** Moderate semantic grounding; requires linking features to broad categories of pathology,
 3038 such as distinguishing between growth, inflammation, or degeneration.

3039 Examples:

3040 “Does the structure appear to be pushing against or displacing nearby tissues?”

3041 “Is there a region that appears more diffuse rather than well-demarcated?”

3042

- 3043 • **4:** Low-moderate semantic grounding; requires recognition of more specific medical descriptors,
 3044 but does not involve broad pathology categories or diagnostic reasoning.

3045 Examples:

3046 “Does the bone show a visible fracture line?”

3047 “Is there a nodule in this region?”

3048 Therefore, a rating of 3 represents acceptable threshold across all three dimensions: the sample is
 3049 clinically relevant, visually grounded, and does not require deep semantic knowledge.

3050 During the benchmark curation process, all samples receiving any score below 3 were discarded.
 3051 Consequently, every VGMED sample satisfies 3 or above on all criteria. This ensured that retained
 3052 samples genuinely test visual grounding rather than medical reasoning.

3053 Furthermore, as summarized in Tab. R.6, the vast majority of clinician ratings are in the upper
 3054 categories (4–5), with only a minor proportion of samples receiving a rating of 3 across any axis.

3055
3056 Table R.6: Percentage distribution of clinician ratings (3–5) across all axes for Attribute and Localization
 3057 questions.

3058

Type	Category	Rating 3 (%)	Rating 4 (%)	Rating 5 (%)
Attribute	Clinical Relevance	3.31	4.11	92.58
	Min. Semantic Grounding	0.37	10.38	89.25
	Visual Grounding	4.04	12.18	83.77
Localization	Clinical Relevance	0.02	0.52	99.46
	Min. Semantic Grounding	0.05	5.76	94.19
	Visual Grounding	3.96	11.79	84.25