
Under review as submission to TMLR

A Quantitative Approach to Predicting Representational
Learning and Performance in Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

A key property of neural networks (both biological and artificial) is how they learn to
represent and manipulate input information in order to solve a task. Different types of rep-
resentations may be suited to different types of tasks, making identifying and understanding
learned representations a critical part of understanding and designing useful networks. In
this paper, we introduce a new pseudo-kernel based tool for analyzing and predicting learned
representations, based only on the initial conditions of the network and the training cur-
riculum. We validate the method on a simple test case, before demonstrating its use on a
question about the effects of representational learning on sequential single versus concur-
rent multitask performance. We show that our method can be used to predict the effects of
the scale of weight initialization and training curriculum on representational learning and
downstream concurrent multitasking performance.

1 Introduction

One of, if not the, most fundamental question in neural networks research is how representations are formed
through learning. In machine learning, this is important for understanding how to construct systems that
learn more efficiently and generalize more effectively (Bengio et al., 2013; Witty et al., 2021). In cognitive
science and neuroscience, this is important for understanding how people acquire knowledge (Rumelhart
et al., 1993; Rogers & McClelland, 2004; Saxe et al., 2019), and how this impacts the type of processing
(e.g., serial and control-dependent vs. parallel and automatic) used in performing task(s) (Musslick & Cohen,
2021; Musslick et al., 2020). One important focus of recent work has been on the kinds of inductive biases
that influence how learning impacts representations (e.g., weight initialization, regularization in learning
algorithms, etc. (Narkhede et al., 2022; Garg & Liang, 2020)) as well as training curricula (Musslick et al.,
2020; Saglietti et al., 2022). This is frequently studied using numerical methods, by implementing various
architectural or learning biases and then simulating the systems to examine how these impact representational
learning (Caruana, 1997; Musslick et al., 2020). Recently, Sahs et al. (2022) introduced a novel analytic
approach to this problem, which can be used to predict important inductive bias properties from the network’s
initialization. Here we extend this approach by combining it with a neural tangent kernel-based analysis in
order to qualitatively predict the kinds of representations that are learned, and the consequences this has for
processing. We provide an example that uses a neural network model to address how people acquire simple
tasks, and the extent to which this leads to serial, control-dependent versus parallel, automatic processing and
multitasking capability (Musslick et al., 2016; Musslick & Cohen, 2021; Musslick et al., 2020). We expand
upon theoretical results introduced in Sahs et al. (2022), combining them with a neural tangent kernel
analysis (Jacot et al., 2018), which allows for prediction of the inductive bias (and resulting representations
learned by the network and downstream task performance) from the initial conditions of the network and
the training regime. In the remainder of this section, we provide additional background that motivates the
example we use. Then, in the sections that follow, we describe the analysis method, its validation in a
benchmark setting, and the results of applying it to a richer and more complex example.

Shared versus separated representations and flexibility versus efficiency. One of the central findings from
machine learning research using neural networks is that cross-task generalization (sometimes referred to as

1



Under review as submission to TMLR

transfer learning) can be improved by manipulations that promote the learning of shared representations—
that is, representations that capture statistical structure that is shared across tasks (Caruana, 1997; Baxter,
1995; Collobert & Weston, 2008). One way to do so is through the design of appropriate training regimens
and/or learning algorithms (e.g., multi-task learning and/or meta-learning; (Caruana, 1997; Ravi et al.,
2020)). Another is through the initialization of network parameters; for example, it is known that small
random initial weights help promote the learning of shared structure, by forcing the network to start with
what amounts to a common initial representation for all stimuli and tasks and then differentiate the repre-
sentations required for specific tasks and/or stimuli under the pressure of the loss function (Flesch et al.,
2021). Interestingly, while shared representations support better generalization and faster acquisition of
novel but similar tasks, this comes at a cost of parallel processing capacity, a less commonly considered
property of neural networks that determines how many distinct tasks the system can perform at the same
time—that is, its capacity for concurrent multitasking (Feng et al., 2014; Musslick et al., 2016; Petri et al.,
2021b). Note that our use of the term “multitasking” here should not be confused with the term “multi-
task” learning: the former refers to the simultaneous performance of multiple tasks, while the latter refers
to the simultaneous acquisition of multiple tasks. These are in tension: if two tasks share representations,
they risk making conflicting use of them if the tasks are performed at the same time (i.e., within a single
forward-pass); thus, the representations can be used safely only when the tasks are executed serially. This
potential for conflict can be averted if the system uses separate representations for each task, which is less
efficient but allows multiple tasks to be performed in parallel. This tension between shared vs. separated
representations reflects a more general tradeoff between the flexibility afforded by shared representations
(more rapid learning and generalization) but at the expense of serial processing, and the efficiency afforded
by separated, task-dedicated representations (parallel processing; i.e., multitasking) but at the costs of slower
learning and poorer generalization (i.e., greater rigidity; Musslick & Cohen (2021); Musslick et al. (2020)).
While this can be thought of as analogous to the tension between interpreted and compiled procedures in
traditional symbolic computing architectures, it has not (yet) been widely considered within the context of
neural network architectures in machine learning.

Shared versus separated representations and control-dependent versus automatic processing. The tension
between shared and separated representations also relates to a cornerstone of theory in cognitive science:
the classic distinction between control-dependent and automatic processing (Posner & Snyder, 1975; Shiffrin
& Schneider, 1977). The former refers to “intentional,” “top-down,” processes that are assumed to rely
on control for execution (such as mental arithmetic, or searching for a novel object in a visual display),
while the latter refers to processes that occur with less or no reliance on control (from reflexes, such as
scratching an itch, to more sophisticated processes such as recognizing a familiar object or reading a word).
A signature characteristic of control-dependent processes is the small number of such tasks that humans
can perform at the same time—often only one—in contrast to automatic processes that can be performed in
parallel (motor effectors permitting). The serial constraint on control-dependent processing has traditionally
been assumed to reflect limitations in the mechanism(s) responsible for control itself, akin to the limited
capacity imposed by serial processing in the core of a traditional computer (Anderson & Lebiere, 2014;
Pashler, 1994; Posner & Snyder, 1975). However, recent neural network modeling work strongly suggests
an alternative account: that constraints in control-dependent processing reflect the imposition of serial
execution on processes that rely on shared representations (Musslick & Cohen, 2021; Musslick et al., 2020).
That is, constraints associated with control-dependent processing reflect the purpose rather than an intrinsic
limitation of control mechanisms. This helps explain the association of control with flexibility of processing
Cohen (2017); Duncan (2001); Goschke (2000); Kriete et al. (2013); Shiffrin & Schneider (1977); Verguts
(2017): flexibility is afforded by shared representations, which require control to insure they are not subject to
conflicting use by competing processes. It also explains why automaticity—achieved through the development
of task-dedicated representations—takes longer to acquire and leads to less generalizable behavior (Logan,
1997). Together, these explain the canonical trajectory of skill acquisition from dependence on control to
automaticity: When people first learn to perform a novel task (e.g., to type, play an instrument, or drive
a car) they perform it in a serial, control-dependent manner, that precludes multitasking. Presumably this
is because they exploit existing representations that can be “shared” to perform the novel task as soon as
possible, but at the expense of dependence on control. However, with extensive practice, they can achieve
efficient performance through the development of separated, task-dedicated representations that diminish

2



Under review as submission to TMLR

reliance on control and permit performance in parallel with other tasks (i.e., concurrent multitasking; Garner
& Dux (2015); Musslick & Cohen, J. D. (2019)).

These ideas have been quantified in mathematical analyses and neural network models, and fit to a wide
array of findings from over half a century of cognitive science research (Musslick et al., 2020). However, the
specific conditions that predispose to, and regulate the formation of shared versus separated representations
are only qualitatively understood, and theoretical work has been restricted largely to numerical analyses
of learning and processing in neural network models. Some methods have sought to quantify the degree of
representation sharing between two tasks in terms of correlations between activity patterns for individual
tasks (Musslick et al., 2016; 2020; Petri et al., 2021a;b) in order to predict multitasking capability. Other
methods, that quantify the representational manifold of task representations (Bernardi et al., 2020) have
been applied to characterize multitasking capability (Henselman-Petrusek et al., 2019). However, while
these methods provide a snapshot of representation sharing at a given point in training, they do not provide
direct or analytic insight into the dynamics of learning shared versus separated representations, nor how the
inductive bias of a system may affect the representations learned.

In this article, we expand upon the ideas introduced in Sahs et al. (2022) to show how the initial condition
of a network and the training regime to which it will be subjected can predict the implicit bias and thus
the kinds of representations it will learn (e.g., shared vs. separated) and the corresponding patterns of
performance it will exhibit in a given task setting. This offers a new method to analyze how networks can
be optimized to regulate the balance between flexibility and efficiency. The latter promises to have relevance
both for understanding how this is achieved in the human brain, and for the design of more adaptive artificial
agents that can function more effectively in complex and changing environments.

Task structure and network architecture. For the purposes of illustration and analysis, we focus on feedfor-
ward neural networks with three layers of processing units that were trained to perform sets of tasks involving
simple stimulus-response mappings. Each network was comprised of an input layer, subdivided into pools of
units representing inputs along orthogonal stimulus dimensions (e.g., representing colors, shapes, etc.), and
an additional pool used to specify which task to perform. All of the units in the input layer projected to
all of the units in the hidden layer, which all projected to all units in the output layer, with an additional
projection from the task specification input pool to the output layer. The output layer, like the input layer,
was divided into pools of units, in this case representing outputs along orthogonal response dimensions (e.g.,
representing manual, verbal, etc.).

Networks were trained in an environment comprised of several feature groups (e.g., shape, size, etc.) and
response groups (e.g., verbal, manual, etc.) corresponding to the stimulus and response dimensions along
which the pools of input and output units of the networks were organized. Each network was trained to
perform a set of tasks, in which each task was defined by a one-to-one mapping from the inputs in one
pool (i.e., along one stimulus feature dimension) to the outputs in a specified pool (i.e., along one response
dimension), ignoring inputs along all of the other feature dimensions and requiring null outputs along all
of the other response dimensions.1 Training and testing could be performed for one task at a time (“single
task” conditions), by specifying only that task in the task input pool and requiring the correct output
over the task-relevant response dimension and a null response over all others; or with two or more tasks in
combination (“multitasking” conditions), in which the desired tasks were specified over the task input units,
and the network was required to generate correct responses over the relevant response dimensions and null
responses for all others. In all cases, an input was always provided along every stimulus dimension, and the
network had to learn to ignore those that were not relevant for performing the currently specified task(s). In
each case, the question of interest was how initialization and learning impacted the final connection weights
to and from the hidden layer, the corresponding representations the networks used to perform each task,
and the patterns of performance in single task and multitasking conditions. Specifically, we were interested
in the extent to which the networks learned shared versus separated representations for sets of tasks that
shared a common feature dimension; and the extent to which the analytic methods of interest were able
to predict, from the initial conditions and task specifications, the types of representations learned, and the
corresponding patterns of performance (e.g., speed of learning and multitasking capability). We evaluated

1This corresponds to the formal definition of tasks in a task space as described in Musslick et al. (2020).

3



Under review as submission to TMLR

the evolution of representations over the course of learning in two ways: using the analytic techniques of
interest, and using a recently developed visualization tool to inspect these, each of which we describe in the
two sections that follow.

2 Understanding and Visualizing Learning Dynamics

2.0.1 Notation

We parameterize a neural network as a function f , which takes in inputs x and targets y and generates
responses ŷ = f(x). Our train set is m ∈ M , while our test set is n ∈ N , such that xm is the mth training
input. Our NN is assumed to be trained via a variant of gradient descent, with learning rate η. Our NN is
parameterized by a vector of P parameters, θ ∈ RP . The NN is also trained using a loss function L(ŷ, y).

2.1 The empirical Neural Tangent Kernel (eNTK)

Understanding the learning dynamics of a neural network (NN) can be done using a framework known as
the Neural Tangent Kerel (NTK). We use a related quantity we call the empirical NTK (eNTK).

The NTK is based on a kernel function K(x, x′) that represents the ’similarity’ of inputs x and x′ (from
here on, we use x from the training set and x′ from the test set); that is, how much influence each individual
sample x from the training set has on the output decision of the NN on a test sample x′. This is embodied
in a kernel expansion (Jacot et al., 2018), which uses an assumption that the width of the network’s layers
goes to infinity in order to use a Gaussian-process based simplification. Empirical work with finite-width
NTKs has led to interesting use cases, including analyzing adversarial training Loo et al. (2022) or analysis
of learning trajectories and loss landscapes Fort et al. (2020); Lewkowycz et al. (2020). In this work, we offer
a slightly different derivation more suited to the eNTK:

Using gradient descent (GD) on a NN with scalar learning rate η and a P × 1 vector of real parameters θ,
the parameter update can be written as

θ(t + 1) = θ(t) − η
dL(θ)

dθ
. (1)

Taking the gradient flow approximation η → 0 (e.g. as the step size approaches 0, resulting in a continuous
flow rather than discrete steps) we have that the rate of parameter change is

dθ

dt
= −dL(θ)

dθ
(2)

Assuming our loss depends only on the network output ŷ, we can rewrite this as a sum over N training
samples D := {(xm, ym)}:

dθ

dt
= −dL

dŷ

dŷ

dθ
=
∑

m∈D

dL

dŷm

dŷm

dθ
:=
∑

m∈D
ϵmϕm, (3)

where we have defined loss sensitivity ϵm ∈ R = dL
dŷm

and feature vector ϕm ∈ RP = dŷm

dθp
for each parameter

p for a given sample xm. How does the actual NN predicted output (ŷ) change with learning over time? We
can answer this by taking total time derivatives yielding

dŷ

dt
= dŷ(θ)

dθ

T
dθ

dt
= −dŷ(θ)

dθ

T
dL(θ)

dŷ

dŷ(θ)
dθ

(4)

where the eNTK is the weighted kernel function ϵx′K(x, x′; θ) := dL(θ)
dŷ(x′)

dŷ(x;θ)
dθ

T dŷ(x′;θ)
dθ . Note that this means

the network’s time evolution is a kernel function, made up of the NTK at time t with parameters θ = θ(t)
and kernel weights ϵ = dL(θ)

dŷ Breaking down equation 4 as a sum over the training set:

dŷ

dt
= −

∑
m∈D

Kmn(t)ϵm(t), ∀n ∈ D (5)

4



Under review as submission to TMLR

which expresses the evolution of the test example xm as a weighted kernel function (the NTK) of the train
set, where the kernel element Kmn(t) is the [m, n] entry of K e.g.

dŷ(xm, θ(t))
dθ

T
dŷ(xn, θ(t))

dθ
= ϕT

mϕn (6)

revealing that the kernel feature vector is just ϕ.

If the model is close to linear in the parameters θ (i.e., we are in the so-called kernel or lazy training regime
Chizat et al. (2019), where the NN’s basis functions are fixed for all time), then the NTK will not change
much during training (as in the linear regime dŷ

dθ is slowly varying), allowing the entire learning to be readily
interpretable as a linear kernel machine (Ortiz-Jiménez et al., 2021). In this case, each update to the model is
fully interpretable under kernel theory, with each data point influencing how the model evolves (see Fig. 1).

But what if the model is not close to the linear/lazy/kernel regime (i.e., it is in the so-called adaptive regime?2

In this case the NN’s basis functions do change over time, rendering the NTK function time-dependent (in
which case we denote it as K(x, x′, t)). In this case, the classical NTK theory no longer holds. However, the
eNTK update equation can easily be computed at any time t.

The eNTK and resulting test set changes can be numerically computed at any particular point during
training, using the formula from equation 5, equation 6 . This requires knowledge of the following gradients:
dŷ(x,θ(t))

dt (e.g. ϕ(x) for x in the train and test set, as well as knowledge of the loss sensitivity dL
dŷ(x) for x in

the train set. Intuitively, the eNTK gives the ’influence’ of training points on test points given the current
parameters θ(t). These influences give the network’s instantaneous changes to the output predictions on
the test set, broken down across the test set. Note that the eNTK computation uses many of the same
gradients ultimately used for the parameter update. The main advantage of computing the eNTK is that
it gives breakdown of where changes to the output come from, allowing for analyses that can be used to
e.g. understand the network’s internal representation development. Although the eNTK computes the
instantaneous influences, we find that in practice the eNTK is quite accurate for small step sizes, and can
be safely used on standard networks trained with gradient descent variants.

In this article, we use the eNTK to analyze how representations in the hidden layer of the network evolve
during learning of the task(s). The eNTK allows a decomposition of the instantaneous changes in the
predictions of the NN over training inputs(e.g. how ˆ̇y can be decomposed over xm ∈ D at any point in
time). We can analyze the eNTK grouped in various ways (e.g., by input dimensions, tasks, and/or output
dimensions) in order to characterize how a NN undergoing training acquires representations of the relevant
information at different times over the course of learning.

2.2 Visualizing Learning Dynamics Using M-PHATE

We used Multislice PHATE (or M-PHATE; Gigante et al. (2019)) to visualize the evolution of representa-
tional manifolds over the course of learning. M-PHATE is a dimensionality reduction algorithm for time-series
data, that extends the successful PHATE algorithm (Moon et al., 2019). PHATE captures both local and
non-local structures within data, using a novel informational distance metric. Local information is captured
via a custom kernel over euclidean distance, while long range information is generated via diffusion probabil-
ities over a random walk using local kernels as the 1-step connection probabilities. This is transformed into a
informational distance which measures the difference between diffusion probabilities, before being embedded
into a lower dimensional space using MDS before viewing.

M-PHATE can be used to visualize internal network geometry, and that can be used to capture temporal
dynamics. It does so by using longitudinal (time series) data to generate a multislice graph, and then uses
PHATE to dimensionally reduce the pairwise affinity similarity kernel of the graph. By applying this to the
hidden unit activations of neural networks, it can be used to visualize the representational manifolds over the

2All modern NNs perform best in the adaptive regime, and there is a significant performance gap between kernel and adaptive
regime models Arora et al. (2019). The power of the adaptive regime is that it allows the NN to learn, based on the data, the
basis functions that are most useful. In contrast, the kernel regime has fixed basis functions solely determined by architecture
and initialization, with no dependence on the data or the task being learned.

5



Under review as submission to TMLR

Figure 1: An explanation of a model update using the eNTK. Top Left: The model’s prediction at t = 0, 1,
final for x ∈ [−1, 1]. Top Right: The kernel function K (t=0), or influence on the network due to each train
data point (xn), tied by color (e.g. the dark purple line is the influence function K(x, xn) where xn is the
dark purple dot). Bottom Left: The changes due to each influence function K (t=0), which are weighted by
the loss function’s influence ϵn = dL

dŷn
. Bottom Right: A comparison between the model’s final state and the

prediction made using the eNTK update. The eNTK prediction at t = 0 perfectly matches the true state
of the network at t = 1. Note that while this is a one step eNTK prediction, if the network is in the kernel
regime than the eNTK can predict arbitrarily far ahead.

course of training. Furthermore, by grouping analyses—for example, according to feature dimensions, tasks,
or response dimensions—M-PHATE can be used to reveal how representations evolve that are sensitive to
these factors.

It is important to note that our M-PHATE analysis works by analyzing the hidden layer activities.
In contrast, the eNTK kernel computes similarities using the whole network’s gradients. This means that
the results of the two methods are are not directly comparable, but qualitative comparisons can be made.

3 Validation of eNTK Analyses of Learning in Simple Networks

We begin with a validation of the eNTK analysis by using it to predict the evolution of representations
in a linear network which are tractable to standard analytic methods, the results of which can be used
as a benchmark. Specifically, we replicate results from Saxe, McClelland, and Ganguli (henceforth SMG;
Saxe et al. (2013)), which show that for a linear NN with a bottleneck hidden layer, the network will learn
representations over that layer that correspond to singular values of the weight matrix, in sequence, each
learned with a rate proportional to the magnitude of the singular value, up until the dimensionality of the
bottleneck layer. Here, we show that eNTK analyses can be used to qualitatively predict this behavior from
the initial conditions of the network (i.e., its initial weights and training set).

We take a simple case for illustrative purposes, using a network with an input dimensionality of 4, a bottleneck
(hidden layer) dimensionality of 3, and an output dimensionality of 5. A target linear transformation Wtarget

6



Under review as submission to TMLR

Figure 2: Loss over time in the SMG task for training and testing data (see text for network description).
Note the tiered learning, with loss dropping over some regions of time while remaining near constant in
others. As a simple linear task, train and test losses are nearly identical.

Figure 3: Comparisons between projections of training data xn onto singular vectors of Wtarget (orange) and
singular vectors of the eNTK (blue) at times t = 190, 770. At time 190 (left), the high match between eNTK
and data projections onto first singular vector Wtarget show that the first singular mode is being learned.
At time 770 (right), the high match between eNTK and data projections onto second singular vector show
that the second singular mode is being learned. Note the high correlations in both cases.

is generated, and then used to generate random training data y = Wtargetx, where x is randomly drawn from
white noise. The network is then trained using simple stochastic gradient descent. We call this the SMG
task, and replicate their results, showing behavior qualitatively similar to that reported in their previous
work (Fig 2).

What can a eNTK analysis tell us over and above the original analysis? One major benefit is that the
eNTK can be used on arbitrary, rather than only on linear systems. To assess this, we numerically compare
the singular vectors of the full eNTK (at specific time points t = 190, 770) against the projections of the
data x into the coordinate system spanned by the singular vectors of Wtarget (e.g. ground truth for this
linear system). This allows us to compare how much each data point contributes to the eNTK compared
to how much it would contribute if it was perfectly learning the modes of Wtarget, an approach that works
for linear or nonlinear systems. This comparison (Fig 3) shows that eNTK analysis gives similar results to
the ground-truth linear analysis, providing support for the accuracy of the eNTK analyses. Note that the
ground-truth here is only available due to this being a linear task, while the eNTK method can work for any
neural network.

Finally, we conduct another analysis using the eNTK, examining how the learning of each mode changes
progressively over time. The eNTK allows us to examine the patterns that are being learned at each time

7



Under review as submission to TMLR

point, by examining the eigenvectors of the eNTK. Consistent with the previous work (Saxe et al., 2013),
the analysis confirms that eigenvectors are learned one at a time, with larger ones learned first. More
interestingly, secondary learning (e.g., the mode that is being acquired at the second fastest rate, and is the
second eigenvalue/vector pair of the eNTK) reveals relevant patterns, with transitions occurring at times
dictated by the primary learning switching singular vectors (e.g. when the primary singular vector is learned
and switches to learning the second singular vector, the secondary learning switches from learning the second
singular vector to learning the third singular vector; Fig 4). These results align with changes in performance

Figure 4: Match between eNTK learning (singular vector 1 - primary, shown top; singular vector 2 - sec-
ondary, shown bottom) and singular vectors of Wtarget. Primary learning shows a progression, where larger
singular values and vectors are learned first, while the secondary learning shows a more intricate pattern
with switches tied to the primary learning.

of the network. Fig 5 shows the primary learning of eigenvectors and eigenvalues over time along with model
performance. This reveals that the two are closely linked, with changes in eNTK singular values anticipating
model singular vectors aligning with the true task and accompanying decreases in task loss.

In summary, the eNTK analysis is consistent with the results reported by SMG for a linear network, using
a technique that is extendable to non-linear networks. It is important to emphasize that the eNTK analysis
here is predictive, in that the results are derived only from the conditions of the network at the time point
to which the analysis is applied, but predict the representational organization of the network following
subsequent learning given the training regime. Of course, the SMG theory was also predictive, but only
works in the linear regime—the eNTK can readily be expanded to nonlinear applications. It also reveals
interesting new patterns, particularly in the secondary learning dynamics of the network, implying that some
groundwork for learning higher modes is in place before their primary learning begins.

8



Under review as submission to TMLR

Figure 5: Comparison between eNTK learning and model loss, showing loss vs the cosine similarity between
eNTK singular vectors and Wtarget singular vectors. Dotted lines show the location of t = 190, 770, which
are the two points used for further analysis above. This shows that singular modes are learned sequentially,
with the eNTK switches preceding and therefore predicting future learning, as seen via decreasing loss (e.g.
Svec 2 becomes active prior to t = 500, while loss drops the second time after t = 600.

4 Application of eNTK Analyses to Learning and Performance in Nonlinear
Networks

In the preceding section, we validated the use of eNTK analyses of learning dynamics in simple networks.
Here, we explore using this technique to examine representational learning and its relationship to network
performance in a more complex nonlinear network, that addresses how initial conditions influence the devel-
opment of shared versus separated representations and its impact on parallel task execution (i.e., concurrent
multitasking).

4.1 Model

4.1.1 Network Architecture

The network used for all further experiments is shown in Fig. 6 (cf. Musslick et al. (2020)). Notably, it
has two sets of inputs, representing the stimulus and task. The task inputs are routed to both the hidden
and final layer. Stimulus inputs and outputs are divided into ’pools’, representing features per stimulus
dimension. See Appendix A.1 for full details.

4.1.2 Task Environment

Each task was a one-to-one mapping from input features of a specified stimulus dimension to the response
features of a specified output dimensions, mirroring response mappings in classic multitasking paradigms
(e.g., Pashler 1994). Thus, the overall goal was to flexibly route inputs to outputs, with routing determined
by the specific task. Multi-tasking involved multiple simultaneous routings, such that there was no input or
output interference between the multiple tasks. See Appendix A.2 for full details.

4.1.3 Initialization and Training

In the experiments, we manipulated the initialization of all connection weights between a standard initializa-
tion condition (random uniform distribution in [-.1, .1]) and a large initialization condition (random uniform
distribution in [-1, 1]). All biases were set to bi = −2 to encourage learning of an attentional scheme over
the task weights in which activation of a task input unit placed processing units to which it projected in the

9



Under review as submission to TMLR

Hidden Layer

…

Stimulus Input Layer

Output Layer

Task Input Layer

𝑦
Full Connectivity

Between Network Layers

ℎ

𝑥! 𝑥"

A Neural Network Model Task EnvironmentB

Stimulus Input Layer

Output Layer

𝑦

𝑥!

Task: 
An Identity mapping from 
elements in input group to 
elements in output group

Figure 6: Network architecture and task environment. (A) Network: The input layer is partitioned into two
sets, x1 for stimulus inputs and x2 for specification of task(s) to be performed. The stimulus set is further
partitioned into four pools, each representing a stimulus dimension comprised of m = 3 feature units. Both
input groups project to the hidden layer, comprised of H = 200 non-linear processing units. Both the hidden
and task input units project to the output layer. The output layer is comprised of three pools of non-linear
processing units, each representing a response dimension comprised of m = 3 response units. (B) Task: black
lines show the mappings from each stimulus pool to each response pool that make up the twelve tasks on
which the network was trained. Each line represents a one-to-one-mapping that the network had to learn,
associating each feature within a given stimulus pool to a corresponding response in the output pool for a
given task.

hidden and output layers in a more sensitive range of their nonlinear processing functions 3. No layer-specific
normalization (e.g., by batch) was used. For all experiments, networks tasks were always sampled uniformly
from all available tasks. However, in each we manipulated whether training was restricted to performance
of only one task at a time (single task condition) or required performance of multiple tasks simultaneously
(multitasking condition), as described in the individual experiments below. In all cases, the network was
trained with stochastic gradient descent (SGD) using a base learning rate of .01 for 10000 epochs, with
parameters found via hyper-parameter search.4

We vary the initialization (between the standard and large initialization condition) in order to modify the
initial inductive bias (IB) of the resulting networks. Previous results from Sahs et al. (2022) conclude that
modifying the weights of later layers to be higher (as was done in our large initialization condition) will
bias the resulting network to be closer to the kernel regime. There is also a rich history of work relating
initialization properties to differing IBs and resulting model performance characteristics. Yang & Schoenholz
(2017) was one of the earliest papers to show that varying initialization critically effected NN performance via
influencing how representations are generated. More recently, the Tensor Programs series of papers, including
Yang & Hu (2020); Yang et al. (2021), developed an initialization method that is maximally adaptive, and
showed that this parametrization allows for transfer of learned hyperparameters across network scales.

4.2 Predicting Impact of Standard vs. Large Initialization on Representational Learning

4.2.1 Effect of Initialization on Representational Learning

It has previously been observed that lower initial weights promote the formation of representational sharing
among tasks that share the same input and/or output dimensions (Flesch et al., 2021; Musslick et al., 2017;
2020), consistent with other findings from work in machine learning (Sahs et al., 2022; Ding et al., 2014).
Here, we sought first to validate this finding in the present architecture, and visualize it using M-PHATE,

3This exploits the nonlinearity of the activation functions to implement a form of multiplicative gating without the need for
any additional specialized attentional mechanisms; see Cohen et al. (1990); Musslick et al. (2020) for relevant discussions).

4As the eNTK analyzes a specific network instantiation, all eNTK-based and MPHATE-based visualizations (except where
otherwise noted) are based on one trial. We re-ran each experiment at least five times to confirm that there were no major
qualitative changes in the results and to generate correlation metrics over multiple experiments. Experimental results are
averaged over 10 trials

10



Under review as submission to TMLR

and then evaluate the extent to which it could be predicted by the eNTK analysis. To do so, we compared
the standard initialization with the large initialization under the single task training condition.

M-PHATE1

M
-P

HA
TE

2

M-PHATE1
M

-P
HA

TE
2

M-PHATE1

M
-P

HA
TE

2

M-PHATE1

M
-P

HA
TE

2

M-PHATE1

M
-P

HA
TE

2

M-PHATE1

M
-P

HA
TE

2

M-PHATE1

M
-P

HA
TE

2

M-PHATE1

M
-P

HA
TE

2

St
d 

In
it

La
rg

e 
In

it

OutputTask by InputsInputsTask

Training % Training % Training % Training %

Training % Training % Training % Training %

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Figure 7: M-PHATE visualization of hidden unit activity in the network over course of training. Dots
correspond to the relative positions of the patterns of hidden unit activities (each averaged over all input
stimuli that share the same feature by which they are grouped, as explained below) at each epoch in training
(darker colors represent earlier epochs in training and lighter colors later epochs; see legend to the right), with
blue lines showing connections across time. Plots in the top row show standard initialization condition, and
in the bottom row large initialization condition. Plots in each column show hidden unit activities grouped
(averaged) along dimensions indicated by the label (e.g., in the leftmost column, labelled Task, hidden unit
activations are grouped by task, with each dot corresponding to the average pattern of hidden unit activity
over all inputs for a given task). Notice that, in all cases, in the standard initialization condition (top row)
hidden unit representations exhibit highly organized structure, whereas in the large initialization (bottom
row) they exhibit substantially less structure (see text for additional discussion). Inset shows M-PHATE
visualization of hidden unit activity in the network with the standard initialization at t = 3 for the grouped
by inputs configuration. This zoomed in view shows the transient clustering into 3 groups of 4, which
collapses over time.

Fig 7 shows an M-PHATE plot of how the patterns of activity over the hidden units evolve over the course
of training. The top row shows this for the standard initialization condition, with each panel showing the
patterns of hidden unit activity grouped (averaged) along different dimensions. There is clear structure in
the groupings, which reflects the sharing of representations for tasks that use the same inputs or outputs.
For example, grouped by task (the leftmost panel), there are four clusters of three tasks each, with each
cluster comprised of tasks that share the same inputs, confirmed by examining the individual elements.
Similarly, grouped by input (the second panel from the left) there are three clusters of four tasks each,
with each cluster corresponding to within-group position across the four pools. Notice that the grouping
here gradually decoheres over time (as the clusters are transient, we show a zoomed in inset showing this
phenomenon in Fig 7 (inset). Finally, grouped by output (the rightmost panel), there are three clusters of
tasks that share the same output. Both effects can be seen in the Task by Inputs grouping (third panel from
the left), in which three clusters appear early in training (dark dots), each of which is comprised of tasks
that share the same output, followed later (lighter dots) by a separation into subclusters of tasks that share
the same inputs. The early organization by outputs followed later with organization by inputs is consistent

11



Under review as submission to TMLR

with the tendency, in multilayered networks without layer-specific weight normalization, for weights closest
to the output layer to experience the steepest initial gradients and therefore the earliest effects of learning.5
These observations corroborate the general principle that lower initial weights promote representational
sharing in environments for which tasks share structure.

The lower panels in Fig 7 show the results for the large initialization condition. These are in stark
contrast to those for the standard initialization condition, showing little if any structure: each task develops
its own representations that are roughly equidistant from the others, irrespective of shared inputs and/or
outputs. The one deviation from this pattern is for grouping by output (rightmost panel), in which
three clusters emerge, once again presumably reflecting the early and strong influence of the gradients on
weights closest to the output of a multilayered network in the absence of any layer-specific form of weight
normalization.

Together, the observations above provide strong confirmation that, in this network architecture as in many
others, lower initial weights promote the development of shared representations for tasks that share structure
(i.e., input or output dimensions), and showcase the utility of M-PHATE for clearly and concisely visualizing
such qualitative effects. In the sections that follow, we apply eNTK analyses to show that downstream
performance can be predicted quantitatively from the initial conditions.

4.2.2 Use of eNTK to Predict Representational Learning

First, we conduct an eNTK analysis of the standard initialization network, following initialization but prior
to training (i.e., T = 0), to assess whether this can anticipate the effects of learning. The output of the
eNTK analysis is a 500x500 matrix, corresponding to the 500 training inputs across all tasks. The M-
PHATE observations shown in Fig 7 suggest that, over the course of training, the representations learned by
the network’s hidden units came to be clustered according to both the four input dimensions (shared across
tasks) and their mapping to each of the three output dimensions (according to task). To determine whether
this organization was predicted by, and can be observed in the eNTK analysis, we carried out two variants
of this analysis: one in which individual training passes were sorted by the current input (aggregated over
tasks), and the other sorted by task (aggregated over inputs). In both cases, the eNTK analysis is calculated
per output, yielding a total of nine eNTK analyses (three units m per output set g2). For comparison, we
also carried out the eNTK analysis without sorting. In contrast to the sorted analyses (shown in Fig 8), the
unsorted analyses did not reveal any discernible structure (see Fig 16 in Appendix).

Fig 8 shows the summary results (see Fig 15 in Appendix for full results) of the eNTK analyses for the primary
eigenvector (i.e., the one with the largest eigenvalue) in the standard initialization and high initialization
condition at T = 0, sorted as described above. These reveal clustering effects in the standard initialization
that correspond closely to those that emerged in the hidden units over training, as observed in the M-PHATE
plots in Fig 7. Each plot shows the weighting for each training pattern on the eigenvector. When these are
sorted by input features (left panels), the pattern of weightings for a given response (m) is the same across
output pools (g2) in the standard init case, consistent with the use of the same input representations across
all three tasks. Complementing this, when training patterns are sorted by task (right panels), the pattern
of weightings for a given response is different for each output pool in the standard init case, indicating the
role of the task units in selecting which of the four input dimensions should be mapped to that output pool
for each given task. Critically, this structure within the standard init is visible in the eNTK analysis prior
to training (i.e., at T = 0) in the standard initialization condition but not the large initialization condition.
Further details of other secondary analysis are provided in the Appendix.

In the standard-initialization condition, structure is visible in the eNTK analysis before any training occurs.
This raises the question: to what extent is this specifically predictive of the effects that emerge during
training? To address this, we analyzed the extent to which the groupings from the initial eNTK analysis
predicted the structure observed in the M-PHATE hidden representations over the course of training (that is,

5To confirm this account, and rule out the possibility that early organization by outputs was because the lower dimensional
structure of the outputs (three dimensions) made it easier to learn than the input structure (four dimensions), we conducted
the same experiment on a network that had fewer input dimensions (three) than output dimensions (four), and observed similar
results (see Appendix, Section A.7.1).

12



Under review as submission to TMLR

Figure 8: Mean eigenvector activations grouped by relevant eigenvector indices (x-axis), broken down by
output pool (g2, y-axis) and within-pool position (m, vertical sub-plots). Top row: standard initialization
networks. Bottom row: large initialization networks. Left column: grouped by input. Right column: grouped
by task. Notice the strong clustering in both standard init cases (see text for interpretation), but neither of
the large init cases. When grouped by input (top left), the eNTK reveals that clustering is controlled by m
but invariant to g2. On the other hand, when grouped by task (top right), the eNTK reveals that clustering
is controlled by g2 but invariant to m.

the extent to which the eNTK analysis conducted at T = 0, integrating only the first time step, predicted M-
PHATE clustering for t>0). For the eNTK analysis grouped by input, the eNTK groups code for subgroup
position within each task, as seen in Fig 8. This can easily be expressed by the M-PHATE grouping as
well. For the eNTK analysis grouped by task, the grouping clearly aligns with the output pool relevant
for each task, as seen in Fig 8. However, as previously discussed, the M-PHATE analysis uses the hidden
layer activations, and thus cannot include output dimension information. Instead, we predict that the
M-PHATE analogously uses the relevant input pool. Based on these grouping schemes, we can test the
extent to which the organization predicted from the eNTK plots prior to training (at T = 0) predict the
patterns of clustering that emerge in the M-PHATE plot at different points during training (T>=1). We
measured the correspondence between these measures using the Adjusted Rand distance metric for between
group memberships, as shown in Fig 9. The results indicate that eNTK accurately predicts M-PHATE

13



Under review as submission to TMLR

Figure 9: Overlap between groups predicted from eNTK (at t = 0) and groups observed from M-PHATE
analysis (using both input and task-based predictions) across time (mean Adjusted Rand metric ± s.d. across
trials; see text for details of analysis). The eNTK predictions for both groups are accurate, although the
alignment between input-grouped and M-PHATE is transient.

structure when examined both by task and inputs. The task-grouped predictions reach a complete match
in grouping by the end of training. The input-grouped predictions also align cleanly with the trajectory of
representational structure in the M-PHATE analysis, reaching a prefect match in grouping early in training
when structure is clearly observed in the M-PHATE analyses, followed by a diminution of the effect that
parallels the dissolution of structure observed in the M-PHATE analyses.

5 Predicting the Effect of Initialization and Training Curriculum on Processing

The results reported above affirm the usefulness of the eNTK analyses in predicting representational learning,
both in linear and non-linear networks. They also reaffirm the premise that initialization with small random
weights favors representational sharing among tasks that share common structure (e.g., input and/or output
dimensions). In this section, we report a further evaluation this effect, and the ability of eNTK analyses to
predict not only the effects of initialization on representational learning, but also on performance. Specifically,
building on previous work (Musslick et al., 2016; Musslick & Cohen, 2021), we tested the hypotheses that: i)
insofar as the standard initialization condition favors representational sharing, it should be associated with
faster learning of new single tasks (due to more effective generalization), but at the cost a compromised
ability to acquire parallel processing capacity (i.e., poorer concurrent multitasking capability) relative to the
large initialization condition; and ii) this can be predicted from the eNTK analysis at the start of training.6
To test this, we evaluated the acquisition of multitasking performance via fine tuning of networks first trained
on single task performance in each of the two initialization conditions. For each comparison, we generated
two networks from the same random initialization, with the large initialization having layer 1 weights that
were uniformly multiplied up by a factor of 10. We posited that although a neural network trained in the
large initialization condition (and therefore biased to learn separated representations) would take longer to
learn during initial single task training, it would be faster to acquire the capacity for concurrent multitasking
during subsequent fine tuning on that ability, as compared to a network trained in the standard initialization
condition (and hence biased to learn shared representation). Critically, we also tested the extent to which the
eNTK analyses, carried out on the network before initial single task training, could accurately predict end

6While it is plausible that this should be the case, given that eNTK predict patterns of representational learning which only
indirectly effects performance, such that it is possible that eNTK predict a different component of the variance in representational
learning than is responsible for performance.

14



Under review as submission to TMLR

of training generalization loss and even the impact of fine tuning on concurrent multitasking performance
that occurred after the initial training.

5.1 Effects of Initialization on Acquisition of Multitasking Capability

Figure 10: Top: Generalization performance (mean loss ± s.d. across trials) during single task training
in the standard and large initialization conditions (left), followed by fine tuning in multitasking in each
condition (right). Bottom: Difference in generalization performance (mean[difference between loss of large
initialization, loss of standard initialization] ± s.d. across trials) during single task training (left), followed by
fine tuning on current multitasking (right). During single task training, while the large initialization shows
faster initial improvements in performance, it is quickly overtaken by the standard initialization condition.
However, during subsequent fine tuning on concurrent multitasking, the large initialization condition shows
a clear and sustained advantage.

To test the hypotheses outlined above, we first trained networks on single task performance in the standard
and large initialization conditions. We then followed this with “fine-tuning” of each resulting network on
concurrent multitasking, using the same number of training examples and epochs in each case. Specifically,
we trained each network to simultaneously execute, with equal probability, either 1, 2, or 3 tasks, randomly
sampled from all valid combinations (e.g. non-overlapping inputs or outputs) of the selected number of tasks.

Fig 10 shows the results for networks in the standard and large initialization conditions, both during initial
single task training (left panels) and during subsequent fine tuning on concurrent multitasking performance
(right panels). The upper panels show a direct comparison of the mean and standard deviation of general-

15



Under review as submission to TMLR

ization losses. While the basic effects are observed here, overall performance varied across different pairs of
networks, as a function of the particular pattern of initial weights assigned to them (which was the same for
each pair, and simply scaled differently for the standard and large initialization conditions). The lower panels
of Fig 10 show the mean of direct comparisons between each pair of networks, that controls for differences in
overall performance across the pairs. As predicted (and consistent with previous results (Flesch et al., 2021;
Musslick et al., 2017; 2020), the standard initialization condition led to better generalization performance
over the course of single task training, due to the development of shared representations (see Fig 7, upper
panels). However, those presented an obstacle to the subsequent acquisition of concurrent multitasking per-
formance, presumably because separated (task dedicated) representations had to now be learned de novo.
Conversely, networks in the large initialization condition exhibited poorer overall generalization performance
during single task training, due to a bias toward the learning of more separated representations (as predicted
by the eNTK analyses; see Fig 7, lower panels), but it was better predisposed for the subsequent acquisition
of concurrent multitasking performance, as is clearly observed in the right panel of Fig 10.

5.2 Predicting performance from the eNTK analysis

Next, we tested the extent to which an eNTK analysis applied to the network prior to initial single task
training could predict performance during subsequent multitask tuning. To do so, we: i) created ten pairs of
networks, each with a different set of weights generated for the standard and large initialization conditions
(as described above; ii) applied k-means clustering with 12 groups to the multidimensional eNTK analysis of
each network prior to training; and iii) quantified the clustering quality using the silhouette method (Baarsch
& Celebi, 2012), with a higher value reflecting a greater degree of sharing among representations. We then
trained each network using the procedure describe above, initially on single tasks, and then on multitask
fine tuning. Finally, for each pair of networks, we correlated the silhouette score for the network in each
condition with the difference in generalization performance between the two conditions (standard - large
initialization) at the end of each training phase. If representational structure predicted by the eNTK analyses
was responsible for generalization performance after each phase of training, then the correlations should be
negative following single-task and positive following multitask fine tuning. This is because the standard
initialization should generate higher silhouette scores (more shared representations) and correspondingly
lower test loss relative to the large initialization condition after single task training (hence the negative
correlation), but higher relative test loss following multitask fine tuning (hence the positive correlation); and,
conversely, the large initialization should generate lower silhouette scores (more separated representations)
and correspondingly higher test loss relative to the standard initialization condition after single task training
(and thus, again, a negative correlation), but lower relative test loss following multitask fine tuning (again
a positive correlation). The results are consistent with these predictions: the correlation was r = −.881
following single task training, and r = .973 following multitask fine tuning. This suggests that the eNTK
analysis, carried out prior to any training, was able to reliably predict theoretically anticipated effects of
initialization on generalization performance in the network observed after two distinct phases of training.
This not only confirms that the eNTK analysis, carried out prior to any training, is able to predict the kinds
of representations learned by the network in response to different initializations, but also that it can be used
to predict the patterns of generalization performance associated with those representations observed in the
network after two distinct phases of training. 7

7More specifically, the analysis involved the following: Arrange the data for the 20 networks (10 each of standard and large
initializations) into rows, labeled by condition (standard versus large) and with columns containing the computed silhouette
score, final generalization loss following single task training, and final generalization loss following multitask fine tuning for each
network. Then, add two additional columns that contained the performance of each network relative to the other member of
its pair (i.e., in the other initialization condition; see Section 5.1 for the motivation for analyzing relative rather than absolute
performance) after each phase of training. The values for relative performance we calculated as the difference in test loss
between that condition and the other condition within the same pair (e.g., for the standard initialization: final loss of standard
initialization - final loss of large initialization; for the large initialization: final loss of the large initialization - final loss of the
standard initialization). Finally, compute the correlation over networks of the silhouette scores with the relative generalization
scores following single task training case, and the with the relative generalization scores following multitask fine tuning.

16



Under review as submission to TMLR

6 Discussion and Conclusions

In this article, we show how a novel analysis method that examines the gradients of the network at the outset
of training (determined by its initial weights and training curriculum), can be used to predict features of the
representations that are subsequently learned through training, as well as the impact these have on network
performance. Specifically, we show that eNTK analyses predict the extent to which a standard initialization
scheme (small random weights) biases learning toward a generalizable code that groups similar inputs
together (i.e., using shared representations), whereas large weight initialization predisposes the network to
learn distinct representations for each task configuration (i.e., separated representations). We also confirm
that, whereas the bias toward shared representations leads to improved generalization performance in the
single task setting, this leads to destructive interference that impairs multitasking performance when more
than one task is performed concurrently. Conversely, the large initialization scheme favors the formation of
distinct task-specific representations, that facilitates the acquisition of multitasking capability.

Importantly, we show that these effects (i.e., the eventual task or input groupings) can be predicted
from the eNTK eigenvectors as early as the first iteration of training, indicating that the types of repre-
sentation that will be learned and their consequences on performance can be characterized before training
has begun. Here, we focused on relatively simple networks, tasks, and training regimes. In general, we
expect the eNTK to still be predictive, although the time window of future prediction accuracy may shrink
too much to be useful in certain other applications.Evaluating the extent to which our results extend to
more complex network architectures, tasks and forms of training remains an important direction for future
research. We expect that this technique may be a fruitful way to advance the probing and understanding
of inductive biases that influence the learning and use of representations in neural networks (Woodworth
et al., 2020; Goyal & Bengio, 2022). This, in turn, may help lay the foundation for a better understanding
of the respective costs and benefits of representation sharing in both biological and artificial neural network
architectures.

The eNTK computation is tractable, costing only slightly more than an epoch of training. Thus, we expect
the eNTK will scale to arbitrary network architectures and sizes. However, the eNTK may be prohibitively
expensive for tasks where there are few, expensive training epochs (such as Large Language Models), or
where there is no fixed dataset (such as RL). This expesne can be mitigated by either computing a partial
eNTK (over only a portion of the train set), or a grouped eNTK (over sets of input data, such as batches).
The eNTK provides a snapshot of what the network is currently learning, relating it to patterns of influence
from the training data. It is less clear if these snapshots of current learning will continue to clearly describe
the underlying representations as networks get larger and more complicated, with more complicated learning
trajectories. It may be that multiple eNTK(t) analyses are required as learning dynamics change in more
complicated ways through time, increasing the cost and analytic complexity of the method. We plan to
continue working with the eNTK, using both a more complicated network architecture, using a template
based on recent work developing a more nuanced, continuous model of shared vs separated representations
that takes into account the effect of extraneous ’distractor’ inputs Giallanza et al. (2023).

The eNTK analysis here relied on grouping inputs by specific task or input information. However, the way
our network was setup, task information is encoded within the inputs - thus, we expect that eNTK analysis
will primarily be useful when combined with hypothesis of how input properties or groups influence output
patterns.

The work presented here, and previous theoretical work on which it builds Feng et al. (2014); Musslick et al.
(2020), suggests that sharing representations between tasks limits a network’s capacity for multitasking.
This has received empirical support in neuroscientific research. For example, neuroimaging studies have
provided evidence that the multitasking capability of human participants is inversely related to representa-
tional overlap between tasks (Nijboer et al., 2014), and that improvements in multitasking capability are
accompanied by increases in representational separation Garner & Dux (2015). The present work may aid
in the development of methods that allow neuroscientists to predict the learning of shared versus separate
representations before they occur. Such methods would open new paths for the quantification of individual
differences or the effective evaluation of training procedures for human multitasking. Along similar lines, the

17



Under review as submission to TMLR

work presented here may help inform the design more effective artificial systems, by providing an efficient
means of predicting the impact that initial conditions and training curriculum will have on downstream
parallelization of performance.

References
John R Anderson and Christian J Lebiere. The atomic components of thought. Psychology Press, 2014.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. Advances in neural information processing systems, 32,
2019.

Jonathan Baarsch and M Emre Celebi. Investigation of internal validity measures for k-means clustering.
In Proceedings of the international multiconference of engineers and computer scientists, volume 1, pp.
14–16. sn, 2012.

Jonathan Baxter. Learning internal representations. In Proceedings of the eighth annual conference on
Computational learning theory, pp. 311–320, 1995.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Silvia Bernardi, Marcus K Benna, Mattia Rigotti, Jérôme Munuera, Stefano Fusi, and C Daniel Salzman.
The geometry of abstraction in the hippocampus and prefrontal cortex. Cell, 183(4):954–967, 2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. Advances
in Neural Information Processing Systems, 32, 2019.

Jonathan D Cohen. Cognitive control: core constructs and current considerations. The Wiley handbook of
cognitive control, pp. 1–28, 2017.

Jonathan D Cohen, Kevin Dunbar, and James L McClelland. On the control of automatic processes: a
parallel distributed processing account of the stroop effect. Psychological Review, 97(3):332–361, 1990.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pp. 160–167, 2008.

Shifei Ding, Xinzheng Xu, and Ru Nie. Extreme learning machine and its applications. Neural Computing
and Applications, 25(3):549–556, 2014.

Pedro Domingos. Every model learned by gradient descent is approximately a kernel machine. arXiv preprint
arXiv:2012.00152, 2020.

John Duncan. An adaptive coding model of neural function in prefrontal cortex. Nature reviews neuroscience,
2(11):820–829, 2001.

Samuel F Feng, Michael Schwemmer, Samuel J Gershman, and Jonathan D Cohen. Multitasking versus mul-
tiplexing: Toward a normative account of limitations in the simultaneous execution of control-demanding
behaviors. Cognitive, Affective, & Behavioral Neuroscience, 14(1):129–146, 2014.

Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Summerfield. Rich
and lazy learning of task representations in brains and neural networks. BioRxiv, pp. 2021–04, 2021.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy, and Surya
Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time
evolution of the neural tangent kernel. Advances in Neural Information Processing Systems, 33:5850–5861,
2020.

18



Under review as submission to TMLR

Siddhant Garg and Yingyu Liang. Functional regularization for representation learning: A unified theoretical
perspective. Advances in Neural Information Processing Systems, 33:17187–17199, 2020.

KG Garner and Paul E Dux. Training conquers multitasking costs by dividing task representations in the
frontoparietal-subcortical system. Proceedings of the National Academy of Sciences, 112(46):14372–14377,
2015.

Tyler Giallanza, Declan Campbell, Jonathan D Cohen, and Timothy Rogers. An integrated model of se-
mantics and control. 2023.

Scott Gigante, Adam S Charles, Smita Krishnaswamy, and Gal Mishne. Visualizing the phate of neural
networks. Advances in neural information processing systems, 32, 2019.

Thomas Goschke. Intentional reconfiguration and j-ti involuntary persistence in task set switching. Control
of cognitive processes: Attention and performance XVIII, 18:331, 2000.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition. Proceedings
of the Royal Society A, 478(2266):20210068, 2022.

G. Henselman-Petrusek, S. Segert, B. Keller, M. Tepper, and J. D. Cohen. Geometry of shared representa-
tions. In Conference on Cognitive Computational Neuroscience. 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Trenton Kriete, David C Noelle, Jonathan D Cohen, and Randall C O’Reilly. Indirection and symbol-like
processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences,
110(41):16390–16395, 2013.

M. Lesnick, S. Musslick, B. Dey, and J. D. Cohen. A formal framework for cognitive models of multitasking.
2020. doi: https://doi.org/10.31234/osf.io/7yzdn.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning
rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218, 2020.

Gordon D Logan. Automaticity and reading: Perspectives from the instance theory of automatization.
Reading & writing quarterly: Overcoming learning difficulties, 13(2):123–146, 1997.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels under
benign and adversarial training. Advances in Neural Information Processing Systems, 35:11642–11657,
2022.

Kevin R Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt, William S Chen, Kristina
Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R Coifman, et al. Visualizing structure and
transitions in high-dimensional biological data. Nature biotechnology, 37(12):1482–1492, 2019.

S. Musslick and Cohen, J. D. A mechanistic account of constraints on control-dependent processing: Shared
representation, conflict and persistence. In Proceedings of the 41st Annual Meeting of the Cognitive Science
Society, pp. 849—855. Montreal, CA, 2019.

S. Musslick, B. Dey, K. Özcimder, M. Patwary, T. L. Willke, and J. D. Cohen. Controlled vs. automatic
processing: A graph-theoretic approach to the analysis of serial vs. parallel processing in neural network
architectures. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society, pp. 1547—1552.
Philadelphia, PA, 2016.

S. Musslick, A. Saxe, K. Özcimder, B. Dey, G. Henselman, and J. D. Cohen. Multitasking capability versus
learning efficiency in neural network architectures. In Proceedings of the 39th Annual Meeting of the
Cognitive Science Society, pp. 829—834. London, UK, 2017.

19



Under review as submission to TMLR

S. Musslick, A. Saxe, A. N. Hoskin, D. Reichman, and J. D. Cohen. On the rational boundedness of cognitive
control: Shared versus separated representations. pp. PsyArXiv: https://doi.org/10.31234/osf.io/jkhdf,
2020.

Sebastian Musslick and Jonathan D Cohen. Rationalizing constraints on the capacity for cognitive control.
Trends in Cognitive Sciences, 25(9):757–775, 2021.

Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight initialization strategies
for neural networks. Artificial intelligence review, 55(1):291–322, 2022.

Menno Nijboer, Jelmer Borst, Hedderik van Rijn, and Niels Taatgen. Single-task fmri overlap predicts
concurrent multitasking interference. NeuroImage, 100:60–74, 2014.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can linearized neural
networks actually say about generalization? Advances in Neural Information Processing Systems, 34:
8998–9010, 2021.

Harold Pashler. Dual-task interference in simple tasks: data and theory. Psychological bulletin, 116(2):
220–244, 1994.

Giovanni Petri, Sebastian Musslick, Biswadip Dey, Kayhan Özcimder, David Turner, Nesreen K Ahmed,
Theodeore L Willke, and Jonathan D Cohen. Topological limits to the parallel processing capability of
network architectures. Nature Physics, 17(5):646–651, 2021a.

Giovanni Petri, Sebastian Musslick, Biswadip Dey, Kayhan Özcimder, David Turner, Nesreen K Ahmed,
Theodore L Willke, and Jonathan D Cohen. Topological limits to the parallel processing capability of
network architectures. Nature Physics, 17(5):646–651, 2021b.

M. I. Posner and CRR Snyder. Attention and cognitive control. information processing and cognition: The
loyola symposium. pp. 55–85, 1975.

S. Ravi, S. Musslick, M. Hamin, T. Willke, and J. D. Cohen. Navigating the tradeoff between multi-task
learning and learning to multitask in deep neural networks. pp. arXiv: 2007.10527, 2020.

Timothy T Rogers and James L McClelland. Semantic cognition: A parallel distributed processing approach.
MIT press, 2004.

David E Rumelhart, Peter M Todd, et al. Learning and connectionist representations. Attention and
performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience,
2:3–30, 1993.

Luca Saglietti, Stefano Sarao Mannelli, and Andrew Saxe. An analytical theory of curriculum learning in
teacher–student networks. Journal of Statistical Mechanics: Theory and Experiment, 2022(11):114014,
2022.

Justin Sahs, Ryan Pyle, Aneel Damaraju, Josue Ortega Caro, Onur Tavaslioglu, Andy Lu, Fabio Anselmi,
and Ankit B Patel. Shallow univariate relu networks as splines: Initialization, loss surface, hessian, and
gradient flow dynamics. Frontiers in artificial intelligence, 5, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.

Richard M Shiffrin and Walter Schneider. Controlled and automatic human information processing: II.
Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2):127–190,
1977.

20



Under review as submission to TMLR

Tom Verguts. Binding by random bursts: A computational model of cognitive control. Journal of Cognitive
Neuroscience, 29(6):1103–1118, 2017.

Sam Witty, Jun K Lee, Emma Tosch, Akanksha Atrey, Kaleigh Clary, Michael L Littman, and David Jensen.
Measuring and characterizing generalization in deep reinforcement learning. Applied AI Letters, 2(4):e45,
2021.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference on
Learning Theory, pp. 3635–3673. PMLR, 2020.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances in neural
information processing systems, 30, 2017.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub
Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot hyperparameter
transfer. Advances in Neural Information Processing Systems, 34:17084–17097, 2021.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

A Appendix

A.1 Architecture Details

It had two sets of input units: a stimulus set, x1, used to represent stimulus features; and a task set, x2,
used to indicate which task(s) should be performed on a given trial. The stimulus set was further divided
into g1 pools of units, each of which was used to represent an independent stimulus dimension comprised
of m features along each dimension. Accordingly, each pool was comprised of m units, with each feature
represented as a one-hot input pattern over the group. The task set was comprised of single pool with a
number of units equal to the number of tasks that could be specified (see below), and one unit used to
represent each task. Both sets of input units projected to a single set of hidden units, with connection
weights w1 and w2 for the stimulus set and task set, respectively. The H units in the hidden layer used a
sigmoidal activation function ϕ, producing an activation vector of

h = ϕ(w1x1 + w2x2 + b1)

where b1 = −2 is a fixed bias, ensuring that the units were inhibited if no input is was provided (see Section
4.1.3). All of the hidden units, as well as the input units in the task set, projected to all of units in the
output layer, with weights v1 and v2, respectively. The output layer, like the stimulus set of the input layer,
was divided into g2 pools of units, each of which was used to represent an independent response dimension
comprised of m responses along each dimension. Thus, each pool was comprised of m units with each
response represented as a one-hot input pattern over the set. Like the hidden layer, the output layer used a
sigmoidal activation function ϕ, along with output bias b2 = b1, leading to a final output of

y = ϕ(v1h + v2x2 + b2)

or, in terms of inputs only
y = ϕ(v1ϕ(w1x1 + w2x2 + b1) + v2x2 + b2)

Note that task input x2 appears twice here, as there are two independent pathways involving x2 (one
projecting to the hidden layer and the other to the output layer).

21



Under review as submission to TMLR

A.2 Task Details

A task is defined as a one-to-one mapping from the features along a single stimulus dimension to the responses
of a single output dimension, reflecting response mappings in classic multitasking paradigms (e.g., Pashler
1994). This corresponded to the mapping of the m input units from the specified pool g1 of the stimulus
group x1 to the associated m output unit in the specified pool g2 of the output units. In aggregate, this
yielded g1 ·g2 tasks, and thus the task set x2 had that many units. For a given trial, a single feature unit was
activated in each pool of the stimulus set x1 (i.e., each of the g1 input pools had one of its m units activated).
For performance of a single task, only a single unit was activated in the task set x2. The network was then
required to activate the output unit in the response pool corresponding to the input unit activated in the
stimulus pool specified by the task unit activated in x2, and to suppress activity of all other output units.
For example, task 1 consisted of mapping the m units of input pool g1 = 1 to the m units of the output pool
g2 = 1; as only one one of the m units was active, the task consisted of mapping the active mth element
of g1 to the mth element of g2, while outputting null responses elsewhere. For multitasking performance,
two or more units in the task set were activated, and the network was required to activate the response
corresponding to the input for each task specified, and suppress all other output units. Multitasking was
restricted to only those tasks that shared neither an input set nor output set (see Lesnick et al. (2020) for a
more detailed consideration of “legal multitasking”).

We report results for a network that implemented four stimulus dimensions and three response dimensions
(i.e., stimulus pools g1 = 4 and output pools g2 = 3).8 This yielded a total of 12 tasks (x2 = 12). Since each
stimulus dimension had three features, and each response dimension had three possible responses (i.e., m =
3), in total the network had 24 input units (x1 = 12 stimulus input, and x2 = 12 task input units) and 12
output units, as well as H = 200 hidden units.9

A.3 Path-Integrated NTK (PNTK) and ePNTK

The eNTK computes the instantaneous learning dynamics of a given test set, relative to the training inputs.
What if we want to understand the entire trajectory of a dynamically learning system?

Returning to the NTK, recent work has shown that tracking the NTK along the learning trajectory/path of
the model parameters θ(t) yields the Path-integrated NTK (Domingos, 2020).

Let the PNTK be denoted by P (x, x′; t). Then all NNs trained in a supervised setting with gradient descent
result in a (pseudo-)kernel machine10 of the form

ŷ(x) =
∑

m∈D
P (x, xm) + ŷ0(x),

where the initial predictions ŷ0(x) := ŷ(x, t = 0) and P is the PNTK pseudo-kernel of the form (Domingos,
2020):

P (x, x′) :=
∫ t

0
ϵx(t′)dŷ(x, t′)

dθ
· dŷ(x′, t′)

dθ
dt′ =

∫ t

0
ϵx(t′)K(x, x′, t)dt′

where the loss sensitivity ϵx(t) is now time dependent. At intermediate learning times we have

ŷ(x, t) = ŷ(x, t = 0) −
∫ t

0
dt′
∑

m∈D
ϵx(t′)K(x, xm; θ(t′)),

8We chose a different number of stimulus and response pools to be able to distinguish partitioning of the hidden unit
representations according to input versus output dimensions, or both.

9The number of hidden units was chosen to avoid imposing a representational bottleneck on the network, thus allowing it
the opportunity to learn separate representations for the mappings of each of the twelve tasks. This was done to insure that
any tendencies for the network to learn lower dimensional representation were more likely to reflect factors of interest (viz.,
initialization and/or training protocols) and could not be attributed to limited representational resources.

10The base NTK results in a true kernel method, as the predictions ŷ can be written to solely depend on a weighted sum of
the training data, with fixed kernel weights. In contrast, the PNTK is a pseudo-kernel: the path-weighted loss term brings a
dependence on the test point (x′) to the kernel weights so that they are no longer constant, violating a requirement to be a
true kernel.

22



Under review as submission to TMLR

Thus, the PNTK shows that the NN predictions can be expressed in terms of the NTK, weighted by the loss
sensitivity function, along the entire learning path/trajectory.

The analytical PNTK is generally computationally intractable. However, the empirical PNTK (ePNTK) can
be computed via discretizing the above integrals and using an approximation - we chose to use forward Euler
in our experiments. Note that while the ePNTK is technically computable, it is still extremely compute and
memory intensive, and we were only to compute the ePNTK for a simple test case.

Intuitively, the PNTK (and ePNTK) integral represents the summation of the predicted NTK effects over a
specified time window (typically from 0 to t), allowing for a complete attribution of changes to the networks’
test outputs to the train set.

A.3.1 ePNTK Validation on SMG Linear System

We also validate the ePNTK on the same Saxe, McCelleland, and Ganglui (SMG) linear system used in the
main text, as well as consider an alternate method.

As the SMG is a linear system, we can consider an alternate approach which exploits the fact that we are
considering a simple linear system, and thus inputs can be broken down by input dimension. This allows
us to compute a ePNTK value that predicts how a change in each individual input dimension affects each
individual output dimension across examples, which can then be compared to the true Wtarget (Fig 11). We
focus on two time points: t = 190, that falls in the middle of the period during which the first singular
vector is being acquired; and t = 770, that falls in the middle of the period during which the second singular
vector is being acquired. The ePNTK analysis confirms that the first singular vector of Wtarget is being
learned at t = 190, the second is being learned at t = 770, and the first singular vector is well learned (e.g.
learning acquired is significant) by t = 190,11 while both are well learned (e.g. the first is also remembered)
by t = 770.

We also extend two of our previous eNTK analysis to also include ePNTK. For the singular vector comparison,
we also compare the singular vectors of the full ePNTK (again at time points t = 190, 770) against the
projections of the data x into the coordinate system spanned by the singular vectors of Wtarget. Fig 12
shows the ePNTK results, which show that learning progress (if the learned eigenmode is well-integrated
into the network).

We also extend the eNTK analysis showing that switches in primary learning occur between loss improve-
ments to also include the ePNTK, allowing us to analyze the relative speeds and amount of information
learned. Fig 13 shows the ePNTK results, which demonstrate that the speed and amount of learning corre-
lates with the magnitude of the singular values.

A.3.2 Derivation from SMG

For the simple Saxe, McClelland, Ganguli (SMG) model, the ePNTK can be further broken down not only
by output dimension but also by input dimension. Thus, the core ePNTK update is based off an eNTK
generated by

NTK[i, j, k, l] =
〈∑

i,l

(
dyl(xj [i])

dθ

dL

dyl(xj)

)
,

dyl(xk[i])
dθ

〉

where i refers to input dimension, j to training input index, k to testing input index, and l to output
dimension. Thus yl(x) is the lth dimension of output y given input x, and x[i] refers to using an input
generated from only the ith input dimension of input x (e.g. for x = [1, 2, 3], x[1] = [1, 0, 0]. This works
because we have a linear system so

∑
i f(x[i]) = f(x)).

11What we mean by a singular vector ’is being learned’ at time t is that it is the top singular vector of the eNTK(t), while
’is well learned’ means that it singular value (of ePNTK(t)) is significant (compared to the maximum from W ). This means
that a well learned singular vector can also continue to be learned, while a singular vector being learned may or may not be
well learned at a particular time. See Fig 13 markers for a visualization relating to this

23



Under review as submission to TMLR

Figure 11: Differences (absolute value) between SVD singular vectors of Wtarget compared to eNTK and
ePNTK, at times t = 190 and 770. Note columns correspond to singular value index, while rows correspond
to the entry within a singular value. At time 190, the ePNTK (top right) shows that the first singular vector
has, for the most part, been learned, though it is still being fine-tuned, as shown by the eNTK (top left), prior
to learning of the second singular vector. At time 770, the eNTK (bottom left) shows the second singular
vector is being learned (notice we are comparing against the second singular vector of Wtarget), while the
ePNTK (bottom right) shows that the first two singular vectors have been incorporated successfully by the
model.

24



Under review as submission to TMLR

Figure 12: Comparisons between projections of x into singular vectors of Wtarget and singular vectors of
ePNTK at times t = 190, 770. At time 170, the ePNTK (left) shows that the 1st mode has already been
well incorporated overall. At time 770, the ePNTK (right) shows that the first mode is still remembered.

Figure 13: Comparison between ePNTK learning and model loss, showing Loss vs ePNTK singular values.
Dotted lines show the location of t = 190, 770, which are the two points used for further analysis above. The
ePNTK reveals the extent to which each mode has been learned, as seen by the jump in ePNTK singular
values corresponding to the decrease in loss.

25



Under review as submission to TMLR

The ePNTK is accumulated from the eNTK via the update

PNTK− = NTKt ∗ η

for learning rate η. This ePNTK gives the total influence (throughout training) that dimension i of training
input j has on the output dimension l of a response to a testing example k. Note that summing over i, j
will just give the networks (learned) response to testing example k across all outputs.

Since we are working in a simple linear system, we want to use the ePNTK to understand how
Wtarget is learned. The actual learned W can be estimated from the ePNTK - the ePNTK gives the
actual effect of example j on future outputs, which only happens through a modification of W . Thus, by
normalizing out by the magnitude of xk[i], and summing the response over all training j, we can use the
ePNTK to estimate the learned change in W :

δW [i, l] =
∑

j

PNTK[i, j, k, l]/xk[i]

for any k. This ePNTK estimate of the learned change in W should closely track the true Wtrue if our
ePNTK theory is correct.

Given that we are using a very simple linear system, we can simplify some of the preceding results.
Our system is a linear system, given by y(x) = xW1W2, where x is a vector of dimension 4, y is a vector
of dimension 5, W1 is of dimension 4 × 3 and W2 is of dimensions 3 × 5, e.g. we have a bottleneck of
dimensionality 3. We generate targets according to y = xWtarget, with Wtarget is of dimensions 4 × 5, and
we use MSE loss. Note that dyl(x[i])

dθ is a vector of size 27: 12 parameters from W1, followed by another 15
from W2. Due to us splitting up and only activating only a single input and output, only a small portion of
these parameters receive gradient at once - specifically, the lth column of W2 for output activation l, and
the ith row of W1 for the input activation of i, e.g. only 6 parameters for any particular combination

dyl(x[i])
dW1[i, :] = x[i]W2[:, l]

dyl(x[i])
dW2[:, l] = x[i]W1[i, :]

and thus the entire set of non-zero parameters is

dyl(x[i])
dθ

= x[i][W2[i, :], W1[:, l]]

We can then attempt to simplify the core eNTK equation. The additional complexity comes from the fact
that we are summing over the indexes of i, l. Starting from the base equation:

NTK[i, j, k, l] =
〈∑

i,l

(
dyl(xj [i])

dθ

dL

dyl(xj)

)
,

dyl(xk[i])
dθ

〉

Substiting in our previous simplification:

NTK[i, j, k, l] =
〈∑

i,l

(
xj [i] ∗ [W2[:, l], W1[i, :]] ∗ dL

dyl(xj)

)
, xk[i] ∗ [W2[:, l], W1[i, :]]

〉

Note that the notation [W2[:, l]W1[i, :]] implies that all parameters outside of those specified are 0. Thus, we
only need to worry about a subset of the parameters within the i, l sum. Thus, the sum needs not be over
all i, l combination, but only over those such that either i or l matches the eNTK index. Another way of
putting it is:

NTK[i, j, k, l] =
〈

[
∑

i

xj [i] ∗ dL

dyl(xj)W2[:, l],
∑

l

xj [i] dL

dyl(xj)W1[i, :]], xk[i] ∗ [W2[:, l], W1[i, :]]
〉

26



Under review as submission to TMLR

Finally, we can convert from the eNTK to the change in W

∆W [i, l] =
∑

j

NTK[i, j, k = 0, l]/xk=0[i]

Note k = 0 is a generic choice - any value would work here. The idea is that NTK[i, j, k, l] measures the
influence of training xj [i] on output yl[xk]. However, the influence comes about through W , so the magnitude
of the actual effect will linearly depend on the input, e.g. xk. Putting the previous 2 equations together:

∆W [i, l] =
∑

j

〈
[
∑

i

xj [i] ∗ dL

dyl(xj)W2[:, l],
∑

l

xj [i] dL

dyl(xj)W1[i, :]], xk=0[i] ∗ [W2[:, l], W1[i, :]]
〉

/xk=0[i]

we can make a few further simplifications. To start, we are using MSE error, so

dL

dyl(xj) = 2
ND

ϵj [l]

where N is the number of training data, D is the output dimensionality, and ϵj is the residual (e.g. error)
between the current and target yl(xj), for a final update of:

∆W [i, l] =
∑

j

〈
[
∑

i

xj [i] ∗ 2
ND

ϵj [l]W2[:, l],
∑

l

xj [i] 2
ND

ϵj [l]W1[i, :]], xk=0[i] ∗ [W2[:, l], W1[i, :]]
〉

/xk=0[i]

which we can rewrite a bit to more closely match the standard SGD formulation as:

∆W [i, l] =
∑

j

〈[∑
i

xj [i] ∗ W2[:, l] ∗ 2
ND

ϵj [l],
∑

l

xj [i]W1[i, :] ∗ 2
ND

ϵj [l]
]

, [W2[:, l], W1[i, :]]
〉

Looking at the true updates made by the SGD equation:

∆W [i, l] =
∑

j

dL

dyl(xj)
dyl(xj)
dW [i, l] =

∑
j

2
N

ϵj [l] dyl(xj)
dW [i, l]

but we don’t have W [i, l] directly to update. In reality, W = W1W2, so an update to W [i, l] is dependent
upon W1[i, :]W2[:, l], e.g. their dot product.

∆W [i, l] = ⟨∆W1[i, :], ∆W2[:, l]⟩ + ⟨∆W1[i, :], W2[:, l]⟩ + ⟨W1[i, :], ∆W2[:, l]⟩

Assuming that our updates are fairly small and W >> ∆W , we can ignore the cross term,

∆W [i, l] = ⟨∆W1[i, :], W2[:, l]⟩ + ⟨W1[i, :], ∆W2[:, l]⟩

Note that e.g.∆W1[i, :] will be proportional to dL
dy(xj)

dy(xj)
dW1[i,:] - the version calculated above is for a single

input index i and output index l, whereas this one is more general. Since we have a linear system, we can
get these by summation over the appropriate index (note ∆W1[i, :] will need to be summed over l but not i,
and the reverse for ∆W2[:, l]. This leads to

∆W [i, l] =
∑

j

(〈∑
i

W2[:, l]xj [i] 2
ND

ϵj [l], W2[:, l]
〉

+
〈

W1[i, :],
∑

l

W1[i, :]xj [i] 2
ND

ϵj [l]
〉)

which is just a reformulation of the previous equation, showing that the ePNTK exactly recovers the linear
updates from SGD.

27



Under review as submission to TMLR

Figure 14: Figures plotting loss vs NTK SVD information. Left: Loss plotted against NTK primary singular
vector overlaps with Wtarget singular vectors. Note that the primary overlap is always with the first mode of
Wtarget across the whole learning trajectory. Right: Loss plotted against NTK top 3 singular values. Note
that all 3 singular values are acquire simultaneously, and that singular value 3 reaches its maximum before
the 3rd mode is actually learned (the final loss drop just before training ends).

A.4 Differences between NTK and eNTK

Although the eNTK and NTK are closely related, they have important differences as well. The difference is
due to the eNTK’s inclusion of the loss sensitivity (ϵ) information, which ties the eNTK to the actual learning
taking place for a given set of parameters. Intuitively, the NTK kernel gives the relationship between data
points, as filtered through the architecture and parameters, while the eNTK additionally modifies this by
the learning dynamics.

To better illustrate this difference, we include here alternate forms of Figs 5 and 13, calculated with the NTK
rather than eNTK/ePNTK (Fig 14). They reveal that the NTK is largely static over time, with primary
eigenvectors unchanging, and with eigenvalues unrelated to the learning process.

A.5 Further Experiments and Analyses

A.6 Full eNTK Eigenvector Results

Fig 8 in the main text presents the summary statistics generated by taking the mean of the relevant
eigenvector indices. The full, non-averaged eigenvectors are presented here in Fig 15, with eigenvector
indices sorted as appropriate.

A.6.1 Unsorted eNTK

The sorting (by either task grouping or input grouping) is essential to reveal any structure within the eNTK.
As a control, we here introduce the time 0 eNTK for a standard initialized network trained on single tasking
(Fig 16), which shows no discernible patterns.

A.6.2 Full Trial Results for Standard Single Task Training

A.6.3 Alternative Setup - LR Tuning

The above comparison between the standard and large initializations shows a period of time during single task
training where large initialization has better single task generalization performance, in contrast to our theory.
This persists for a fairly long time, necessitating a long analysis (10000 iterations) in order for the standard
initialization to fully converge. Part of the reason for this is that the larger weights of the large initialization

28



Under review as submission to TMLR

Figure 15: First eigenvector of the eNTK analysis for the output units prior to training, showing the 1st
eigenvector over each training input for each output unit, with each plot’s input indices (x-axis) ordered
either by the relevant task (sorted by inputs; left panels) or by relevant input (sorted by tasks, right panels),
across both the standard initialization (top panels) and large initialization (bottom panels). The 9 plots
within each panel are organized by output pool g2 and response unit m within each pool. Notice the strong
clustering in both standard init cases (see text for interpretation), but neither of the large init cases. When
grouped by input (top left), the eNTK reveals that clustering is controlled by m but invariant to g2. On
the other hand, when grouped by task (top right), the eNTK reveals that clustering is controlled by g2 but
invariant to m.

29



Under review as submission to TMLR

Figure 16: Ungrouped 1st eigenvectors of the eNTK at initialization, using standard initialization. Without
grouping, the eigenvectors look like noise.

30



Under review as submission to TMLR

Figure 17: A plot of all 10 individually trials of the standard-setup single task training, with standardized
y-axis scale. Notice that in each case, the std initialization case (blue line) eventually overtakes the large
initialization case (orange line) in generalization loss performance, albeit at varying times to varying extents.
However, the overall scale of the final generalization loss can vary by over an order of magnitude between
trials.

condition lead to an ’effectively’ higher learning rate—higher weights lead to more backpropagation of error
throughout the model. We also consider an alternative approach (called the Learning Rate Tuning) where
we increase the learning rate of the standard initialization in order to approximately match the starting
learning rates of both initializations (learning rate set to .3 for the standard initialization case, iterations
reduced to 2500 across both cases).

Fig 18 shows the results of this variant. Once again, both networks were able to learn to multitask, but the
large-initialization case both learned to multitask more quickly and with improved generalization (testing
loss). The improved learning rate for the standard initialization eliminated the transient area where the
large initialization was better in the single tasking case, while not affecting the dominance of the large init
in the multitasking case. We again focus on the per-trial differences in generalization loss in Fig 18 bottom
row, which again shows a strong positive result (standard initialization better) in single task training, and a
strong negative result (large initialization better) in multi-task fine-tuning.

A.6.4 Correlation Analysis - Difference Results on LR Tuned, Combined Data

An extension of the correlation analysis, using both the LR Tuned dataset and a combined dataset (both
the baseline and LR Tuned data to give a total of 20 trials).

For the LR Tuned dataset, we find a correlation of r = −.850 for the training case, and a correlation of
r = .952 for the multitasking fine tuning regime.

For the combined dataset, we find a correlation of r = −.757 for the training case, and a correlation of
r = .932 for the multitasking fine tuning regime.

These results are broadly consistent with the the base (non LR tuned) experimental results. In the training
case, higher clustering (e.g. standard initialization) is strongly correlated with lower delta performance (e.g.
superior generalization). The situation is again strongly reversed for the multitasking fine tuning case.

31



Under review as submission to TMLR

Figure 18: Generalization performance (top: mean loss ± s.d. across trials, bottom: mean difference in
loss ± s.d. across trials) for the same networks and training curriculum used for Figure 10, but in which
the learning rate for the standard initialization condition was increased to .03, and the training iterations
reduced to 2500. This insured that the magnitudes of the initial weight updates in the two initialization
conditions were approximately equal, and thus the initial speed of learning in the two conditions were
also roughly comparable. The effect is that, whereas the standard initialization condition now achieves
superior generalization performance earlier during training on single tasks (left panels), nevertheless the large
initialization condition continues to dominate generalization performance during fine tuning on multitasking
performance (right panels).

32



Under review as submission to TMLR

A.6.5 Correlation Analysis - Baseline

We repeat both experimental setups a total of 10 times, then use k-means clustering with 12 groups
over the multi-dimensional eNTK output, and then calculate the clustering quality using the silhouette
method (Baarsch & Celebi, 2012). We then calculated the correlations between the mean silhouette score
on both standard and large initialization, and the downstream fine-tuning test loss (e.g. final generaliza-
tion performance). We initially report across both categories (standard and LR-tuned), before providing a
per-category breakdown.

In the single task training regime, we get a get a correlation of r = −.421 between clustering silhouette (a
measure of how well the eNTK evecs are clustered, e.g. higher for the standard init) and final generalization
loss, e.g. the standard init’s shared representations are correlated with generalization ability. Correlations
were r = −.224 for the standard training setup, and r = −.637 for the LR-tuning training setup.

In the multitasking training regime, we get a correlation of r = .894 between clustering silhouette and final
generalization loss, e.g. the shared init’s shared representations are very strongly correlated with reduced
generalization ability, as predicted. Correlations were r = .947 for the standard training setup, and r = .875
for the LR-tuning training setup.

Doing base values rather than differences dramatically reduces the power in the single task training regime,
due to the aforementioned overall scale difference between different trials.

A.6.6 Full Training Details

In Fig 10, we show the basic generalization (test loss) performance of our model across the std and large
initializations for both the single-training and multi-fine tuning tasks, across two task setups (long time
and learning rate tuned). Here, we additionally examine the training performance (training loss) of our
models, where the dashed line corresponds to the training loss. As expected, training losses are lower than
testing losses as our model can near-exactly fit seen data. In the long time case, the large initialization’s
larger weights allow it to learn faster even in the single task training case (top left) compared to the std
initialization, although this does not correspond to increased generalization. In the learning rate matched
case, the standard initialization learns better, particularly for fine tuning on multitasking (bottom left)
compared to the large initialization, but again this does not lead to increase test performance. This shows
that in various settings, higher training performance does not necessarily lead to better generalization ability
as the network instead over-fits - the important consideration is instead the networks’ inductive biases,
particularly their representations.

A.7 Effects of Initialization on Acquisition of Multitasking Capability

A.7.1 Architectural Changes

We also briefly compared the effects of an architectural change, namely swapping from a task setup with 4
input groups and 3 output groups to one with 3 input groups and 4 output groups. In this case, there are
still 12 possible tasks. In the original task, we saw that learning by inputs preceded tasks. We hypothesized
that the early organization by outputs followed later with organization by inputs is consistent with the fact
that in a multilayered network, absent any form of weight normalization, the weights closest to the output
layer experience the steepest initial gradients and therefore the earliest effects of learning. However, it could
also be due to the fact that the output dimensionality was lower, so we reversed the dimensions to confirm
that the effect was unchanged, as seen in Fig 20.

33



Under review as submission to TMLR

Figure 19: Top: Standard training setup. Bottom: LR-Tuning setup. The top(bottom) row corresponds
to the figure in the main text(appendix), except we suppress the standard deviation and additionally show
training losses as dotted lines. Training losses are unsurprisingly better than generalization losses. Interest-
ingly, there are cases where the training loss that does better is not the generalization loss that does better
e.g. in the top left the large init’s effective higher learning rate allows it to quickly learn the train set, but
this does not lead to improved generalization performance compared to the standard init.

Figure 20: M-PHATE visualization of hidden unit activity in the network over course of training. Dots
correspond to the relative positions of the patterns of hidden unit activities (each averaged over all input
stimuli that share the same feature by which they are grouped) at each epoch in training (darker colors
represent earlier points in training and lighter colors later points; see legend to the right). Plots in each
column show hidden unit activities grouped (averaged) along dimensions indicated by the label (e.g., in the
leftmost column, labelled Task, hidden unit activations are grouped by task, with each dot corresponding to
the average pattern of hidden unit activity over all inputs for a given task). This figure shows an opposite
input/output setup, where we have 3 input groups and 4 output groups. Similarly to the case from the main
paper (4 input groups and 3 output groups), task averaging results in 4 subgroups of size 3 (compared to 4 of
size 3), input averaging results in 3 groups of 3 (instead of 3 groups of 4). Task by Input grouping shows the
same general pattern (learning input groups, then subdividing by task groups), as does grouping by output.

34


	Introduction
	Understanding and Visualizing Learning Dynamics
	Notation
	The empirical Neural Tangent Kernel (eNTK)
	Visualizing Learning Dynamics Using M-PHATE

	Validation of eNTK Analyses of Learning in Simple Networks
	Application of eNTK Analyses to Learning and Performance in Nonlinear Networks
	Model
	Network Architecture
	Task Environment
	Initialization and Training

	Predicting Impact of Standard vs. Large Initialization on Representational Learning
	Effect of Initialization on Representational Learning
	Use of eNTK to Predict Representational Learning


	Predicting the Effect of Initialization and Training Curriculum on Processing
	Effects of Initialization on Acquisition of Multitasking Capability
	Predicting performance from the eNTK analysis

	Discussion and Conclusions
	Appendix
	Architecture Details
	Task Details
	Path-Integrated NTK (PNTK) and ePNTK
	ePNTK Validation on SMG Linear System
	Derivation from SMG

	Differences between NTK and eNTK
	Further Experiments and Analyses
	Full eNTK Eigenvector Results
	Unsorted eNTK
	Full Trial Results for Standard Single Task Training
	Alternative Setup - LR Tuning
	Correlation Analysis - Difference Results on LR Tuned, Combined Data
	Correlation Analysis - Baseline
	Full Training Details

	Effects of Initialization on Acquisition of Multitasking Capability
	Architectural Changes



