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Abstract001

Recent researches on video large language mod-002
els (VideoLLM) predominantly focus on model003
architectures and training datasets, leaving the004
interaction format between the user and the005
model under-explored. In existing works, users006
often interact with VideoLLMs by using the007
entire video and a query as input, after which008
the model generates a response. This interac-009
tion format constrains the application of Vide-010
oLLMs in scenarios such as live-streaming011
comprehension where videos do not end and012
responses are required in a real-time manner,013
and also results in unsatisfactory performance014
on time-sensitive tasks that requires localizing015
video segments. In this paper, we focus on a016
video-text duet interaction format. This interac-017
tion format is characterized by the continuous018
playback of the video, and both the user and the019
model can insert their text messages at any po-020
sition during the video playback. When a text021
message ends, the video continues to play, akin022
to the alternative of two performers in a duet.023
We construct MMDuetIT, a video-text training024
dataset designed to adapt VideoLLMs to video-025
text duet interaction format. We also intro-026
duce the Multi-Answer Grounded Video Ques-027
tion Answering (MAGQA) task to benchmark028
the real-time response ability of VideoLLMs.029
Trained on MMDuetIT, MMDuet demonstrates030
that adopting the video-text duet interaction031
format enables the model to achieve significant032
improvements in various time-sensitive tasks033
(76% CIDEr on YouCook2 dense video cap-034
tioning, 90% mAP on QVHighlights highlight035
detection and 25% R@0.5 on Charades-STA036
temporal video grounding) with minimal train-037
ing efforts, and also enable VideoLLMs to reply038
in a real-time manner as the video plays.039

1 Introduction040

Videos are becoming an increasingly important041

medium to acquire information on a daily basis.042

Powered by recent advancements in large language043

models (LLMs) (Touvron et al., 2023; Jiang et al., 044

2023; Shao et al., 2024; Dubey et al., 2024; Yang 045

et al., 2024) and vision encoders (Radford et al., 046

2021; Zhai et al., 2023; Sun et al., 2023; Oquab 047

et al., 2023; Wang et al., 2024b), several video 048

large language models (VideoLLM) (Li et al., 2023; 049

Liu et al., 2024; Li et al., 2024b,a; Zhang et al., 050

2024b; Wang et al., 2024d) have already demon- 051

strated strong abilities for holding conversations 052

and answering questions about videos. A common 053

feature of these models is using visual encoders to 054

encode all frames sampled from the entire video 055

at first, and integrate them into text input by con- 056

catenating them to input embeddings or using cross 057

attention. 058

Recent research on VideoLLMs has primarily 059

concentrated on model architectures and training 060

datasets, with limited exploration of the interac- 061

tion format between the user and the model. In this 062

paper, the “interaction format” of VideoLLMs com- 063

prises the following two aspects: (1) a chat tem- 064

plate used to convert input sources, e.g., video, user 065

text query, and model response, into a sequence of 066

tokens; (2) a turn-taking rule organizing inputs of 067

different sources to finalize an interaction format. 068

For example, for most existing VideoLLMs, the 069

interaction format is: (1) for the chat template, the 070

model uses (frames sampled from) the full video 071

and a text query as input, and then outputs a re- 072

sponse; (2) for the turn-taking rule, usually the 073

model is permitted to take its turn to generate a 074

response when both the whole video content and 075

user query have ended, e.g., when an <eos> token 076

is explicitly provided. We refer to this traditional 077

interaction method as “whole video” in the rest of 078

this paper. 079

However, this all-along used whole video inter- 080

action has the following two defects, which hinder 081

the performance and real-world usage scenarios of 082

VideoLLMs: Firstly, it does not admit timely inter- 083

actions. As the video is often input as a whole, this 084
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Figure 1: An example of the common Whole Video Interaction Format and our Video-Text Duet Interaction Format.

limits its usage in more scenarios like live broad-085

casts or surveillance videos, in which the video086

does not end at a specific time. Even if we can seg-087

ment the video into multiple fixed-length clips for088

input, the model still cannot generate responses in089

a real-time manner when necessary, as it does not090

know whether it is feasible and appropriate to reply091

at the end of this clip. Secondly, it performs un-092

favorably on time-sensitive video comprehension093

tasks. In this paper we use “time-sensitive tasks”094

to refer to tasks in which the model is required095

to provide responses that include specific times in096

the video, such as temporal video grounding (Kr-097

ishna et al., 2017; Gao et al., 2017; Hendricks et al.,098

2017), video highlight detection (Lei et al., 2021),099

dense video captioning (Zhou et al., 2017; Krishna100

et al., 2017), grounded video question answering101

(Xiao et al., 2023), etc.102

In this work, we formalize the Video-Text Duet103

Interaction Format, an interaction method that aims104

to enhance VideoLLMs by addressing the afore-105

mentioned issues. An illustration of the whole106

video interaction format and the video-text duet107

interaction format is shown in Fig. 1. With our108

video-text duet interaction format, the video is con-109

tinuously played and input to the model frame-by-110

frame. Both the user and model can insert their text111

messages right after any frame during the video112

play. When a dialogue turn from either the user113

or the model ends, the video stream can have the114

floor and input video frames to the model until an-115

other turn is started by either the user or the model,116

akin to the show of two performers in a duet. This117

improves the timeliness of interaction and better118

suits real-world applications such as live-streaming119

or surveillance video comprehension. Moreover,120

by inserting responses to the video where is most121

relevant, the model can learn to generate responses122

by referencing a smaller but fine-grained fraction 123

of the video before this position. In this man- 124

ner, it facilitates information retrieval to describe 125

lengthy videos, as well as enables a response to 126

be “grounded” at the targeted position of the video. 127

We believe this design contributes to addressing 128

the above discussed issues of existing whole video 129

VideoLLMs. 130

To prove the effectiveness of the video-text duet 131

interaction format, we construct MMDuetIT, a 132

dataset to facilitate the training of a versatile Vide- 133

oLLM following the video-text duet interaction for- 134

mat. We propose Multi-Answer Video Grounded 135

QA (MAGQA), a novel task that requires the 136

model to generate answers at appropriate times- 137

pans in a real-time manner to align with potential 138

applications of live-streaming video comprehen- 139

sion. We also train MMDuet, a VideoLLM that 140

implements our proposed video-text duet interac- 141

tion format. Initialized with LLaVA-OneVision (Li 142

et al., 2024a) and trained with MMDuetIT at a low 143

cost, MMDuet achieves significant performance 144

improvement in various time-sensitive tasks, and is 145

able to generate responses in real-time as the video 146

plays. 147

2 Related Works 148

The advancement of large language models (LLMs) 149

and visual encoders has led to numerous efforts on 150

their integration, aiming to utilize the powerful 151

understanding and generation abilities of existing 152

LLMs for video-related tasks (Li et al., 2023; Liu 153

et al., 2024; Li et al., 2024b,a; Wang et al., 2024d; 154

Xu et al., 2023). These models exhibit a decent 155

ability of video understanding such as captioning 156

or summarizing (Xu et al., 2023). However, their 157

performance on time-sensitive tasks is still unsatis- 158

factory. 159

2



Recent works attempt to empower VideoLLMs160

with the ability to localize and represent segments161

in videos, and thus achieve better performance on162

tasks like temporal video grounding or dense video163

captioning. These works explore new ways on164

how to easily represent video clips with texts, such165

as second numbers of timestamp (TimeChat (Ren166

et al., 2023)), timeline percentage (VTimeLLM167

(Huang et al., 2023)) or using special textual to-168

kens (VTG-LLM (Guo et al., 2024), Grounded-169

VideoLLM (Wang et al., 2024a)). However, their170

performance has not been satisfactory yet, possibly171

due to LLMs’ limited ability to accurately count172

and generate numbers (Schwartz et al., 2024) to173

localize each video frame. To alleviate this is-174

sue, HawkEye (Wang et al., 2024c) uses a coarse-175

grained method by referring to a larger fraction of176

the video, but it requires multiple rounds of recur-177

sive grounding to precisely locate a segment and178

may not express multiple segments at a time.179

The work most similar to our motivation is180

VideoLLM-Online (Chen et al., 2024), which pro-181

poses a framework named LIVE for training Vide-182

oLLMs to interrupt video streams and insert re-183

sponses. However, they only finetune a model on184

Ego4D (Grauman et al., 2021) and COIN (Tang185

et al., 2019) to demonstrate the LIVE training and186

inference, and do not explore on how the model187

capabilities vary with this new type of interac-188

tion, especially the zero-shot performance on time-189

sensitive tasks.190

Our work differs from VideoLLM-Online at:191

Firstly, providing a more general description of192

the video-text dual interaction format, including a193

wider variety of criteria for determining whether a194

response should be generated, and its application195

on new tasks such as temporal video grounding and196

grounded question answering; Secondly, introduc-197

ing a new dataset MMDuetIT and the method on198

building such datasets; Thirdly, proposing a new199

task MAGQA; Lastly, proposing a more power-200

ful model MMDuet that has state-of-the-art per-201

formance on various time-sensitive tasks and zero-202

shot generalization ability.203

3 The Video-Text Duet Interaction204

Format205

In Section 1, we have defined the concept of “inter-206

action format” with two aspects (i.e., chat template207

& turn-taking rule), as well as the drawbacks of208

the commonly-used whole video interaction format.209

Now we re-emphasize and formalize our video- 210

text duet interaction format, which is completely 211

different from previous to implement VideoLLMs. 212

(1) For the chat template, inspired by but dif- 213

ferent from the LIVE framework which is used to 214

implement VideoLLM-Online (Chen et al., 2024), 215

we consider the video stream as a conversation par- 216

ticipant just like the role of user/assistant, and the 217

input sequence consists of alternating turns among 218

these three roles. (2) For the turn-taking rule, when 219

the turn of the user or assistant ends, the video 220

stream can take the floor and start its turn to input 221

video frames. When each single frame is consumed, 222

both the user and the assistant role can interrupt the 223

video stream at any time, and start its own turn to 224

query or generate a response, as totally decided by 225

the user or the assistant, respectively. 226

4 MMDuet: Our Proposed VideoLLM 227

4.1 Model Structure 228

We propose MMDuet, a model trained following 229

the video-text duet interaction format, which can 230

thus autonomously decide at what position in the 231

video to generate what response. Like almost all 232

existing VideoLLMs, MMDuet consists of three 233

components: 1) a visual encoder that encodes sam- 234

pled frames from the video to visual feature, 2) 235

a linear projector that transforms the encoded vi- 236

sual feature to a list of visual tokens that is aligned 237

into the LLM textual embedding space, and 3) a 238

transformer-decoder-based LLM that takes both 239

textual and visual tokens as input and uses its lan- 240

guage modeling head to predict the next token. 241

The only difference in model structure between 242

our MMDuet and existing VideoLLMs is that we 243

add two more heads in addition to the language 244

modeling head (LM Head) of the LLM, namely 245

the informative head and the relevance head, for 246

determining whether to start a response after each 247

frame. Each head is a linear layer and has a weight 248

with shape h× 2, where h is the hidden size of the 249

used LLM. Each head takes the final layer hidden 250

state of the last visual token of each frame as input, 251

and performs a binary classification. To be specific, 252

1) the informative head is designed to predict how 253

much new information is acquired upon viewing 254

the current frame. If the model can obtain a “sig- 255

nificant amount” of new information upon viewing 256

a new frame (which we will further discuss in Sec- 257

tion 5.1), it should classify this frame as TRUE cat- 258

egory; otherwise, it should classify it as FALSE. 2) 259
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The relevance head is designed to predict whether260

the current frame is related to the user query. Sim-261

ilarly, TRUE category means to be related, while262

FALSE means not. We denote the probability of263

TRUE category of informative head and relevance264

head as informative score and relevance score for265

each sampled video frame. These two scores will266

be used to decide whether the model (i.e., assistant267

role) should interrupt the video and start its own268

turn. Compared with VideoLLM-Online (Chen269

et al., 2024) that makes this decision by predicting270

one special token using the LM Head, our design271

has the following merits: (1) The ground truth la-272

bels of informative scores and related scores are273

acquired based on the characteristic of the video274

itself, rather than on ad-hoc response decisions.275

Therefore, there are better labels for models to con-276

verge during training. (2) By combining two scores277

we can flexibly set different criteria for response278

generation, rather than only relying on the logits of279

one special token; (3) The relevance head can be280

used to precisely perform temporal video ground-281

ing and highlight detection tasks, expanding the282

application scenarios of MMDuet.283

4.2 Inference Procedure284

When consuming every single sampled frame of285

the video, we first check if there is a user query286

happening at this time. If yes, we first input this287

user turn to the model. Then the sampled frame288

is input to the model, after which the informative289

score and relevance score are calculated. We use a290

function need_response to estimate whether the291

model should generate an assistant response ac-292

cording to the informative scores and relevance293

scores for this frame along with previous frames. If294

yes, the generate function of the LLM outputs a295

response. Different need_response functions can296

be designed depending on the specific task, which297

is introduced in the experiment section (Section 6).298

This process can be efficiently implemented by up-299

dating the KV Cache each time when a frame or300

text is input or generated, and a python-style sudo301

code is provided in Appendix B.3.302

5 MMDuetIT: Dataset for Training303

MMDuet304

We build MMDuetIT, a dataset for training the MM-305

Duet model to learn to calculate the informative and306

relevance scores, and autonomously output replies307

at any necessary time in the play of the video. MM-308

0s 1s
segment start

segment end
5s

segment 50%
3s

segment 75%
4s

2s

6s

A lady in a green 

dress stands in 

the office and …

0 0 0 0 1

1 0 0

① insert response

② set label for informative head

Informative Label:

4s

Figure 2: Example of reformatting the annotation of a
video segment to video-text duet interaction format in
MMDuetIT. Information from the original annotation is
emphasized with underlines.

DuetIT is composed of three different types of tasks 309

that benefit our model training: dense captioning, 310

multi-answer grounded video question answering, 311

and temporal video grounding. An example of the 312

input format for each task is listed in Appendix D. 313

5.1 Dense Captioning 314

We use Shot2Story (Han et al., 2023), a video-text 315

dataset with segment-level captions, as our dense 316

captioning training data. Specifically, we use the 317

43k human-annotated subset due to its high-quality 318

and detailed annotations. We preprocess the data 319

to serve our purposes, and an illustration of refor- 320

matting the video segment and caption annotations 321

to video-text duet interaction format is in Fig. 2: 322

we randomly sample a position from 50% to 75% 323

time duration for the corresponding video segment, 324

and insert the caption at that position as a model 325

response. We also create labels for the informa- 326

tive head in dense captioning tasks by setting the 327

informative head’s label to TRUE for frames be- 328

tween 50% of this segment and the insertion point 329

of the response, and set labels to FALSE for the 330

other frames. To adapt to long video input, we also 331

select videos with 2 to 4 minutes in length from 332

COIN (Tang et al., 2019) as a dense captioning 333

task to MMDuetIT. The annotations in COIN are 334

reformatted using the same method as Shot2Story. 335

For more details about this data reformat process 336

please refer to Appendix B.1. 337

5.2 Multi-Answer Grounded Video QA 338

An important application scenario for the video- 339

text duet interaction format is multi-answer 340

grounded video question-answering (MAGQA). 341

Consider when we are watching a live broadcast 342

of a basketball game and want to track the actions 343
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of a particular player in the game. This exempli-344

fies a MAGQA task: the question is "What does345

this particular player do in the video?". Each time346

this player performs an action, the model should347

respond with a description of this action (i.e., mul-348

tiple answers) in a real time manner. We believe349

this newly proposed MAGQA task can be widely350

used in real-world scenarios when users interact351

with a live-streaming video.352

We construct training data for this task using353

GPT4o-2024-08-06 (OpenAI, 2024). Given the354

captions of all segments from the video as input,355

GPT4o is prompted to generate a question related356

to one or more captions. For each of the segment357

captions, if it is related to the question, then GPT4o358

should also generate an answer that can be inferred359

from this caption. Otherwise, GPT4o should reply360

with “Not Mentioned.”, and this answer is not361

added to the training data. We use the same inser-362

tion method of dense captioning task as described363

in Section 5.1, to insert the answers into the video364

stream and construct informative head labels, and365

the question is inserted at a random place before the366

first answer. We also use the same insertion method367

to convert the human-annotated Shot2Story test368

set and randomly sampled 2000 examples as the369

test set of our MAGQA benchmark in Section 6.3.370

Therefore, this dataset contains 36834 examples in371

the train set and 2000 examples in the test set, and372

we name it as “Shot2Story-MAGQA-39k”.373

We have manually checked its data quality, and374

details of this process are stated in Appendix A.375

5.3 Temporal Video Grounding376

We also add DiDeMo (Hendricks et al., 2017),377

HiRESTgrounding (Zala et al., 2023) and QuerYD378

(Oncescu et al., 2021), three temporal video ground-379

ing tasks in MMDuetIT. Note that these data are380

used only for training the relevance head, which381

is designed for performing temporal video ground-382

ing tasks and judging the relevance between the383

question and the video for QA tasks. The query is384

first added at the beginning of the input sequence.385

For frames that are annotated as relevant to the386

query, we set the relevance head’s label to TRUE;387

otherwise, we set it to FALSE.388

5.4 Dataset Statistics389

The data distribution of MMDuetIT is shown in390

Fig. 3. Note that this dataset only contains 109k391

examples, which is relatively small compared to392

modern post-training datasets like (Li et al., 2023,393

2024a; Wang et al., 2024c). The reason is that due 394

to computational resource constraints, we plan to 395

demonstrate the feasibility of our proposed video- 396

text duet interaction format by fine-tuning a state- 397

of-the-art VideoLLM. We assume that the used 398

backbone model already possesses enough video 399

comprehension capabilities. By using a small 400

dataset, we aim to train this model to efficiently 401

adopt this new interaction with minimum catas- 402

trophic forgetting of its existing abilities. 403

6 Experiments 404

Implementations MMDuet is initialized with 405

LLaVA-OneVision (Li et al., 2024a). We train the 406

model on MMDuetIT for one epoch. The training 407

takes about one day on a node with 8 Tesla V100 408

GPUs, and the inference runs on 1 Tesla V100 409

GPU. More implementation details are listed in 410

Appendix B.2. 411

Baselines As MMDuet mainly focuses on time- 412

sensitive video tasks, we use the following base- 413

lines that are able to represent time spans in videos 414

by different representation formats: TimeChat (Ren 415

et al., 2023), VTimeLLM (7B) (Huang et al., 2023), 416

HawkEye (Wang et al., 2024c), VTG-LLM (Guo 417

et al., 2024), and VideoLLM-Online (Chen et al., 418

2024). For VideoLLM-Online, we experimented 419

with θ ∈ {0.5, 0.6, 0.7, 0.8} as suggested in their 420

paper and report the best results (0.8 for both dense 421

video captioning and MAGQA). 422

Since the initialization of MMDuet is stronger 423

than that of the baselines, for a fair comparison we 424

also conduct a controlled experiment in which the 425

only difference is the interaction format. Specifi- 426

cally, we use the same initialization model (LLaVA- 427

OneVision), training data (MMDuetIT) and train- 428

ing schedule, but reformat the data to the respective 429

interaction formats and video segment representa- 430

tion formats used by TimeChat and VTimeLLM to 431

train two baseline models. We name these models 432

as LLaVA-OV-TC and LLaVA-OV-VT. 433

6.1 Highlight Detection and Temporal Video 434

Grounding 435

We use highlight detection and temporal video 436

grounding to evaluate the performance of the rel- 437

evance head of MMDuet. Baseline models are 438

required to generate a list of float numbers to repre- 439

sent the relevance score for each clip in QVHigh- 440

lights (Lei et al., 2021), and a start and end time for 441

the relevant video span in Charades-STA. However, 442
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Figure 3: Data Distribution of
MMDuetIT.

QVHighlights Charades-STA YouCook2
mAP/HIT@1 R@IoU=0.5/0.7 SODAc/CIDEr/F1

Video-LLaMA 11.3/15.6 2.7/1.2 0.0/0.0/0.1
VideoChat-Embed 13.1/18.1 3.2/1.4 0.2/0.6/3.4

VideoChatGPT - 7.7/1.7 -
TimeChat 14.5/23.9 32.2/13.4 1.2/3.4/12.6

VTimeLLM - 31.2/11.4 -
HawkEye - 31.4/14.5 -

VTG-LLM 16.5/33.5 33.8/15.7 1.5/5.0/17.5
VideoLLM-Online - - 0.4/0.9/5.8

LLaVA-OV-TC 17.6/32.9 33.1/12.4 1.9/3.3/21.8
LLaVA-OV-VT 19.0/40.0 36.5/12.3 2.5/6.7/14.0
MMDuet (Ours) 31.3/49.6 42.4/18.0 2.4/5.7/19.2
+ rm. prev. resp. - - 2.9/8.8/21.7

Table 1: Zero-shot performance on highlight detection, temporal video ground-
ing, and dense video captioning. All models uses 7B LLMs.

for LLaVA-OV-TC and LLaVA-OV-VT, despite us-443

ing different prompts as input, we were still unable444

to instruct the model to output a sequence of scores445

as in (Ren et al., 2023). Therefore, we follow the446

method of Charades-STA to instruct the model to447

output a related span, and assign the score to 1 for448

clips within this span and 0 otherwise. MMDuet449

uses the relevance score min-max normalized to450

[0, 1] as the score in QVHighlights, and to clas-451

sify whether this frame is relevant and calculate452

frame-level IoU in Charades-STA.453

Since the relevance head provides a relevance454

score immediately after each frame, its prediction455

cannot leverage the context from subsequent video456

frames. To mitigate this limitation, we smooth457

the relevance score sequence. Specifically, we set458

each frame’s smoothed relevance score as the mean459

value of its original score, the relevance scores460

of the preceding w frames and the following w461

frames, where w is the window size. We set w = 2462

for QVHighlights and w = 6 for Charades-STA.463

Results are shown in Table 1. We observe that,464

compared to the baselines, MMDuet exhibits a sig-465

nificantly greater improvement in performance on466

QVHighlights. This indicates that traditional Vide-467

oLLMs struggle with generating a long sequence468

of relevance scores using a text-based form or iden-469

tifying multiple related video segments in its text-470

based responses, whereas MMDuet’s approach of471

directly assigning relevance scores to each frame472

circumvents this issue. For VideoLLM-Online, we473

instruct it to reply with “start” / “end” at the start /474

end time of the target clip following the examples475

given in its paper but it does not follow the instruc-476

tions despite trying different wordings, so we are477

not able to report its performance.478

w is robust to different values Though the w 479

is empirically set for the results in Table 1, we 480

also find that within a fairly large range of w, the 481

performance of MMDuet is robust and consistently 482

outperforms all baseline models. Detailed results 483

are listed in Appendix C.1. 484

6.2 Dense Video Captioning 485

We test dense video captioning performance on 486

YouCook2 (Zhou et al., 2017), a challenging task 487

that requires models to output the caption, start 488

point and end point for about 8 steps in a minutes- 489

long cooking video. Baseline models output the 490

start time, end time and caption for each step in the 491

text-based form. For MMDuet, since this task re- 492

quires the model to continuously identify important 493

actions from the video and output periodically, we 494

employ a heuristic method to determine whether a 495

model response should be output after each frame 496

(need_response function in Section 4.2). We sum 497

up the informative score for each frame as the video 498

plays. When the sum reaches a threshold s (we set 499

s = 2), the model generates a response right after 500

this frame as the caption for that step, and then we 501

reset the sum to 0 to start a new round of sum. 502

However, MMDuet cannot directly predict when 503

a step starts or ends just by this video-text duet 504

interaction format, as the model is unable to deter- 505

mine whether a frame is the beginning of a step 506

without observing enough subsequent content. To 507

get the start and end time for each step as required 508

by this task, we adopt a simple workaround: we use 509

the time of the previous response and the current 510

response as the start time and end time for a step. 511

If two adjacent steps have the same caption, we 512

merge them into one step. This workaround is also 513

applied on VideoLLM-Online. 514
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It has been a long-lasting problem that LLMs515

tend to repeat previously-generated content (Xu516

et al., 2022), and we find that this problem is espe-517

cially severe in dense video captioning. It indicates518

that VideoLLMs are probably generating captions519

relying on text shortcuts rather than the video con-520

tent. We have attempted common solutions such521

as repetition penalty (Keskar et al., 2019), which522

though is still sub-optimal. Since the responses523

from MMDuet are separated across multiple turns,524

we find that simply removing previously generated525

turns from the context (“rm. prev. resp.” for short)526

by not appending their attention keys and values527

to the KV Cache alleviates this issue, leading to a528

significant improvement in performance. However,529

this simple trick is not applicable to “whole-video”530

format baselines, as if the latest words are removed531

from the KV Cache, it will remain the same as be-532

fore generating the latest words and the model will533

generate the same words again, despite some minor534

changes due to random sampling. In contrast, for535

MMDuet new video contents continuously bring536

new KV Cache and drive the conversation forward.537

As shown in Table 1, MMDuet does not show538

significant improvements on F1 metric, likely due539

to the simple solution we use to derive the start540

and end time based on responses. Even so, the541

CIDEr and CODA_c metric (inaccurate predicted542

time spans can have negative effects on these met-543

rics) of MMDuet is still higher than all baselines,544

indicating that MMDuet outperforms baselines in545

terms of text quality, possibly due to its facilitation546

to information retrieval discussed in Section 1.547

s is robust to different values We also find that548

the threshold s is quite robust across a wide range549

of from 1 to 3, and we can use different s to suit var-550

ious downstream tasks especially in such zero-shot551

setting. Detailed results are listed in Appendix C.1.552

6.3 Multi-Answer Grounded Video QA553

To align closely with the widely-used stream-554

ing video comprehension scenario, we propose555

MAGQA that requires a model to generate answers556

at multiple necessary positions of a video. Different557

from conventional Video QA in which one ques-558

tion corresponds to only one answer, In MAGQA, a559

question corresponds to multiple turns of answers,560

and these turns are derived from different video seg-561

ments. Therefore, this task requires the response to562

be accurate and in time.563

As this task is a newly-proposed one, we intro-564

duce an “in-span score” metric, which uses LLMs 565

to calculate the average similarity of pred answers 566

and gold answers that falls into the same time span 567

of response, to evaluate both the correctness and 568

timeliness of model responses. A detailed descrip- 569

tion of this metric is in Appendix B.5. To prevent 570

reproducibility issues due to potential changes of 571

OpenAI API, besides GPT-4o-2024-08-06 (Ope- 572

nAI, 2024), we also report the in-span score ob- 573

tained using LLaMA 3.1 70B Instruct (Dubey et al., 574

2024) to calculate pred-gold similarities. 575

As MAGQA requires the answers to be both 576

informative and related to the question, we set 577

need_response as: if the sum of informative score 578

and relevance score of a frame is larger than a 579

threshold t, then the model needs to generate a 580

response right after this frame. We also use the 581

“rm. prev. resp.” method in dense video captioning 582

task introduced in Section 6.2. As baseline models 583

are not capable of generating responses at specific 584

positions in the video, we employ an output format 585

the same as dense video captioning, i.e., output the 586

start time, end time, and predicted text for each 587

turn after watching the entire video in both training 588

and testing, and use the average of the start and end 589

time as the response time. We also observe that 590

for some cases the baseline models directly give 591

one answer instead of generating multiple replies 592

and their corresponding time spans, and we do 593

not count these examples into the metrics when 594

reporting results. Note that this is a significantly 595

simplified requirement than that of MMDuet, as 596

the MAGQA task simulates streaming video com- 597

prehension application scenario, which requires 598

the model to respond as soon as the video plays to 599

segments relevant to the question, which ensures 600

that users can see the responses timely, rather than 601

waiting until the entire video concludes before gen- 602

erating replies. 603

MMDuet has better performance than baselines 604

and provides real-time replies. Results on the 605

test set of Shot2story-MAGQA-39k are shown in 606

the lelf half of Table 2. We provide results for 607

different t as it represents a trade-off between in- 608

ference time and performance: as t decreases from 609

0.6 to 0.3, the performance of MMDuet’s real-time 610

replies continuously rises and outperforms base- 611

lines with a simplified setting of providing non- 612

real-time replies after watching the entire video. 613

However, this is achieved at a cost of generating 614

lots of duplicate replies with more inference time. 615
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Model Real-
Time?

original test set 5-time prolonged video test set
In-Span Score
LLaMA/GPT

# turns (w/o.
/ w/. dedup)

time per
example

In-Span Score
LLaMA/GPT

# turns (w/o.
/ w/. dedup)

time per
example

Baselines
LLaVA-OV-TC 2718 2.77/2.64 4.1/2.2 1.00 1.67/1.62 7.6/2.4 1.00
LLaVA-OV-VT 2718 2.54/2.42 4.1/3.1 1.06 1.64/1.60 10.2/3.4 0.99

VideoLLM-Online 2714 1.33/1.26 1.3/1.1 0.44∗ - - -
MMDuet (Ours)

t = 0.6 2714 2.46/2.33 13.7/4.0 1.90 1.83/1.73 22.3/7.0 1.04
t = 0.5 2714 2.77/2.61 18.4/5.3 2.36 2.16/2.02 31.2/9.8 1.45
t = 0.4 2714 3.00/2.81 23.0/6.6 2.75 2.44/2.28 41.7/13.0 2.17
t = 0.3 2714 3.13/2.93 27.0/7.6 2.90 2.63/2.45 52.8/16.5 2.62

Table 2: Results on the test set of Shot2Story-MAGQA-39k with the rm. ass. turns method used. For the “time per
example” column, the time used by “LLaVA-OV-VT” is set to 1, and the times for other rows are set as multiples of
the time used by “LLaVA-OV-TC”. ∗: Inference time of VideoLLM-Online is changed to gray and de-emphasized
as it only generates one reply immediately after the question and is hardly helpful for answering the question, and
thus we no longer evaluate it on the 5-times prolonged video test set.

Model Acc
Flash-VStream 1.96
VLLM-Online 3.92

Dispider 25.34
MMDuet 29.44

Table 3: Performance on
the Proactive Output task
of StreamingBench.

Model YouCook2
MMDuet 2.9/8.8/21.7
w/o rand.
resp. pos. 2.1/7.3/19.0

w/o multi
informative 2.9/8.0/16.5

Table 4: Ablation study on
training methods.

MMDuet performs much better than baselines616

on longer videos. Since the average video length617

of the test set of Shot2story-MAGQA-39k is only618

16.9 seconds, to demonstrate MMDuet ’s real-time619

QA capabilities on longer videos we use a sim-620

ple approach to make videos in the test set longer:621

we splice the video with 4 other videos randomly622

selected from the test set in random order to pro-623

long the video to approximately 5 times longer by624

padding with videos irrelevant to the question. Re-625

sults on the prolonged videos are shown in the right626

half of Table 2. When the videos are long, it be-627

comes harder for baseline models to output correct628

time spans for the answers which results in low629

in-span scores, while MMDuet is more likely to630

generate correct answers at the right time.631

6.4 Proactive Output on StreamingBench632

To further demonstrate the timeliness of the replies633

of MMDuet, we also report results on the Proactive634

Output task of StreamingBench (Lin et al., 2024).635

A question is considered as correctly answered if636

the reply time is within two seconds when a cer-637

tain scene that contains the answer appears. Re-638

sults in Table 3 show that MMDuet outperforms639

all Streaming or Proactive MLLMs (Zhang et al.,640

2024a; Chen et al., 2024; Qian et al., 2025). Refer 641

to Appendix C.2 for more details and baselines. 642

6.5 Ablation Studies 643

We conduct ablation studies on YouCook2 dense 644

video captioning to assess two empirical yet impor- 645

tant findings for effectively training the informative 646

head in data construction: randomly inserting the 647

response at a position from 50% to 75% of the 648

corresponding video segment (rand. resp. pos.), 649

and setting informative head’s label to TRUE for 650

all frames between 50% of the segment and the re- 651

sponse time (multi informative). When “rand. resp. 652

pos.” is disabled, the response is always inserted 653

at the end of the corresponding segment. When 654

“multi informative” is disabled, only the informa- 655

tive label of the frame right before the response is 656

set as TRUE. As illustrated in Table 4, disabling 657

either method negatively impact MMDuet’s perfor- 658

mance, which shows the importance of carefully 659

handling the response time and informative labels. 660

7 Conclusions 661

In this paper, we first formalize the video-text duet 662

interaction format. We collect MMDuetIT for train- 663

ing models to follow the video-text duet interaction 664

format. Based on MMDuetIT we train MMDuet, 665

a model with significant improvements on various 666

time-sensitive tasks and is able to automatically 667

decide when to response in a real-time manner. We 668

believe such improvements can be a substantial 669

step towards building powerful and useful video 670

comprehension applications. 671
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Limitations672

We acknowledge that there is much room for im-673

provement which should be addressed in future674

research: (1) Some hyperparameters (e.g., the675

need_response criterion) are required during in-676

ference. However, we have shown that this criterion677

is quite robust across different thresholds. (2) Infor-678

mation from subsequent frames is not incorporated679

when generating in-time responses for the current680

frame, especially for the live-streaming video that681

indeed has unpredictable future frames. It can be682

crucial in some scenarios, such as determining the683

start of an action. (3) Slow inference speed. A684

better inference process is needed for avoid gener-685

ating duplicate responses. (4) Real-time response686

datasets with longer live-streaming videos are re-687

quired to be collected to better fit the real-world688

application scenarios.689
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to benchmark models. The reason for the high qual-1133

ity is when the video captions are provided, gen-1134

erating questions and answers based on these text1135

captions is a very simple task for advanced LLMs1136

like GPT4o. However, we also find that in 21 exam-1137

ples, the video contains additional information that1138

is not covered in the answers. This is because some1139

questions are very general, like "What scene is the1140

video displaying?", and describing scenes in videos1141

elaborately has been a long-lasting challenge for1142

annotating video datasets.1143

B Details of Training and Inference1144

B.1 Data Reformat Process of MMDuetIT1145

In Section 5.1 we briefly introduced how the anno-1146

tations for offline dense captioning / QA are con-1147

verted into image-text interleave interactive format1148

for training MMDuet. Here we elaborate more1149

details and the reasons of this design:1150

Choices of insertion We randomly sample a po-1151

sition from 50% to 75% time duration for the cor-1152

responding video segment, and insert the caption1153

at that position as a model response. Here we in-1154

troduce some randomness in the insertion position1155

to prevent the model from developing a bias or a1156

shortcut such as responses can only be generated at1157

some specific positions. The earliest and latest time1158

for inserting responses, i.e., at the 50% and 75%1159

place of segment duration, are empirically chosen,1160

as it works well in our preliminary study. We avoid1161

inserting responses too early like in the first half1162

of duration, because it is unfeasible to generate1163

responses related to this video segment at a very1164

starting point. It is reasonable that some further1165

observations are required to gain a more compre-1166

hensive understanding of it. We also avoid inserting1167

responses too late like in the last one-fourth dura-1168

tion, as we hope the model to output a response1169

as soon as it has a sufficient understanding of the1170

segment, rather than wait until the disappearance1171

of the segment. It thereby improves the timeliness1172

of the whole interaction between users and videos,1173

especially when the user can still watch the seg-1174

ment as well as perceive the content of the model1175

response talking about it.1176

Creating informative labels We also create la-1177

bels for the informative head in dense captioning1178

tasks. According to the previous paragraph, the1179

model can not have a comprehensive understand-1180

ing of this video segment until it has viewed a1181

sufficient portion of the segment (50% in this case). 1182

Meanwhile, once the caption has been generated 1183

as model response, we assume that the remaining 1184

frames in this video segment no longer provide 1185

new information that is not covered in the caption. 1186

Therefore, we set the informative head’s label to 1187

TRUE for frames between 50% of this segment and 1188

the insertion point of the response, and set labels 1189

to FALSE for the other frames. 1190

B.2 Training Hyperparameters 1191

LLaVA-OneVision uses SigLIP-Large (Zhai et al., 1192

2023) as the vision encoder, and converts an im- 1193

age with 384 × 384 into 24 × 24 = 576 tokens. 1194

In the official settings of LLaVA-OneVision (Li 1195

et al., 2024a), when encoding videos, the visual 1196

tokens corresponding to each frame are spatially 1197

downsampled to 12 × 12 = 144 tokens using a 1198

pooling operation with a size of 2. However, this 1199

number of tokens is also too large when training 1200

and inference with long videos. To address this, we 1201

further modified the pooling size to 4, resulting in 1202

7× 7 = 49 tokens per frame. 1203

We set the maximum number of frames sam- 1204

pled from each video to 120 in the training pro- 1205

cess, which is constrained by the memory of our 1206

GPUs. The sampling frame rates are set to differ- 1207

ent numbers for different video sources to ensure 1208

that for the vast majority (>90%) of videos, video 1209

length (in seconds) ÷ sampled frame per second 1210

(fps) ≤ 120. For the videos that are too long, we 1211

only keep the first 120 frames (and the conversation 1212

turns that are inserted within the first 120 frames), 1213

and discard the subsequent contents. Specifically, 1214

the sampled frame per second (fps) is set as: 2 1215

for videos from Shot2Story (Han et al., 2023) and 1216

DiDeMo (Hendricks et al., 2017), 0.5 for COIN 1217

(Tang et al., 2019) and QueryD (Oncescu et al., 1218

2021), and 0.33 for HiRESTgrounding (Zala et al., 1219

2023). 1220

The projector, the relevance head, the informa- 1221

tive head and LoRA (Hu et al., 2022) weights of 1222

the LLM (add to all attention proj. layers and FFN 1223

layers) are trained, while other parameters of the 1224

model are frozen. More training hyperparameters 1225

are listed in Table 5. 1226

B.3 Pseudo Code of the Inference Process 1227

We provide a python-style pseudo code of the in- 1228

ference process in Listing 1. 1229
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1 # Input:
2 # system_prompt
3 # video: list of frames
4 # fps: frames per second to sample

from video
5 # user_turns: list of (time , text)

sorted by time
6 # Output:
7 # model_turns: generated list of (

time , text)
8
9 model_turns = []

10 v_inf_list , v_rel_list = [], []
11 kv_cache = model(system_prompt)
12 time = 0
13 for frame in video:
14 if len(user_turns) and time >=

user_turns [0]. time:
15 kv_cache = model(kv_cache ,

user_turns [0]. text)
16 user_turns = user_turns [1:]
17 kv_cache , v_inf , v_rel = model(

kv_cache , frame)
18 v_inf_list.append(v_inf) #

informative score
19 v_rel_list.append(v_rel) #

relevance score
20 if need_response(v_inf_list ,

v_rel_list):
21 kv_cache , response = model.

generate(kv_cache)
22 model_turns.append ((time ,

response))
23 time += 1 / fps

Listing 1: Inference Process of MMDuet

B.4 Inference Settings1230

Videos from different sources are also sampled1231

with different fps during inference. Specifically,1232

we set the maximum number of frames sampled1233

from each video to 400, and fps to 2 for videos1234

from Shot2Story (Han et al., 2023) and Charades-1235

STA (Gao et al., 2017), 1 for videos from QVHigh-1236

lights (Lei et al., 2021), and 0.5 for videos from1237

YouCook2 (Zhou et al., 2017). For a few videos in1238

YouCook2 that are even longer than 400(frames)÷1239

0.5(fps) = 800 seconds, we uniformly sample 4001240

frames from this video to ensure that information1241

from the latter part of the video is not truncated.1242

This inference setting is consistent across MMDuet,1243

LLaVA-OV-TC, and LLaVA-OV-VT.1244

B.5 Details of the In-Span Score1245

Suppose the model prediction has P answers, each1246

answer has a prediction time timep and prediction1247

text predp, p = 1, 2, . . . , P . The ground truth has1248

Q answers, each answer has a ground truth start1249

time startq, a ground truth end time endq, and a1250

ground truth text goldq, q = 1, 2, . . . , Q. First, we1251

Hyper-parameter value
batch_size 1

gradient_acc_steps 8
learning_rate 2e-5
warmup_ratio 0.05

lora_r 16
lora_alpha 32

attn_implementation sdpa

Table 5: Hyper-parameters used for training MMDuet.
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Figure 4: Performance on temporal video grounding
and highlight detection with different w.

use an LLM to calculate a relevance score from 1252

1 to 5 between each answer in prediction predp 1253

and ground truth goldq: S = {sp,q} ∈ RP×Q. 1254

For each ground truth answer q, we select the pre- 1255

dicted answers with predicted time in ground truth 1256

time span: Pq = {p | timep ∈ [startq, endq]}, 1257

and use the average score between the ground 1258

truth answer and the selected predicted answers 1259

as the score for this ground truth answer: scoreq = 1260
1

|Pq |
∑

p∈Pq
sp,q if |Pq| > 0. If |Pq| = 0 (no 1261

predicted answer falls in this ground truth span), 1262

scoreq is set to 1. Finally, we calculate the aver- 1263

age score of all ground truth answers as the final 1264

in-span score of this example: in_span_score = 1265
1
|Q|

∑|Q|
q=1 scoreq. 1266

C More Experimental Results 1267

C.1 Hyperparameter Sensitivity 1268

We list the experiments using different window size 1269

w for temporal grounding in Fig. 4 and threshold s 1270

for dense captioning in Fig. 5. 1271

C.2 Details of the Proactive Output 1272

Experiment 1273

More results and baselines are listed in Table 6. For 1274

results of models without streaming abilities (Pro- 1275

prietary MLLMs & Open-Sourced VideoLLMs), 1276
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Model Acc Model Acc
Proprietary MLLMs

Gemini 1.5 pro 45.10 GPT-4o 56.86
Claude 3.5 Sonnet 64.71
Open-Sourced VideoLLMs

LLaVA-OV 29.55 Qwen2-VL 22.73
MiniCPM-V 2.6 22.22 LLaVA-NeXT-Video 18.18

InternVL2 40.91 LongVA 15.91
Streaming MLLMs

Flash-VStream 1.96 VideoLLM-Online 3.92
Dispider 25.34

MMDuet t = 0.3 29.44 MMDuet t = 0.4 31.85
MMDuet t = 0.5 26.61 MMDuet t = 0.6 18.95

Table 6: Performance of more baselines and MMDuet
on the Proactive Output task of StreamingBench with
different t.

we follow the evaluation method of (Lin et al.,1277

2024) and (Qian et al., 2025): We gradually ex-1278

tend the input video one second at a time and ask1279

the model with the question “Is it the right time1280

to output?”. If the model responds with “Yes.”,1281

this moment is recorded as the predicted output1282

timestamp. For MMDuet, we use the time of the1283

first reply after the user question is input as the pre-1284

dicted output timestamp. For examples that MM-1285

Duet does not provide any reply at all, we consider1286

them as failing cases and the difference between1287

ground truth output time and predicted output time1288

is recorded as +∞.1289

D Example Inputs for Each Task in1290

MMDuetIT1291

Example inputs for each task for training and infer-1292

ence are listed in Table 7. The dense video caption-1293

ing user input is selected from one of the following1294

sentences:1295
1296

Please concisely narrate the video in real time.1297
Help me to illustrate my view in short.1298
Please simply describe what do you see.1299
Continuously answer what you observed with simple text.1300
Do concise real-time narration.1301

Hey assistant, do you know the current video content? Reply 1302
me concisely. 1303
Simply interpret the scene for me. 1304
What can you tell me about? Be concise. 1305
Use simple text to explain what is shown in front of me. 1306

What is the action now? Please response in short. 1307

1308

The temporal video grounding user input is se- 1309

lected from one of the following sentences (where 1310

“%s” denotes the caption to localize): 1311
1312

%s What segment of the video addresses the topic ’%s’? 1313
At what timestamp can I find information about ’%s’ in the 1314
video? 1315
Can you highlight the section of the video that pertains to 1316
’%s’? 1317
Which moments in the video discuss ’%s’ in detail? 1318
Identify the parts that mention ’%s’. 1319
Where in the video is ’%s’ demonstrated or explained? 1320
What parts are relevant to the concept of ’%s’? 1321
Which clips in the video relate to the query ’%s’? 1322
Can you point out the video segments that cover ’%s’? 1323

What are the key timestamps in the video for the topic ’%s’? 1324

1325

E Qualitative Study 1326

We list some examples of dense video captioning 1327

on videos with several minutes in length and con- 1328

tains many actions in Figs. 6 to 8, and examples of 1329

multi-answer grounding video question answering 1330

(MAGQA) in Figs. 9 to 11. For LLaVA-OV-TC 1331

and LLaVA-OV-VT, we directly list their generated 1332

outputs. For MMDuet, we list the numerical order 1333

(in round brackets), time (in square brackets) and 1334

content (in the second line) for each turn. If a line 1335

contains multiple numerical orders and times, this 1336

indicates that these turns have the same content, 1337

which is shown in the following line. To help read- 1338

ers to identify the position of these turns within the 1339

video, we also annotate the numerical order of the 1340

turns at the corresponding timestamps in the video 1341

stream. 1342

When handling long videos for dense video cap- 1343

tioning, baseline models often recall only part of 1344

the video or generate repeated content, failing to 1345

provide a complete description of all steps in the 1346

video. In contrast, MMDuet, due to its ability to 1347

focus only on a small portion of the video content 1348

preceding each generation step and using the “rm. 1349

prev. turns” trick to avoid interference from previ- 1350

ous turns, can provide more accurate and detailed 1351

video descriptions. 1352

For the MAGQA task, due to the relatively short 1353

video length, baseline models can also locate video 1354

segments and answer questions effectively. The 1355
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Dense
Video
Captioning

<im_start>system
A multimodal AI assistant is helping users with some activities. Below is their conversation,
interleaved with the list of video frames received by the assistant. <im_end>
<im_start>user
(A Dense Video Captioning Query)<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
A person pulls a knife from a black bag.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
A man in a hat and red clothes speaks with a dagger, and a tree behind him.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
. . . (More stream and assistant turns)

MAGQA

<im_start>system
A multimodal AI assistant is helping users with some activities. Below is their conversation,
interleaved with the list of video frames received by the assistant. <im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>user
What happens during the basketball game?<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
Several players in white jerseys are celebrating by high-fiving each other.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
<im_start>assistant
A player in a white jersey makes a successful shot.<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>
. . . (More stream and assistant turns)

Temporal
Video
Grounding

<im_start>system
A multimodal AI assistant is helping users with some activities. Below is their conversation,
interleaved with the list of video frames received by the assistant. <im_end>
<im_start>user
(A Temporal Video Grounding Query)<im_end>
<im_start>stream
<frame><frame><frame> . . . <im_end>

Table 7: Input examples of different tasks during the training and evaluation phase of MMDuet.
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advantage of MMDuet in this task is its ability to1356

provide answers in a real-time manner.1357
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Figure 6: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.

Figure 7: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.
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Figure 8: An example of dense video captioning with MMDuet, LLaVA-OV-TC and LLaVA-OV-VT.
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Figure 9: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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Figure 10: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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Figure 11: An example of multi-answer grounded video question answering with MMDuet, LLaVA-OV-TC and
LLaVA-OV-VT.
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