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Abstract001

In this paper, we propose TrInk, a Transformer-002
based model for ink generation, enabling paral-003
lel training and better capturing global depen-004
dencies. To better facilitate the alignment be-005
tween the input text and generated stroke points,006
we introduce scaled positional embeddings and007
a Gaussian memory mask in the cross-attention008
module. Additionally, we design both subjec-009
tive and objective evaluation pipelines to com-010
prehensively assess the legibility and style con-011
sistency of the generated handwriting. Experi-012
ments demonstrate that our Transformer-based013
model achieves a 35.56% reduction in charac-014
ter error rate (CER) and an 29.66% reduction015
in word error rate (WER) on the IAM-OnDB016
dataset compared to previous methods. We pro-017
vide an demo page with handwriting samples018
from TrInk and baseline models at: https://019
akahello-a11y.github.io/trink-demo/020

1 Introduction021

Handwriting synthesis is the task of automatically022

generating realistic handwritten text from digital023

inputs. Automatic handwritten text generation can024

support a wide range of applications, including dig-025

ital note-taking, educational tools, and generating026

training data to improve optical character recogni-027

tion (OCR) systems (Li et al., 2023; Fujitake, 2024;028

Yeleussinov et al., 2023). However, due to the com-029

plex temporal dynamics and variability inherent in030

human handwriting, generating high-quality hand-031

written samples still faces challenges.032

Deep learning-based handwritten text genera-033

tion approaches can be roughly divided into image-034

based offline and stroke-based online methods. Of-035

fline handwriting synthesis focuses on producing a036

static image of handwritten text (Chang et al., 2018;037

Alonso et al., 2019; Kang et al., 2020; Haines et al.,038

2016). In contrast, online handwriting synthesis039

(also called ink generation) aims to generate a time-040

ordered sequence of pen-tip coordinates along with041

pen-state indicators (e.g., pen-up and pen-down), 042

thereby reconstructing the full dynamic trajectory 043

of the writing process. Compared with offline ap- 044

proaches, online handwriting synthesis (ink gener- 045

ation) outputs lightweight stroke vectors that can 046

be rendered at any resolution, making them easy 047

to transmit and display consistently across diverse 048

devices. In this work, we focus on ink generation to 049

generate handwriting samples that are stylistically 050

consistent and highly legible. 051

Recent research on ink generation has predomi- 052

nantly relied on sequential models (Graves, 2013; 053

Aksan et al., 2018; Chang et al., 2022). Graves 054

(2013) leverages an LSTM-based network to pre- 055

dict future stroke points from the current pen po- 056

sition based on the given text. Aksan et al. (2018) 057

introduces a conditional variational RNN that im- 058

proves the model’s capacity to capture handwrit- 059

ten digits. Building on Graves (2013), Chang 060

et al. (2022) introduces style equalization method, 061

equipped with a style encoder to explicitly model 062

the style information. 063

While these approaches have demonstrated 064

promising results, they remain fundamentally con- 065

strained by the sequential nature of recurrent ar- 066

chitectures, which limits their ability to model 067

long-range dependencies and hinders parallel train- 068

ing. Furthermore, alignment between the input 069

text and generated strokes often requires careful 070

design, such as attention windowing. Motivated by 071

the success of Transformer (Vaswani et al., 2017) 072

in various generative tasks (Li et al., 2019; Chen 073

et al., 2020; Ding et al., 2021; Chang et al., 2023; 074

Ma et al., 2024), we propose TrInk (Transformer 075

for Ink Generation), a fully attention-based model 076

tailored for ink generation. The encoder ingests 077

the target text sequence, through multi-head self- 078

attention, yields a contextual content representa- 079

tion for every character. The decoder receives the 080

character representations together with the previ- 081

ous generated stroke points, and applies multi-head 082
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self- and cross-attention to compute decoder hid-083

den states. These decoder hidden states are fed084

into a mixture-density network, which outputs a085

Gaussian mixture distribution from which the next086

pen offset and pen state are sampled. To improve087

alignment between the text and the stroke sequence,088

we apply a Gaussian memory mask to the cross-089

attention matrix, constraining the decoder’s focus090

to progress strictly left-to-right along the encoded091

text as strokes are generated. We apply a learnable092

scale to sinusoidal positional embeddings to handle093

differences between text and ink points. Our main094

contributions are summarized as follows:095

1. To the best of our knowledge, TrInk is the first096

to employ a Transformer encoder–decoder ar-097

chitecture for ink generation.098

2. TrInk introduces a Gaussian memory mask099

to ensure the generated ink points follows the100

natural writing order, and a scale factor for the101

position embeddings to model the differing102

charateristics of the text and the ink points.103

3. Our experimental results show that our pro-104

posed TrInk yields substantially higher legibil-105

ity, particularly on long text, than the previous.106

2 Method107

The Framework of TrInk comprises two main com-108

ponents: an encoder E and a decoder D. Encoder109

E aims to convert the input text into a sequence of110

vectors, where each vector represents the meaning111

of a token in its surrounding context. Decoder D112

aims to take the encoder’s content vectors along113

with the previous stroke points and, at each time114

step, predict Gaussian distributions for the next pen115

coordinate and the stroke-end probability.116

2.1 Encoder117

From Fig. 1, we transform each character of the118

input "his operation was" (including the blank119

spaces) into a one-hot vector, yielding H =120

[h1,h2, . . . ,hT ], and hi ∈ R|V |, where |V | de-121

notes the vocabulary size and T denotes the num-122

ber of tokens in the text. After the linear projection123

and positional encoding, we obtain the Transformer124

encoder input X = [x1,x2, . . . ,xT ], xi ∈ Rd,125

where d is the hidden-state dimension of the Trans-126

former encoder. The high-dimensional text repre-127

sentation C generated by the encoder is then fed128

into the Transformer decoder to serve as the mem-129

ory for cross-attention.130

2.2 Scaled Positional Encoding 131

To account for the sequential order of both text 132

tokens and stroke points in ink generation, we in- 133

ject absolute position information using sinusoidal 134

positional embeddings, as defined below: 135

PE(pos, 2i) = sin
( pos

10000
2i
d

)
,

PE(pos, 2i+ 1) = cos
( pos

10000
2i
d

)
,

(1) 136

where pos denotes the position index and d is the 137

model’s hidden dimension. Because the encoder’s 138

domain is text and the decoder’s domain is stroke 139

points, using fixed positional embeddings alone 140

cannot properly capture the differing scales and 141

characteristics of these two inputs. We therefore 142

employ these sinusoidal positional embeddings 143

with trainable weights so that the embeddings can 144

adaptively fit the output scales of both the encoder’s 145

and the decoder’s linear layers, following (Li et al., 146

2019), as shown in Eq. 2 147

xi = fE(hi) + αPE(i) (2) 148

where α is the trainable weight. A similar formula- 149

tion with a separate scaling parameter is applied in 150

the decoder. 151

2.3 Decoder with Monotonic Cross-Attention 152

Each stroke point is represented as a 3-dimensional 153

vector [∆x,∆y, s], where ∆x and ∆y are the off- 154

sets along the x- and y-axes, and s ∈ {0, 1} de- 155

notes the pen state (0 = pen-down, 1 = pen-up). 156

After the linear projection and positional encoding, 157

we obtain Z = [ z1, z2 . . . , zL ], where zi ∈ Rd 158

and L is the number of stroke points. 159

Given the stroke embedding sequence Z, the 160

Transformer decoder first applies masked self- 161

attention to enforce autoregressive dependencies 162

among stroke points. It then performs cross- 163

attention with the text representations C to align 164

each generated stroke with the corresponding text 165

content. To ensure that each decoding step attends 166

to the most relevant region of the input text, we 167

introduce a Gaussian-shaped cross-attention mask. 168

For each decoder time step t ∈ [1, L], we define 169

its corresponding attention center µt on the text 170

sequence C as: 171

µt = min

(
t

r
, T − 1

)
. (3) 172

r denotes the average number of stroke points per 173

character, estimated from the training data. Gaus- 174

sian function centered at µt is used for each decoder 175
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Figure 1: The proposed TrInk framework (left) and Gaussian memory mask (right).

step t, ensuring higher attention weights for text po-176

sitions near the center and lower weights for distant177

ones. For each decoder step t and encoder position178

j ∈ [1, T ], the attention weight is defined as:179

At,j = exp

(
− (j − µt)

2

2σ2

)
, (4)180

where σ is a controllable parameter that determines181

the sharpness of the Gaussian distribution. We182

apply the logarithm to the At,j to obtain the cross-183

attention mask M t,j = log(At,j), allowing it to184

be added directly to the attention logits before the185

softmax, similar to standard attention masking in186

Transformers. This log-space formulation helps187

maintain numerical stability by avoiding extremely188

small values in the Gaussian tails. Gaussian cross-189

attention mask ensures that attention shifts mono-190

tonically from left to right across the input text. At191

each decoding step, encoder positions j near the192

center µt receive higher attention scores, while po-193

sitions farther from µt are gradually suppressed, as194

illustrated in the right side of Fig. 1.195

After the Transformer decoder, we adopt a mix-196

ture density network (Bishop, 1994) to model the197

output distribution like (Graves, 2013). Each de-198

coder output token is mapped to a (6K + 2)-199

dimensional vector, where K is the number of200

Gaussian mixture components. The output includes201

the parameters of K bivariate Gaussian distribu-202

tions—mixture weights, means, standard devia-203

tions, and correlation coefficients—along with two204

additional scalars: an end-of-stroke probability and205

a sequence-level stop probability. During inference,206

we sample the pen-point coordinate at each time207

step from the predicted mixture of Gaussians, as208

in Graves (2013).209

We adopt the same training objective as Graves210

(2013), minimizing the negative log-likelihood of211

the ground-truth trajectory. The loss function com-212

prises three components: a mixture density loss213

for predicting stroke offsets, a Bernoulli loss for214

the end-of-stroke indicator, and a Bernoulli loss for 215

determining sequence termination. 216

3 Experiments 217

3.1 Datasets 218

The original training dataset was collected from 219

over 5,000 writers and was initially used for on- 220

line handwriting recognition tasks. However, we 221

observed that some ink samples were overly cur- 222

sive that benefit the training of robust recognition 223

systems but are not suitable for generating realistic 224

handwriting. To tackle this issue, we leveraged an 225

OCR engine to filter the dataset, selecting a curated 226

subset of 600,000 high-quality ink samples, opti- 227

mally prepared for handwriting generation. For 228

evaluation, we use the IAM-OnDB (Liwicki and 229

Bunke, 2005) test set, which is the most popular 230

dataset for handwritten text recognition. We divide 231

the test set into three subsets: full, short, and long. 232

The long subset comprises samples exceeding 40 233

characters, while the short subset includes those 234

with fewer than 10 characters. 235

3.2 Evaluation Pipeline 236

Inspired by text-to-speech evaluation protocols, we 237

divide our evaluation into subjective and objec- 238

tive assessments. For the subjective evaluation, 239

human raters score the generated handwriting sam- 240

ples based on legibility and stylistic consistency, 241

each on a 1–5 scale, with higher scores indicating 242

better quality. For the objective evaluation, we uti- 243

lize a state-of-the-art OCR model (Li et al., 2023) 244

to recognize the generated samples, comparing the 245

outputs to the ground-truth text to compute the 246

Character Error Rate (CER) and Word Error Rate 247

(WER) as quantitative measures of legibility. 248

3.3 Main Results 249

Table 1 presents the objective evaluation results on 250

the IAM-OnDB test set. Our pipeline employs a 251
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Method
IAM-OnDB

Full Long Texts Short Texts
CER, % ↓ WER, % ↓ CER, % ↓ WER, % ↓ CER, % ↓

AlexRNN (Graves, 2013) 9.0 53.6 15.6 48.6 27.8
AlexRNN (Top-k) 8.8 42.6 10.0 40.1 18.3
Style Equalization (Chang et al., 2022) 8.7 47.4 11.6 46.0 24.4
Style Equalization (Top-k) 6.5 40.0 8.7 39.7 18.2
TrInk 8.5 43.2 9.3 43.3 21.9
TrInk (Top-k) 5.8 37.7 6.8 36.3 17.6

Table 1: Comparison of different methods on three test sets (k = 5).

AlexRNN AlexRNN (Top-k) TrInk TrInk (Top-k)
Methods
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Figure 2: Subjective Evaluation of Handwriting Quality
Across Methods.

Top-k sampling strategy where k candidate hand-252

writing samples are first generated, then ranked by253

TrOCR according to their CER scores against the254

ground-truth text, with the optimal sample (mini-255

mum CER) selected as final output. As shown in256

Table 1, TrInk consistently outperforms all base-257

lines, including both the standard AlexRNN and its258

variant with style equalization, across all evaluation259

settings. TrInk with the Top-k strategy achieves the260

best performance, with a 35.56% reduction in CER261

and a 29.66% reduction in WER on the full test set262

compared to AlexRNN. For long-text generation,263

TrInk shows even greater improvements, with a264

56.41% reduction in CER and a 25.31% reduction265

in WER compared to AlexRNN. These reductions266

further highlight the effectiveness of TrInk.267

Figure. 2 presents the results of our subjective268

experiments. The final scores for each method were269

the average ratings for two metrics: style consis-270

tency and legibility. From Figure. 2, we can ob-271

serve that TrInk outperforms AlexRNN in both met-272

rics, further validating the effectiveness of TrInk.273

3.4 Ablation Study274

Figure. 3 illustrates the changes of the two train-275

able weights in the positional encoding for the en-276

coder and decoder during training. Notably, these277

weights converge to different values, indicating278

a significant discrepancy, showing that adopting279

fixed positional embeddings may fail to capture the280

differing scales and characteristics of the two input281
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Figure 3: Trainable Positional Encoding Weights (En-
coder and Decoder) Over Training.

Table 2: Effectiveness of Gaussian Memory Mask in Cross-
Attention Alignment.

Method Gaussian memory mask CER, % ↓

TrInk % 70.1
! 8.5

modalities. We also investigated the effect of the 282

Gaussian memory mask on the IAM-OnDB full 283

test set, as shown in Table 2. Removing the Gaus- 284

sian memory mask leads to a significant drop in the 285

legibility of the generated samples. This is mainly 286

because the model fails to learn proper alignment 287

between the text and stroke points without the guid- 288

ance of the mask. 289

4 Conclusion 290

This paper presents TrInk, the first ink-generation 291

model built on a Transformer encoder–decoder ar- 292

chitecture. To achieve precise alignment between 293

input text and generated stroke sequences, we in- 294

troduce a scaled positional encoding with learnable 295

weights and a Gaussian memory mask. We also 296

devise both subjective and objective evaluation pro- 297

tocols for ink generation. Experimental results 298

demonstrate that TrInk markedly outperforms tra- 299

ditional LSTM-based approaches, producing hand- 300

writing samples with superior style consistency and 301

legibility. 302
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5 Limitations303

Despite the promising results, TrInk has two lim-304

itations. First, training our Transformer-based ar-305

chitecture requires considerable computational re-306

sources. The increased model capacity and parallel307

attention mechanisms lead to higher memory con-308

sumption and longer convergence time compared309

to lightweight RNN-based alternatives.310

Second, our current experiments are conducted311

solely on English handwriting datasets. As hand-312

writing conventions vary significantly across scripts313

and languages (e.g., cursive structures in Arabic,314

character-based layouts in Chinese), it remains un-315

clear how well our model generalizes to multilin-316

gual settings. Developing a unified ink generation317

framework capable of generating stylistically con-318

sistent samples across multiple languages would319

be an important direction for future work.320
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A Appendix406

A.1 Training Configuration407

Our model is trained on 8 NVIDIA V100 GPUs408

with a per-GPU batch size of 64. We adopt the409

Adam optimizer with a learning rate of 0.0001.410

Both the encoder and decoder are implemented as411

3-layer Transformers, each with 4 attention heads412

and a hidden dimension of 512. In the Gaussian413

memory mask, we set the scaling factor r = 17 in414

Eq. 3. The mixture density network (MDN) outputs415

a 20-component Gaussian mixture (K = 20) to416

parameterize the pen trajectory distribution at each417

decoding step.418

A.2 Evaluation Pipelines419

Subjective Evaluation: We conducted a subjec-420

tive evaluation with 20 human evaluators to score421

samples generated by four methods: AlexRNN and422

TrInk (both with and without the Top-k strategy).423

For the experiment, 96 text inputs were used to gen-424

erate samples, and each output was rated on two425

criteria—style consistency and legibility using a426

5-point Likert scale (1: lowest, 5: highest). Higher427

scores indicate better performance.428

Objective Evaluation: We first convert the gener-429

ated handwriting samples into standardized textline430

images to simulate realistic OCR application sce-431

narios. These images are then fed into the state-of-432

the-art TrOCR model (Li et al., 2023) for text recog-433

nition. The outputs from TrOCR are systematically434

compared with the ground-truth text to compute435

Character Error Rate (CER) and Word Error Rate436

(WER), which quantify character-level inaccura-437

cies and word-level mismatches, respectively. No-438

tably, WER is excluded for short-text evaluations439

due to its instability when applied to limited word440

counts, as minor errors disproportionately skew441

the metric. Lower CER values indicate higher leg-442

ibility, providing an automated and reproducible443

measure of text quality. During the evaluation of444

style equalization, we dynamically sample style445

inputs from the training set for the style encoder,446

ensuring that each synthesized handwriting sample447

corresponds to a unique, randomly selected style448

reference from the training dataset.449

A.3 Visualization of Generated Samples450

We present a collection of generated handwrit-451

ing samples based on 13 text prompts of varying452

lengths. Each row illustrates outputs from four453

models: AlexRNN, AlexRNN (Top-k), TrInk, and454

Handwriting Synthesis 
Model

OCR Model

Text

Predicted text

Calculate 
WER/CER

Score

Objective Evaluation

Subjective Evaluation

Figure 4: Subjective and Objective Evaluation Pipelines.

TrInk (Top-k), displayed from left to right. As ob- 455

served, TrInk consistently produces handwriting 456

that is more legible and stylistically consistent than 457

that of the RNN-based. 458
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Figure 5: Samples for AlexRNN and TrInk.
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