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Abstract

Federated Learning is a promising technique that enables collaborative machine
learning while preserving participant privacy. With respect to multi-party collab-
oration, achieving performance fairness acts as a critical challenge in federated
systems. Existing explorations mainly focus on considering all parameter-wise
fairness and consistently protecting weak clients to achieve performance fairness
in federation. However, these approaches neglect two critical issues. 1) Parameter
Redundancy: Redundant parameters that are unnecessary for fairness training may
conflict with critical parameters update, thereby leading to performance degrada-
tion. 2) Persistent Protection: Current fairness mechanisms persistently enhance
weak clients throughout the entire training cycle, hindering global optimization
and causing lower performance alongside unfairness. To address these, we pro-
pose a strategy with two key components: First, parameter adjustment with mask
and rescale which discarding redundant parameter and highlight critical ones,
preserving key parameter updates and decrease conflict. Second, we observe
that the federated training process exhibits distinct characteristics across different
phases. We propose a dynamic aggregation strategy that adaptively weights clients
based on local update directions and performance variations. Empirical results on
single-domain and cross-domain scenarios demonstrate the effectiveness of the
proposed solution and the efficiency of crucial modules. The code is available at
https://github.com/guankaiqi/FedPW.

1 Introduction

Federated Learning (FL) is a collaborative machine learning framework [26, 57, 30, 27, 58, 19]
that enables multiple clients to jointly train a global model [38, 31, 18] without sharing raw data.
Clients process data locally and periodically send model updates to the server, which aggregates these
updates into a global model. This training paradigm effectively addresses data island and privacy
issues. However, due to data heterogeneity [58, 23], intermittent client participation, and system
heterogeneity, the model is prone to unfairness, which diminishes FL’s generalization capability.

Improving performance fairness [47, 19] is a central research focus in federated learning. Existing
approaches can be categorized into three types: client selection [16, 42], weight allocation [39, 35,
48], and personalized local models [33]. For instance, to enhance the performance of underperforming
clients, the federated server may assign them larger aggregation weights, amplifying their influence
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Figure 1: Problem illustration of existing fairness methods: Traditional approaches consider all model
parameters for fairness, but not all parameters are equally important. Redundant parameters can conflict with
key ones, disrupting their crucial contributions. Additionally, a long-term weighting strategy that favors weak
clients is a classic approach. However, since weak clients often deviate from the global trend, this strategy can
lead to a skewed initial training direction, resulting in an undertrained model and performance degradation.

on model updates. However, these methods typically compromise the performance of the global
model. But training an effective global model is the primary goal of FL. This provokes our thinking:

Can we design an algorithm for FL that promotes fairness while improving the performance of
the global model?

We identify two primary causes of global model degradation: I Parameter Redundancy: Due to
the high redundancy in model parameters, a significant portion of parameters are inherently non-
essential, making it unnecessary for all parameters to participate in model aggregation. Owing to the
over-parameterized characteristics of deep neural networks [10, 51, 59], not all parameters contribute
equally to fitting the domain distribution. Specifically, only a subset of critical core parameters plays
a decisive role in model training, while other non-core, less important parameters introduce noise that
disrupts the parameter space. Moreover, these marginal parameters are prone to conflicting with other
critical parameters, leading to performance degradation and unfairness. II Persistent Protection:
Fairness approaches typically protect weak clients throughout the entire training cycle, leading to
suboptimal model optimization. From a conventional fairness perspective, the existence of weak
clients is paramount to ensuring equitable performance across heterogeneous participants. However,
we argue that such clients may inherently act as outliers within the federated ecosystem. If the system
rigidly applies a static prioritization strategy favoring underperforming clients across all training
phases, the global model may become excessively influenced by their gradient directions during early
stages, leading to a deviation in the model’s optimization trajectory and resulting in performance
degradation and unfairness.

To address the aforementioned problems, we propose FedPW( Fair Federated Learning via Parameter
Adjustment and Adaptive Weighting). For problem I, we leverage Parameter Adjustment to address
this challenge. Specifically, we observe that discarding small updates to parameters can reduce
conflicts with clients from other domains without negatively affecting the model’s performance on its
own domain. Interestingly, we also find that different domains exhibit varying levels of tolerance
for parameter discarding, which is inversely correlated with the domain’s complexity. Therefore, we
apply a domain-specific drop rate to discard the tail parameters of each client, ensuring fairness in the
discarding process while mitigating conflicts between domains. However, the effect of the discarding
operation is limited. To further reduce confusion during aggregation, we identify a set of consensus
parameters for amplification, making the global model’s update direction more stable and consistent,
while scaling the discarded parameter updates back to their original magnitude, which is shown to
benefit the model’s performance [60, 15].

For Problem II, we propose an adaptive weighting mechanism that dynamically adjusts model
aggregation weights based on the evolving training dynamics. We observe that the training process
exhibits distinct phases. Early stages may benefit from reinforcing consensus to stabilize joint training,
while later stages require emphasis on domain diversity to enhance fairness. To implement this insight,
we dynamically allocate aggregation weights using the dot product between client parameter updates
and loss variations. Our method achieves a transition from reinforcing consensus to emphasizing
fairness, resulting in excellent performance and fairness. The details are presented in Sec. 3.3.
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In this paper, FedPW consists of two main components. First, parameter adjustment alleviates
parameter update conflicts by discarding certain parameters, and strengthens consensus to emphasize
important parameters across multiple parties. Second, through the reweighting strategy, FedPW
ensures balanced performance across clients from different domains, guaranteeing fairness in the di-
verse update directions during multi-party collaboration. The method is straightforward to implement
and focuses on improving the aggregation step, making it easily compatible with other federated
learning methods. The main contributions are summarized as follows:

❶ Re-examining Why might Fairness Methods Harm Model Performance. Full parameter participa-
tion introduce unnecessary conflicts via redundant parameters, undermining model training.

❷ A Novel Partial-parameter Dynamic Aggregation Framework. We discard minor updates while
amplifying critical ones to adjust the model parameters. Furthermore, we propose an adaptive
weighting strategy based on the dynamic characteristics of the training process, which mitigates the
negative impact of lagging clients hindering the global model during the early stages of training.

❸ Extensive Experimental Validation. We conduct experiments on single-domain and cross-domain
scenarios. With ablations, we validate the efficacy of FedPW and the indispensability of modules.

2 Related Work

2.1 Heterogeneous Federated Learning

Statistical heterogeneity across parties, commonly referred to as the non-IID problem, poses signifi-
cant challenges in Federated Learning (FL). The pioneering work FedAvg [38] demonstrated notable
performance degradation under heterogeneous data settings. To address this, many approaches
employ regularization terms to constrain local training. For instance, FedProx [34] introduced a
proximal term to mitigate divergence between local and global models, while FedDyn [1], FedCurv,
and pFedMe [49] adopted similar regularization strategies. Methods like MOON [31], FCCL [17],
FedUFO [62], FedProto [50], FPL [18], and FedProc [40] incorporate alignment-based penalty terms
to harmonize feature representations across clients, addressing data heterogeneity. SCAFFOLD [24]
proposed a control variate mechanism to correct client drift by reducing gradient divergence. Other
approaches tackle heterogeneity via prototype-based communication. FedProto [50] aligns global
and local class prototypes to handle label distribution skew, though it primarily targets single-domain
label skew. For cross-domain challenges, FPL [18] leverages clustered prototypes to generate unbi-
ased global representations, while FedGA [63] and FedDG [36] focus on domain generalization for
unseen target domains. However, these methods often involve full parameter updates during training,
which introduces redundancy. Our approach emphasizes parameter adjustment to prioritize critical
parameters, effectively resolving conflicts arising from redundant parameters across diverse domains.

2.2 Fair Federated Learning

Fairness has been a key focus in Federated Learning, with various concepts proposed, such as
Performance Fairness [39, 22], Collaboration Fairness [37, 64, 55], and Group Fairness [9, 61, 6].
Performance Fairness, which aims to ensure similar accuracy across clients, is one of the most widely
studied areas [32, 39]. Some methods address this by modifying client selection strategies. For
instance, UCB-CS [5] uses a communication-efficient selection strategy based on multi-armed bandit
theory, choosing clients with higher local loss to promote fairness and consistency. Other approaches
focus on adjusting aggregation weights to unify training outcomes. A notable example is AFL [39],
which minimizes maximum loss to improve the performance of the worst-performing devices. In
contrast, q-FFL [35] introduces exponentially scaled weights to penalize clients with higher loss,
leading to a more balanced accuracy distribution. FedHEAL [3] leverages the distance between local
models and the global model to constrain unfair disparities. FedFV [53] uses cosine similarity to
detect and resolve gradient conflicts iteratively, converging to a Pareto-stable solution. Ditto proposes
a personalized federated learning framework that employs a penalty term to control the degree
of model personalization, thereby achieving fairness and robustness. FedCE [22] leverages client
contribution estimation as global model aggregation weights, demonstrating improved Performance
Fairness and Collaboration Fairness. However, these methods often exhibit a persistent tendency
to protect underperforming clients throughout the entire training cycle, which may hinder model
training. Our method leverages the training dynamics, applying different weighting strategies at
different stages, thereby achieving dual excellence in both generalization and fairness.
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3 Methodology

3.1 Preliminary

Federated Learning and Performance Fairness. In typical federated learning, a system consists of
K clients, each with private data Dk = {xi, yi}Nk

i=1. At the start of each communication round t, the
server shares the global model wt with all clients. Each client initializes its local model wt

k with wt,
performs local optimization using its data, and sends the updated parameters back to the server. The
server then aggregates these updates using weighted averaging:

wt
k ← wt

k − η∇
∑
i∈Bk

l(wt
k, ξi), wt+1 =

∑
k

λkw
t
k. (1)

Here, Bk is a mini-batch sampled from the local dataset Dk, ξ represents a query instance, and η is
the local learning rate. The optimization objective is to minimize global loss:

min
w

F (w) =

K∑
k=1

λkfk(w), (2)

where λk is the weight of client and fk(w) is the loss of local model with parameters w.

Definition 3.1. (Performance Fairness) Given two trained models, w and w̃, model w is considered
to provide a fairer solution to the federated learning objective (2) if its performance across the m
devices is more uniform compared to model w̃, i.e. var {Fk(w)}k∈[K] < var {Fk(w̃)}k∈[K].

3.2 Parameter Adjustment
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Figure 2: Study on Parameter Redundancy. Left: Model
accuracy declines with increasing mask ratio. Right:
Redundancy-performance relationship across datasets.

Motivation. Previous work has shown that
model parameters often contain significant re-
dundancy [60, 15, 2, 7, 8, 52], with only a
small set of key parameters driving perfor-
mance, while most parameters are redundant
and ineffective. To investigate parameter re-
dundancy, we conducted an observational ex-
periment on the Digits dataset. We trained on
5 clients across four domains for 20 epochs,
gradually increasing the mask rate while monitoring performance. As shown in Fig. 2, all domains
showed almost no performance change when a small number of parameters were discarded, with per-
formance degradation only occurring when a large proportion of parameters was discarded, indicating
the redundancy of the parameters. Our findings revealed that each domain exhibited significant pa-
rameter redundancy, and domains with lower performance had less redundancy(Fig. 2). If redundant
parameters are included in aggregation, they can overwhelm important updates, leading to confusion
in the global model. Therefore, minimizing this redundancy is essential to ensure effective model
updates. Our approach focuses on discarding unimportant parameters and enhancing the updates of
key ones. The specific process is as follows:

Selection of Unimportant Parameters. As previously established, the parameter updates ∆wt
k

exhibit significant variation: while most parameters undergo negligible changes (|∆wt
k,i| → 0),

a critical minority demonstrate substantial updates. We prune insignificant parameters by first
representing the G-dimensional update vector:

∆wt
k = [∆wt

k,1, . . . ,∆wt
k,G]. (3)

Unimportant parameters are defined as those below threshold τk = sorted(|∆wt
k|)[(1− rtk)G], where

rtk ∈ (0, 1] is the client-specific mask rate. As demonstrated in Fig. 2, parameter redundancy inversely
correlates with client performance (quantified by training loss). In our experiments, various methods
to increase the parameter redundancy for clients with lower loss were proven effective, with the
inverse of loss being the simplest and most effective approach. Thus, we compute rtk using the inverse
of smoothed loss qtk from Eq. (9), where c is a hyper-parameter representing the average mask ratio.

rtk = c · 1/qtk∑K
k=1 1/q

t
k

. (4)
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Figure 3: Architecture illustration of FedPW. FedPW consists of two core components: ❶ The left box refers
to Parameter Adjustment (PA), which adaptively discards redundant parameters and amplifies consensus
ones (Sec. 3.2), reducing interference among parameters. ❷ The right box represents Adaptive Weighted
Aggregation (AWA), where we dynamically assign weights to each client according to the evolving training
process (Sec. 3.3). In this way, conflicts among clients can be mitigated while reinforcing consensus.

Discarding Redundant Parameters. We use a maskMt
k,i ∈ RG based on magnitudes to focus on

important parameters which is used to discard the smallest subset of updates. The mask is defined as:

Mt
k,i =

{
1, if |∆wt

k,i| ≥ τk,

0, otherwise.
(5)

Finally, the masked updates are ∆wt
k = ∆wt

k⊙Mk, where⊙ denotes the Hadamard product. These
masked updates are subsequently aggregated through ∆Wt =

∑K
k=1 λ

t
k∆wt

k, where λt
k denotes the

weighting coefficients derived from Eq. (11).

Consensus Parameter Rescaling. To enhance directional consensus in global updates, we amplify
parameters exhibiting cross-client agreement through a rescale process. First, we construct the client
update matrix ∆Wt = [∆wt

1, . . . ,∆wt
K ]⊤ ∈ RK×G and perform normalization:

∆̂w
t

k =
∆wt

k

∥∆wt
k∥

, ∆̃w
t

k,i =
∆̂w

t

k,i∑G
j=1 ∆̂w

t

k,j

. (6)

This applies row-wise and column-wise normalization to ∆Wt, enabling cross-client comparability
of update directions while preserving their relative importance.

The consensus degree of parameter i is quantified by its standard deviation σt
i = std({∆̃w

t

k,i}Kk=1)
across clients. We then amplify the most consistent parameters (those with the lowest σi) corre-
sponding to the bottom ρ-quantile, where ρt = 1

K

∑K
k=1 r

t
k is the average mask rate. The purpose of

using ρt to determine the amplification set is to rescale the aggregated gradients back to their original
magnitude, which is shown to benefit the model’s performance [60, 15].

αt
i =

{
1 +

mt
d

mt
a
, i ∈ St

amp = {i | σt
i ≤ sorted(σt)[(1− ρt)G]},

1, otherwise,
(7)

where mt
d and mt

a denote the average magnitudes of discarded and amplified parameters respectively.
This rescaling ensures model outputs remain stable relative to the pre-discarding state. The final
aggregated update becomesWt+1 =Wt + αt ⊙∆Wt.

3.3 Adaptive Weighted Aggregation

Motivation. Our analysis of federated learning reveals staged characteristics in collaborative training,
as shown in 4. The two sides of the green line exhibit different behaviors, representing two phases:

Phase I: Early Training. The initial phase exhibits strong client alignment, where test accuracy
improves rapidly through collective gradient coherence. However, while most clients converge to
beneficial update directions, the clients in the SYN domain show lower cosine similarity with other
clients. These divergent directions may skew the dominant direction, compromising the generalization
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Figure 4: Illustration of Training Dynamics. The federated training has two phases: early phase (left of green
line) and later phase (right of green line). The two phases exhibit distinctly different characteristics. Please refer
to Sec. 3.3 for a detailed discussion.
ability of the global model. Our strategy therefore enforces directional consensus during this phase,
selectively amplifying clients contributing to coherent, generalizable updates.

Phase II: Later Training. As training progresses, client updates evolve toward orthogonality (near-
zero cosine similarity), signaling exhausted consensus-driven gains. Here, the very underperformers
that posed risks in Phase I become valuable sources of exploratory gradient diversity. Their divergent
directions now prevent premature convergence and enable fairer parameter distributions across
heterogeneous clients. We correspondingly shift weighting priorities to elevate these previously
marginalized contributors, transforming gradient conflicts into fairness-enhancing signals.

This phased paradigm fundamentally motivates our dual-term adaptive weighting framework. By
dynamically rebalancing generalization and fairness priorities in response to emergent training
signatures, we transcend the limitations of static aggregation schemes.

3.3.1 Consensus-Driven Generalization

The design of our generalization term stems from a fundamental intricate and interdependent relation-
ship between gradient alignment patterns and collective learning progress dynamics. By analyzing
the first-order Taylor expansion of the global loss reduction:

∆Lt
total =

K∑
i=1

∆Lt
i =

K∑
i=1

(
Lt

i

(
wt − ηdt)− Lt

i

(
wt))

≈
K∑
i=1

−η · ⟨gt
i, dt⟩ =

K∑
i=1

−η · ⟨gt
i,

K∑
j=1

λjgt
j⟩

= −η ·
K∑
i=1

K∑
j=1

λi⟨gt
i, gt

j⟩.

(8)

We establish that clients exhibiting higher gradient coherence (larger
∑

j⟨gt
i ,g

t
j⟩) contribute more

significantly to overall loss minimization. In practical training, gt
j is equivalent to ∆wt

i , and we
assign more weight to those with a greater sum of dot products with other clients. This pairwise dot
product formulation serves two purposes: it robustly captures directional consensus across skewed
distributions through gradient similarity metrics, while simultaneously suppressing clients with
divergent updates that could destabilize the global model. Additionally, we employ momentum
updates [25], with the momentum coefficient decaying using a parameter γp, which helps constrain
the oscillations that typically occur as the system approaches convergence.

∆ptm = (1− βγp)∆pt−1
k + βγp

∑K
i=1⟨∆wt

i ,∆wt
j⟩∑

i,j⟨∆wt
i ,∆wt

j⟩
,

γp =
⟨∆wt

i ,∆wt
j⟩

⟨∆w0
i ,∆w0

j ⟩
, ptk=pt−1

k +∆ptk, p
t
k=

ptk∑K
j=1 p

t
j

,

(9)

where ⟨∆wt
i ,∆wt

j⟩ represents the average value of the dot products between clients during epoch t.
3.3.2 Diversity-Enhanced Fairness

A natural approach to achieving fairness, as defined in (1), is to reweight the aggregation process by
assigning higher weights to devices with poor performance. We use the loss as a proxy for perfor-
mance and assign higher weights to clients with higher loss values, applying the same momentum
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update to the fairness score as described previously.

∆qtk = (1− βγq)∆qt−1
k + βγq

Lt
i∑M

j Lt
i

, γq =
Lt

i

Lt
0

,

qtk = qt−1
k +∆qtk, qtk =

qtk∑K
j=1 q

t
j

.

(10)

To reduce the number of hyper-parameters, we adopt the same β as in Eq. (9), and γq serves the
same role as γp. This mechanism aims to shift the weights in favor of disadvantaged clients, thereby
achieving more uniform performance while also accounting for domain diversity.

3.3.3 Phase-Adaptive Weight Synthesis

Our phased analysis reveals a critical duality in federated optimization objectives: the alignment
of updates and the disparity in loss exhibit opposing dominance patterns across different training
phases. To empirically validate this phase-dependent dichotomy, we quantify the client-wise standard
deviations of generalization (σt

p) and fairness (σt
q) weights throughout training. As shown in Fig. 4c,

σt
p dominates in the early rounds, while σt

q surpasses it in later stages.

• Early Phase: σt
p > σt

q, high gradient alignment variability among clientsleads to prioritizing
consensus-driven updates to maximize collective progress.

• Later Phase: σt
q > σt

p, the later-phase exhibits diminishing gradient coherence but increasing loss
disparity, necessitating interventions that emphasize fairness.

This systematic inversion motivates our adaptive weighting mechanism, which dynamically rebalances
the two objectives based on their relative variability:

λi =
σt
p

σt
p + σt

q

pti +
σt
q

σt
p + σt

q

qti . (11)

This variance-regulated synthesis automatically shifts emphasis between consensus-seeking and
disparity-reduction modes throughout the training dynamics.

3.4 Discussion and Limitation

Comparison with Analogous Methods. AFL [39], q-FFL [35], and FedCE [22] prioritize weak
clients using single metrics (e.g. loss/accuracy), but simply increasing their weights is not appropriate.
In contrast, our method first suppresses then amplifies updates for straggling clients, aligning with
natural learning dynamics. This strategy maintains update consistency without sacrificing domain
diversity. While prior works [44, 43] like FedLF address update conflicts via gradient projection,
trivial parameters still disrupt global optimization. Our parameter adjustment selectively discards
non-critical updates to preserve essential ones, enhancing both generalization and fairness.

Discussion on Parameter Adjustment. Our method addresses update conflicts in large-scale FL
through selective parameter pruning. This strategy enables performance gains for conflicting clients
with minimal self-degradation, achieving collective enhancement. Concurrent gradient rescaling
preserves original gradient norm magnitudes while amplifying critical parameters, effectively reducing
parameter space conflicts and stabilizing multi-client collaboration.

Limitations. Our method employs parameter adjustment and adaptive weighting to adjust model
aggregation. However, setting the hyper-parameter c to excessively high values may cause instability,
exhibits sensitivity to selection. Our approach requires all participating clients to maintain identical
network architecture specifications, which may limit the broader applicability of this method.

4 Experiments

We perform experiments on image classification tasks in various single-domain and cross-domain
scenarios to validate the superiority of our framework FedPW.

4.1 Experiment Setup

Datasets. Following [18, 21, 43], we evaluate our method on single-domain datasets Fashion-Mnist
[54], Cifar10 [28], Cifar100, and cross-domain datasets Digits [29] and Office-Caltech [11].
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Table 1: Comparison of Average Accuracy (and Standard Deviation) with baselines in single-domain scenarios.

FMNIST CIFAR-10 CIFAR-100
Methods

Dir(0.1) Pat-1 Pat-2 Dir(0.1) Pat-1 Pat-2 Dir(0.1) Pat-1 Pat-2

FedAvg 87.0(11.5) 82.3(14.2) 82.9(11.4) 68.1(15.0) 56.2(20.4) 68.7(19.3) 37.1(7.5) 20.5(15.7) 21.9(15.3)
q-FFL 86.1(9.9) 84.0(13.5) 79.3(9.6) 67.8(14.1) 58.6(17.5) 68.8(18.1) 37.9(6.8) 17.6(15.1) 23.1(13.9)
AFL 87.0(9.5) 82.2(17.2) 83.7(11.8) 64.3(13.8) 56.5(14.4) 65.6(14.0) 39.1(7.0) 17.5(16.6) 26.7(14.6)
Ditto 79.9(10.6) 75.5(21.4) 77.8(10.2) 57.9(13.1) 45.7(11.3) 52.6(14.2) 27.9(7.4) 18.1(20.1) 11.2(11.4)
FedProx 81.9(10.0) 84.1(11.9) 84.3(8.8) 53.4(13.4) 57.3(11.9) 56.8(12.2) 18.7(5.9) 20.3(14.7) 19.1(12.0)
FedFV 82.8(9.4) 88.5(11.7) 81.6(13.4) 68.1(13.3) 55.1(18.3) 69.4(18.9) 37.3(6.9) 18.9(14.5) 21.9(13.7)
FedCKA 89.0(10.1) 79.3(18.8) 87.4(10.9) 67.3(14.3) 56.4(20.4) 69.3(14.4) 37.1(7.0) 19.6(15.7) 21.3(14.4)
FedSAC 84.1(13.1) 74.5(23.6) 83.4(18.1) 58.7(14.3) 44.8(15.3) 55.8(15.3) 33.4(6.1) 25.4(14.3) 7.5(3.1)
FedGCR 85.7(10.0) 83.2(13.5) 84.0(11.3) 66.6(13.8) 61.5(19.1) 65.5(16.9) 38.6(6.7) 20.6(14.5) 19.9(15.6)
FedHeal 85.7(11.3) 85.8(13.9) 84.0(11.6) 71.0(14.4) 58.7(22.4) 66.8(14.1) 38.7(6.8) 19.6(14.9) 22.8(14.3)
FedAA 86.8(7.7) 85.7(8.8) 87.9(7.0) 73.8(12.7) 73.2(10.4) 71.4(11.3) 38.1(7.0) 27.4(13.2) 34.2(12.7)
FedPW 88.2(7.1) 89.4(8.0) 90.2(6.6) 75.3(11.1) 75.1(10.3) 76.3(9.9) 41.2(6.6) 35.2(14.2) 38.4(12.6)

Table 2: Cross-domain comparison of Average Accuracy (AVG) and Standard Deviation (STD) with baseline.

Digits Office-Caltech
Methods

MNIST USPS SVHN SYN AVG ↑↑↑ STD ↓↓↓ Amazon DSLR Caltech Webcam AVG ↑↑↑ STD ↓↓↓

FedAvg 93.23 91.01 79.13 40.02 75.85 24.67 72.36 56.93 59.19 45.92 58.60 10.85
+AFL 93.73 93.42 75.42 44.25 76.71 ↑0.86 23.27 ↓1.40 64.34 65.65 57.21 47.52 58.68 ↑0.08 8.31 ↓2.54
+q-FFL 93.89 90.63 77.93 44.68 76.78 ↑0.93 22.48 ↓2.19 59.41 64.75 52.60 51.33 57.02 ↓1.58 6.26 ↓4.59
+FedHEAL 93.12 94.12 79.13 46.36 78.18 ↑2.33 22.29 ↓2.38 67.49 66.81 59.82 54.83 62.24 ↑3.64 6.03 ↓4.82
+FedPW 94.28 93.62 80.76 49.43 79.52 ↑3.67 21.00 ↓3.67 68.64 65.95 59.76 58.62 63.24 ↑4.64 4.83 ↓6.02

FedProx 93.64 91.14 80.53 41.93 76.81 23.94 70.31 57.83 59.86 44.79 58.20 10.48
+AFL 93.72 95.23 75.44 43.15 76.89 ↑0.08 24.22 ↑0.28 67.18 63.52 59.65 53.08 60.86 ↑2.66 6.03 ↓4.45
+q-FFL 94.05 93.49 75.73 44.36 76.91 ↑0.10 23.31 ↓0.63 62.27 73.62 54.39 55.46 61.44 ↑3.24 8.84 ↑1.64
+FedHEAL 92.15 93.58 78.89 44.61 77.31 ↑0.50 22.78 ↓1.16 66.17 72.65 58.09 56.95 63.46 ↑5.26 7.37 ↓3.11
+FedPW 94.33 92.46 80.19 48.62 78.90 ↑2.09 21.14 ↓2.80 68.40 70.67 59.86 58.94 64.47 ↑6.27 5.94 ↓4.54

MOON 92.65 92.81 80.51 39.63 76.40 25.18 73.01 60.29 59.66 47.54 60.13 10.40
+AFL 93.14 95.12 74.68 44.48 76.86 ↑0.46 23.46 ↓1.72 66.70 68.20 61.54 54.50 62.74 ↑2.61 6.18 ↓4.22
+q-FFL 92.31 94.51 75.98 43.67 76.62 ↑0.22 23.47 ↓1.71 64.90 65.85 53.88 58.93 60.89 ↑0.76 5.59 ↓4.81
+FedHEAL 93.23 94.31 80.81 45.12 78.37 ↑1.97 23.00 ↓2.18 68.16 64.95 59.17 59.51 62.95 ↑2.82 4.37 ↓6.03
+FedPW 93.71 94.61 81.53 48.27 79.53 ↑3.13 21.68 ↓3.50 66.73 65.84 59.47 60.34 63.10 ↑2.97 3.72 ↓6.68

FedDyn 94.15 94.82 80.29 40.48 77.44 25.53 70.11 61.56 59.78 48.15 59.90 9.04
+AFL 94.37 96.14 70.95 41.28 75.69 ↓1.75 25.65 ↑0.12 70.84 57.86 60.57 50.99 60.06 ↑0.16 8.24 ↓0.80
+q-FFL 94.71 94.26 75.33 42.79 76.77 ↓0.67 24.39 ↓1.14 62.99 66.44 55.76 55.36 60.14 ↑0.24 5.47 ↓3.57
+FedHEAL 94.61 95.72 79.94 43.72 78.50 ↑1.06 24.27 ↓1.26 67.55 60.53 58.86 53.38 60.08 ↑0.18 5.84 ↓3.20
+FedPW 94.61 95.72 80.06 46.84 79.31 ↑1.87 22.79 ↓2.74 66.93 63.27 58.83 54.67 60.93 ↑1.03 5.33 ↓3.71

Independent Methods

Ditto 93.62 91.58 79.55 40.65 76.42 24.65 56.94 69.67 56.73 56.82 60.04 6.42
FedFV 94.92 94.70 76.77 40.83 76.81 25.45 61.83 71.72 54.97 58.92 61.96 7.15
FedCKA 91.53 94.72 78.82 46.48 78.25 22.48 67.24 64.03 59.76 49.10 60.03 7.91
FedGCR 93.14 95.12 78.26 44.48 77.75 23.42 66.70 68.20 62.54 54.50 62.99 6.14
FedSAC 92.16 93.75 78.61 41.67 76.55 24.22 52.39 51.68 55.37 44.16 50.90 4.77
FedAA 92.91 92.28 78.57 47.16 77.73 21.43 62.89 68.71 56.83 56.02 61.11 5.92
FedPW 94.28 93.62 80.76 49.43 79.52 21.00 68.64 65.95 59.76 58.62 63.24 4.83

Data Heterogeneity.. To simulate heterogeneous clients in FL, we consider three scenarios: (1)
Dir(α): We simulate m clients in Dirichlet heterogeneous partition. The smaller α is, the more
imbalanced the local distribution is. (2) Pat-1: It constructs a difficult data-island scenario where
each client only has data from one class. (3) Pat-2: We follow FedAvg to build pathological non-IID
data where each client has data from two classes.

Model. For the single-domain scenario, we conduct experiments with CNN(two convolutional layers)
[53]. For cross-domain scenarios, we use ResNet-10 [14] whose feature vector dimension is 512.
Note that all methods use the same network architecture for fair comparison across different tasks.

Counterparts. We compare our method with FedAvg [38] and fairness-focused FL approaches: AFL
[39] , q-FFL [35], and FedHEAL[3] (both integrable). For non-integrable frameworks like Ditto [33],
FedFV [53], FedGCR[4], FedSAC[56] and FedAA[13], we perform full end-to-end benchmarking.
This ensures comprehensive evaluation across all baseline categories.

Implement Details. Following [3, 43], in the single-domain setting, we employ 100 clients for
3,000 communication epochs, where all federated learning methods exhibit minimal or no accuracy
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improvement beyond this point. Each epoch involves 10% client participation. We use the SGD
optimizer with a learning rate of 0.1 and a batch size of 50. For the cross-domain setting, we allocate
20 clients per task and equal clients per domain, with clients randomly assigned to domains. The
training runs for E = 200 communication epochs with T = 10 local updates per round. Each epoch
involves all clients. The SGD uses a learning rate of 0.001, and momentum is 0.9. The batch sizes are
64 for Digits and 16 for Office-Caltech. We fix the random seed to ensure reproduction and conduct
experiments on the NVIDIA 3090Ti. The hyperparameter settings are detailed in Sec. 4.3.

Evaluation Metric. Following [34, 38], Top-1 accuracy is adopted for model performance evaluation.
For the single-domain setting, we use the standard deviation of accuracy across clients, while for the
cross-domain setting, we use the standard deviation across domains for fair evaluation. We conduct
experiments three times and utilize the accuracy of the last five epochs as the final performance.

4.2 Comparison to State-of-the-Arts

We benchmark FedPW against contemporary approaches addressing Performance Fairness in FL,
with comprehensive results presented in Tab. 1 and Sec. 4.1. Our method establishes new state-of-the-
art performance, achieving superior mean accuracy while maintaining the lowest standard deviation
across several scenarios. The convergence analysis in Fig. 5 further demonstrates FedPW’s accelerated
training dynamics compared to existing methods and several key observations are summarized:
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Figure 5: Comparison of convergence of average accuracy with counterparts. Please see details in Sec. 4.2.

❶ FedPW achieves an optimal trade-off between overall performance and fairness. Through the
synergistic collaboration of the PA and AWA modules, FedPW simultaneously promotes fairness
while improving the performance of the global model.

❷ Existing fairness-oriented methods risk degrading the accuracy of global model or advantaged
clients. For instance, q-FFL and AFL exhibit performance degradation compared to FedAvg on
Cifar-10, and similar phenomena occur with SVHN in the Digits benchmark.

❸ FedPW safeguards performance for disadvantaged parties. Underperforming domains like SYN
in Digits and Webcam in Office-Caltech achieve improvements under FedPW’s framework.

4.3 Diagnostic Experiments

Compatibility Study. To validate the compatibility of FedPW, we compared the results of several
widely-adopted FL methods, FedAvg [38], FedProx [34], FedDyn [1], without and with FedPW.
The results are shown in Sec. 4.1.

Table 3: Ablation study on multiple datasets. Please refer to Sec. 4.3 for detailed discussion.
Setting FMNIST CIFAR-10 CIFAR-100 Digits Office-Caltech

PA AWA AVG ↑↑↑ STD ↓↓↓ AVG ↑↑↑ STD ↓↓↓ AVG ↑↑↑ STD ↓↓↓ AVG ↑↑↑ STD ↓↓↓ AVG ↑↑↑ STD ↓↓↓
✗ ✗ 87.03 11.21 68.13 15.02 37.12 7.48 75.85 24.67 58.60 10.85
✓ ✗ 88.05 10.34 72.88 13.94 38.64 7.81 77.85 23.62 60.65 9.92
✗ ✓ 87.34 8.62 72.12 12.84 40.01 7.27 78.58 22.08 62.39 5.05
✓ ✓ 88.22 7.13 75.28 11.10 41.22 6.57 79.52 21.00 63.24 4.83

Table 4: AVG(STD) under different number of
clients on Digits.

Client scalesMethods
20 60 100

FedAvg 75.9(24.7) 86.2(16.7) 87.1(16.0)
FedPW 79.5(21.0) 88.9(9.8) 91.3(7.8)

Ablation Study. We conducted an ablation study to
analyze the contributions of Parameter Adjustment
(PA) and Adaptive Weighted Aggregation (AWA)
components, as summarized in Tab. 3. Our findings
indicate that each module positively contributes to
performance, with optimal results achieved through
their combination.
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Hyper-parameter Analysis. We systematically investigate the impact of two critical hyper-
parameters: the client selection rate c (Eq. (4)) and the momentum coefficient β (Eq. (9)). Here, β is
solely used for momentum updates to mitigate drastic fluctuations during model training. Fig. 6 shows
that β has a limited impact on model performance, though the error bars indicate that increasing β
leads to more stable accuracy. The optimal values are set as defaults for subsequent experiments.
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Figure 6: Hyper-parameter study with variant β (Eq. (9)) and variant c (Eq. (4)). See details in Sec. 4.3.

5 Conclusion

In this paper, we explore the fairness challenges arising from domain skew in heterogeneous federated
learning. We propose a simple yet effective federated learning algorithm, FedPW, to address two
critical issues: Parameter Redundancy and Persistent Favoritism. Specifically, we utilize gradient
information from model training to selectively discard and reinforce parameters. Furthermore, by
leveraging training dynamics across epochs, our method achieves adaptive weighted aggregation.
The effectiveness of FedPW has been extensively validated against several popular methods across
various classification tasks. We hope that this work will serve as a foundation for future research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claims of our work,
including an overview of FedPW. In addition, the main contributions and existing limitations
are logically outlined in Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Justification: In the dedicated section (Sec. 3.4), we analyze the limitations of
FedPW, including its sensitivity to hyper-parameter. Moreover, all clients should maintain
identical network architecture specifications, which may limit the broader applicability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include formal theoretical results or theorems that require
specific assumptions and complete proofs. The methodology presented in Sec. 3 is empirical
and algorithmic, accompanied by the corresponding descriptions and formulas.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides sufficient experimental details to reproduce the results,
including model backbone types, datasets with partitioning methods, the number of tasks,
related training hyper-parameters, specific evaluation metrics and exact baseline settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is accessible in this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all necessary training and evaluation details, including model,
datasets, dataset splits per task, batch size, and methods to control the non-IID level in
Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 4.2.

Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work addresses the issue of catastrophic performance degradation caused
by traditional fairness methods and has been validated across diverse data scenarios. The
study does not involve human subjects or sensitive personal data, presents no adverse
real-world impacts, and fully complies with the NeurIPS ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer:[NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not release any new pretrained models, image generators, or
datasets that pose a risk of misuse. We conducted the evaluation using publicly available
datasets and backbones. The additional settings required in the experiment are all commonly
used in current methods, and there was no misuse threat.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the external assets used in this paper, including the ResNet10 backbone
and all baselines, as well as the Fasion-MNIST, CIFAR-10, CIFAR-100, Digits and Office-
Caltech datasets, have been correctly cited and accompanied by the corresponding references.
Their licenses are respected and no unauthorized or crawled content has been used.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: None of the core methods, including any important, original, or non-standard
components, rely on LLMs. We also do not use LLMs to generate data, experimental results,
or similar
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Method Algorithm

Algorithm 1: FedPW
Input: Communication rounds T , local epochs E , number of participants K, kth participant private data

Dk, private model wk.
Output: The final global model wT

Server: initialize the global model w0

for t = 0, 1, 2, ..., T − 1 do
Client:
for k = 1, 2, ...,K in parallel do

wt
k ←Wt

for e = 1, 2, ..., E do
wt

k ← wt
k − η∇CE(wt

k, Dk)

∆wt
k ← wt

k −Wt

Server:
∆Wt

k ← FedPW(∆wt)
for i = 1, 2, . . . , G do
Wt+1

i =Wt
i +∆Wt

i

FedPW(∆wt) : for k = 1, 2, . . . ,K do
/* Adaptive Weighting */
ptk,∆ptk,← (pt−1

k ,∆pt−1
k , β) in Eq. (9)

qtk,∆qtk ← (qt−1
k ,∆qt−1

k , β) in Eq. (10)
λt
k ← (ptk, p

t
k) in Eq. (11)

/* Parameter Adjustment */
for i = 1, 2, . . . , G do
Mt

k,i ← Eq. (5)
∆wt

k,i = ∆wt
k,i · Mt

k,i

αt
i ← (∆wt

k,i) in Eq. (7)
∆Wt

i = αt
i

∑K
k=1 λk∆wt

k,i

return ∆Wt
i

Parameter Adjustment. This module refines client updates through a two-stage process. In the
first stage, redundant parameters are pruned by computing client-specific mask rates rtk from inverse
training losses and applying binary masksMt

k,i in Eq. (5). Parameters below the adaptive threshold
τk are removed, eliminating about (1− rtk)× 100% of the least significant parameters and reducing
aggregation noise. In the second stage, consensus-based rescaling is applied using Eq. (7): masked
updates are normalized, consistent parameters are identified via cross-client standard deviation, and
emphasized by scaling factors αt

i to preserve gradient magnitude while reinforcing aligned updates
that support stable convergence.

Adaptive Weighting. This module balances generalization and fairness across training. In each
round, generalization weights ptk are computed via gradient alignment (Eq. (9)), while fairness
weights qtk are derived from training losses (Eq. (10)). The two components are then adaptively
combined using the variance-based rule in Eq. (11), shifting from alignment-driven weighting in early
rounds to fairness-oriented weighting later, guided by the relative variability of the two distributions.

B Details of Experiments

Datasets. Following [18, 21, 3, 43], we evaluate the efficacy of our method on single-domain datasets
Fashion-Mnist, Cifar10, Cifar100, and cross-domain datasets Digits and Office-caltech.

• Fasion-MNIST [54] has 60k train and 10k test examples from 10 classes.
• Cifar10 [28] contains 50k, 10k images for training, validation. Each image is in 32× 32 size from

10 different classes, e.g., airplanes, cars, and birds.
• Cifar100 [28] contains 50k and 10k images with 32×32 for 100 classes.
• Digits [29, 20, 41, 45] ] includes four domains: MNIST(M), USPS (U), SVHN (SV) and SYN

(SY) with 10 cat- 427 egories (digit number from 0 to 9).
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• Office-Caltech [11] consists four domains: Caltech (C), Amazon (A), Webcam (W) and DSLR
(D), which is formed of ten overlapping classes between Office31 [46] and Caltech-256 [12].

Hyper-parameter Study Our method involves only two hyperparameters: the mask ratio c and the
momentum coefficient β. The mask ratio c governs the average masking level in the PA component,
where smaller values make FedPW resemble FedAvg and reduce potential gains, while excessively
large values may cause instability due to insufficient trainable parameters. The coefficient β controls
the smoothness of adaptive updates in the AWA component; extremely small values degrade it to a
non-momentum variant, while overly large values may delay the system’s responsiveness to training
dynamics. The following tables present comprehensive hyperparameter evaluation results.

Table 5: AVG(STD) under varying β across different datasets.
β 0.1 0.3 0.5 0.7 0.9

FMNIST 85.1(8.3) 87.7(7.2) 88.2(7.1) 87.2(7.8) 86.7(6.8)
CIFAR-10 74.5(10.9) 74.6(11.4) 75.3(11.1) 75.0(11.3) 74.9(11.6)
CIFAR-100 39.6(6.8) 41.2(7.0) 41.2(6.6) 39.8(6.3) 39.3(6.6)

Digits 78.8(21.7) 79.1(21.4) 79.5(21.0) 78.5(21.1) 77.9(21.4)
Office-Caltech 62.7(6.3) 61.9(4.8) 63.2(4.6) 62.7(5.9) 62.3(5.8)

Table 6: AVG(STD) under varying c across different datasets.
c 0.1 0.2 0.3 0.4 0.5

FMNIST 86.1(7.1) 87.6(7.4) 88.2(7.1) 86.3(6.9) 86.1(6.7)
CIFAR-10 74.6(10.9) 75.3(10.9) 75.3(11.1) 74.5(12.1) 74.1(11.3)
CIFAR-100 40.2(6.8) 41.0(6.6) 41.2(6.6) 39.3(6.9) 38.6(7.4)

Digits 78.8(21.3) 79.4(21.5) 79.5(21.0) 79.1(21.5) 78.4(22.1)
Office-Caltech 62.1(5.1) 62.3(5.1) 63.2(4.6) 60.1(3.8) 58.9(4.2)
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