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Abstract

The most effective domain adaptation (DA) involves the decomposition of data representation
into a domain independent representation (DIRep), and a domain dependent representation
(DDRep). A classifier is trained by using the DIRep of the labeled source images. Since the
DIRep is domain invariant, the classifier can be “transferred” to make predictions for the
target domain with no (or few) labels. However, information useful for classification in the
target domain can “hide” in the DDRep in current DA algorithms such as Domain-Separation-
Networks (DSN). DSN’s weak constraint to enforce orthogonality of DIRep and DDRep,
allows this hiding effect and can result in poor performance. To address this shortcoming, we
develop a new algorithm wherein a stronger constraint is imposed to minimize the DDRep
by using a KL divergent loss for the DDRep in order to create the maximal DIRep that
enhances transfer learning performance. By using synthetic data sets, we show explicitly
that depending on initialization DSN with its weaker constraint can lead to sub-optimal
solutions with poorer DA performance whereas our algorithm with maximal DIRep is robust
against such perturbations. We demonstrate the equal-or-better performance of our approach
against state-of-the-art algorithms by using several standard benchmark image datasets. We
further highlight the compatibility of our algorithm with pretrained models for classifying
real-world images and showcase its adaptability and versatility through its application in
network intrusion detection.

1 Introduction

Labeling data for machine learning can be a difficult and time-consuming process. If we have a set of labels
for data drawn from a source domain, it is desirable to use the source data and labels to aid classifying data
from a similar but different target domain with no (or few) labels. Transferring the ability to classify data
from one domain to another is called Domain Adaptation (DA).

Humans looking at pictures of dogs and wolves in the wild often notice the context of the animal to aid in
classification. If you do a search on the internet for wolf you will inevitably find a picture of the animal in
snow in a setting where few dog pictures occur. If the source domain is pictures of animals in the wild and
the target is animals at veterinary clinics, that context is lost in the target. Humans and neural networks
learn to take advantage of information that is not available in the target domain. Our goal is to ensure that
the tendency to take advantage of domain dependent information, which can be called “spurious” information,
does not get in the way of good DA.

Our general intuition, largely consistent with previous work, is that DA can occur if two requirements are
met:

1. a representation of the input can be formed that is independent of the domain, which we call a
Domain Independent Representation (DIRep);

2. the DIRep contains as much information as possible to enable the best classification.
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A typical way to satisfy requirement 1 is by using adversarial techniques such as generative adversarial
networks (GANs) (Ganin et al., 2016; Singla et al., 2020; Tzeng et al., 2017). An adversarial network is used
to ensure that from the DIRep one cannot determine which domain the original data came from. Requirement
2 can be addressed by using an autoencoder. However, the DIRep alone may not have enough information to
fully reconstruct the input data due to the presence of domain specific information. Following Bousmalis et
al. (Bousmalis et al., 2016), we supplement the DIRep with a Domain Dependent Representation (DDRep),
which contains information relevant to the domain. In other words, the full data representation is decomposed
into DIRep and DDRep, which when combined is sufficient to recreate the input data in the autoencoder.

A classifier is trained with the DIRep of the labelled data from the source domain. Since the DIRep is domain
independent, the idea is that the classifier can then be “transferred" to the target domain to make predictions
for labels of the target data. However, the classifier may “cheat” by using information that is only useful for
classifying the source data and the information needed to classify the target data may hide in the DDRep.

Indeed, the key challenge in DA is how to decompose the data representation into the DIRep and DDRep
properly so that the classifier can be trained with domain independent correlation between data and their
labels. For example, to ensure that different information goes into the DDRep and the DIRep, Domain-
Separation-Networks (DSN), a current state-of-the-art algorithm for DA, introduced a loss function to enforce
linear orthogonality of the DDRep and the DIRep. However, as we will show later, this constraint is not
enough to prevent information useful for classifying target data to end up in their DDRep rather than in the
DIRep.

In this paper, we introduce a stronger constraint by minimizing the DDRep. The general idea is that if the
DDRep only contains enough information to determine the domain and nothing else, then assuming that
the domain itself is not relevant to the classification, all the relevant information for classification has to be
included in the now “maximal” DIRep, thus addressing requirement 2.

The rest of our paper is structured as follows. After describing related work in Section 2, we present details
on the construction of our algorithm/model and contrast it to the closely related DSN algorithm in Section 3.
In Section 4, we give results on a synthetic benchmark we designed to elucidate the issues facing previous
methods, an ablation study which further illustrates the advantage of our approach versus DSN, and the
performance of our algorithm versus other methods across a set of standard image benchmark datasets.
Finally we show superior results on a non-image classification task. In Section 5, we discuss the intuitive
reason for the better performance of our algorithm and possible future directions for further improvements.

2 Related work

Transfer learning is an active research area that has been covered by several survey papers (Liu et al., 2022;
Zhang & Gao, 2022; Zhang, 2021; Zhuang et al., 2020; Liu et al., 2019; Wang & Deng, 2018). Here, we briefly
describe four previous methods that are closely related to ours, with which we make a direct comparison in
this paper.

The domain adversarial neural network (DANN) Ganin et al. (2016) uses three network components, namely
a feature extractor, a label predictor, and a domain classifier. The generator is trained in an adversarial
manner to maximize the loss of the domain classifier by reversing its gradients. The generator is trained at the
same time as the label predictor to create a DIRep that contains domain-invariant features for classification.
The adversarial discriminative domain adaptation (ADDA) Tzeng et al. (2017) approach adopts similar
network components, yet its learning process involves multiple stages in training the three components of the
model (see Chadha et al. Chadha & Andreopoulos (2019) for a recent extension of ADDA to model the joint
distribution over domain and task). Singla et al. (2020) has proposed a hybrid version of the DANN and
ADDA where the generator is trained with the standard GAN loss function (Goodfellow et al., 2020). We
refer to this as the GAN-based method (Singla et al., 2020). None of these methods (DANN, ADDA, and
GAN-based) includes the auto-encoder and thus does not have a DDRep.

The closest approach to ours is the Domain Separation Networks (DSN) (Bousmalis et al., 2016), which
has the highest accuracy among existing DA algorithms without using pseudo-labeling (Chen et al., 2020;
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Zou et al., 2018). The key distinction between DSN and our method is the different constraints used in
decomposition of the data representation into DIRep and DDRep’s, described in detail in Section 3.2.

In DSN, the DDRep and DIRep have the same shape. A linear “soft subspace orthogonality constraint
between the private and shared representation of each domain” was used to ensure that the DIRep and
DDRep are different. The main difference between DSN and our approach is that we use a different constraint
to minimize the DDRep.

Other work shows how to take advantage of more than one target (Peng et al., 2019), or more than one source
domains (Pei et al., 2018). Some authors have looked at DA as a means to untangle representations such as
the Interaction Information Auto-Encoder (IIAE) (Hwang et al., 2020). Also, the Variational Disentanglement
Network (VDN) Hwang et al. (2020) attempts to generalize from a source domain without access to a target.
These and other related topics fall outside the scope of our paper, and thus will not be addressed any further.

3 The MaxDIRep algorithm for domain adaptation
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Figure 1: Architecture of MaxDIRep.

In the introduction we described our general ap-
proach to achieve better DA by building a maximal
domain-independent representation. In this section
we describe the details of our model which is sum-
marized in Figure 1. The decoder (F) ensures that
between the DIRep and the DDRep all information
in the image is preserved. We squeeze the DDRep,
using techniques from Variational Auto Encoders
(VAEs), moving all the information related to clas-
sification into the DIRep. DIRep is subject to a
GAN like discriminator that makes sure that the
classification information is represented in a domain
independent way.

(1) Networks. There are five neural networks (by neural network, we mean the network architecture and
all its parameters) in the algorithm: 1) G is the generator; 2) D is the discriminator; 3) C is the classifier; 4)
E is the encoder; 5) F is the decoder.

(2) Inputs and outputs. The data is given by (x, l, d) where x is the input; we use the notation xs and
xt to respectively represent the source and target data samples, when necessary to distinguish them. l is
the label of sample x (if any), and d is the domain identity (e.g., it can be as simple as one bit of 0 for the
source domain and 1 for the target domain). In the zero-shot or few-shot domain adaptation settings, l is
available for all source data samples, but none or only a few labels are known for the target samples. x is the
input given to both encoder (E) and generator (G). The DDRep and DIRep correspond to the intermediate
outputs of E and G, respectively:

DDRep = E(x), DIRep = G(x), (1)

which then serve as the inputs for the downstream networks decoder (F ), discriminator (D), and classifier
(C). In particular, DIRep serves as the input for D and C, and both DIRep and DDRep serve as the inputs
for F . The outputs of these three downstream networks are x̂ from the decoder F , d̂ from the discriminator
D, and l̂ from the classifier C:

x̂ = F(E(x), G(x)), d̂ = D(G(x)), l̂ = C (G(x)), (2)

where we list the dependence of the outputs on the corresponding networks explicitly.

(3) Loss functions. Some measures of the differences between the predictions from the networks, i.e.,
(x̂, d̂, l̂) and their actual values (x, d, l) are used to construct the loss functions. Typically a loss function
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would take two arguments, a prediction and the actual label/value. We use the name of the loss function
without specifying the arguments, and do so for the discriminator, generator, classification and reconstruction
losses. All the loss functions with their dependence on specific neural networks are given explicitly here:

1. Classification loss: Lc = Lc(l̂, l) = Lc(C(G(x), l)).

2. Discriminator loss: Ld = Ld(d̂, d) = Ld(D(G(x), d).

3. Generator loss: Lg = Lg(d̂, 1 − d) = Ld(D(G(x)), 1 − d).

4. Reconstruction loss: Lr = Lr(x̂, x) = Lr(F (G(x), E(x)), x).

5. KL loss for DDRep: Lkl = DKL(Pr(E(x)) ∥ N (0, I)).

For the reconstruction loss Lr, we used the L2-norm. For Ld, Lg, Lc, we used cross entropy. A more detailed
formulation of the loss functions is provided in the Appendix A.

The first four loss functions (Lc, Ld, Lg, and Lr) are similar to those used in other GAN-based algorithms
such as DSN. The most important and unique feature of our algorithm is the KL divergence loss function
Lkl(E) for the DDRep (E). Like in a VAE, Lkl is introduced to create a minimal DDRep so we can force
most of the input information into the DIRep.

(4) The back-prop based learning. The gradient-descent based learning dynamics for updating the five
neural networks is described by the following equations:

∆G = −αG

(
λ

∂Lg

∂G
+ β

∂Lc

∂G
+ γ

∂Lr

∂G

)
, ∆C = −αC
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∂C
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∂Ld

∂D
,

∆E = −αE

(
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∂E
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∂Lr

∂E

)
, ∆F = −αF

∂Lr

∂F
,

where αC,D,E,F,G are the learning rates for different neural networks. In our experiments, we often set them
to the same value, but they can be different in principle. The other hyperparameters λ, β, γ, and µ are
the relative weights of the loss functions. These hyperparameters are also useful to understand the different
algorithms. As easily seen from the equations above, when γ = 0, the GAN-based algorithm decouples from
the VAE based constraints.

3.1 The explicit DDRep algorithm

We have used the KL divergence to measure the information content of the DDRep and found that the DDRep
contains the equivalent of one bit of information or even less in some cases. Inspired by this observation, we
introduce a simplified MaxDIRep algorithm without the encoder E wherein the DDRep is set explicitly to be
the domain label (bit) d, i.e., DDRep = d. We call this simplified MaxDIRep algorithm the explicit DDRep
algorithm. The motivation is that d is the simplest possible domain dependent information that could serve
to filter out the domain dependent information from the DIRep. A variant of this approach is to add d to the
DDRep generated by the encoder.

Besides its simplicity, the explicit DDRep algorithm is also highly interpretable. One particularly useful
feature of the explicit DDRep algorithm is that it allows us to check the effect of the DDRep directly by
flipping the domain bit (d → 1 − d). We know that the domain bit is effective in filtering out domain
dependent information from the DIRep if the reconstructed image x̃ = F(DIRep, 1 − d) resembles an image
from the other domain (see Section 4.1.1 for details and Figure 3 for examples of reconstructed images).

The explicit DDRep algorithm performs as well as the full MaxDIRep model in some simpler cases where
the KL divergence of the DDRep in the MaxDIRep model corresponds to less than one bit measured as
entropy. However, the full MaxDIRep model performs better in more complex cases. Therefore, we use the
full MaxDIRep model with Lkl for all cases as it is more general except in cases where the explicit DDRep
algorithm works just as well but also provides a direct interpretation of the algorithm.
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3.2 Comparing MaxDIRep to DSN: MaxDIRep has a stronger constraint than DSN

DSN is the highest scoring, DA approach that does not supplement their neural network training with
pseudolabels (Saito et al., 2018). Both DSN and MaxDIRep are based on decomposing the data representation
into what we call DIRep and DDRep. The main difference1 is that instead of using Lkl to force the DDRep
to contain minimal information as in MaxDIRep, DSN uses a linear orthogonality constraint between the
private and shared representations of each domain. Formally, The constraint (Ldiff ) is achieved by minimizing
the dot products of DDRep (DDS/T ) and DIRep (DI) of source (S) and target (T ) data respectively:
Ldiff =

∥∥DI · DDS∥∥2 +
∥∥DI · DDT∥∥2 .

In MaxDIRep, after training, we found that the DDRep has close-to-zero KL loss, which implies that the
means of most of its weights are near zero. This means that MaxDIRep always results in a DDRep that is
orthogonal or near orthogonal to its DIRep, and thus satisfies the orthogonality constraint of DSN. However,
the orthogonality constraint does not always lead to an unique decomposition. For example, a different,
but also orthogonal or nearly orthogonal decomposition into DDRep and DIRep would be to minimize the
DIRep and let it solely contain the label information, with most image details contained in the DDRep. This
decomposition, as discussed in Section 4.2, leads to poor DA performance, but is not ruled out in the DSN
algorithm due to its weaker linear orthogonality constraint.
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Figure 2: Schematic comparison between DSN and
MaxDIRep. See text and Appendix I for explanation.

To gain an intuition about the difference between
DSN and MaxDIRep, we looked at a 3-D geometrical
analogy of a representation decomposition as shown
in Figure 2 where source (S) and target (T) data
represented in this analogy by vectors in 3D space
are decomposed into the sum of DIRep (DI ) and
DDRep (DD): S = DI x + DDS

x , T = DI x + DDT
x

where the subscript x represents the DSN (D) and
MaxDIRep (V) algorithms, respectively. In DSN, the
linear orthogonality constraint, DID · DDS,T

D = 0,
enforces DID ⊥ DDS,T

D , which can be satisfied by any
points on the blue circle in Figure 2. In MaxDIRep,
however, the size of DDRep’s, i.e., ||S − DI || + ||T − DI || is minimized leading to an unique solution DIV

(red dot in Figure 2), which not only satisfies the orthogonality constraint (DIV ⊥ DDS,T
V ) but also maximizes

the DIRep (||DIV || ≥ ||DID||) (see Appendix I for proof details).

This 3D geometric analogy suggests that the orthogonality constraint is a weaker one than maximizing the
DIRep (or minimizing the DDRep’s). Depending on the initialization, the system with only the orthogonality
constraint can result in a sub-optimal solution (any point on the circle other than the MaxDIRep solution
DDV ) that has poorer DA performance. For example, as shown in Figure 2, the origin, i.e., DI D = 0 is a
valid solution for DSN that satisfies the orthogonality constraint. Obviously, this extreme case solution with
a minimal (zero) DIRep can not be used for DA at all.

We expect the DA performance to become progressively worse as the DSN solution moves away from the
maximal DIRep solution obtained by MaxDIRep. Indeed, as we demonstrate later in Section 4.2 in a set
of “mutual ablation” experiments in realistic setting, if we perturb the DSN system by running DSN with
a KL loss LDI

kl applied to its DIRep for a certain time, DSN will find solutions that are consistent with
the orthogonality constraint of DSN but have poorer DA performance. Furthermore, as we increase the
strength of this perturbation, the DSN performance decreases, indicating the existence of many sub-optimal
solutions for DSN, which is consistent with the geometric analogy (Figure 2). However, the opposite is not
true, i.e., if we perturb the MaxDIRep system by applying a negative Ldiff to make the DIRep and DDRep
less orthogonal, MaxDIRep can still find the optimal solution with the same good DA performance.

1They also use different neural networks to create the DDRep from their source and target.
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4 Experiments

We evaluate MaxDIRep across different adaptation settings. In Section 4.1, we first construct synthetic
datasets to explicitly demonstrate the advantage of MaxDIRep over other methods such as DANN and
DSN, which can use information specific to the source domain for classification and thus leads to poor DA
performance. Specifically, we introduce “cheating information” that can be used easily for classification in
the source domain but not in the target domain. This cheating information (or spurious correlation) could
encourage a system to create a classifier that works only for the source domain but not the target domain,
leading to poor DA performance.

Next, in Section 4.2, we design a set of mutual ablation experiments between MaxDIRep and DSN to show
that the key reason MaxDIRep does better than DSN is due to its strong constraint of minimizing the DDRep
rather than the weaker orthogonality constraint of DSN..

In Section 4.3, we compare the performance of MaxDIRep on a set of standard benchmark datasets including
MNIST (LeCun et al., 1998), MNIST-M (Ganin et al., 2016), Street View House Number (Netzer et al.,
2011), synthetic digits (Ganin et al., 2016), Office-31 (Saenko et al., 2010) for comparison against DANN,
ADDA, and DSN. We also assessed MaxDIRep using the challenging Office-Home datasets (Venkateswara
et al., 2017), which consist of four distinct domains, each containing 65 classes. Strong results are achieved
across these standard DA benchmark datasets. Our primary objective is to compare our method with
other foundational adversarial-learning-based domain adaptation (DA) algorithms, upon which many recent
approaches, featuring additional loss functions and pseudo-labels, have been developed. If MaxDIRep
outperforms these foundational techniques, it is reasonable to anticipate that MaxDIRep will further improve
the performance of other methods derived from these primary approaches.

Finally, in Section 4.4, we demonstrate the application of MaxDIRep in training network intrusion detectors,
building on the work of Singla et al. (2020), who successfully addressed the label scarcity issue in this domain
using DA. Our findings show that MaxDIRep consistently improves the performance of previous results and
a stronger baseline based on DSN, highlighting its versatility to non-image classification tasks.

4.1 Synthetic benchmarks and training methods

4.1.1 Synthetic benchmark based on Fashion-MNIST

Fashion-MNIST is a well known dataset, which we use as the source domain. We construct a target domain
by flipping the original images by 180o. To add the cheating information, we add to the source data set a one
hot vector that contains the correct classification (label). We call that information cheating bits. To the
target dataset we also add some bits, but they either include information suggesting a random classification
(random cheating), so the cheating bits are useless in the target domain; or bits shifted to the next label from
the correct label (shift cheating), so it is always wrong but could be used for predicting the correct label.
The one-hot bits have the same distribution in the source and target data sets, so if they are reflected in
the DIRep the discriminator would not detect the difference between source and target. The idea is that a
classifier that learned from these cheating information in the DIRep would perform poorly on the target data.

Benchmark algorithms We compare our method against the following adversarial learning based DA
algorithms: GAN-based approach (Singla et al., 2020), Domain-Adversarial Neural networks (DANN) (Ganin
et al., 2016) and Domain Separation Networks (DSN) (Bousmalis et al., 2016). We implemented both
MaxDIRep and the explicit DDRep algorithm in the zero-shot setting. The explicit DDRep algorithm and
the non-explicit DDRep achieves almost identical performance, which is consistent with the observation that
the information content of the DDRep as determined by the KL divergence is usually less than 1 bit in
the full MaxDIRep after training for this task. We also provide two baselines, a classifier trained on the
source domain samples without DA (which gives us the lower bound on target classification accuracy) and
a classifier trained on the target domain samples (which gives us the upper bound on target classification
accuracy). We compare the mean accuracy of our approach and the other DA algorithms on the target test
set in Table 1. The z-scores of the comparison of our method with other methods are shown in Table 7 in
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Table 1: Mean classification accuracy (%) of different adversarial learning based DA approaches for the
synthetic Fashion-MNIST benchmark.

Model No
cheating

Shift
cheating

Random
cheating

Source-only 20.0 11.7 13.8
GAN-based (Singla et al., 2020) 64.7 58.2 54.8
DANN (Ganin et al., 2016) 63.7 58.0 53.6
DSN (Bousmalis et al., 2016) 66.8 63.6 57.1
MaxDIRep/Explicit DDRep 66.9 66.8 61.6
Target-only 88.1 99.8 87.9

the Appendix. More details of the topology, learning rate, hyper-parameters setup and results analysis are
provided in Appendix B.

Source test set Target test set


Original Original

Figure 3: Effects of flipping the domain bit. Columns
1 and 4, original images; 2 and 6, reconstructions of
originals; 3 and 5, reconstructions with domain bit
flipped (column order left to right). See text for details.

The effect of single-bit DDRep One particu-
larly useful feature of the explicit DDRep algorithm
is that it allows us to check the effect of the DDRep
directly by flipping the domain bit (d → 1 − d). This
feature is highlighted in Figure 3 in the case of ro-
tated Fashion-MNIST classification. The original
images for the source and target domains are shown
as columns 1 and 4, respectively. The reconstructed
images are shown as columns 2 and 6 with the do-
main bit d set to reflect their corresponding domains,
i.e., d = 0 for column 2, d = 1 for column 6. Remark-
ably, by flipping the domain bit (d → 1 − d) while
keeping the DIRep unchanged, the resulting images
(columns 3 and 5) resemble images from the other
domain, which clearly demonstrates the effectiveness
of the minimal DDRep in our model (domain bit in
the explicit DDRep model) in filtering out domain
dependent information from the DIRep.

4.1.2 Synthetic benchmark based on CIFAR-10

We are interested in more natural DA scenarios where the source and target images might be captured with
different sensors and thus have different wavelengths and colors. To address this use case, we created another
cheating benchmark based on CIFAR-10 with different color planes. We introduce the cheating color plane
where the choice of the color planes in the source data has a spurious correlation with the labels while such
correlation is absent in the target domain. Specifically, we create a source set with cheating color planes by
encoding CIFAR-10 labels (0-9). For odd labels, only the blue channel is retained with probability (p), and
either the blue or red channel is kept randomly for the rest. For even labels, only the red channel is retained
with probability (p), and either the red or blue channel is kept randomly for the rest. The parameter (p)
controls the spurious correlation strength between image color and label. In the target domain, only the
green channel is retained for each CIFAR-10 image. We compare our approach with others using (p) values
from {0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0}, where a larger (p) indicates a higher spurious correlation, making domain
adaptation more challenging.

Table 2 presents the mean accuracy of MaxDIRep and the baseline algorithms on the target test set in a
zero-shot setting. We used the full MaxDIRep model due to its better performance. The z-scores of the
comparison of our method with other methods are shown in Table 11 in the Appendix. We observe similar
performance degradation for DANN, DSN and GAN-basd approach on this benchmark, suggesting that the
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Table 2: Averaged classification accuracy (%) of different adversarial learning based DA approaches for the
synthetic CIFAR-10 dataset with a spectrum of bias.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
Source-only 10.0 10.0 10.0 10.0 10.0 10.0 10.0
GAN-based (Singla et al., 2020) 63.0 62.5 61.4 56.9 53.2 44.5 30.1
DANN (Ganin et al., 2016) 62.7 62.0 61.0 56.5 52.2 42.9 29.1
DSN (Bousmalis et al., 2016) 68.7 67.9 67.3 67.5 64.5 61.7 32.2
MaxDIRep 70.4 69.8 69.8 69.7 68.2 64.1 34.2
Target-only 78.9 78.9 78.9 78.9 78.9 78.9 78.9

adaptation difficulties of previous methods and the results of our methods are not limited to a particular
dataset. Due to space limit, the details of the experiments are given in Appendix D.

As an additional experiment, we evaluate MaxDIRep and others in a few-shot setting: the model is provided
with a majority of unlabeled target data and a small amount of labeled target data. The results are shown in
Figure 6 in the Appendix and the training setup is described in Appendix D.3. We found that while the
methods benefit from a small number of target labeled samples, MaxDIRep improves the most, surpassing
DNS and GAN-based results by 12% and 25% respectively with only a total of 50 target labels.

4.2 The mutual ablation experiment between DSN and MaxDIRep

In DSN, the orthogonality constraint is enforced by a difference loss (Ldiff ), while minimization of DDrep in
MaxDIRep is enforced by a KL loss (Lkl) for the DDRep. To demonstrate the difference between DSN and
MaxDIRep, we designed mutual ablation experiments to answer the following questions: If we add a negative
difference loss (−Ldiff ) to MaxDIRep, would the performance of MaxDIRep decrease? On the other hand, if
we add a KL loss for the DIRep (LDI

kl ) in DSN, which acts as the opposite of the KL loss for the DDRep as
in MaxDIRep, how would that affect the performance of DSN?

In the two sets of ablation experiments (shaded blue and yellow respectively in Table 3), we perturbed the
systems by adding the KL loss for DIRep (λpLDI

kl ) and the inverse difference loss (−λpLdiff ) to DSN and
MaxDIRep, respectively. Here, λp represents the strength of the perturbation. We used one large and one
small values of λp = 0.001, 0.1 (rows 2&4 for DSN, and rows 7&9 for MaxDIRep in Table 3) to explore the
dependence on the perturbation strength. We then turned off these perturbations and continued the training
until convergence to investigate if the systems can recover their original DA performance (rows 3&5 for DSN,
and rows 8&10 for MaxDIRep in Table 3). For reference, we also listed the performance by using source data
alone, DSN, and MaxDIRep in rows 1, 6, and 11, respectively in Table 3.

Table 3: Results of the ablation experiments. See text for detailed description.

Methods No cheating Shift cheating Random cheating
1. Source only 20.0 11.7 13.8
2. DSN + λpLDI

kl (λp = 0.001) 61.2 59.5 53.8
3. DSN* from 2 62.7 60.3 55.9
4. DSN + λpLDI

kl (λp = 0.1) 18.3 12.7 12.1
5. DSN* from 4 32.6 29.7 14.0
6. DSN 66.8 63.6 57.1
7. MaxDIRep −λpLdiff (λp = 0.001) 66.8 66.8 60.1
8. MaxDIRep* from 7 66.9 66.8 60.2
9. MaxDIRep −λpLdiff (λp = 0.1) 63.6 63.6 60.1
10. MaxDIRep* from 9 65.5 65.5 60.3
11. MaxDIRep 66.9 66.8 61.6

The findings presented in row 2 of Table 3 indicate that when we reduce the DIRep during DSN training,
DDRep and DIRep maintain orthogonality as evidenced by Ldiff = 0 in the experiment (see Appendix C).
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However, even this weak perturbation results in a worse DA performance compared to the original DSN. It
also shows that even after this perturbation is removed (row 3), optimal domain adaptation is not regained.
This is consistent with the geometric analogy (Figure 2), which shows that there are many solutions that
satisfy the orthogonal constraint but not all of them are equally good in DA. Here, DSN finds a sub-optimal
solution from the initiation of weights reached by a weak “ablation" perturbation. Additionally, if we apply
a stronger perturbation (row 4 in Table 3), the DSN algorithm becomes essentially equivalent to a source
only DA scheme. Notably, the values for reconstruction loss and difference loss do not increase and the
classification loss on the source data is minimal (please see the reported loss values in Appendix C). This
implies that DIRep predominantly carries label information for the source and random information for the
target, while DDRep retains the information necessary for reconstruction. Another important observation is
that the KL losses on DIRep in the ablation experiments for DSN (rows 2&3) with the smaller perturbation
strength (λp = 0.001) are significantly larger than those with the stronger perturbation (λp = 0.1, rows
4&5) (the loss values are reported in Appendix C). This confirms that a better DA is achieved with a higher
information content in DIRep.

On the contrary, the performance of MaxDIRep is largely unaffected by the perturbation regardless for its
strength (rows 7-10 in Table 3). This is due to the fact that the DDRep minimization in MaxDIRep represents
a much stronger constraint, which contains the weaker orthogonal constraint imposed by Ldiff as evidenced
by the observation that Ldiff = 0 in the ablation experiments for MaxDIRep.

4.3 Standard DA image benchmarks

There are two types of standard benchmark datasets: type-1 datasets present the same information in a
different form, perhaps changing color or line width; type-2 datasets contain additional information in one
domain, like the presence of the background of the object, which is absent in the other. It is clear that
type-2 datasets are prone to cheating while type- dataset is not. We apply MaxDIRep in three representative
benchmark datasets: the digits dataset (type-1 ), the Office-31 dataset (type-2 ) and Office-Home dataset
(type-2 ). We find that MaxDIRep has a good performance comparable with other adversarial learning based
DA algorithms for the type-1 dataset while it outperforms other methods for the type-2 dataset. We believe
that outside of the setting of benchmarks there are many more type-2 datasets where MaxDIRep has a clear
advantage.

Digits datasets In this experiment, we use three domain adaptation pairs: 1) MNIST → MNIST-M, 2)
Synth Digits → SVHN, and 3) SVHN → MNIST. Example images from all four datasets are provided in
Appendix E. The architecture and hyper-parameter settings are also provided in Appendix E due to a limit
of space. Table 4 shows the results on the digits datasets in the zero-shot setting. We cited the results from
each study to make a fair comparison. We skipped the explicit DDRep because the full MaxDIRep model
performs better. In summary, MaxDIRep outperforms all the other approaches we compared with for all
three DA scenarios.

Office-31 dataset The most commonly used dataset for DA in the context of object classification is
Office-31 (Saenko et al., 2010). The Office dataset has 4110 images from 31 classes in three domains: amazon
(2817 images), webcam (795 images) and dslr (498 images). The three most challenging domain shifts reported
in previous works are dslr to amazon (D → A), webcam to amazon (W → A) and amazon to dslr (A → D).
In D → A and W → A are the cases with the least labels in the source domain.

We follow previous work Tzeng et al. (2017); Chen et al. (2020) which uses a pretrained ResNet-50 on
ImageNet (Deng et al., 2009) as a base. We present the results for four zero-shot adaptation tasks in Table 4.
We used the full MaxDIRep model due to its better performance. In all tasks we studied, MaxDIRep matches
or outperforms all the approaches. Our approach shows the most significant performance improvements in
scenarios such as D → A and W → A, in which background information is present within the D and W
domains, while being absent in the A domain.

Office-Home dataset Office-Home - a more difficult dataset than Office-31, consists of 15,500 images
in 65 object classes, forming four extremely dissimilar domains (see Figure 8 in the Appendix for example
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Table 4: Mean classification accuracy (%) of different adversarial learning based DA approaches on the
digits datasets and Office-31 dataset. The results are cited from each study when available. We present our
DSN replication results on the Office-31 dataset, which had not been evaluated by DSN. A comprehensive
comparison to more baseline approaches on Office-31 can be found in Table 12 in the Appendix.

Methods MNIST to
MNIST-M

Synth Digits
to SVHN

SVHN to
MNIST Methods D → A W → A W → D A → D

Source-only 56.6 86.7 59.2 Source-only 62.5 60.7 98.6 68.9
DANN (Ganin et al., 2016) 76.6 91.0 73.8 DANN (Ganin et al., 2016) 68.2 67.4 99.2 79.7
ADDA (Tzeng et al., 2017) 80.0 - 76.0 ADDA (Tzeng et al., 2017) 69.5 68.9 99.6 77.8
DSN2 (Bousmalis et al., 2016) 80.4 89.0 79.5 DSN (Bousmalis et al., 2016) 67.2 67.5 98.0 82.0
MaxDIRep 82.0 91.2 85.8 MaxDIRep 73.8 72.5 100.0 89.0

Table 5: Averaged accuracy (%) of adversarial learning based DA approaches on the Office-Home dataset.

Methods Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Source-only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN (Long et al., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MaxDIRep 53.5 71.1 78.9 54.9 66.0 68.8 59.5 48.7 78.6 69.5 56.6 80.8 65.6

images): Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images (Rw). We show
all the published foundational results on this data set, and use the same ResNet-50 network with the same
training protocols and the hyperparameters from CDAN (Long et al., 2015). More details can be found in
Appendix G.

Strong results are also achieved on the Office-Home dataset as reported in Table 5 for the full MaxDIRep. In
the evaluation of 12 transfer tasks, MaxDIRep consistently outperformed DANN and CDAN. We are not able
to find published results for ADDA and DSN on this benchmark. The classification accuracy on Office-Home
dataset is lower compared to the Office-31 dataset. The four domains in Office-Home have more categories
and greater visual dissimilarity, making Office-31 easier for domain adaptation.

4.4 Application in Network Intrusion Detection (NID)
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Figure 4: Mean classification accuracy on
UNSW-NB15 test-set in few-shot setting.

We also evaluate MaxDIRep in a non-image classification task,
specifically its application in training network intrusion de-
tectors (NIDs). The NID datasets comprise network features
extracted from both malicious and benign network traffic flows.
A NID detector is then trained on these data to predict whether
an incoming network flow is benign or originates from a net-
work attack. However, most of the data is typically unlabeled
and require domain experts to manually analyze and label the
traffic.

The GAN-based method proposed by Singla et al. (2020)
addresses label scarcity in NID datasets via DA. It transfers
knowledge from a labeled source NID dataset to a target NID
dataset that contains a few labeled samples and many unlabeled
data. These datasets can be created for different network types
using various network protocols. For example, an organization
may use a source dataset with attack samples from their internal
WiFi network to train a NID model and collect a few attack
samples to create a target dataset for their IoT network.

2We present the results from our replication of DSN using regular MSE loss, which match the values reported in the DSN
paper. However, our attempts to replicate their results using scale-invariant MSE were unsuccessful. Other attempts (fungtion,
2024) at replication were less successful than ours. Nonetheless, comparing results using the same reconstruction loss provides
the most accurate and fair comparison.
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Following their experimental design, we use NSL-KDD (Ahmed et al., 2009) as the source dataset and UNSW-
NB15 (Moustafa & Slay, 2015) as the target dataset. The model is trained in a few-shot setting, utilizing
all labeled source samples and a small amount of labeled target data. We replicate the experimental setup
described in their paper and compare the performance of DANN, DSN, and MaxDIRep, with implementation
details provided in Appendix H. The results are reported in Figure 4 where we provide labels for 50, 100, 200,
300, 500 and 1000 target samples per class (benign and attack) during training. All methods improve with
more target labels, maintaining the performance order: MaxDIRep > DSN > GAN-based > DANN.

5 Discussion, conclusion and future work

What is the intuitive reason for the better performance of MaxDIRep in comparison with previous methods
such as DSN, which shares the basic architecture? Neural networks are “lazy” as they tend to find the easiest
solution (Chizat et al., 2020). Without the discriminator, the generator would be forced by the classifier to
put the simplest information in DIRep to train the classifier for the source data, e.g., the snowy background
in pictures of wolf or the “cheating” bit in our synthetic Fashion-MNIST dataset. Such a source-only classifier
performs poorly in the target domain as expected. A discriminator was introduced in previous methods,
such as DSN, to solve this problem. However, as shown in this paper, having a discriminator is not enough.
Specifically, the generator can evade the discriminator by generating random (spurious) information in the
DIRep for the target data that has the same distribution as the source data but no correlation with the target
label. An extreme case corresponds to the scenario where the DIRep contains only the correct labels for
source data and random labels for target data; and the DDRep contains the rest of the information needed
for reconstruction. This extreme case scenario leads to a poor solution, which is not prevented in the DSN
algorithm due to its weak orthogonality constraint. On the contrary, our algorithm MaxDIRep with its new
loss function to minimize the DDRep rules out such poor solutions, and it creates a maximal DIRep that is
critical for good DA performance.

The general intuition described above is verified by using ablation experiments for a synthetic data set
and making a geometrical analogy. Indeed, by creating a maximal DIRep that contains genuine domain-
independent information, MaxDIRep performs better than previous methods across all the standard benchmark
datasets we tested. The hidden information effect is more likely to appear in complex datasets, e.g., we
see more of its impact in CIFAR than in Fashion-MNIST. The hidden information effect is also likely to
appear when there is a drift in data, making classification more difficult. We adapt MaxDIRep and DSN for
network intrusion detection using source and target datasets from different networks with significant data
drift. MaxDIRep consistently outperforms both previous results and DSN.

Pseudo labelling is a very powerful technique that focuses on the use of pseudo-labels to provide noisy but
sufficiently accurate labels for target data with which to progressively update the model (Chen et al., 2020;
Zou et al., 2018). Although the use of pseudo labels is not considered in this work, it would be interesting
to adopt this technique in our model as future work. Since the initial estimate of the target label based on
MaxDIRep is better than other algorithms, it is reasonable to expect that the more accurate initiation of
pseudo labelling, facilitated by our loss functions, should further improve the DA performance.
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A More details on loss functions

Our code is available at (https://anonymous.4open.science/r/Maximal-Domain-Independent-Representations-
Improve-Transfer-Learning-A422/README.md).

We provide the details of all the loss functions mentioned in Section 3 of the main paper. Recall that the data
is given by (x, l, d) where x is the input with xs and xt representing the source and target data, respectively.
l is the label of the sample, and d is the domain identity.

In unsupervised domain adaptation, the classification loss applies only to the source domain and it is defined
as follows:

Lc = −
Ns∑
i=1

ls
i · logl̂s

i (3)

where Ns represents the number of samples from the source domain, ls
i is the one-hot encoding of the label

for the source input xs
i and l̂s

i is the softmax output of C(G(xs
i )).

The discriminator loss trains the discriminator to predict whether the DIRep is generated from the source
or the target domain. Nt represents the number of samples from target domain and d̂i is the output of
D(G(xi)).

Ld = −
Ns+Nt∑

i=1

{
dilogd̂i + (1 − di)log(1 − d̂i)

}
(4)
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The generator loss is the GAN loss with inverted domain truth labels:

Lg = −
Ns+Nt∑

i=1

{
(1 − di)logd̂i + dilog(1 − d̂i)

}
(5)

For the reconstruction loss, we use the standard mean squared error loss calculated from both domains:

Lr =
Ns∑
i

||xs
i − x̂s

i ||22 +
Nt∑
i

||xt
i − x̂t

i||22 (6)

where x̂s
i = F (G(xs

i ), E(xs
i )) and x̂t

i = F (G(xt
i), E(xt

i))

Finally, the KL-divergence loss measures the distance between the distribution of DDRep which comes from
a Gaussian with mean E(DDRep) and variance V(DDRep) and the standard normal distribution.

Lkl = DKL(Pr(DDRep) ∥ N (0 , I )) = −1
2(1 + log[V(DDRep)] − V(DDrep) − E(DDRep)2 )

B Experiment details for Fashion-MNIST

B.1 Network architecture

All the methods are trained using the Adam optimizer with the learning rate of 2e − 4 for 10, 000 iterations.
We use batches of 128 samples from each domain for a total of 256 samples. When training with our model
(MaxDIRep), the label prediction pipeline (generator and classifier) has eight fully connected layers (fc1,
. . . , fc7, fc_out). The number of neurons in fc1-4 is 100 for each layer. fc5 is a 100-unit layer that
generates DIRep, followed by two 400-unit layers (fc6-7). fc_out is the output layer for label prediction.
The discriminator and decoder each have four layers with 400 hidden units and followed by the domain
prediction layer and reconstruction layer, respectively. The encoder has two layers with 400 units, followed
by 100-unit z_mean, 100-unit z_variance, and sampling layer. Each of the 400-unit layers uses a ReLU
activation function.

All the other models have the same architecture as MaxDIRep when applicable. For the GAN-based approach
and DANN, we turn off the decoder and corresponding losses. For the DSN, we keep the same network
architecture for common networks and use Lg for the similarity loss. Furthermore, we implement the shared
and private encoders with same shape output vectors (Bousmalis et al., 2016).

B.2 Hyperparameters

As suggested in previous work Ganin et al. (2016), the coefficient of the loss, which encourages domain
invariant representation, should be initialized as 0 and changed to 1. We use the following schedule for the
coefficient of Lg in all the experiments where t is the training iteration:

λ = 2
1 + exp(−t) − 1 (7)

The increasing coefficient allows the discriminator to be less sensitive to noisy signals at the early stages of
the training procedure. For other hyperparameters, we used β = 0.1, γ = 0.15, µ = 0.1 (the hyperparameters
were not tuned using validation samples).

We closely follow the setup of weights of the loss functions used in the DSN paper Bousmalis et al. (2016)
and DANN paper Ganin et al. (2016). To boost the performance of DSN, we set the coefficient of Lrecon to
0.15 and the coefficient of Ldiff to 0.05, tuned parameter values determined by Bousmalis et al. (2016) using
a validation set of target labels. To make fair comparison, we use the same schedule for the coefficient of Lg

and set the coefficient of Lc to 0.1 in DSN.
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B.3 Results and analysis.

Table 6 summarizes the mean classification accuracy of different approaches for three cheating scenarios.
In the no cheating scenario, we use the original Fashion-MNIST as source and flip the Fashion-MNIST for
the target. We report the z-score of the comparison of the mean classification accuracy of our method with
the mean classification accuracy of other methods over five independent runs (see Table 7). The higher the
z-score, the more statistical confidence we should have that our method outperforms the other methods. A
z-score of 2.33 corresponds to 99% confidence that our method is superior, assuming that the accuracy over
different runs will follow a Gaussian distribution.

Table 6: Mean classification accuracy (%) of different adversarial learning based DA approaches for the
constructed Fashion-MNIST datasets.

Model No
cheating

Shift
cheating

Random
cheating

Source-only 20.0 11.7 13.8
GAN-based Singla et al. (2020) 64.7 58.2 54.8
DANN Ganin et al. (2016) 63.7 58.0 53.6
DSN Bousmalis et al. (2016) 66.8 63.6 57.1
MaxDIRep 66.9 66.8 61.6
Target-only 88.1 99.8 87.9

Table 7: Z-test score value comparing MaxDIRep to other models for constructed Fashion-MNIST. z>2.3
means the probability of MaxDIRep being no better is ≤0.01.

Model No
cheating

Shift
cheating

Random
cheating

GAN-based Singla et al. (2020) 1.55 3.28 3.68
DANN Ganin et al. (2016) 2.26 4.17 4.33
DSN Bousmalis et al. (2016) 0.16 2.60 3.18

In the no cheating scenario, MaxDIRep outperforms GAN-based and DANN and matches the result of DSN.
The performance of GAN-based and DANN results in a 5% accuracy drop for the shift cheating and 10% drop
for the random cheating. This validates our concern: the source cheating bits can be picked up in the DIRep
as they represent an easy solution for the classifier that is trained only with source samples. If that is the
case, then the cheating generator would perform poorly for the target domain, which has different cheating
bits. Our method has only 0.1% and 5% accuracy drop respectively. As a reconstruction-based method, DSN
performs better in the presence of cheating bits. In the shift and random cheating, our approach significantly
outperforms DSN with a z-score of 2.60 and 3.18 respectively, which shows the correctness of our intuition
that penalizing the size of DDRep can result in transferring as much information as possible to the DIRep.
In the explicit DDRep algorithm, the DDRep is minimal as it only contains the domain label. Given a richer
DIRep, our method improves DA performance on the target data.

C Loss values in the mutual ablation study

We provide the details of the loss values in the mutual ablation experiment in Section 4.2. Table 8 shows the
effect of KL loss for DIRep λpLDI

kl to DSN’s loss functions. Table 9 shows the effect of the inverse difference
loss −λpLdiff to MaxDIRep’s loss functions. We made the following observations:

• From both tables, we do not observe any significant increase in other loss values compared to the
regular DSN (line 6 in Table 8) and MaxDIRep (line 11 in Table 9).

• When we reduce the DIRep during DSN training, Ldiff is always 0, which implies that DDRep and
DIRep maintain orthogonality.
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• Ldiff loss is always zero in Table 9. This implies the orthogonality between DIRep and DDRep in
MaxDIRep.

• In lines 2 and 3, the KL losses on DIRep are significantly larger than what we see in lines 4 and 5. If
we look at Table 3 in the main text, 2 and 3 also achieve much better domain adaptation, which
shows that a DIRep with more information improves DA performance.

Table 8: Effect of KL loss for DIRep λpLDI
kl to DSN’s loss functions. The loss values reported here are the

average of the data from both the source and the target.

No cheating Shift cheating Random cheating
Methods LDI

kl Lrecon Ldiff LDI
kl Lrecon Ldiff LDI

kl Lrecon Ldiff

2. DSN + λpLDI
kl (λp = 0.001) 29.7 0.04 0 19.7 0.04 0 25.8 0.05 0

3. DSN* from 2 41.5 0.04 0 48.6 0.04 0 30.6 0.05 0
4. DSN + λpLDI

kl (λp = 0.1) 1.725 0.05 0 1.65 0.05 0 2.04 0.06 0
5. DSN* from 4 16 0.05 0 14.3 0.04 0 11.9 0.06 0
6. DSN N/A 0.04 0 N/A 0.04 0 N/A 0.05 0

Table 9: Effect of the inverse difference loss −λpLdiff to MaxDIRep’s loss functions. The loss values reported
here are the average of the data from both the source and the target.

No cheating Shift cheating Random cheating
Methods Lkl Lrecon Ldiff Lkl Lrecon Ldiff Lkl Lrecon Ldiff

7. MaxDIRep −λpLdiff (λp = 0.001) 0 0.07 0 0 0.07 0 0 0.07 0
8. MaxDIRep* from 7 0 0.07 0 0 0.07 0 0 0.07 0
9.MaxDIRep −λpLdiff (λp = 0.1) 0 0.07 0 0 0.07 0 0 0.07 0
10. MaxDIRep* from 9 0 0.07 0 0 0.07 0 0 0.07 0
11. MaxDIRep 0 0.07 N/A 0 0.07 N/A 0 0.07 N/A

D Experiment details for CIFAR-10

The source set with cheating color planes is constructed as follows. First, we encode labels in CIFAR-10
with values between 0 and 9. Then for each CIFAR-10 image, if its label is odd, we keep only the B channel
with prob p, and randomly keep the B or the R channel for the rest. Similarly, if the label is even, with
prob p, the image has only the R color channel, and either the R or B channel is kept for the rest. For
example, when p = 1, all images with odd labels have only the B channel and all images with even labels
have only the R channel. We call p the bias since it controls the strength of the spurious correlation between
the color of the image and its label. In the target domain, for each CIFAR-10 image we keep only the G
channel regardless of the label. We compare our approach and the others with p taking values from the set
{0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0}. A larger value of p indicates a higher level of spurious correlation in the source
data and thus a more challenging DA task.

In this “cheating-color-plane” setting, the GAN-like algorithms might cheat by leveraging the correlation
between the presence or absence of the color planes and the label of the image to create an easier classification
scheme for the labeled source data. Consequently, the DIRep would include false cheating clues which can
degrade performance for the target data where the cheating clues lead to the wrong answer.

D.1 Network architecture and training procedure

When training with our approach, we implement the network components as deep residual neural networks
(ResNets) with short-cut connections (He et al., 2016). ResNets are easier to optimize, and sometimes gain
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Figure 5: CIFAR-10 training architecture; inspired by the classical ResNet-20 He et al. (2016)

accuracy from increased depth. For our approach, we implemented the full-fledged MaxDIRep and we added
the domain label to the DDRep generated by the encoder. The architecture is shown in Figure 5. The label
prediction pipeline is adopted from the ResNet 20 for CIFAR-10 in He et al. (2016). For the generator, the
first layer is 3 × 3 convolutions. Then we use a stack of 6 layers with 3 × 3 convolutions on the feature maps
of size 32. The numbers of filters are 16. The architecture of the classifier consists of a stack of 6 × 2 layers
with 3 × 3 convolutions on the feature maps of sizes {16, 8} respectively. To maintain the network complexity,
the number of filters are {32, 64}. The classifier ends with a global average pooling, and a fully-connected
layer with softmax.

For the discriminator, the network inputs are 32 × 32 × 16 domain invariant features. The first layer is 3 × 3
convolutions. Then we use a stack of 6 × 3 layers with 3 × 3 convolutions on the feature maps of sizes 32, 16,
and 8 respectively, with 6 layers for each feature map size. The numbers of filters is {16, 32, 64} respectively.
The discriminator ends with a global average pooling, a 2-way fully-connected layer, and softmax.

The encoder has 4 convolutional layers: three 3 × 3 filters, two 3 × 3 filters, two 3 × 3 filters (z mean) and two
3 × 3 filters (z variance) respectively. A sampling layer is also implemented which outputs the DDRep from
the latent distribution z. The decoder learns to reconstruct an input image by using its DIRep and DDRep
together. Hence, the inputs of the decoder are 32 × 32 × 18 concatenated representations. The configuration
of the decoder is the inverse of that of the generator.

We implemented the same ResNet-based architecture for all other approaches (when applicable). We use a
weight decay of 0.0001 and adopt the BN Ioffe & Szegedy (2015) for all the experiments. We use the same
schedule in Section B.2 for the coefficient of Lg in all the experiments. For other hyperparameters, we used
β = 1, γ = 1, µ = 1/2000 in MaxDIrep and set the coefficient of Lrecon to 0.15, the coefficient of Ldiff to 0.05,
and the coefficient of Lc to 1 in DSN.

D.2 Results and analysis

We report the mean accuracy of different DA methods and our approach on the target test set in Table 10.
The z-scores of comparing our method with other methods are shown in Table 11.

For all the DA tasks with varying biases, we observe that our approach outperforms the other approaches
in terms of accuracy in the target set. This improvement is most pronounced when the source set has 60%
and 80% bias levels, which means that over half of the source data has a spurious correlation between their
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Table 10: Averaged classification accuracy (%) of different adversarial learning based DA approaches for
constructed CIFAR-10 dataset with a spectrum of bias.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
Source-only 10.0 10.0 10.0 10.0 10.0 10.0 10.0
GAN-based Singla et al. (2020) 63.0 62.5 61.4 56.9 53.2 44.5 30.1
DANN Ganin et al. (2016) 62.7 62.0 61.0 56.5 52.2 42.9 29.1
DSN Bousmalis et al. (2016) 68.7 67.9 67.3 67.5 64.5 61.7 32.2
MaxDIRep 70.4 69.8 69.8 69.7 68.2 64.1 34.2
Target-only 78.9 78.9 78.9 78.9 78.9 78.9 78.9

Table 11: z-test score value comparing MaxDIRep to other models for constructed CIFAR-10. z>2.3 means
the probability of MaxDIRep being no better than the other models is ≤0.01.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
GAN-based Singla et al. (2020) 5.23 3.20 5.93 12.8 11.31 7.20 4.58
DANN Ganin et al. (2016) 5.44 3.42 6.22 13.2 12.02 7.79 5.70
DSN Bousmalis et al. (2016) 2.68 3.00 3.95 3.47 7.43 3.78 2.23

color planes and labels. The poor performance of the GAN-based and DANN approaches is another example
where the generator in these approaches learns a DIRep that depends on the spurious correlation. This false
representation leads to an issue similar to over-fitting where the model performs well on the source data,
but does not generalize well on the target data in which the same correlation does not exist. In the DSN
approach, the shared representation contains some domain-independent information other than the cheating
clues which helps classification in the target domain.

D.3 Few-shot domain adaptation

As an additional experiment, we also evaluated the proposed algorithm for few-shot DA on the constructed
CIFAR-10 datasets. The model is provided with a majority of unlabeled target data and a small amount of
labeled target data. In our setting, we revealed 1, 5, 10, 20, 50 and 100 samples per class which we then used
for contributing to the classification loss through the label prediction pipeline. We also provided the same
number of labels for the GAN-based and DSN method. We skipped the DANN method since its performance
is very similar to the GAN-based approach. More importantly, we ask the following question: How much
does each algorithm gain from a small labeled target training set for different biases? The classification loss
on the target ensures that the generator does not get away with learning a DIRep that contains only the
cheating clue, which could bias the model during training and cause a high classification loss.

We select four most representative biases and show the results in Figure 6. For 40%, 60% and 80% biases,
the classification accuracy does improve, but not significantly as the number of target labels increases. The
performance order of MaxDIRep > DSN > GAN-based is preserved. When the bias is equal to 100%, the
performance curves are quite different. All of them increase significantly with the number of target labels,
while the order of performance is preserved. While all three algorithms benefit from a small number of target
labeled samples, MaxDIRep improves the most, surpassing DNS and GAN-based results by 12% and 25%
respectively with only a total of 50 target labels (note that it corresponds to 5 labels/class in Figure 6).

E SVHN, MNIST, MNIST-M and Synth Digits

We evaluate the empirical performance of MaxDIRep on four widely used domain adaptation benchmarks:
MNIST LeCun et al. (1998), MNIST-M Ganin et al. (2016), Street View House Number Netzer et al. (2011)
and synthetic digits Ganin et al. (2016). We use three domain adaptation pairs: 1) MNIST → MNIST-M, 2)
Synth Digits → SVHN, and 3) SVHN → MNIST. Example images from all four datasets are provided in
Figure 7. We implement our CNN topology based on the ones used in (Bousmalis et al., 2016) and (Ganin
et al., 2016). We used Adam with the learning rate of 0.0002 for 25, 000 iterations. The batch size is 128 for
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Figure 6: Mean classification accuracy on CIFAR-10 with few-shot setting for three different DA algorithms.
Overall, a few target labels improve classification accuracy. The improvement is significant in 100% bias
setting.

Source: MNIST

Target: MNIST-M

Source: Synth Digits

Target: SVHN

Source: SVHN

Target: MNIST

Figure 7: Example images from four domain adaptation benchmark datasets for three scenarios.

each domain. We did not use validation samples to tune hyperparameters. To make fair comparisons, we
follow the instructions in Bousmalis et al. (2016) and activate the Lg after 20,000 steps of training. For other
hyperparameters, we used β = 1, γ = 1, and µ = 1.

MNIST to MNIST-M. We use the MNIST dataset as the source domain, and a variation of MNIST
called MNIST-M as the target. MNIST-M was created by blending digits from the original MNIST set over
patches randomly extracted from color photos from BSDS500 Arbelaez et al. (2010).

Synthetic Digits to SVHN. This scenario is widely used to demonstrate the effectiveness of the algorithm
when training on synthetic data and testing on real data. We use synthetic digits as the source and Street-View
House Number data set SVHN as the target.

SVHN to MNIST. In this experiment, we further increase the gap between the two domains. The digit
shapes in SVHN are quite distinct from those handwritten digits in MNIST. Furthermore, SVHN contains
significant image noise, such as multiple digits in one image and blurry background.

F Office-31 dataset

Office-31 dataset comprises three distinct domains: Amazon, DSLR, and Webcam. Example images from all
four datasets are provided in Figure 8. We opted to utilize the ResNet-50 architecture pretrained on the
ImageNet dataset as the generator, following a common approach in recent domain adaptation studies Tzeng
et al. (2017); Chen et al. (2020). This choice allowed us to leverage the knowledge gained from ImageNet’s
large-scale dataset and apply it to our specific domain adaptation task. We used Adam with the learning rate
of 0.0002. The batch size is 16 for each domain. We did not use validation samples to tune hyperparameters
and set them to be the same values as in previous works (Bousmalis et al., 2016; Ganin et al., 2016) when
available. We used λ = 0.1, β = 1, γ = 0.05, and µ = 1/2000.

We present the full comparison to a number of recent results on Office-31 in Table 12. MaxDIRep is competitive
on this adaptation task, matching the performance of Long et al. (2018) in A → D and W → D, and
outperforming all the approaches in all other tasks. However, it’s worth noting that Long et al. (2018) utilizes
a conditional discriminator conditioned on the cross covariance of domain-specific feature representations and
classifier predictions, which has the potential to further enhance our results. We will leave exploring this
possibility for future work.
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Figure 8: Example images from different domains in Office-31 and Office-Home.

Table 12: Mean classification accuracy (%) of different DA approaches on the Office dataset.

Model D → A W → A W → D A → D

Source-only 62.5 60.7 98.6 68.9
DANN Ganin et al. (2016) 68.2 67.4 99.2 79.7
ADDA Tzeng et al. (2017) 69.5 68.9 99.6 77.8
CDAN Long et al. (2018) 70.1 68.0 100.0 89.8
GTA Sankaranarayanan et al. (2018) 72.8 71.4 99.9 87.7
SimNet Pinheiro (2018) 73.4 71.8 99.7 85.3
AFN Xu et al. (2019) 69.8 69.7 99.8 87.7
Chadha et al. Chadha & Andreopoulos (2019) 62.2 - - 80.9
IFDAN-1 Deng et al. (2021) 69.2 69.4 99.8 80.1
DSN Bousmalis et al. (2016) 67.2 67.5 98.0 82.0
MaxDIRep 73.8 72.5 100.0 89.0

G Office-Home dataset

Office-Home dataset comprises four extremely dissimilar domains: Artistic images, Clip Art, Product images,
and Real-World images. Example images from all four datasets are provided in Figure 8. We follow the
standard protocols for unsupervised domain adaptation (Long et al., 2018; Bousmalis et al., 2016). Similar to
the setup in Office-31, we opted to utilize the ResNet-50 architecture pretrained on the ImageNet dataset as
the generator. We used Adam with the learning rate of 0.0002. The batch size is 16 for each domain. We set
the hyper parameters to be the same as the ones used in (Long et al., 2018; Bousmalis et al., 2016): we
activate the domain adaptation loss after 25 epochs of training and set λ = 0.1 after 25 epochs. We use
β = 1, γ = 0.05, µ = 1/2000.

H Network intrusion detecton dataset

For this evaluation, we use NSL-KDD as the source dataset and UNSW-NB15 as the target dataset. We
remove the specific categories of attacks from the datasets and model this as a binary classification problem,
i.e. predicting whether the current record belongs to the attack or benign category. Since the source and
target dataset have different number of features, we apply PCA to both dataset to transform them into
datasets with 100 features each before training.

We use the same network topologies for MaxDIRep and all other approaches mentioned in Appendix B.1. All
the methods are trained using the Adam optimizer with the learning rate of 2e − 4 for 10, 000 iterations. We
use batches of 128 samples from each domain for a total of 256 samples. We directly used the reported result
from Singla et al. (2020) for GAN-based method.
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In order to avoid noises during the early stages of training, we activate the domain adaptation loss after 5000
epochs of training and set λ = 0.1 for the remaining training steps. For other hyper-parameters, we used
β = 1, γ = 0.1 and µ = 1/2000 (the hyperparameters were not tuned using validation samples).

To make fair comparison with DSN, we set the coefficient of Lrecon to 0.1 and the coefficient of Ldiff to 0.001.
We use the same schedule for the coefficient of Lg and set the coefficient of Lc to 1 in DSN. For DANN, We
use the same schedule for the domain adaptation loss and set the coefficient of Lc to 1.

I The geometrical interpretation of MaxDIRep versus DSN

To gain intuition for the difference between DSN and MaxDIRep, we looked at a 3-D geometrical interpretation
of representation decomposition as shown in Figure 2 in the main text. Here, we show that all points on the
blue circle satisfy the orthogonal condition, i.e., DID ⊥ DDS,T

D .
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𝑆 𝐷𝐼! : DIRep in MaxDIRep
𝐷𝐼": DIRep in DSN

𝑆: source data
𝑇: target data

origin 𝑂 𝑉
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𝜃

ℬ𝒜

Figure 9: Schematic comparison between DSN and MaxDIRep.

The source and target data are represented by two vectors S = #   ‰

OS, T = #    ‰

OT where O is the origin as shown
in Figure 9. We assume the source and target vectors have equal amplitude | #   ‰

OS| = | #    ‰

OT |. Let us define the
plane that passes through the triangle O − S − T as plane-A (the gray plane in Figure 9). The mid-point
between S and T is denoted as V . Let us draw another plane (the blue plane-B) that passes through the line
OV and is perpendicular to the plane-A. The blue circle is on the blue plane-B with a diameter given by
OV . Denote an arbitrary point on the blue circle as D with the angle ∠DVO = θ. Let us define the plane
that passes through the triangle D − S − T as plane-C (not shown in Figure 9).

Since the blue plane-B is the middle plane separating S and T, we have ST ⊥ OV and ST ⊥ DV (note that
XY represents the line between the two points X and Y ). Therefore, the line ST is perpendicular to the
whole plane-B: ST ⊥ B, which means that ST is perpendicular to any line on plane-B. Since the line DV is
on the plane-B, we have OD ⊥ ST . Since OV is a diameter of the blue circle, we have OD ⊥ DV . Since DV
and ST span the plane-C, we have OD is perpendicular to the whole plane-C: OD ⊥ C, which means that
OD is perpendicular (orthogonal) to any line on plane-C including DS and DT . Therefore, we have proved:
OD ⊥ DS, OD ⊥ DT .

Note that with the notation given here we can express the DIRep and DDRep for MaxDIRep (V) and DSN
(D) as:

DIV = #    ‰

OV , DDS
V = #   ‰VS , DDT

V = #    ‰VT .

DID = #    ‰OD, DDS
D = #   ‰DS , DDT

D = #    ‰

DT.

Since we have proved that OD ⊥ DS, OD ⊥ DT for any point D on the blue circle, this means that any
point on the blue circle satisfies the orthogonality constraint DID ⊥ DDS,T

D .

In MaxDIRep, the size of DDRep’s, i.e.,

||S − DI || + ||T − DI || = (|| #   ‰VS ||2 + || #    ‰

DV ||2 )1/2 + (|| #    ‰VT ||2 + || #    ‰

DV ||2 )1/2
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is minimized leading to an unique solution DIV shown as the red dot (point V ) in Figure 9, which satisfies
the orthogonality constraint (DIV ⊥ DDS,T

V ) as it is on the blue circle. More importantly, the MaxDIRep
solution is unique as it maximizes the DIRep (||DIV || ≥ ||DID||). This can be seen easily as follows. Given
the angle ∠DVO = θ, we have ||DID|| = ||DIV || sin θ ≤ ||DIV ||.
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