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Summary
Meta reinforcement learning (meta-RL) methods such as RL2 have emerged as promis-

ing approaches for learning data-efficient RL algorithms tailored to a given task distribution.
However, they show poor asymptotic performance and struggle with out-of-distribution tasks
because they rely on sequence models, such as recurrent neural networks or transformers, to
process experiences rather than summarize them using general-purpose RL components such
as value functions. In contrast, traditional RL algorithms are data-inefficient as they do not
use domain knowledge, but do converge to an optimal policy in the limit. We investigate the
hypothesis that incorporating action-values, learned per task via traditional RL, in the inputs
to meta-RL has a positive effect on the above shortcomings, and demonstrate an example im-
plementation, called RL3, that earns greater cumulative reward in the long term compared to
RL2 while drastically reducing meta-training time and generalizing better to out-of-distribution
tasks. Experiments are conducted on both custom and benchmark discrete domains from the
meta-RL literature that exhibit a range of short-term, long-term, and complex dependencies.

Contribution(s)
1. A thorough investigation of the hypothesis that augmenting meta-RL inputs with object-

level Q-estimates leads to improved performance across several metrics, which to some
may be surprising as this information is already latent within the original input sequence.
Context: Although some results we present are strong, this paper is not attempting to
present a state-of-the-art meta-RL system across the board. We are interested in determin-
ing the effects of augmenting typical meta-RL inputs with object-level Q-estimates, without
using other privileged information or extra resources which in practice often increase per-
formance significantly and are in theory compatible with this work.

2. This paper presents thorough theoretical, empirical, and logical arguments for the effective-
ness of Q-estimate state-augmentation; significant attention is devoted to understanding,
from different perspectives, why this method achieves the results we see empirically.
Context: Previous papers have at times highlighted the importance of object-level value
estimation for successful meta-RL, though never in the form of an algorithm such as RL3.
This paper presents a unique method, set of experiments, and additional analysis comple-
menting existing research in our effort to better understand the capabilities and properties
of meta-RL systems.
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Abstract

Meta reinforcement learning (meta-RL) methods such as RL2 have emerged as promis-1
ing approaches for learning data-efficient RL algorithms tailored to a given task dis-2
tribution. However, they show poor asymptotic performance and struggle with out-3
of-distribution tasks because they rely on sequence models, such as recurrent neural4
networks or transformers, to process experiences rather than summarize them using5
general-purpose RL components such as value functions. In contrast, traditional RL6
algorithms are data-inefficient as they do not use domain knowledge, but do converge7
to an optimal policy in the limit. We propose RL3, a principled hybrid approach that8
incorporates action-values, learned per task via traditional RL, in the inputs to meta-9
RL. We show that RL3 earns greater cumulative reward in the long term compared10
to RL2 while drastically reducing meta-training time and generalizes better to out-of-11
distribution tasks. Experiments are conducted on both custom and benchmark discrete12
domains from the meta-RL literature that exhibit a range of short-term, long-term, and13
complex dependencies.14

1 Introduction15

Reinforcement learning (RL) has been shown to produce effective policies in a variety of appli-16
cations including both virtual (Mnih et al., 2015) and embodied (Schulman et al., 2017; Haarnoja17
et al., 2018) systems. However, traditional RL algorithms have three major drawbacks: they can be18
slow to converge, require a large amount of data, and often have difficulty generalizing to out-of-19
distribution (OOD) tasks not practiced during training. These shortcomings are especially glaring20
in settings where the goal is to learn policies for a collection or distribution of problems that share21
some similarities, and for which traditional RL must start from scratch for each problem. For exam-22
ple, many robotic manipulation tasks require interacting with an array of objects with similar but not23
identical shapes, sizes, weights, materials, and appearances, such as mugs and cups. It is likely that24
effective manipulation strategies for these tasks will be similar, but they may also differ in ways that25
make it challenging to learn a single policy that is highly successful on all instances. Recently, meta26
reinforcement learning (meta-RL) has been proposed as an approach to mitigate these shortcomings27
by deriving RL algorithms (or meta-RL policies) that adapt efficiently to a distribution of tasks that28
share some common structure (Duan et al., 2016; Wang et al., 2016).29

While meta-RL systems represent a significant improvement over traditional RL in such settings,30
they still require large amounts of data during meta-training time, can have poor asymptotic perfor-31
mance during adaptation, and although they “learn to learn," they often generalize poorly to tasks32
not represented in the meta-training distribution. This is partly because they rely on black-box se-33
quence models like recurrent neural networks or transformers to process experience data. These34
models cannot handle arbitrary amounts of data effectively and lack integrated general-purpose RL35
components that could induce a broader generalization bias.36
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Hence, we propose RL3, an approach that embeds the strengths of traditional RL within meta-RL.37
Table 1 highlights our primary aims and the foremost insight informing our approach. The key38
idea in RL3 is an additional ‘object-level’ RL procedure executed within the meta-RL architecture39
that computes task-specific optimal Q-value estimates as supplementary inputs to the meta-learner,40
in conjunction with sequences of states, actions and rewards. In principle, our approach allows41
the meta-learner to learn how to optimally fuse raw experience data with summarizations provided42
by the Q-estimates. Ultimately, RL3 leverages Q-estimates’ generality, ability to compress large43
amounts of experiences into useful summaries, direct actionability, and asymptotic optimality to44
enhance long-term performance and OOD generalization and drastically reduce meta-training time.45

While Q-value estimates can be injected into any other meta-RL algorithm, for clarity of exposition,46
we implement RL3 by injecting Q-value estimates into one of the most popular and easily understood47
meta-RL algorithm, RL2 (Duan et al., 2016) (hence, the name RL3). However, it should be noted48
that our baseline implementation of RL2 includes significant enhancements like using transformers49
instead of LSTMs to improve long-context reasoning, in addition to incorporating numerous recom-50
mendations from Ni et al. (2022) that have been shown to make recurrent model-free RL algorithms51
like RL2 competitive with state-of-the-art meta-RL baselines like VariBAD (Zintgraf et al., 2020).52

The primary contribution of this paper is a proof-of-concept that injecting Q-estimates obtained via53
traditional object-level RL alongside the typical experience histories within a meta-RL agent leads54
to higher long-term returns and better OOD generalization, while maintaining short-term efficiency.55
We further demonstrate that our approach can also work with an abstract, or coarse, representation56
of the object-level MDP. We experiment with discrete domains that both reflect the challenges faced57
by meta-RL and simultaneously allow transparent analysis of the results. Finally, we examine the58
key insights that inform our approach and show theoretically that object-level Q-values are directly59
related to the optimal meta-value function.60

2 Related Work61

Although meta-RL is a fairly new topic of research, the general concept of meta-learning is decades62
old (Vilalta & Drissi, 2002), which, coupled with a significant number of design decisions for63
meta-RL systems, has created a large number of different proposals for how systems ought to best64
exploit the resources available within their deployment contexts (Beck et al., 2023). At a high65
level, most meta-RL algorithms can be categorized as either parameterized policy gradient (PPG)66
models (Finn et al., 2017; Li et al., 2017; Sung et al., 2017; Al-Shedivat et al., 2018; Gupta et al.,67
2018; Yoon et al., 2018; Stadie et al., 2018; Vuorio et al., 2019; Zintgraf et al., 2019; Raghu et al.,68
2019; Kaushik et al., 2020; Ghadirzadeh et al., 2021; Mandi et al., 2022) or black box models (Duan69
et al., 2016; Heess et al., 2015; Wang et al., 2016; Foerster et al., 2018; Mishra et al., 2018; Humplik70
et al., 2019; Fakoor et al., 2020; Yan et al., 2020; Zintgraf et al., 2020; Liu et al., 2021; Emukpere71
et al., 2021; Beck et al., 2022). PPG approaches assume that the underlying learning process is best72
represented as a policy gradient, where the set of parameters that define the underlying algorithm73
ultimately form a differentiable set of meta-parameters that the meta-RL system may learn to74
adjust. The additional structure provided by this assumption, combined with the generality of policy75

Table 1: RL3 combines the strengths of meta-RL (e.g., RL2) and traditional RL. Like RL2, RL3 uses finite-
context sequence models to represent data-efficient RL algorithms, optimized for tasks within a specified distri-
bution. However, RL3 also includes a general-purpose RL routine that distills arbitrary amounts of data into op-
timal value-function estimates during adaptation. This improves long-term reasoning and OOD generalization.

RL RL2 RL3

Short-Term Efficiency x ✓ ✓
Long-Term Performance ✓ x ✓
OOD Generalization ✓ x ✓

(General Purpose) (Improved)
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gradient methods, means that typically PPG methods retain greater generalization capabilities on76
out-of-distribution tasks. However, due to their inherent data requirements, PPG methods are often77
slower to adapt and initially train.78

In this paper we focus on black box models, which represent the meta-learning function as a neural79
network, often a recurrent neural network (RNN) (Duan et al., 2016; Heess et al., 2015; Wang et al.,80
2016; Humplik et al., 2019; Fakoor et al., 2020; Yan et al., 2020; Zintgraf et al., 2020; Liu et al.,81
2021) or a transformer (Mishra et al., 2018; Wang et al., 2021; Melo, 2022). There are also several82
hybrid approaches that combine PPG and black box methods, either during meta-training (Ren et al.,83
2023) or fine-tuning (Lan et al., 2019; Xiong et al., 2021). Using black box models simplifies the84
process of augmenting meta states with Q-estimates and allows us to retain relatively better data effi-85
ciency while relying on the Q-value injections for better long-term performance and generalization.86

Meta-RL systems may also leverage extra information available during training, such as task87
identification (Humplik et al., 2019; Liu et al., 2021). Such ‘privileged information’ can of course88
lead to more performant systems, but is not universally available. As our hypothesis does not rely89
on the availability of such information, we expect our approach to be orthogonal to, and compatible90
with, such methods. Black box meta-RL systems that do not use privileged information still vary in91
several ways, including the choice between on-policy and off-policy learning and, in systems that92
use neural networks, the choice between transformers (Vaswani et al., 2017) and RNNs (Elman,93
1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014).94

The most relevant methods to our work are end-to-end methods, which use a single function95
approximator to subsume both learner and meta-learner, such as RL2 (Duan et al., 2016), L2L96
(Wang et al., 2016), SNAIL (Mishra et al., 2018), and E-RL2 (Stadie et al., 2018), and methods97
that exploit the formal description of the meta-RL problem as a POMDP or a Bayes-adaptive MDP98
(BAMDP) (Duff, 2002). These methods attempt to learn policies conditioned on the BAMDP belief99
state while also approximating this belief state by, for example, variational inference (VariBAD)100
(Zintgraf et al., 2020; Dorfman et al., 2020), or random network distillation on belief states101
(HyperX) (Zintgraf et al., 2021). Or, they simply encode enough experience history to approximate102
POMDP beliefs (RL2) (Duan et al., 2016; Wang et al., 2016).103

Our proposed method is an end-to-end system that exploits the BAMDP structure of the meta-RL104
problem by spending a small amount of extra computation to provide inputs to the end-to-end learner105
that more closely resemble important constituents of BAMDP value functions. Thus, the primary106
difference between this work and previous work is the injection of Q-value estimates into the meta-107
RL agent state at each meta-step, in addition to the state-action-reward histories. In this work, our108
approach, RL3, is implemented by simply injecting Q-value estimates into RL2 alongside experience109
history, although any other meta-RL algorithm can be used.110

3 Background and Notation111

In this section, we briefly cover some notation and concepts upon which this paper is built.112

3.1 Partially Observable MDPs113

We use the standard notation defining a Markov decision process (MDP) as a tuple M =114
⟨S,A, T,R⟩, where S is a set of states; A is a set of actions; T is the transition and R is the reward115
function. A partially observable Markov decision process (POMDP) extends MDPs to settings with116
partially observable states. A POMDP is described as a tuple ⟨S,A, T,R,Ω, O⟩, where S,A, T,R117
are as in an MDP. Ω is the set of possible observations, and O : S × A× Ω → [0, 1] is an observa-118
tion function representing the probability of receiving observation ω after performing action a and119
transitioning to state s′. POMDPs can alternatively be represented as continuous-state belief-MDPs120
where a belief state b ∈ ∆|S| is a probability distribution over all states. In this representation, a121
policy π is a mapping from belief states to actions, π : ∆|S| → A.122
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Figure 1: Overview diagram of RL3 . Black entities represent standard components from RL2, and purple
entities represent additions for RL3 . Mi is the current MDP; s is a state; r is a reward; ti and tτ are the amount
of time spent experiencing the current MDP and current episode, respectively; Qt

i is the Q-value estimate for
MDP i after t actions;∇J is the policy gradient for meta-training.

3.2 Reinforcement Learning123

Reinforcement learning (RL) agents learn an optimal policy given an MDP with unknown dynamics124
using only transition and reward feedback. This is often done by incrementally estimating the opti-125
mal action-value function Q∗(s, a) (Watkins & Dayan, 1992), which satisfies the Bellman optimality126
equation Q∗(s, a) = Es′ [R(s, a)+ γmaxa′∈A Q∗(s′, a′)]. In large or continuous state settings, it is127
popular to use deep neural networks to represent the action-value functions (Mnih et al., 2015). We128
denote the vector representing the Q-estimates of all actions at state s as Q(s), and after t feedback129
steps, as Qt(s). Q-learning is known to converge asymptotically (Sutton & Barto, 2018), provided130
each state-action pair is explored sufficiently. As a rough general statement, ||Qt(s) − Q∗(s)||∞131
is proportional to ≈ 1√

t
, with strong results on the convergence error available (Szepesvári, 1997;132

Kearns & Singh, 1998; Even-Dar et al., 2003). The theoretical objective in RL is to optimize the133
value of the final policy i.e., the cumulative reward per episode, disregarding the data cost incurred134
and the cumulative reward missed (or regret) during learning due to suboptimal exploration.135

3.3 Meta Reinforcement Learning136

Meta-RL seeks action selection strategies that minimize regret in MDPs drawn from a distribution137
of MDPs that share the same state and action spaces. Therefore, the objective in meta-RL is to max-138
imize the cumulative reward over the entire interaction (or adaptation) period with an MDP, which139
may span multiple episodes, in order to optimize the exploration-exploitation tradeoff. Formally,140

J (θ) = EMi∼M

[ H∑
t=0

γtE(st,at)∼ρ
πθ
i
[Ri(st, at)]

]
(1)

where the meta-RL policy πθ is interpreted as a ‘fast’ or ‘inner’ RL algorithm that maps the experi-141
ence sequence (s0, a0, r0, ..., st) within an MDP Mi to an action at using either a recurrent neural142
network or a transformer network. ρπθ

i is the state-action occupancy induced by the meta-RL pol-143
icy in MDP Mi, and H is the length of the adaptation period, or interaction budget. The objective144
J (θ) is maximized using a conventional ‘slow’ or ‘outer’ deep RL algorithm, given the reformu-145
lation of the interaction period with an MDP as a single (meta-)episode in the objective function,146
which maximizes the cumulative reward throughout this period. We will use the term ‘experience147
history’, denoted by Υ, to refer to the state-action-reward sequence within a meta-episode, which148
spans across multiple episodes {τ0, τ1, ...τn}. Fig. 1 illustrates how these components interconnect.149

Another way to conceptualize this problem is to recognize that the meta-RL problem may be written150
as a meta-level POMDP, where the hidden variable is the particular MDP (or task) at hand, Mi,151
which varies across meta-episodes. This framing, known as Bayesian RL (Ghavamzadeh et al.,152
2015), leverages the fact that augmenting the task-specific state s with belief over tasks b(i) results153
in a Markovian meta-state [s, b] for optimal action selection, a model known as the Bayes Adaptive154
MDP (or BAMDP) (Duff, 2002). That is, this belief state captures all requisite information for the155
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purpose of acting. We will revisit this concept to develop intuition on the role of object-level Q-value156
estimates in the meta-RL value function.157

4 RL3158

To address the limitations of black box meta-RL methods, we propose RL3, a principled approach159
that leverages (1) the inherent generality of action-value estimates, (2) their ability to compress ex-160
perience histories into useful summaries, (3) their direct actionability & asymptotic optimality, (4)161
their ability to inform task-identification, and (5) their relation to the optimal meta-value function,162
in order to enhance out-of-distribution (OOD) generalization and performance over extended adap-163
tation periods. The central, novel mechanism in RL3 is an additional ‘object-level’ RL procedure164
executed within the meta-RL architecture, shown in Fig. 1, that computes task-specific optimal Q-165
value estimates Qt

i(st) and state-action counts as supplementary inputs to the meta-RL policy in166
conjunction with the sequence of states, actions and rewards (s0, a0, r0, ..., st). The Q-estimates are167
computed off-policy, and may involve model estimation and planning, for greater data efficiency.168
The estimates and the counts are reset at the beginning of each meta-episode as a new task Mi is169
sampled. In all subsequent text, Q-value estimates used as input entail the inclusion of state-action170
counts as well. We now present a series of key insights informing our approach.171

First, estimating action-values is a key component in many universal RL algorithms, and172
asymptotically, they fully inform optimal behavior irrespective of domain. Strategies for optimal173
exploration-exploitation trade-off are domain-dependent and rely on historical data, yet many explo-174
ration approaches use estimated Q-values and some notion of counts alone, such as epsilon-greedy,175
Boltzmann exploration, upper confidence bounds (UCB/UCT) (Auer, 2002; Kocsis & Szepesvári,176
2006), count-based exploration (Tang et al., 2017), curiosity based exploration (Burda et al., 2019)177
and maximum-entropy RL (Haarnoja et al., 2018). This creates a strong empirical case that using178
Q-value estimates and state-action counts for efficient exploration has inherent generality.179

Second, Q-estimates summarize experience histories of arbitrary length and order in one constant-180
size vector. This mapping is many-to-one, and any permutation of transitions (⟨s, a, r, s′⟩ tuples) or181
episodes in a history of experiences yield the same Q-estimates. Although this compression is lossy,182
it still “remembers" important aspects of the experienced episodes, such as high-return actions and183
goal positions (see Fig. 2) since Q-estimates persist across episodes. This simplifies the mapping the184
meta agent needs to learn as Q-estimates represent a smaller and more salient set of inputs compared185
to all possible histories with the same implication.186

Third, Q-estimates are actionable. Estimated off-policy, they explicitly represent the optimal ex-187
ploitation policy for the current task given the data insofar as the RL module is data-efficient, reliev-188
ing the meta-RL agent from performing such calculations inside the transformer/RNN. Over time,189
Q-estimates become more reliable and directly indicate the optimal policy whereas processing raw190
data becomes more challenging. Fortunately, by incorporating Q-estimates the meta-RL agent can191
eventually ignore the history in the long run (or towards the end of the interaction period) and simply192
exploit the Q-estimates by selecting actions greedily.193

Fourth, Q-estimates are excellent task discriminators and serve as another line of evidence vis-194
à-vis maintaining belief over tasks. In a simple domain like Bernoulli multi-armed bandits (Duan195
et al., 2016), Q-estimates and action-counts combined are sufficient for Bayes-optimal behavior even196
without providing raw experience data – a result surprisingly unstated in the literature to the best197
of our knowledge (see Appendix A.1). However, Q-estimates and action-counts may not always be198
sufficient for Bayes-optimal beliefs1. In more complex domains, it is hard to prove the sufficiency199
of Q-estimates regarding task discrimination. However, via empirical analysis in Appendix E, we200
argue that i) it is highly improbable for two tasks to have similar Q∗ functions and ii) Q-estimates201
tend to become accurate task predictors in just a few steps. This implies that the meta-agent may use202

1For example, in Gaussian multi-armed bandits, the sufficient statistics include the variance in rewards for each action
(see Appendix A.2).
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a)

c)

b)

Figure 2: Sub-figure (a) shows a meta-episode in a shortest-path environment where the goal position (green
circles) and the obstacles (black regions) may vary across tasks. In this meta-episode, after the meta-RL
agent narrows its belief about the goal position of this task (dark-green circle) having followed a principled
exploration strategy (τ0), it explores potential shorter paths in subsequent episodes (τ1, τ2, τ3, τ4). Throughout
this process, the estimated value-function Q̂∗ implicitly “remembers" the goal position and previous paths
traversed in a finite-size representation, and updates the shortest path calculation (highlighted in bold)
using Bellman backups when paths intersect. Sub-figures (b) and (c) illustrate the many-to-one mapping of
object- and meta-level data streams to Q-estimates, and thus their utility as compression and summarization
mechanisms for meta-learning.

this finite summary for task inference rather than relying completely on arbitrarily long histories,203
potentially contributing to enhanced performance over long adaptation periods.204

It can be theoretically argued that since the meta agent is a BAMDP policy, it is meta-trained to205
select greedy actions w.r.t. the BAMDP meta-value function and thus should not require construct-206
ing a task-specific plan internally. However, the optimality of the meta action-value function de-207
pends on implicitly (or explicitly in some approaches (Humplik et al., 2019; Zintgraf et al., 2020;208
Dorfman et al., 2020; Zintgraf et al., 2021)) maintaining a Bayes-optimal belief over tasks in the209
transformer/RNN architecture. This may be challenging if the task distribution is too broad and the210
function approximator is not powerful enough to integrate experience histories into Bayes-optimal211
beliefs, or altogether impossible if there is a distribution shift at meta-test time. This latter condi-212
tion is common in practice and is a frequent target use case for meta-RL systems. Incorporating213
task-specific Q-estimates gives the agent a simple alternative (even if not Bayes-optimal) line of rea-214
soning to translate experiences into actions. Incorporating Q-estimates thus reduces susceptibility215
to distribution shifts since the arguments presented in this section are domain independent.216

Finally, Q-estimates often converge far more quickly than the theoretical rate of 1√
t
, allowing them217

to be useful in the short and medium term, since i) most real-world domains contain significant de-218
terminism, ii) it is not necessary to estimate Q-values for states unreachable by the optimal policy,219
and iii) optimal meta-RL policies may represent active exploration strategies in which Q-estimates220
converge faster, or evolve in a manner leading to quicker task identification. This is intuitively ap-221
parent in shortest-path problems, as illustrated in Fig. 2(a). In a deep neural network, it is difficult to222
know exactly how Q-estimates will combine with state-action-reward histories when approximating223
the meta-value function. However, as we show below, we can write an equation for the meta-value224
function in terms of these constituent streams of information, which may explain why this function225
is seemingly relatively easy to learn compared to predicting meta-values from histories alone.226

4.1 Theoretical Justification227

Here, we consider the interpretation of meta-RL as performing RL on a partially observable Markov228
decision process (POMDP) in which the partially observable state factor is the identity of the object-229
level MDP. Without loss of generality, all analysis assumes the infinite horizon setting. We will230
denote meta-level entities, belonging in this case to a POMDP, with an overbar. For example, we231
have a meta-level value function V̄ and a meta-level belief b̄.232

First, we show a basic result, that the optimal meta-level value function is upper bounded by the233
object-level Q-value estimates in the limit.234
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Proof: Given a task distribution M, then for state s, there exists a maximum object-level optimal235
value function V ∗

max(s), corresponding to some MDP Mmax ∈ M, such that for all MDPs Mi ∈236
M, V ∗

max(s) ≥ V ∗
i (s). The expected cumulative discounted reward experienced by the agent cannot237

be greater than the most optimistic value function over all tasks, since V̄ ∗(b̄) is a weighted average238
of individual value functions V πθ (s), which are themselves upper bounded by V ∗

max(s). Thus,239

max
Mi∈M

V ∗
i (s) ≥ V̄ ∗(b̄) ∀s ∈ S. (2)

Next, we see that combining the asymptotic accuracy of Q-estimates and Equation (2) yields240

lim
t→∞

max
a∈A,Mi∈M

Qt
i(s, a) ≥ V̄ ∗(b̄) ∀s ∈ S. (3)

Furthermore, it follows if the meta-level observation ω̄ includes Q-value estimates of the current241
task Mi, it can be shown that as t → ∞, the optimal meta-value function approaches the optimal242
value function for the current task, i.e., for any ϵ > 0, there exists κ ∈ N such that for t ≥ κ,243 ∣∣∣max

a∈A

[
Qt

i(s, a)
]
− V̄ ∗(b̄)

∣∣∣ ≤ ϵ ∀s ∈ S. (4)

Equation 4 (proof in Appendix B.1) shows that for t ≥ κ, acting greedily w.r.t. Q∗
i leads to Bayes-244

optimal behavior, and knowing the Bayes-optimal belief over tasks is not required, implying that the245
experience history can be ignored at that point. Moreover, it follows from equation 4 that for t < κ,246

V̄ ∗(b̄) = max
a∈A

[
Qt

i(s, a)
]
+ εi(Υ) (5)

where error εi(Υ) is the error in Q-value estimates. While this error will diminish as t → ∞, in the247
short run, a function f(Υ) could be learned to either estimate the error or estimate V̄ ∗(b̄) entirely.248

The better performance of RL3 could be explained by either error εi(Υ) being simpler to estimate,249
or, the meta-agent behavior being more robust to errors in estimates of εi(Υ) when Q-estimates are250
supplied directly as inputs, than to errors in a more complicated approximation of V̄ ∗(b̄). Moreover,251
this composition benefits from the fact that the convergence rate for Q-estimates suggests a natural,252
predictable rate of shifting reliance from f(Υ) to Qt

i(s) as t → ∞. However, we do not bake this253
structure into the network and instead let it implicitly learn how much to use the Q-estimates.254

Finally, we note that near-perfect function approximation of V̄ ∗(b̄) as t → ∞ reduces error in meta-255
value function approximation for all preceding belief states, as meta-values for consecutive belief256
states b̄ and b̄′ are linked through the Bellman equation for BAMDPs (see details in Appendix B.1)257

V̄ ∗(b̄) = max
a∈A

[ ∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (6)

This dependency helps meta-training in RL3 with temporal-difference based learning algorithms.258
Without conditioning on Q-estimates, error in V̄ ∗(b̄) would instead increase as t → ∞, as the meta-259
critic would be conditioned on a larger history, which could destabilize the meta-value learning for260
all preceding belief states during meta-training.261

4.2 Implementation262

Implementing RL3 involves simply replacing each MDP in the task distribution with a corresponding263
value-augmented MDP (VAMDP) and solving the resulting VAMDP distribution using RL2. Each264
VAMDP has the same action space and reward function as the corresponding MDP. The value aug-265
mented state ŝt ∈ S × Rk × Ik includes the object level state st, k real values and k integer values266
for the Q-estimates (Qt(st, a)) and action counts (N t(st, a)) for each of the k actions.In practice,267
we provide action advantages along with the max Q-value (value function) instead of Q-estimates.268
When the object-level state space S is discrete, st needs to be represented as an |S|-dimensional269
one-hot vector. Note that the value augmented state space is continuous. In the VAMDP transition270
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function, the object-level state s has the same transition dynamics as the original MDP, while the271
dynamics of Q-estimates are a function of T , R, and the specific object-level RL algorithm used for272
estimating Q-values. An episode of the VAMDP spans the entire interaction period with the corre-273
sponding MDP, which may include multiple episodes of the MDP, as Q-estimates continue to evolve274
beyond episode boundaries. In code, a VAMDP RL environment is implemented as a wrapper over a275
given MDP environment. The pseudocode, additional implementation details and hyperparameters276
for RL2 and RL3 are mentioned in Appendix C.277

5 Experiments278

We compare RL3 to our enhanced implementation of RL2. In our implementation, we replace279
LSTMs with transformers in both the meta-actor and meta-critic for the purpose of mapping ex-280
periences to actions and meta-values, respectively. This is done to improve RL2 ’s ability to handle281
long-term dependencies instead of suffering from vanishing gradients. Moreover, RL2-transformer282
trains significantly faster than RL2-LSTM. Second, we include in the state space the total number283
of interaction steps and the total number of steps within each episode during a meta-episode (see284
Fig. 1). Third, we use PPO (Schulman et al., 2017) for training the meta actor-critic, instead of285
TRPO (Schulman et al., 2015). These modifications and other minor-implementation details incor-286
porate the recommendations made by Ni et al. (2022), who show that model-free recurrent RL is287
competitive with other state-of-the-art meta RL approaches such as VariBAD (Zintgraf et al., 2020),288
if implemented properly. RL3 simply applies the modified version of RL2 to the distribution of289
value-augmented MDPs explained in section 4.2. Within each VAMDP, our choice of object-level290
RL is a model-based algorithm to maximize data efficiency – we estimate a tabular model of the291
environment and run finite-horizon value-iteration using the model. Once again, we emphasize that292
the core of our approach, which is augmenting MDP states with action-value estimates, is not inher-293
ently tied to RL2 and is orthogonal to most other meta-RL research. VAMDPs can be plugged into294
any base meta-RL algorithm with a reasonable expectation of improving it.295

In our test domains, each meta-episode involves procedurally generating an MDP according to a296
parameterized distribution, which the meta-actor interacts with for a fixed adaptation period, or297
interaction budget, H . This interaction might consist of multiple object-level episodes of variable298
length, each of which are no longer than a maximum task horizon. For a given experiment, each299
approach is trained on the same series of MDPs. Each experiment is done for 3 seeds and the300
results of the median performing model are reported. For testing, each approach is evaluated on301
an identical set of 1000 MDPs distinct from the training MDPs. For testing OOD generalization,302
MDPs are generated from distributions with different parameters than in training. We select three303
discrete domains for our experiments, which cover a range of short-term, long-term, and complex304
dependencies. These domains both reflect the challenges faced by meta-RL and simultaneously305
allow transparent analysis of the results.306

Bernoulli Bandits: We use the same setup described by Duan et al. (2016) with k = 5 arms. To test307
OOD generalization, we generate bandit tasks by sampling success probabilities from N (0.5, 0.5).308
We should note that this is an easy domain and serves as a sanity check to ensure that Q-value309
estimates do not hurt RL3, causing inferior performance.310

Random MDPs: We use the same setup described by Duan et al. (2016). The MDPs have 10311
states, 5 actions, and task horizon 10. The rewards and transition probabilities are drawn from a312
normal and a flat Dirichlet distribution (α = 1.0), respectively. OOD test MDPs use Dirichlet313
α = 0.25. We should note that this domain is particularly challenging for RL3 due to the high314
degree of stochasticity and thus the slower convergence rate of Q-estimates.315

GridWorld Navigation: A set of navigation tasks in a 2D grid environment. We experiment with316
11x11 (121 states) and 13x13 (169 states) grids. The agent starts in the center and needs to navigate317
through obstacles to a single goal. The grid also contains slippery tiles, dangerous tiles and warning318
tiles. See Fig. 4(a) for an example of a 13x13 grid. The state representation is coordinates (x, y).319
To test OOD generalization, we vary parameters including the stochasticity of actions, density of320
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Table 2: Test scores (mean ± standard error) for Bandits domain and the †OOD variation.

Budget H RL2 RL3 RL3 (Markov)

100 76.9± 0.6 77.5± 0.5 75.2± 0.5
500 392.1± 2.5 393.2± 2.7 391.75± 2.6

500† 430.2± 2.8 434.9± 2.8 433.7± 2.8

Figure 3: Results for the MDPs and GridWorlds domains. Figure 3a shows the average cumulative reward
(negligible standard error) earned as a fraction of the oracle policy for in-distribution (solid) and OOD (dashed)
tasks; Figure 3b shows the fraction of RL2-transformer meta-training iterations that RL3 requires (variance is
insignificant across seeds) to match RL2-transformer performance or fully converge, both as functions of the
adaptation period. Note the log horizontal axis on both plots. Figure 3c shows the average cumulative reward
(± standard error) earned by RL2, RL3 , and RL3-coarse agents on several variations of the GridWorlds domain.

obstacles and the number of dangerous tiles. For this domain, we consider an additional variation of321
RL3, called RL3-coarse where a given grid is partitioned into clusters of 2 adjacent tiles (or abstract322
states), which are used solely for the purpose of estimating the object-level Q-values. Our goal is to323
test whether coarse-level Q-value estimates are still useful to the meta-RL policy. The domains and324
the abstraction strategy are described in greater detail in Appendices F and C.3, respectively.325

6 Results326

In summary, we observe that beyond matching or exceeding the performance of RL2 in all test327
domains i) RL3 shows better OOD generalization, which we attribute to the increased generality328
of the Q-value representation, ii) the advantages of RL3 increase with longer interactions periods329
and less stochastic tasks, which we attribute to the increased accuracy of the Q-value estimates, iii)330
RL3 performs well even with coarse-grained object-level RL over abstract states with substantial331
computational savings, showing minimal drop in performance in most cases, and iv) RL3 shows332
faster meta-training.333

Bandits: Fig 2 shows the results for this sanity-check domain. For H = 100 and H = 500,334
both approaches perform comparably. However, the OOD generalization for RL3 is slightly better.335
We also experiment with a Markovian version of RL3, where a feed-forward neural network is336
conditioned only on the Q-estimates and action-counts, since those are sufficient for Bayes-optimal337
behavior in this domain. As expected, the results are similar to regular RL3 .338

MDPs: Figures 3a and 3b show the results for the MDPs domain. In Figure 3a, we see that for339
relatively short budgets, H ≤ 500, both RL3 and RL2-transformer perform comparably on in-340
distribution problems, with RL3 performing slightly better on OOD tasks. We suspect that, due341
to the short budgets and highly stochastic domain, Q-estimates do not converge enough to be very342
useful for RL3 . However, as the budget increases, we see that RL3 continues to improve while343
RL2-transformer actually becomes worse and the performance gap on both in-distribution and OOD344
tasks becomes significant. Overall, we see that RL3 preserves asymptotic scaling properties of tra-345
ditional RL while simultaneously maintaining strong OOD performance. Moreover RL3 it is able to346
learn meta-policies much more efficiently. Figure 3b shows the number of iterations of PPO RL3347
takes to converge completely, as well as to match the performance of RL2-transformer, measured as348
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Figure 4: An RL3 policy on a selected meta-episode visualized using a sequence of snapshots. ‘S’ is the
starting tile, ‘G’ is the goal tile and the black circle shows the current position of the agent. Blue tiles marked
‘W’ are wet tiles. Wet tiles always lead to the agent slipping to one of the directions orthogonal to the intended
direction of movement. Entering wet tiles yield an immediate reward of -2. Yellow tiles marked ‘!’ are warning
tiles and entering them causes -10 reward. Red tiles marked ‘X’ are fatally dangerous. Entering them ends the
episode and leads to a reward of -100. Black tiles are obstacles. White tiles yield a reward of -1 to incentive
the agent to reach the goal quickly. On all tiles other than wet tiles, there is a chance of slipping sideways with
a probability of 0.2. The object-level state-values vt(s) = maxaQ

t(s, a), as approximated by object-level RL,
is represented using shades of green (and the accompanying text), where darker shades represent higher values.

a fraction of the time it takes for RL2-transformer to converge. This advantage of RL3 is again most349
pronounced for longer adaptation periods, but we still do observe significant meta-training speedup350
on even moderate ones. Overall, it is clear that as adaptation periods grow, RL3 achieves nearer-to-351
optimal policies in a fraction of the meta-training time and maintains better OOD generalization.352

GridWorlds: Fig 3c shows the results for the GridWorld domain. On 11x11 grids with H = 250,353
RL3 significantly outperforms RL2. On 13x13 grids with H = 350, the performance margin is354
even greater, showing that while RL2-transformer struggles with a greater number of states, a longer355
adaptation period and more long-term dependencies, RL3 can take advantage of the Q-estimates to356
overcome the challenge. We also test the OOD generalization of both approaches in different ways357
by varying certain parameters of the 13x13 grids, namely, increasing the obstacle density (DENSE),358
making actions on non-water tiles deterministic (DETERMINISTIC), increasing the number of wet359
‘W’ tiles (WATERY), increasing the number of danger ‘X’ tiles (DANGEROUS) and having the goal360
only in the corners (CORNER). On all variations, RL3 continues to significantly outperform RL2. In a361
particularly interesting outcome, both approaches show improved performance on the DETERMINIS-362
TIC variation. However, RL3 gains 80% more points than RL2 , which is likely because Q-estimates363
converge faster on this less stochastic MDP and therefore provide greater help to RL3 . Conversely,364
in the WATERY variation, which is more stochastic, both RL2 and RL3 lose roughly equal number of365
points. Overall, in each case, RL3-coarse significantly outperforms RL2-transformer. In fact, it per-366
forms on par with RL3, even outperforming it on CORNER variation, except on the canonical 13x13367
case and its DETERMINISTIC variation, where it scores about 90% of the scores for RL3. Finally,368
we see similar meta-training speedups where RL3 requires just 50% and 30% of the total iterations369
to match the performance of RL2-transformer on the 11x11 and 13x13 grids, respectively.370

Fig. 4 shows a sequence of snapshots of a meta-episode where the trained RL3 agent is interacting371
with an instance of a 13x13 grid. The first snapshot shows the agent just before reaching the goal372
for the first time. Prior to the first snapshot, the agent had explored many locations in the grid. The373
second snapshot shows the next episode just after the agent finds the goal, resulting in value estimates374
being updated using object-level RL for all visited states. Snapshot 3 shows the agent consequently375
using the Q-estimates to navigate to the goal presumably by choosing high-value actions. The agent376
also explores several new nearby states for which it does not have Q-estimates. Snapshot 4 shows377
the final Q-value estimates. A set of short videos of the GridWorld environment, showing both RL2378
and RL3 agents solving the same set of problem instances, is included in the supplementary material.379

Computation Overhead Considerations: As mentioned earlier, for implementing object-level RL,380
we use model estimation followed by finite-horizon value-iteration to obtain Q-estimates. The com-381
putation overhead is negligible for Bandits (5 actions, task horizon = 1) and very little for the MDPs382



Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

domain (10 states, 5 actions, task horizon 10). For 13x13 GridWorlds (up to 169 states, 5 actions,383
task horizon = 350), RL3 takes approximately twice the computation time of RL2 per meta-episode.384
However, RL3-coarse requires only 10% overhead while still outperforming RL2 and retaining more385
than 90% of the performance of RL3. This demonstrates the utility of state abstractions in RL3386
for scaling. Finally, the meta-training sample efficiency demonstrated by RL3 translates directly to387
wall-time efficiency as training is dominated by gradient computation, not value iteration during388
data collection in PPO. Our implementation is available in the supplementary material.389

7 Limitations and Conclusion390

Though it compares favorably to strong meta-RL approaches like RL2-transformer where applicable,391
RL3 does have some limitations. First, it assumes the object-level decision-making model is an392
MDP, which although a common assumption in the literature, may be challenged in practice. While393
in principle we could extend RL3 to POMDPs using methods like point-based value iteration, this394
has yet to be tested empirically. Second, RL3 relies on fast, potentially approximate methods for395
object-level RL, and using value iteration complicates application to problems with continuous state396
spaces. However, we speculate that a crude linear function approximation would suffice. Finally,397
inference time is slightly slower at deploy time due to running object-level RL. However, the overall398
training time is actually faster because of better meta-training efficiency. In fact, RL3 could enable399
working with adaptation periods that are otherwise prohibitively long for many meta-RL approaches.400

To conclude, in this paper, we introduced RL3, a principled hybrid approach that combines the401
strengths of traditional RL and meta-RL and provides a more robust and efficient meta-RL algorithm.402
We advanced intuitive and theoretical arguments regarding its suitability for meta-RL and presented403
empirical evidence to validate those ideas. Specifically, we demonstrated that RL3 holds potential404
to enhance long-term performance, generalization on out-of-distribution tasks and reducing meta-405
training time. In future work, we plan to explore extending RL3 to handle continuous state spaces.406

A Proofs407

A.1 Bayes Optimality of Q-value Estimates in Bernoulli Multi-armed Bandits408

Given an instance of a Bernoulli multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up409
to time T , we would like to show that the probability P (i|Υ1:T ) can be determined entirely from410
Q-estimates QT

i and action-counts NT
i , as long as the initial belief is uniform or known.411

In the following proof, we represent an instance i of K-armed Bandits as a K-dimensional vector412
of success probabilities [pi1, ..., piK ], such that pulling arm k is associated with reward distribution413
P (r = 1|i, k) = pik and P (r = 0|i, k) = (1− pik).414

Let the number of times arm k is pulled up to time T be NT
ik, and the number of successes associated415

with pulling arm k up to time T be qTik. Given that this is an MDP with just a single state and task416
horizon of 1, the Q-estimate associated with arm k is just the average reward for that action, which417

is the ratio of successes to counts associated with that action i.e., QT
ik =

qTik
NT

ik

. To reduce the clutter418

in the notation, we will drop the superscript T for the rest of the subsection. Now,419

P (i|Υ1:T ) = αP (i) · P (Υ1:T |i) (7)

where α is the normalization constant, P (i) is the prior probability of task i (which is assumed to be420
known beforehand), and Υ1:T is the sequence of actions and the corresponding rewards up to time421
T . Assuming, without loss of generality, that the sequence of actions used to disambiguate tasks is422
a given, P (Υ1:T |i) becomes simply the product of probabilities of reward outcomes up to time T ,423
noting that the events are independent. Therefore,424
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P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

([rtk = 1]pik + [rtk = 0](1− pik)) (8)

=
∏

k=1:K

p
qik
ik · (1− pik)

Nik−qik (9)

=
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (10)

Putting everything together,425

P (i|Υ1:T ) = αP (i) ·
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (11)

This equation proves that NT
i and QT

i are sufficient statistics to determine P (i|Υ1:T ) in this domain,426
assuming that the prior over task distribution is known.427

A.2 Non-Bayes Optimality of Q-value Estimates in Gaussian Multi-armed Bandits428

Given an instance of a Gaussian multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up429
to time t, here we derive the closed-form expression of the probability P (i|Υ1:T ) and show that it430
contains terms other than Q-estimates Qt

i and action-counts N t
i .431

In the following proof, we represent an instance i of K-armed Bandits as a 2K-dimensional vector432
of means and standard deviations [µi1, ..., µiK , σi1, ..., σiK ], such that pulling arm k is associated433
with reward distribution P (r|i, k) = 1√

2πσik
exp( r−µik

σik
)2.434

Let the number of times arm k is pulled up to time T be NT
ik. Given this is an MDP with a single435

state and the task horizon is 1, the Q-estimate associated with arm k is just the average reward for436
that action Avg[rk] up to time T . To reduce the clutter in the notation, we will drop the superscript437
T for the rest of the subsection. As in the previous subsection, we now compute the likelihood438
P (Υ1:T |i).439

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

1√
2πσik

exp(
rtk − µik

σik
)2 (12)

Therefore, the log likelihood is440

logP (Υ1:T |i) =
∑

k=1:K

∑
t=1:T

(rtk − µik)
2

σ2
ik

− log (2πσik)/2 (13)

=
∑

k=1:K

Nik
Avg[(rtk − µik)

2]

σ2
ik

−Nik log (2πσik)/2 (14)

=
∑

k=1:K

Nik
Avg[r2k]− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (15)

=
∑

k=1:K

Nik
(Var[rk] + Avg[rk]2)− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (16)

=
∑

k=1:K

Nik
Var[rk] + (Qik)

2 − 2µikQik + µ2
ik

σ2
ik

−Nik log (2πσik)/2 (17)

Therefore, computing this expression requires computing the variance in rewards, Var[rk], associ-441
ated with each arm up to time T , apart from the Q-estimates and action-counts. This proves that442
Q-estimates and action-counts alone are insufficient to completely determine P (i|Υ1:T ) in Gaussian443
multi-armed bandits domain.444
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Supplementary Materials592

The following content was not necessarily subject to peer review.593
594

B Proofs (cont.)595

B.1 Object-level Q-estimates and Meta-level Values596

Proof of Equation 4: In standard meta-RL, the only observed variable in the POMDP state s̄t =597
[st, i] at time t is the state st of the current MDP i.e., ω̄t = st, while the task identity i is hidden.598
However, in RL3, ω̄t includes the vector of Q-estimates Qt

i(st) for the hidden task, which means that599
the meta-level observation function Ō(ω̄|b̄, a) factors in the probability that a particular Q-estimate600
will be observed following an action a given an initial belief b̄ state. (Note that we will use b̄(s̄) and601
b̄(i) interchangeably since i is the only hidden variable in s̄). In practice, such Q-value estimates602
provide excellent evidence (see Appendix E) for task identification. This allows for robust belief603
recovery even if the initial belief is not Bayes-optimal (or altogether not maintained), especially as604
the Q-estimates converge and stabilize in the limit, leading to two cases:605

Case 1: The observed Q-values are unique to MDP Mi. In this case, the belief distribution will606
collapse rapidly to zero for tasks j ̸= i, and thus maxa∈A Qi(s, a) = V̄ ∗(b̄).607

Case 2: The observed Q-values are not unique. In this case, belief will not collapse to a single MDP.608
However, belief will still reduce to zero for tasks not compatible with the observed Q-values. The609
meta-level value function V̄ ∗(b̄), which will be an expectation over object-level values, will simplify610
to maxa∈A Qi(s, a) since Q-values for all remaining tasks are identical, where i may represent any611
of the (identical Q-valued) tasks with non-zero belief.612

This proves equation 4. Note that in the limit, the task can be identified perfectly from the stream613
of experiences as all state-action pairs are explored, and the meta-level value function becomes614
equivalent to the optimal object-level value function of the identified (or current) task. However,615
the above proof demonstrates that RL3 can infer this equivalency implicitly in the limit without616
relying on the stream of experiences or identifying the task fully, and furthermore, directly model617
the meta-value function in terms of the supplied object-level value function.618

Proof of Equation 6: We first write the Bellman equation for the optimal meta-level POMDP value619
function in its belief-MDP representation:620

V̄ ∗(b̄) = max
a∈A

[∑
s̄∈S̄

b̄(s̄)R̄(s̄, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (18)

However, given that in the POMDP state s̄ = [s, i], the only hidden variable is the task i, we can621
re-write this as622

V̄ ∗(b̄) = max
a∈A

[ ∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
, (19)

where b̄(i) denotes the meta-level belief that the agent is operating in MDP Mi, and Ri(s, a) is the623
reward experienced by the agent if it executes action a in state s in MDP Mi. Here, b̄′ may be624
calculated via the belief update as in §3.1.625

C Architecture626

C.1 RL2627

Our modified implementation of RL2 uses transformer decoders (Vaswani et al., 2017) instead of628
RNNs to map trajectories to action probabilities and meta-values, in the actor and the critic, respec-629
tively, and uses PPO instead of TRPO for outer RL. The decoder architecture is similar to (Vaswani630
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Algorithm 1 Value-Augmenting Wrapper for Discrete MDPs
procedure RESETMDP(vamdp)

vamdp.t← 0; vamdp.tτ ← 0
vamdp.N [s, a]← 0; vamdp.Q[s, a]← 0 ∀s ∈ S, a ∈ A
vamdp.rl← INITRL()
s = RESETMDP(vamdp.mdp)
return ONEHOT(s) ·Q[s] ·N [s]

procedure STEPMDP(vamdp, a)
s← mdp.s
r, s′ ← STEPMDP(vamdp.mdp, a)
d← TERMINATED(vamdp.mdp)
vamdp.t, vamdp.N [s, a], vamdp.tτ ← += 1
vamdp.Q← UPDATERL(vamdp.rl, s, a, r, s′, d)
if d or vamdp.tτ ≥ task_horizon then

vamdp.tτ ← 0
s′ ← RESETMDP(vamdp.mdp)

return r, ONEHOT(s′) ·Q[s′] ·N [s′] ▷ Concatenate state, Q-estimates and action counts
procedure TERMINATED(vamdp)

return vamdp.t ≥ H

et al., 2017), with 2 layers of masked multi-headed attention. However, we use learned position631
embeddings instead of sinusoidal, followed by layer normalization. Our overall setup is similar632
to (Esslinger et al., 2022).633

For each meta-episode of interactions with an MDP Mi, the actor and the critic transformers look634
at the entire history of experiences up to time t and output the corresponding action probabilities635
π1...πt and meta-values V̄1...V̄t, respectively. An experience input to the transformer at time t636
consists of the previous action at−1, the latest reward rt−1, the current state st, episode time step637
tτ , and the meta-episode time step t, all of which are normalized to be in the range [0, 1]. In order to638
reduce inference complexity, say at time step t, we append t new attention scores (corresponding to639
experience input t w.r.t. the previous t−1 experience inputs) to a previously cached (t−1)× (t−1)640
attention matrix, instead of recomputing the entire t × t attention matrix. This caching mechanism641
is implemented for each attention head and reduces the inference complexity at time t from O(t2)642
to O(t).643

C.2 RL3644

The input of the transformer in RL3 includes a vector of Q estimates (in practice, they are supplied as645
the vector of advantage estimates (Q− maxaQ) along with the value function (maxaQ) separately)646
and a vector of action counts at each step t for the corresponding state. As mentioned in Section647
4.2, this is implemented in our code simply by converting MDPs in the problem set to VAMDPs648
using a wrapper and running our implementation of RL2 thereafter. The pseudocode is shown in the649
algorithm 1. The Markov version of RL3 uses a dense neural network, with two hidden layers of 64650
nodes each, with the ReLU activation function.651

For object-level RL, we use model estimation followed by value iteration (with discount factor652
γ = 1) to obtain Q-estimates. The transition probabilities and the mean rewards are estimated using653
maximum likelihood estimation (MLE), with Laplace smoothing (coefficient = 0.1) for transition654
probabilities estimation. For unseen actions, rewards are assumed to be zero, and transitions equally655
likely to other states. States are added to the model incrementally when they are visited, so that656
value iteration does not compute values for unvisited states. Moreover, value iteration is carried out657
only for iterations equal to the task horizon (which is 1, 10, 250, 350 for Bandits, MDPs, 11x11658
GridWorld, 13x13 GridWorld domains, respectively), unless the maximum Bellman error drops659
below 0.01.660
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C.3 RL3-coarse661

During model estimation in RL3-coarse, concrete states in the underlying MDP are incrementally662
clustered into abstract states as they are visited. When a new concrete state is encountered, its663
abstract state ID is set to that of a previously visited state within a ‘clustering radius’, unless that664
previous state is already part of a full cluster (determined by a maximum ‘cluster size’ parameter).665
If multiple visited states satisfy the criteria, the ID of the closet one is chosen. If none of the visited666
states that satisfy the criteria, then the new state is assigned a new abstract state ID, increasing the667
number of abstract states in the model. It is worth noting that this method of deriving abstractions668
does not take advantage of any structure in the underlying domain. However, this simplicity makes669
it general purpose, efficient, and impartial, while still leading to excellent performance. For our670
GridWorld domain, we chose a cluster size of 2 and a clustering radius such that only non-diagonal671
adjacent states are clustered (Manhattan radius of 1).672

The mechanism for learning the transition function and the reward function in the abstract MDP is673
the same as before. For estimating Q-values for a given concrete state, value iteration is carried out674
on the abstract MDP and the Q-estimates of the corresponding abstract state are returned.675

D Training676

Figs. 5, and 6 show the training curves for MDPs, and GridWorld environments, respectively, across677
3 random seeds. The results in the main text correspond to the median model. We ran the experi-678
ments on Nvidia GeForce RTX 2080 Ti GPUs for context length ≤ 256 which took approximately679
12-24 hours, and on Nvidia A100 GPUs for higher context lengths, which took 1-2 days.680

E Additional Analysis681

In this section, we show that Q-estimates, though imperfect, produce reasonable signals for task682
identification. Here, we test this claim thoroughly with 3 analyses.683

E.1 Requirements for a Unique Q∗-Function684

Throughout, we assume fixed state space and action space. Below, we show that if the transition685
function is fixed, then two Q∗-tables will be identical if and only if both reward functions are also686
equal. First, we show that identical Q∗ functions imply identical reward functions. Given the687
Bellman equations,688

Q∗
1(s, a) = R1(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (20)

Q∗
2(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
2(s

′, a′) (21)

Substituting Q∗
2 = Q∗

1 in Equation (21), we get689

Q∗
1(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (22)

Subtracting Equation (20) from Equation (22), we get R1(s, a) = R2(s, a). Thus, (Q∗
1 = Q∗

2) ∧690
(T1 = T2) =⇒ (R1 = R2).691

Now, if two MDPs have the same reward and transition function, they are the same MDP and will692
have the same optimal value function. So, (R1 = R2) ∧ (T1 = T2) =⇒ (Q∗

1 = Q∗
2).693

Since encountering similar Q∗-tables is thus dependent on both transitions and rewards ‘balancing’694
each other, the question is then for practitioners: How likely are we to get many MDPs that all695
appear to have very similar Q∗-tables?696
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Figure 5: Average meta-episode return vs PPO iterations for MDPs domain for different interaction
budgets.
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Figure 6: Average meta-episode return vs PPO iterations for GridWorld 11x11 (left) and 13x13
(right).

E.2 Empirical Test using Max Norm697

Given an MDP with 3 states and 2 actions, we want to find the probability that ||Q∗
1 −Q∗

2||∞ < δ,698
where Q∗

1 and Q∗
2 are 6-entry (3 states × 2 actions) Q∗-tables. The transition and reward functions699

are drawn from distributions parameterized by α and β, respectively. Transition probabilities are700
drawn from a Dirichlet distribution, Dir(α), and rewards are sampled from a normal distribution,701
N (1, β). In total, we ran 3 combinations of α and β, each with 50,000 MDPs, a task horizon of702
10, and δ = 0.1. To get the final probability, we test all ((50, 000− 1)2)/2 non-duplicate pairs and703
count the number of max norms less than δ.704

Results: For α = 1.0, β = 1.0, we found the probability of a given pair of MDPs having duplicate705
Q∗-table to be ϵ = 2.6 × 10−9. For α = 0.1, β = 1.0, which is a more deterministic setting, we706
found ϵ = 4.6× 10−9. Further, with α = 0.1, β = 0.5, where rewards are more closely distributed,707
we found ϵ = 1.1×10−7. Overall, we can see that even for a set of very small MDPs, the probability708
of numerically mistaking one Q∗-table for another is vanishingly small.709

E.3 Predicting Task Families710

The near uniqueness of Q∗-functions is encouraging, but max norm is not a very sophisticated711
metric. Here, we test whether a very simple multi-class classifier (1 hidden layer of 64 nodes),712
can accurately identify individual tasks based on their Q-estimates. Moreover, we track how the713
classification accuracy improves as a function of the number of steps taken within the MDP as the714
estimates improve. In this experiment, the same random policy is executed in each MDP for 50 time715
steps. As before, our MDPs have 3 states and 2 actions.716

We instantiate 10,000 MDPs whose transition and reward functions are drawn from the same distri-717
bution as before: transitions from a Dirichlet distribution with α = 0.1 and rewards sampled from718
a normal distribution N(1, 0.5). Thus, this is a classification problem with 10,000 classes. A priori,719
this exercise seems relatively difficult given the number of tasks and the parameters chosen for the720
distributions. Fig. 7 shows a compelling result given the simplicity of the model and the relative721
difficulty of the classification problem. Clearly, Q-estimates, even those built from only 20 experi-722
ences, provide a high signal-to-noise ratio w.r.t. task identification. And this is for a random policy.723
In principle, the meta-RL agent could follow a much more deliberate policy that actively disam-724
biguates trajectories such that the Q-estimates evolve in a way that leads to faster or more reliable725
discrimination.726
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Figure 7: The task-identification power of Q-estimates. Left: Fraction of δ-duplicates, with δ = 0.1,
as a function of time steps in a set of 5,000 random MDPs. Right: Accuracy of a simple multi-class
classifier in predicting task ID given Q-table estimates, as function of time step. Both figures are
generated using the same policy.

F Domain Descriptions727

F.1 Bernoulli Multi-Armed Bandits728

We use the same setup described by Duan et al. (2016). At the beginning of each meta-episode, the729
success probability corresponding to each arm is sampled from a uniform distribution U(0, 1). To730
test OOD generalization, we sample success probabilities from N (0.5, 0.5)731

F.2 Random MDPs732

We use the same setup described by Duan et al. (2016). The MDPs have 10 states and 5 actions. For733
each meta-episode, the mean rewards R(s, a) and transition probabilities T (s, a, s′) are initialized734
from a normal distribution (N (1, 1)) and a flat Dirichlet distribution (α = 1), respectively. More-735
over, when an action a is performed in state s, a reward is sampled from N (R(s, a), 1). To test736
OOD generalization, the transition probabilities are initialized with Dirichlet α = 0.25.737

Each episode begins at state s = 1 and ends after task_horizon = 10 time steps.738

F.3 GridWorlds739

A set of navigation tasks in a 2D grid environment. We experiment with 11x11 (121 states)740
and 13x13 (169 states) grids. The agent always starts in the center of the grid and needs to741
navigate through obstacles to a single goal location. The goal location is always at a mini-742
mum of min_goal_manhat Manhattan distance from the starting tile. The grid also contains743
slippery wet tiles, fatally dangerous tiles and warning tiles surrounding the latter. There are744
num_obstacle_sets set of obstacles, and each obstacle set spans obstacle_set_len tiles,745
in either horizontal or vertical configuration. There are num_water_sets set of wet regions and746
each wet region always spans water_set_length, in either a horizontal or vertical configura-747
tion. Entering wet tiles yields an immediate reward of -2. There are num_dangers danger tiles748
and entering them ends the episode and leads to a reward of -100. Warning tiles always occur as a set749
of 4 tiles non-diagonally surrounding the corresponding danger tiles. Entering warning tiles causes750
-10 reward. Normal tiles yield a reward of -1 to incentivize the agent to reach the goal quickly. On751
all tiles, there is a chance of slipping sideways with a probability of 0.2, except for wet tiles, where752
the probability of slipping sideways is 1.753

The parameters for our canonical 11x11 and 13x13 GridWorlds are: num_obstacle_sets = 11,754
obstacle_set_len = 3, num_water_sets = 5, water_set_length = 2,755
num_dangers = 2, and min_goal_manhat = 8. The parameters for the OOD variations756
are largely the same and the differences are as follows. For DETERMINISTIC variation, the slip757
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Table 3: RL2 /RL3 Hyperparameters

Hyperparameter Value

Learning Rate (Actor and Critic) 0.0003 (Bandits, MDPs)
0.0002 (GridWorlds)

Adam β1, β2, ϵ 0.9, 0.999, 10−7

Weight Decay (Critic Only) 10−2

Batch size 32768
Rollout Length Interaction Budget (H)
Number of Parallel Envs Batch Size ÷H
Minibatch Size 4096
Entropy Regularization Coeff 0.1 with decay (MDPs)

0.04 (GridWorlds)
0.01 (Bandits)

PPO Iterations See training curves
Epochs Per Iteration 8
Max KL Per Iteration 0.01
PPO Clip ϵ 0.2
GAE λ 0.3
Discount Factor γ 0.99
Decoder Layers 2
Attention Heads 4
Activation Function gelu
Decoder Size (d_model) 64

probability on non-wet tiles is 0. For DENSE variation, obstacle_set_len is increased to758
4. For WATERY variation, num_water_sets is increased to 8. For DANGEROUS variation,759
num_dangers is increased to 4. For CORNER variation, min_goal_manhat is set to 12, so760
that the goal is placed on one of the corners of the grid.761

There is no fixed task horizon for this domain. An episode ends when the agent reaches the goal762
or encounters a danger tile. In principle, an episode can last through the entire meta-episode if a763
terminal state is not reached.764

When a new grid is initialized at the beginning of each meta-episode, we ensure that the optimal,765
non-discounted return within a fixed horizon of 100 steps is between 50 and 100. This is to ensure766
that the grid both has a solution and the solution is not trivial.767


