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Abstract

This work addresses the challenge of causal rep-
resentation learning (CRL) for complex, high-
dimensional, time-varying data. We enhance trans-
parency and confidence in learned causal abstrac-
tions by linking them to observational space. The
existing literature rarely explores the association
between latent causal variables and observed ones,
with only one notable work imposing a simplistic
single-latent-factor decoding constraint. Our ap-
proach, in contrast, allows for a flexible entangling
of latent factors, reflecting the complexity of real-
world datasets. We introduce a structural sparsity
pattern over generative functions and leverage in-
duced grouping structures over observed variables
for better model understanding. Our regulariza-
tion technique, based on sparse subspace clustering
over the Jacobian matrix of the decoder, promotes
the sparsity and readability of model results. We
apply our model to real-world datasets, including
Saint-Gobain purchase data and MIMIC III medi-
cal data.

Introduction: Complex high-dimensional (HD) data is
abundant in many real-world disciplines and has garnered
significant interest, particularly in learning high-level gen-
erative latent factors that are causally related and generate
lower-level observable variables, i.e., causal representation
learning (CRL) Schölkopf et al. [2021]. Efforts have been
directed toward causally disentangling these latent variables,
whether unconditionally or conditionally, on auxiliary vari-
ables like time indices and labels Yao et al. [2022], Koman-
duri et al. [2023], Song et al. [2024]. Text data, images, and
videos have received extensive attention in interpreting the
semantics behind changes in low-level data due to variations
in high-level factors. However, it is a more difficult task with
tabular, HD, and evolving data. For example, retail data on
customer purchases forms an HD vector representing nu-

merous products and their purchase states. In large retail
corporations, this dimension can reach 105, far exceeding
the complexity of datasets like 28x28 video data. Inferring
causal structures in such HD settings is computationally
demanding, making it difficult for experts to inspect causal
edges among thousands of variables over time. Seeking
causal structure on a less granular but more abstract level is
a natural way to circumvent these bottlenecks. However, en-
hancing transparency and understanding of causal models is
crucial for advancing CRL beyond simple academic valida-
tion routines (e.g., relatively simple semi-synthetic datasets),
fostering adoption and confidence among non-experts and
decision-makers.

This work addresses the “so what?” question after per-
forming CRL. This involves effectively conveying CRL
results for HD complex data and enhancing confidence in
learned causal abstractions by transparently relating them
to the highly granular observational space. Our approach
is twofold: First, we apply a structural sparsity constraint
over the decoding function, i.e., the mixing function of la-
tent causal variables that generate the low-level observed
variables corresponding to the input. Results on the iden-
tifiability of the causal variables and the mixing function
will be presented in the workshop. Second, a byproduct of
the enforced sparsity structure between latent and observed
variables is that many observed features relate to one or
a few latent factors, enabling observed features clustering.
We leverage this induced grouping structure to enhance the
model’s transparency by analyzing the content and coher-
ence of the clusters. This process helps relate the groups
of observed variables to known labels unsolicited during
modeling, such as product categories and sub-categories in
purchase behavior.

Technically, we assume an anchor feature property, i.e., each
latent factor has at least two exclusively related observed
features, ensuring the possibility of latent factors mixing
for other observed features. We design a regularization tech-
nique to impose this sparsity constraint over the generative
model by explicitly constraining the Jacobian of the mixing
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function. We leverage sparse subspace clustering Elhami-
far and Vidal [2013] on the Jacobian matrix, enabling the
expression of gradients with respect to anchor features as
linear combinations of gradients from other anchor features
related to the same latent factor. This approach decomposes
the span of Jacobian columns into linear subspaces, allowing
each gradient to be represented sparsely, thereby enforcing
the sparsity constraint.

Related Work: CRL over time-varying data, aiming to un-
derstand the generation mechanism relating latent causal
variables to observed ones, is scarce. One noteworthy paper
is Moran et al. [2021], which implements a Sparse VAE
with a sparsity constraint over the decoder, similar to our
approach. However, this work focuses on static data and
does not learn a causal structure in the latent space. To in-
duce a sparse decoder, they applied a binary mask over the
latent variables before mapping them to the observed space,
assuming a sparse prior over the mask. It is unclear how
such a sparse general prior truly reflects the specific sparsity
constraint, making theoretical assumptions poorly encoded
in the inference method. Other papers, such as Zheng et al.
[2022], Zheng and Zhang [2023], used similar sparsity con-
straints but were mainly concerned with non-linear ICA in
static settings, enforcing the sparsity constraint using either
the L1 norm or a hybrid penalty of L0 and L1. Two im-
portant papers that included CRL and sparsity are worth
mentioning. First, Lachapelle et al. [2022] suggests learning
a causal representation over time-varying data with a sparse
mechanism shift, i.e., a few edges relating past latent repre-
sentations to future ones. However, no sparse mechanism
was applied to the mapping between latent and observed
features. Secondly, the most similar and concurrent work to
ours is Boussard et al. [2023], Brouillard et al. [2024], which
enforced a sparsity constraint over the decoding function
while carrying CRL for time series climate data. Yet, they
supposed the single parent encoding as sparsity constraints,
i.e., for each feature, only one single parent generates it. This
single-parent assumption is very constraining as it doesn’t
allow a mixture of latent factors to generate observed vari-
ables, which could happen when causal relationships among
features in the observed space lead to multiple latent par-
ents. Our work stands out as a generalization since we allow
for multiple parents in the latent space, which is a less re-
strictive and more plausible assumption for various datasets
beyond climatology, typically purchase and medical data.
We also prove the identifiability of the causal variables and
the mixing function under this more general framework.

Modeling: Let xt ∈ Rdx denote the observed vector at time
t, generated from latent factors zt via the function f , i.e.,
xt = f(zt). We briefly describe the latent causal process
(zt)t≥1. For each time step t, the latent factors {zjt }

dz
j=1 are

assumed to be mutually independent given z<t. Each latent
factor is expressed as:

zjt = fi({zk,t−τ |zk,t−τ ∈ Pa(zit), τ = 1, . . . , L}, ϵit) ϵit ∼ pϵi

Pa(zjt ) denotes the latent factors that are parents of the
j-th dimension in zt, i.e., the direct causes, a subset of
dimensions of lagged L factors zt−1, . . . , zt−L.

Sparse subspace clustering relies on the self-expressiveness
property Elhamifar and Vidal [2013], enabling the repre-
sentation of a gradient ∇zfj as a linear combination of
other gradients for j = 1, . . . , dx. Let there be n lin-
ear subspaces (Sl)

n
l=1 of Rdz such that ∇zfj belongs to

their union. Mathematically, we define the Jacobian ma-
trix Jac(f) = [∇zf1, . . . ,∇zfdx ] = [J1, . . . , Jn]P , where
P ∈ Rdx×dx is a permutation matrix. Each Jl represents
a matrix of gradient vectors, with the span of its columns
defining Sl. The self-expressiveness property is expressed
by ∇zfj = Jac(f)C:,j , with Cjj = 0 to eliminate the triv-
ial identity solution. While this expression is generally not
unique, our goal is to choose a solution that enforces spar-
sity in matrix C, with nonzero entries in C:,j s.t when ∇zfj
belongs to an Sl; it can be expressed by gradients from
the same subspace Sl. To achieve this, we can optimize
for each j, min ||C:,j ||1 subject to ∇zfj = Jac(f)C:,j and
Cjj = 0, or with a matrix formulation min ||C||1 subject to
Jac(f) = Jac(f)C and diag(C) = 0.

Alternatively, we can minimize minC ||C||1 + λ||Jac(f)−
Jac(f)C||2F . In the context of CRL with structural con-
straints, the objective function becomes:

min
C,Θ

L(Θ) + ||C||1 + λ||Jac(f)− Jac(f)C||2F

where L(Θ) refers to the main loss of the CRL problem,
typically an ELBO and f ∈ Θ.

We finally link latent factors zt to xt by estimating the
matrix C, which encodes sparsity over Jac(f). Details about
the clustering method and its consequences will be presented
in the workshop.

Experiments and results: Our experiments cover diverse
datasets: real-world data from Saint-Gobain and the MIMIC
III medical data Johnson et al. [2016], alongside semi-
synthetic data. We aim to unveil latent factors driving client
purchases in Saint Gobain and understand vitals in MIMIC
III. We validate our methodology across varied data settings
through synthetic data experiments, ensuring robustness and
generalizability. Results will be presented at the workshop.

Conclusion: Our study delves into CRL and the challenges
of HD data. By analyzing datasets from Saint-Gobain and
MIMIC medical records, we aim to bridge theory with prac-
tical application, fostering transparency and confidence in
causal models by leveraging structural sparsity constraints
faithfully encoded in our work. We aim to further consol-
idate our theory by showing the statistical guarantees for
convergence and consistency.
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