Understanding Generalization in Physics Informed Models
through Affine Variety Dimensions

Anonymous Authors'

Abstract

In recent years, physics-informed machine learn-
ing has gained significant attention for its ability
to enhance statistical performance and sample ef-
ficiency by integrating physical structures into
machine learning models. These structures, such
as differential equations, conservation laws, and
symmetries, serve as inductive biases that can im-
prove the generalization capacity of the hybrid
model. However, the mechanisms by which these
physical structures enhance generalization capac-
ity are not fully understood, limiting the ability
to guarantee the performance of the models. In
this study, we show that the generalization per-
formance of linear regressors incorporating dif-
ferential equation structures is determined by the
dimension of the associated affine variety, rather
than the number of parameters. This finding en-
ables a unified analysis of various equations, in-
cluding nonlinear ones. We introduce a method
to approximate the dimension of the affine variety
and provide experimental evidence to validate our
theoretical insights.

1. Introduction

In recent years, physics-informed machine learning (PIML)
has garnered significant attention (Rai & Sahu, 2020; Kar-
niadakis et al., 2021; Cuomo et al., 2022; Hao et al., 2022).
PIML is a hybrid approach that integrates physical knowl-
edge into machine learning models for tasks involving phys-
ical phenomena. The hybrid models can leverage physi-
cal structures such as differential equations (Raissi et al.,
2019), conservation laws (Jagtap et al., 2020), and sym-
metries (Akhound-Sadegh et al., 2024) as inductive biases.
This approach can potentially enhance sample efficiency
and generalization capabilities. These models have been
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empirically applied to a wide range of phenomena, with
successful applications including thrombus material proper-
ties (Yin et al., 2021), fluid dynamics (Cai et al., 2021a; Jin
et al., 2021), turbulence (Wang et al., 2020), and heat trans-
fer problems (Cai et al., 2021b). Despite these empirical
successes, the impact of physical structures on the general-
ization capacity of models is primarily understood for linear
equations or equations with specific regularity (Arnone et al.,
2022; Doumeche et al., 2024a). This limited understanding
hampers the ability to ensure the performance and reliability
of these hybrid methods.

In this study, we theoretically analyze the generalization
capacity of physics-informed linear regressors that incorpo-
rate the structure of differential equations. We show that the
generalization capacity of these models is determined by the
dimension of the affine variety associated with the differen-
tial equations, rather than the number of parameters. This
novel perspective allows for a unified analysis of various
equations, including nonlinear ones. To support our theo-
retical findings, we introduce a method for approximately
calculating the dimension of the affine variety and provide
extensive experimental validation. Our results demonstrate
that even in scenarios with a large number of parameters
relative to the amount of data, the physical structure reduces
the intrinsic dimension of the hypothesis space and prevents
overfitting, corroborating our theoretical findings.

Our paper is structured as follows. In Section 3, we outline
the problem setup and present our main theoretical results,
including a minimax risk analysis that underscores the role
of the dimension of the affine variety. In Section 4, we
discuss the dimension of affine variety especially in the con-
text of nonlinear operators and introduce methods for their
approximate calculation. Section 5 provides experimental
evidence supporting our theoretical claims, demonstrating
the practical advantages of incorporating physical structures
in machine learning models.

2. Related Work

Since the seminal work by Raissi et al. (2019) on Physics-
Informed Neural Networks (PINNs), PIML has rapidly
emerged as a significant field of study. This area has been



Understanding Generalization in Physics Informed Models through Affine Variety Dimensions

=15 -1.0 -0.5 0.0 0.5 1.0 1.5
B

Figure 1. Illustration of the construction of the e-covering of the
affine variety VV C R? and the associated loss landscape. The black
curve represents a (K, dy ) regular affine variety with dimension
dy = 1. The color gradients depict the loss landscape £(3) =
> ren IPk(B) |15 of the equations defining V = {83 : px(8) =
0,k € N}. The blue dotted line represents a ¢» ball of radius
R. The affine variety constrained with the /2 ball is covered by
e-balls centered at the intersections of ) with four given subspaces
{Ls}fi:l, shown as red points. The upper bound on the number
of intersections of every subspace with the variety is K, while
the actual maximum number is 5 formed by the subspace L. (the
yellow dotted line). The loss landscape of the equations is zero on
V and locally convex around the points in V.

comprehensively surveyed in the literature by (Rai & Sahu,
2020; Karniadakis et al., 2021; Cuomo et al., 2022; Hao
etal., 2022). Leveraging the high function approximation ca-
pabilities of neural networks (Hornik et al., 1989; Kutyniok
et al., 2022; De Ryck & Mishra, 2022), these models have
been employed as versatile surrogates for solving various
equations. In contrast, linear models are also used because
of their interpretability, consistency with classical numerical
solvers (Arnone et al., 2022; Ferraccioli et al., 2022), and
the close relationship between Partial Differential Equations
(PDESs) and kernel methods (Schaback & Wendland, 2006;
Chen et al., 2021; Long et al., 2022; Dalton et al., 2024;
Doumeche et al., 2024b). Recently, methods that exploit
underlying conservation laws (Jagtap et al., 2020; Hu et al.,
2022) and symmetries (Akhound-Sadegh et al., 2024; Dal-
ton et al., 2024), in addition to the equations themselves,
have also been developed.

Recent studies have made advances in the theoretical under-
standing of PINNs. Shin (2020) rigorously showed that the
minimizer of the PINN loss converges to the strong solution
as the data size approaches infinity for linear elliptic and
parabolic PDEs under certain conditions. These findings
were extended by Shin et al. (2023) into a general frame-
work applicable to broader linear problems, with the loss
function formulated in both strong and variational forms.

Mishra & Molinaro (2022; 2023) use the stability proper-
ties of the underlying PDEs to derive upper bounds on the
generalization error of PINNs. Subsequent research has
applied this analytical framework to various specific equa-
tions (Bai et al., 2021; Mishra & Molinaro, 2021). However,
studies explicitly addressing the impact of physical struc-
ture on generalization capabilities are still limited. Arnone
et al. (2022) proved that for second-order elliptic PDEs,
the physics-informed linear estimator using a finite element
basis converges at a rate surpassing the Sobolev minimax
rate. Doumeche et al. (2024a) quantified the generalization
capacity of the physics-informed estimator for general linear
PDEs using the concept of effective dimension (Caponnetto
& De Vito, 2007), a well-known metric in kernel method
analysis. The effects of incorporating the structures of non-
linear complex equations, as well as conservation laws and
symmetries, into models on generalization, have yet to be
thoroughly analyzed.

3. Minimax risk Analysis

In this section, we explain how introducing physical struc-
tures can improve the generalization capacity of linear mod-
els. In Section 3.1, we provide preliminary knowledge about
the affine variety. In Section 3.2, we outline the problem
setup. In Section 3.3, we perform a minimax risk analysis,
showing that the generalization capacity is mainly deter-
mined by the dimension of the affine variety. In Section 3.4,
we show that our theory aligns with existing theories on
linear operators.

3.1. Preliminaries on Affine Varieties

In this section, we provide the minimal background on
affine varieties necessary for the subsequent sections.
Let K[3] denote the set of polynomials of the variables
B = (B1,...,84) € K% in the field K. An affine va-
riety V(p1,...,px) C K? defined by the polynomials
p1,-..,pr € K[B]is given by:

V(pi,...,px) = {,@ eK?:pr(B) =0, Vk € [K]},
where [K] := {1, ..., K} is index set.

The dimension of an affine variety is defined as the maximal
length dy of the chains Vy C Vi C ... C V4, of distinct
nonempty subvarieties of V. If the generating polynomials
{pr}}_, are all linear, the dimension of V is defined as
the maximal length of the increasing sequence of linear
subspaces within V7, which is the dimension of a variety V/
as a linear space. For example, let K = Rand V C R3
is the plane: V = {(x,y,2) : © + y — z = 0}. A chain
of subvarieties within V' is V; C V; C V5, where Vy =
{(0,0,0)} (apoint, 0-dimensional), V; ={(¢,0,%) : t € R}
(a line, 1-dimensional), and Vo = V itself (the plane, 2-
dimensional). The maximal length of the nested subvarieties
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is two, i.e., dim(V') = 2, which means that a plane has two
degrees of freedom. Please refer to Appendix A for a precise
definition of subvariety.

Next, we informally define the concept of a regular set for
real affine varieties, which is used in Section 3.3 (for a
formal definition, see Definition 2.1 in (Zhang & Kileel,
2023)).

A affine variety V C R% is a (K, dy)-regular set if:

1. For almost all affine planes L with codim(L) < dy in
R?, V' N L has at most K path-connected components.

2. For almost all affine planes L with codim(L) > dy in
R?, V N L is empty.

The notion codim represents the codimension. For an
affine subspace L. C R<, its codimension is defined by
codim(L) = d — dim(L). Simply put, codimension is
how many dimensions you are “missing” when comparing
a smaller space inside a bigger space.

A regular set restricts the complexity of a variety V. Intu-
itively, the complexity of V' can be measured by the num-
ber of connected components in its cross sections. For
instance, a complex shape may have cross sections that
split into multiple connected components. The larger the
number of connected components K, the more complex the
topology of V. Moreover, the dimension at which we slice
the variety is also important. If the slice (affine plane) is
large enough in dimension, i.e., the codimension is small
(< dy), then any intersection of the slice with V is lim-
ited to at most K connected pieces. Otherwise, the slice
typically does not intersect V' at all. For example, con-
sider the circle V = {(z,y) € R? | 22 +¢y* — 1 = 0}
. A line (codim(L) = 1) intersects the circle in at most
two points. For a single point (codim(L) = 2), almost
all points do not lie on the circle; that is, intersections with
higher-codimension affine subspaces are almost empty. This
implies the circle is a (2, 1)-regular set.

3.2. Problem Setup

Formulation: We address the regression problem, which
aims to learn the unknown function f*: R™ — R that sat-
isfies the differential equation. We have a dataset consisting
of n observations, denoted as {(z;,y;)},, where z; € Q
represents the input within the input domain (2 C R™ and
yi € R represents the corresponding output. Observations
are sampled independently from a probability distribution
‘P on the domain €2 x R. The relationship between the
observations and the true function can be expressed as:

Yi = f*(ml> + €5, €5 N(0702)7

where €; represents normally distributed noise with mean
zero and variance 2. The target function f* is the solution

of the differential equation, i.e., Z[f*] = 0 for a given
operator Z: L*(Q) — L*(Q), where L?({2) denotes the
space of square-integrable functions on a domain 2 C R™.

To estimate the unknown function f*, we consider an
physics-informed regression problem for a hypothesis fn

H. Specifically, we require f,, to satisfy Z[f,] = 0 in the
weak sense. The weak formulation bypasses the necessity
for derivatives in the classical sense, instead requiring agree-
ment in an integral sense using test functions. This approach
relaxes the smoothness requirements for the solution. To
define the weak formulation precisely, we set a set of pairs:

T = {(Vr, &) Y ren,

where each ¢ : R™ — R is a finite test function, and

k : 2 — R is a measure on the o-algebra X over the
domain €. A function f is said to be a weak solution of the
differential equation Z[f] = 0 if, for every pair (¢, i) €
T, it satisfies

<@[f]v wk>uk

where (f, g) fQ fgdpy is the inner product with re-
spect to the measure . in the function space L?(, ).

= /-@[f] Y dpr, = 0, )]

By adopting a measure-based integral, we can handle a
wider range of solutions in a unified manner. If the measure
is a Borel measure, then it corresponds to a common weak
solution. Alternatively, by setting the measure to a Dirac
measure, it aligns with the framework used in PINNs.

The problem is formulated as follows:

fn = argmin *Zlyz (@) + Al FII%,

feF(@. TN
F(@,T)=A{f:(2f ],¢k>uk =0, V(¢ ) €T},

@)

where \,, is a regularization parameter, and | - || is the
standard L? norm with respect to the Lebesgue measure.

Linear Hypothesis: We focus our analysis on a linear hy-
pothesis spanned by a basis 5 := {¢; : R — R}jen.

d

H=_f:flx)= => Bid(x), ¢, € B3,
j=1

where B8 = [B1,B2,...,84] " € R represents the coeffi-

cients to be estimated. The problem Eq. (2) is reduced to
the physics-informed linear regression (PILR) given by

B= argmin flly 4[5+ MalBl5, 3
BeV(2,8,T) T
V(2,B,T) =
{B:(2[B"6] k), =0, V(tow, ) € T, 65 € B,

“
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where y = [y1,%2,...,yn]" € R" is the target vector,
& = [p(z1), P(x2),...,¢(2,)]T € R" 9 is the design
matrix, and || - ||2 is the £3-norm.

The set of coefficients V constitutes an affine variety as it
represents the set of solutions to the | 7| polynomial equa-
tions in the d variables with real coefficients. For exam-
ple, when m = 1 and 9[f] = [ - % f, the affine variety
V is defined by the solution set of the polynomial equa-
tions px(8) = Z?,y:ﬂ(%%) Gjrs k) sy BiBjr = 0 for
k=1,...,|T|. We perform minimax risk analysis based
on the dimension dy, of this affine variety because the affine
variety V is crucial in determining the size of the intrinsic
hypothesis space.

For simplicity, we define the equivalent formulation of
Eq. (3) as follows.

. 1

B = argmin — ||y — ®P|3, ®)
Beve N

where Vg = V(2,B,T) NBa(R) is the affine variety con-

strained with the ¢5-ball Bo(R) with the radius R > 0.

Minimax risk: The goal of our analysis is to obtain the
upper bound of the minimax risk for PILR in Eq. (3), which
is defined by
. 2 * |2
min max — , 6
in s 16— "3 ©

where 3% € Vp is the optimal weight. We only concern the
estimation error by assuming f* = 3*T ¢.

We strongly recommend referring to the example in Sec-
tion 5.1 to understand our problem setting intuitively.

3.3. Main Theorem

We first introduce a unified bound on the covering number
of an affine variety, as shown by Zhang & Kileel (2023), to
measure the complexity of the affine variety V.

Lemma 3.1 (Zhang & Kileel (2023)). Let V C R? be a
(K, dv)-regular set in the ball Bo(R) with the radius R.
Then for all € € (0, diam(V')],

2Rdyd

log N'(Vie, | - |2) < dy log ( ) Flog2K. ()

This upper bound is obtained by slicing the affine vari-
ety V with subspaces {L;}sen within R? and covering
V' with balls centered at the intersections of L, and V/,
ie, V C U,U,evnr, B2(vie). The covering for the
two-dimensional case is illustrated in Fig. 1. The first
term, (2Rdy d/€)™ , represents the number of subspaces L,
needed to cover the entire space. It is mainly determined by
the intrinsic dimension dy- of the affine variety, although it

is still influenced by the ambient dimension d. The quantity
K in the second term denotes the number of the intersec-
tions between a single subspace L and the variety V, and
represents the covering number of V' N L. Topologically,
it corresponds to the Betti numbers of the affine variety,
which informally represent the number of holes in V. The
upper bound on the quantity K is given, for example, by the
Petrovskii-Oleinik-Milnor inequality (Petrovskii & Oleinik,
1949; Oleinik, 1951; Milnor, 1964). Specifically, an affine
variety V' N By (R) defined by polynomials {py }re[x] of
maximum degree p and the /5-ball is (p(2p — 1)4+1, dy)-
regular. This intuitively suggests that as the maximum de-
gree of the polynomials increases, the topology of the affine
variety grows more complex.

Next, we present the upper bound on the minimax risk. The
complete statement and proof are provided in Appendix B.

Theorem 3.2 (informal). Let V(2,8B,T) be the (K, dy)-
regular affine variety defined in Eq. (4). Suppose that the
basis function is bounded by a constant, the minimum eigen-
value of the design matrix is restricted, and the stability
condition for the estimator holds. For 6 € (0, 1), with prob-
ability 1 — ¢, the minimax risk for PILR defined by Eq. (6)
is bounded by

O(\/dvloi(dvd) +\/10gﬂ2K+2\/10g(3/5)). ®

Proof Sketch. The proof involves two steps, the first of
which is standard while the second step is specific to our
problem. In the first step, we take advantage of the fact that
the estimator minimizes the least squares loss on the set Vg.
Through several algebraic transformations, we upper bound
the /5 prediction error by a term that represents the supre-
mum of a empirical random process in the metric space
of the affine variety (Vg, || - ||2), which have sub-Gaussian
increments. In the second step, we calculate the supremum
of the random process using the covering number of the
affine variety Vpr, which is obtained from Lemma 3.1. We
derive a tail bound on the basis of the Dudley’s integral. [

Theorem 3.2 suggests that the minimax risk is primarily
determined by the intrinsic dimension dy of the affine va-
riety V rather than the number of the ambient dimension
d when K is small. In the absence of physical structure,
the covering number is (4R/€)<, thus the minimax risk is
O(y/d/n). When dy < d, the physical structure improves
the convergence rate of the minimax risk. The method for
calculating the intrinsic dimension dy of the affine variety
is discussed in Section 4.

To qualitatively estimate the impact of the second term, we
discuss the case where the generalization capacity is de-
termined by the local size of the hypothesis space induced
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by the learning algorithm, such as gradient descent. When
using gradient descent for the optimization of Eq. (3), the
weights 3 are likely to be trapped in the path-connected
component near the initial point because of the local con-
vexity of the loss landscape, as illustrated in Fig. 1. In this
situation, the intrinsic size of the hypothesis space can be
estimated as follows. The first term of the covering num-
ber shown in Eq. (7) (and consequently in Eq. (8)) remains
unchanged because it depends on the dimension. On the
other hand, the second term becomes smaller because it
focuses on fewer path-connected components. Therefore,
we infer that the dimension of the affine variety dy in the
first term primarily contributes to the generalization capac-
ity, especially when it is determined by the local size of the
hypothesis space.

3.4. Analysis on Linear Operator

We discuss the special case where & is a linear operator.
The second term in Eq. (8) vanishes because the Petrovskii-
Oleinik-Milnor inequality indicates K = 1. Thus, the mini-

max risk is O ( dy log(dyd)/ n) Furthermore, the affine

variety V is the solution set of a homogeneous system of
linear equations. That is, the affine variety can be writ-
ten as V(2,B,T) = {8 : DB = 0} using the matrix
D € RITI%4 defined by Dy, ; := (2[6;], k) .- The affine
variety is a linear subspace of dimension dy, = dim ker D.
From the rank—nullity theorem, dy, = d — rank D, indicat-
ing that the higher the rank of the matrix D, the better the
minimax risk of regression.

We show that our theory is consistent with existing theo-
ries. The effect of incorporating physical structure, repre-
sented by linear differential equations, on generalization has
been analyzed within the framework of kernel methods by
(Doumeche et al., 2024a;b). They argued that the physical
structure smooths the kernel and reduces the effective di-
mension, leading to an improvement in the /5 predictive
error. We first present the definition of the physics-informed
(PI) kernel.

Definition 3.1 (PI kernel (Doumeche et al., 2024a;b)). Let
B = {¢;}jen be a basis and T = {(¢x, 1) }ken be test

functions and measure |1. The PI kernel associated with the

affine variety V(2,B,T) = {3 : DB = 0} is defined by

Knr(z,y) = (M2 ¢(x), M2 $(y))a,

A ©)
M =1+ vD ' GD,

where (-, -)pa is an inner product in the Euclidean space RY,
I € RIBIXIBl is the identity matrix, G € RITIXIT| is the
matrix of the inner product of the test functions, i.e., Gy j» =
(Y, Vi) D € RITIXIBl js the matrix defined by Dy ;=
(209;], k) and §,v > 0 are weights hyperparameters
for the L? regularization and loss of differential equation,
respectively.

When the PI kernel has parameters £ > 0 and v = 0, the
regularized regression problem with a reproducing kernel
Hilbert space (RKHS) is the standard ridge regression. Note
that Definition 3.1 extends the original definition to more
general test functions. The original PI kernel uses basis
functions as test functions, i.e., T = B x {u}.

Doumeche et al. (2024b) showed the effective dimension
AN (&, v) of the PI kernel is evaluated above by a computable
quantity as follows:

1

N(Ev) S Z Tra-1

Aeo(CM(&,v)~10)

(10)

where o(-) is the set of eigenvalues of the matrix, C €
RIBI*IBI jg the matrix of the inner product of the basis func-
tion, i.e., C; j» = (¢;,¢;/),. Next, we demonstrate the
upper bound of the effective dimension of the PI kernel
defined with the affine variety.

Theorem 3.3. The effective dimension of the PI kernel asso-
ciated with the affine variety V(2,B,T) = {3 : D3 = 0}
with dimension dy, is upper bounded by

o d 1 d
HN(E)SS —— <2
(6 ”)~;1+§+],:Z®1+§+W = 1+¢

where {)\; }?:dv are the eigenvalues of the matrix D" G D.

Theorem 3.3 indicates that as the dimension of the affine
variety dy = d — rank D decreases, the upper bound of the
effective dimension of the PI kernel becomes smaller. The
bound for the PI kernel is tighter compared to the bound
for ridge regression d/(1 + &), indicating that the physical
structure improves the bound.

Therefore, our theory is consistent with the existing theory
of the PI kernel. The PI kernel theory measures the com-
plexity of the hypothesis space through the spectrum of the
matrix D and the base kernel (¢(z), ¢(y))ra, restricting
the target operator Z to be linear. In contrast, our theory
allows for the analysis of even nonlinear operators by con-
sidering only the dimension (the number of zero eigenvalues
of D) rather than the full spectrum.

4. On the Dimension of an Affine Variety

In general, the dimension of the affine variety V = {3 :
pr(B) = 0,Vk € [K]} has many equivalent definitions in
addition to the one given in Section 3.1. In particular, the
following statements are all equivalent.

Definition 4.1. The maximal length d of the chains Vy C
Vi C ... C Vy of distinct nonempty subvarieties of V.

Definition 4.2. The degree of the denominator of the Hilbert
series of the affine variety V.
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Definition 4.3. The maximal dimension of the tangent vec-
tor spaces at the non-singular points U C 'V of the variety.

Vipi(B)

dy = max | d — rank : ,
BeU T
V' pr(B)

Although Definition 4.1 clearly indicates that the dimen-
sion represents the complexity of the set V/, it is difficult to
calculate the dimension according to this definition. Defini-
tion 4.2 shows that the dimension represents the algebraic
complexity of the polynomial ring. Definition 4.3 charac-
terizes the dimension based on the local structure of the
affine variety, making it suitable for numerical calculation
as discussed in Section 4.2. It generalizes the rank-nullity
theorem dyy = d — rank D in the linear case, as mentioned
in Section 3.4. Details of the concepts associated with these
definitions are given in Appendix A.

4.1. Lower Bound

We demonstrate that the dimension dy, of the affine variety
can be characterized by the linear part of the operator Z.

Theorem 4.1. Suppose the operator & can be decomposed
as 9 = L + F, where £ is a non-zero linear differential
operator and ¥ is a nonlinear operator. Then, we have

dy(z) < dy(9).

Proof. The point 8 = 0 lies on V(2), and if £ # 0, it
is non-singular. The rank of the Jacobian of polynomials
Pe(B) = (287 @], ¥x), at B = 0 is equal to d — dy().
By Definition 3, we have dy(») < dy(9). O

Combining the result of Theorem 4.1 with Theorem 3.2
suggests that the nonlinear part .% of the operator increases
the affine variety dimension, having a negative effect on
generalization. Furthermore, the dimension of the affine
variety associated with the linear part .Z can be easily com-
puted through the matrix rank. Therefore, the lower bound
of the dimension of the affine variety associated with the
nonlinear operator 2 can be readily determined, allowing
us to estimate the minimum required amount of data n.

4.2. Numerical Calculation Method

According to Definition 4.2, the dimension of an affine
variety is typically obtained by calculating the degree of the
denominator of the Hilbert series, by using Grobner bases.
However, the worst-case time complexity of Buchberger’s
algorithm (Buchberger, 1976), which is the basic algorithm
for computing Grobner bases, is double exponential with
respect to the number of variables d. This implies that
its application to the target affine variety V(2,B,T) is

impractical. Therefore, on the basis of 4.3, we approximate
dy by sampling 37, ..., B from the affine variety V with
some distribution and computing maxg-e{gs,... g5} 4 —
rank (V' [p1(8%), ..., px(8*)]"). When the operator 7
is nonlinear, we perform simulations using various boundary
values and project the obtained solutions onto the basis B to
sample 3* € V. For the linear operator, the dimension does
not depend on the weight 3, and the rank of the matrix D
discussed in Section 3.4 precisely gives the dimension dy.

S. Experiments

We compared the performance of ridge regression (RR) and
physics-informed linear regression (PILR) defined in Eq. (3)
for several specific equations by varying the data size n
and the number of parameters d. For each equation, we
train solutions for 10 different initial or boundary conditions
determined randomly and plotted the mean and standard
deviation of the mean squared error (MSE) in the test data.
Details of the experimental setup are given in Appendix D.

When the operator & is linear, the estimator of PILR is
given by Doumeche et al. (2024b), which solves the problem
Eq. (3) approximately, as follows:

B=(®"®+nM)"'®"y,

where M is the matrix defined in Eq. (9). For nonlinear
equations, we use the Adam optimizer to minimize the loss
function, which incorporates the differential equation con-
straints as a soft penalty. The hyperparameters &, v, which
are the weight of the L2-regularization and the differential
equation constraint, are tuned by monitoring the MSE loss
on the validation data. In Section 5.1, we focus on learning
strong solutions, while in Section 5.2, we address learning
numerical solutions. The experimental code is included in
the supplementary material.

5.1. Learning Strong Solutions

In this section, we investigate the strong solutions of the clas-
sical harmonic oscillator and the diffusion equation with pe-
riodic boundary conditions. The solutions to these equations
can be obtained analytically. Through these straightforward
examples, we demonstrate both analytically and numerically
that the generalization performance is determined by the
dimension of the affine variety.

Harmonic Oscillator: The initial value problem of a har-
monic oscillator Z[y] = 0 with spring constant k& and mass
m on the domain = [0, 77] is given by:
o] = vt By o) =0, Sy00)
= —_— _— = _— =
Y dto my7 Yy Yo, dty 05

where y( and vy are the initial position and velocity, respec-
tively. The solution to the initial value problem is analyti-

cally given by y(t) = yo cos(wt)+22 sin(wt), w = \/k/m.
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Figure 2. Experimental results for the strong solutions. (a, b) Test MSE (log scale) vs. number of parameters for the harmonic oscillator
(a) and diffusion equation (b). The plots compare RR and PILR for three different data sizes n, showing the mean and standard deviation
across 10 initializations. (c) Predictions of harmonic oscillator using a 33-parameter model trained on 20 samples: RR and PILR, with

training data points indicated.

The settings for the basis functions and the test functions
with the measure ¢; € B, (¢r,pur) € T of indices
j=1,...,diand k=1, ..., K are as follows:

$1(x) =1, ¢oj(x) = cos (w;x), pojq1(x) = sin (wjz),
¢k($) =1, pp = 5961&

where w; = % is the j-th frequency and d, is the Dirac
measure centered at the point x, € €2, which is uniformly

sampled from data.

Then, the dimension of the affine variety is dy = 2, rep-
resenting the essential degrees of freedom of the solution.
Figure 2a supports our theory experimentally. For RR, the
generalization performance degrades as the number of pa-
rameters d = 2d; + 1 increases due to overfitting, as shown
in Fig. 2c. In contrast, for PILR, the performance remains
stable regardless of the number of parameters d by virtue of
the lower dimension of the affine variety dy, = 2.

Diffusion Equation: The initial value problem for the one-

dimensional diffusion equation Z[u] = 0 with diffusion
coefficient o and periodic boundary conditions is given by:
0 0?
D] = Frr el (z,t) € [-E,E] x [0,T]
u(z,0) = up(z) x € [-8, 5]
Oou Ou
—E,t) =u(E,t — (—&5,t) = — (5,1).
W(-EH=u(@), G (-5 =" (50

The solution to the problem is analytically given by:

Jmax

u(x,t) = Z [4; cos (wjz) + Bj sin (w;z)] e*‘)‘“’?t’

§=0
A = (up, cos(w;z)), Bj = (ug,sin(w;x)),
where w; = IT is the j-th frequency. The maximum fre-

quency of the initial value ug is set as Wmax = JmaxT/E-

We define a basis functions combining the spatial Fourier
basis and the time exponential function for indices j =
0,...,d,and j’ =0, ..., d; as follows:

2 2
—aw?,t o —aw?,t
i’ Goj41,0 = sin(w;x)e”

¢2j,j/ = COS((.AJ]‘JJ)B
The number of basis (number of parameters) is d = 2d,.d; +
1, while the dimension of an affine variety is given by dy, =
2min(d,, d¢) + 1. Figure 2b shows the results when we
set « = 1.0, jmax = 1, d¢ = 2, and vary d,. The results
indicate that the generalization performance of PILR does
not deteriorate as d, increases, in contrast to RR.

5.2. Learning Numerical Solutions

In this section, we learn approximate solutions using numer-
ical methods that use finite difference for four equations. In
this setting, we consider the affine variety of the difference
equation %, and the base functions By, and the test func-
tions with the measure T, corresponding to the numerical
method with step size h. We first validate our theory using
linear and nonlinear Bernoulli equations discretized by the
explicit Euler method.

Discrete Bernoulli Equation: The discrete Bernoulli equa-
tion Zy[y] = 0 with the step size h on the domain Q =
[0,T] is given by

= I 4 Py, - Qu,

Dnly]
where y, = y(¢t,) and y,+1 = y(t; + h) are evaluations
on the n; size grid {¢,} 't ,, where n; = % The constant
parameters (P, Q, p) are set to (1.0,0.0,0.0) for the linear
case and to (1.0, 0.5, 2) for the non-linear case. We use vary-
ing ny € {100,200} with T" = 1.0 for both cases. The basis
functions used correspond to the following one-dimensional
piecewise constant functions of size n, for the Euler method,
i.e., ¢, (t) = 1fort € [t;,t;4+1) and O otherwise. The test
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Table 1. Experimental results for the discrete linear and nonlinear Bernoulli equations approximated by the explicit Euler method. The
settings include various step sizes h. The number of parameters (basis) d, and the calculated dimension of the affine variety dy .

Settings ih ]fmear Bernoulli eql. N ?nhnear Bernoulli (1eq.
100 200 100 200
Dimensions 100 200 100 200
dy 1 1 1 1
Test MSE RR 0.48 +£0.32 0.63 +0.43 0.60 = 0.41 0.72 +£0.49
PILR | 0.012 £ 0.0025 0.011 £0.0013 | 0.013 £0.0024 0.013 £ 0.0018

Table 2. Experimental results for the discrete linear and nonlinear diffusion equations approximated by the FDM. The settings include

various step sizes h =

(ht, hz). The number of parameters (basis) d, and the calculated dimension of the affine variety dy .

Settings Dn Linear diffusion eq. Nonlinear diffusion eq.
2 1 2 1 2 12 1 2 1 2
(he-ha) | (m5016)  (wooas)  (@woso) | (oeio)  (@oow)  (a9030)
Dimensions 4010 8020 12030 2010 4020 6030
dy 10 20 30 10 20 30
Test MSE RR 2.21+0.56 2.14+0.57 2.15+£0.57 | 1.124+0.40 1.11+0.40 1.12+£0.40
e PILR | 1.13£0.30 0.79+0.16 0.57+0.11 | 0.26+0.11 0.22+0.10 0.31+0.14

functions are constant functions that output 1, and the mea-
sure used is the Dirac measure §;_ centered at the collocation
points. The results are shown in Table 1. The computed
dy is very small compared to d and is independent of the
choice of h. In all settings, PILR outperforms RR.

Next, we validate our theory using linear and nonlinear
diffusion equations approximated by the finite difference
method (FDM).

Discrete Diffusion Equation: The one-dimensional dis-
crete diffusion equation Zp[u] = 0 with the step size

h = [h¢, h,]" and the diffusion coefficient a(u) on the
domain Q = [-E, E] x [0, T] is given by:
T+1 T T T T
w: T —ul ul, 1 —2ul +u’
— _J J Ty i+l J j—1
Tnlul = L a(up) S T
where u} = u(zj,t,), u;+1 = u(xj,t; + hy), and

ufyy = u(x; = hy,t) are evaluations on the Ng X ny size
grid {z;}72, x {t;}]'2,, where n, = h = and n; = hl
The perlodlc boundary condition is adopted in the spat1a1
domain, i.e., u;, ., = uj forany j € N. The diffusion
coefficient a(u ) = 1.0 is used for the linear case and
a(u) = 0.1/(1 + u?) for the nonlinear case.

The basis functions used correspond to the following two-
dimensional piecewise constant functions of size n; X n,
for the FDM, i.e., ¢; . (x,t) = 1for (x,t) € [z;,2;41] X
[tr,tr+1] and O otherwise. The test functions are constant
functions that output 1, and the measure used is the Dirac
measure 5(1.7. +t,) centered at the collocation points. Table 2
shows that PILR achieves higher performance than RR for
large values of d. While the dimension dy is independent

of the time discretization step size in the Euler method, it
depends on the spatial discretization step size in the FDM.
Additionally, for the linear heat equation, we observe that
while the underlying equation is the same as in the exper-
iments of Section 5.1, the dimension of the affine variety
changes due to the different discretization of the target equa-
tion and the use of different basis functions.

6. Conclusion

In this study, we presented a novel method for analyzing
physics-informed models using affine varieties defined by
differential equations. We showed that the generalization
capacity of linear models incorporating physical structures
is determined by the dimension of the associated affine vari-
ety, rather than by the number of parameters. Our findings
align with existing theories on linear equations, providing a
unified theoretical framework. In addition, we introduced a
method for calculating the dimension of the affine variety
and numerically confirm that this dimension is smaller than
the number of parameters. Our experiments validate our the-
oretical findings, showing that the smaller dimension helps
prevent overfitting even when the number of parameters is
large. Our analysis is limited to linear models and does
not address the optimization process when using gradient
descent. Adapting our analysis to conservation laws (Jagtap
et al., 2020; Hu et al., 2022) or Lie symmetries (Akhound-
Sadegh et al., 2024; Dalton et al., 2024) is a promising
direction. Extending our analysis to deep networks, such as
PINNS, remains a challenge for future work.
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Impact Statements

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Mathematical Background on Affine Varieties

In this section, we provide a formal definition of several concepts related to affine varieties and review the definition of the
dimension of an affine variety, as briefly described in Section 4.

An affine variety is a fundamental concept in algebraic geometry. It is a subset of an affine space, defined as the solution set
to a system of polynomial equations. Let K[3] denote the set of polynomials in the variables 3 = (31, ..., 34) € K% over a
field K (often R or C). An affine variety V (p1,...,px) C K% defined by the polynomials p1, ..., px € K[3] is given by:

V(pi,...,px) ={B €K p(B) =0, Vk € [K]}.

The geometry of an affine variety is determined by the set of all polynomials that "vanish" on V/, i.e., those that become zero
for every point in V. This set is called the ideal of the affine variety, denoted I(V), and is defined as follows:

I(V):={peK[B]:p(B) =0, VB € V}.
The generating polynomial set {pj } 5, of the affine variety V is a subset of the ideal I(V).

The coordinate ring over V, denoted K[V], is introduced to identify polynomials that yield the same values on the variety
V. Specifically, K[V] is defined as the quotient of the polynomial ring K[3] by the ideal I(V), i.e., K[3]/I(V). In the
coordinate ring K[V] = K[8]/I(V), the difference between p and ¢ vanishes on V, i.e., p(3) = ¢(8) forall 3 € V, or
equivalently p — g € I(V'). Thus, p and ¢ are considered the same element. From another viewpoint, the coordinate ring
K[V] can be considered as a set of polynomials not included in the ideal I(V').

Based on the above definitions, we review the definition of the dimension dy of the affine variety.

A.1. Geometric View

Considering the affine variety V' as an affine space, we can naturally define a subvariety as an "subset" of the variety that
also satisfies polynomial equations. Let ¢1,...,¢s be polynomials in a ring. Define (¢1,...,¢qs) as the smallest ideal
generated by q1, ..., gs; thatis, (g1, ..., qs) consists of all finite sums of the form Zle r;q; where each r; is in the ring:

(q1,-..,q5) = {Zle riq; . A subvariety U of V is defined as the zero set of a subset ideal (¢1,...,qs) C K[3]/I(V)
given by:

U={BeK: q(B8) =0, Vg, € (g1, ..., qs)} -

By using the concept of subvarieties, the dimension of an affine variety is defined as follows:
Definition 4.1. The maximal length d of the chains Vo C Vi C ... C Vg of distinct nonempty subvarieties of V.

This definition intuitively represents the size of V' by the maximal length of an increasing sequence of subspaces. If the
generating polynomials {pk}szl are all linear, the dimension of V' is defined as the maximal length of an increasing
sequence of linear subspaces within V', which corresponds to the dimension of V' as a linear space.

When we focus on the local structure, the following equivalent definition is obtained:

Definition 4.3. The maximal dimension of the tangent vector spaces at the non-singular points U C V of the variety.

Vipi(B)

dy = max | d —rank : ,
BeU T
V' pr(B)

From this definition, we can see that the dimension dy is a global quantity that summarizes the local linearized structure of
the affine variety V' at a point.

A.2. Algebraic View

The structure of an affine variety is determined by the ideal (V). Intuitively, the larger (V') is, the more polynomial
constraints there are, which means that V' becomes smaller, and consequently, the coordinate ring K[V] also becomes

11
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smaller. From this perspective, it is natural to expect a deep connection between the dimension of the coordinate ring K[V]
(and similarly the ideal 7(V')) and the dimension of the affine variety V.

To explore this connection, we first discuss the dimension of the coordinate ring K[V] using Krull dimension. The ideal
p C R in a polynomial ring R is prime if Va,b € R, ab € p = a € p or b € p. The definition of the dimension of the affine
variety through the Krull dimension is shown below.

Definition A.1. The Krull dimension of the coordinate ring K[V]: The maximum length d of the chain of prime ideals
po C p1 C -~ C pq in the coordinate ring K[V].

This definition signifies that the dimension of an affine variety is characterized in the world of polynomial sets by the
maximal length of an increasing chain of “subsets” within the coordinate ring, corresponding to Definition 4.1 from a
geometric perspective.

In contrast, the size of the coordinate ring K[V'] can also be measured using Hilbert series. First, by homogenizing the
defining equations by adding one variable y € K, we embed the affine variety V' C K¢ into the projective variety P C K*1,
The projective variety P(hy, ..., hx) C K4*!, defined by the homogeneous polynomials hy, ..., hx € K[(B,7)], is given
by:

P(hla"'ahK) = {(ﬁvfy) € KdJrl : hk(ﬁv’y) = 07 Vk € [K]} .

The dimension of the variety is also increased by one, i.e., dp = dy + 1. The coordinate ring K[P] = K[(8,~)]/I(P) of
the projective variety P can be decomposed into subgroups (called the graded coordinate ring) as follows:

K[P] =@ S, So =K,

pEN

where S, is the set of homogeneous polynomials of degree p modulo the ideal I(P). As a metric for the size of the
coordinate ring K[ P], the Hilbert function H(p) and Hilbert-Poincaré series HS(t) are defined as follows:

K Pk
H(p) = dim . 1(0) = S oy = LE=C ot

peEN
where dim denotes the Krull dimension and pq, ..., px are the degrees of the homogeneous polynomials hq, ..., hx.

The Hilbert function represents the dimension of a "subspace" of the decomposed coordinate ring, and the Hilbert series is
the generating function of the sequence of the Hilbert function, which is also a rational function with a pole at ¢ = 1. These
measures indicate the growth of the dimension of the homogeneous components of the algebra with respect to the degree.
According to the dimension theorem, the Krull dimension of the projective variety P matches the order of the Hilbert series
at the pole ¢ = 1, which is one of the most important results in commutative algebra.

Therefore, the dimension of the affine variety is defined using the Hilbert series, as follows:

Definition 4.2. The degree of the denominator of the Hilbert series of the affine variety V.

Given the Grobner basis of the ideal I(P), the Hilbert series can be easily computed, leading to an efficient estimation of
the dimension of the affine variety dy .

B. Proof for Theorem 3.2

We first provide the assumptions:

Assumption 1 (Boundedness of basis functions). For the basis function ¢ = [¢1, ..., ¢a]", where @; € B, there exists a
positive constant M such that ||d(z)||2 < M for all x € Q.

Assumption 2 (Restricted lower eigenvalues). There exists a constant k > 0 such that ﬁ @8]z > V«|Bll2 for all
B € R

Assumption 3 (Stability of estimator). There exists a constant I' > 1 such that 181 — Ball2 < (T —1)||BF — B3
estimators (31 and (32 of the optimal weights B8] and 35, respectively.

2, for the

12
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The following is the formal statement of Theorem 3.2.

Theorem B.1 (Formal Statement of Theorem 3.2). Let V(2,B,T) be the (K, dy)-regular affine variety. Suppose
Assumptions 1-3 hold. Under these assumptions, for 6 € (0, 1), with probability 1 — 0, the minimax risk for PILR is bounded
as follows:

. 1 log2K log(2
min max ||ﬂ _ I@*Hg < Cr~'oMTR <\/dv Og(dvd) + \/ og + 2\/ Og( /5)> 7 (11)
B B*€Vr n n n

where C'is a constant.

Proof. Step 1: We first upper bound the prediction error by a term that represents the supremum of a empirical process in
the metric space of the affine variety. Using Lemma B.2, we get:

12(8" — B3 < 26" @(8" - B).

We denote x5 := €' ®(8 — 3) as the random process in the metric space (Vg, || - ||2). Note that the estimator 3 is a random
variable depending on the parameter 3 and the noise €. Then, the minimax risk is bounded as follows.

-1
. A - . K % a2~ 2. -1
min max — < min max —||®(8 — < —K™ " sup xg. 12
in s 18— 0713 < min s © (8- 43 < h sup xg (12
The first inequality holds by Assumption 2.

Step 2: Next, we calculate the supremum of the empirical process x5 using the covering number. For all 81, B2 € Vg, itis
shown that the variable xg, — Xg, has sub-Gaussian increments with respect to the metric || - ||2:

n

Xgr —XB2 = ZQ((ﬁl - 31) — (B2 — B2))T¢($i)

i=1

<> all(B1 = B2) = (Br — B2)lallp(@i) 2
i=1 13)

<> (181 - Balla + 111 — Ballz) M
=1
< T[|1 - Ball2Me,

where e is the zero-mean Gaussian random variable with variance no?. The second inequality holds by the Cauchy-Schwarz
inequality and the third holds by the triangle inequality and Assumption 1. The last inequality holds by Assumption 3.

From Eq. (13), the random process X3, — X3, has sub-Gaussian increments as follows.

Ixg, = Xg, g, < VROMT(|Z]ly, |81 — Ball2,

where Z is the standard Gaussian random variable and || - ||, is the sub-Gaussian norm. For the centered random process
2 = x5 — E[xg], 128, — 28, |lys < 11X8, — X8, |4, holds because ||xg, — Xg, ||, 1S sub-Gaussian.

Using Lemma B.3, we obtain the following bound with some constant Cy:

E sup zg < Cov/noMTR (\/dv log dyd + \/10g2K) i (14)
BEVR

Next, using Dudley’s integral tail bound, we have:

P ( sup zg < E sup zg + CO\/EUMFZR\/log(éﬂ)) >1-4.

BEVR BEVR
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By incorporating the non-centered process xg, we obtain:
P | sup xg < sup |E[xg]| +E sup zg + Cov/no MI'2R\/log(6/2) | > 1—4. (15)
BEVR BEVR BEVR

To bound E[xg], we note that:

< JEioi e JA[]
<o Sl wrn

j=1i=1
=ovnMR

Here, the third inequality follows from the Cauchy-Schwarz inequality, and the fourth inequality is derived from the fact that
le"®;|2/(c||®;]|]2)? follows a chi-squared distribution with 1 degrees of freedom and 3 € Vx.

By combining Eq. (14), Eq. (15), and Eq. (16), we obtain the following bound with some constant C":

p (2 sup xg < CoMTR <\/d" logdvd | \/1°g 2K | 2\/1°g(5/2))> >1-6.
N Bevg n n n

This completes the proof. O

Lemma B.2. Let [:3 be a minimizer of the following optimization problem:

o 1
B = argmin ||y — 43, (17)
Bevr N
where Vr =V (2,8, T) NBa(R) is the affine variety constrained with the {y-ball, y = ®[3* + € is the observed vector,
® is the design matrix, 3* € Vg is the true parameter vector, and € = [ey, ..., e,]" is the noise vector with each ¢;Q
independently following a zero-mean Gaussian distribution. Then, under these conditions, we have:
1®(8" ~ B)|3 < 2" @(8" — B). (18)

Proof. Since B is a minimizer of Eq. (17), we have:
ly — @815 < lly — 26715 = |lell3-
The left-hand side can be expanded as:
ly — @83 = Ily — 6" + ®5" — 853
= e~ @(8" - B)|3-

Thus, we have:

le = @8 = Bl < llel3.
Expanding the left-hand side, we get:

le = ®(8" = BII3 = llel3 — 2" (8" - B) + [ (8" - B)II3.
Subtracting ||€||3 from both sides, we obtain:
12(8" — B3 < 26" @(8" - B).

This completes the proof. O
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Lemma B.3. Let zg be the zero-mean random process in the metric space (Vr, ||-||2), which have the following sub-Gaussian
increments. For all 31,32 € Vg,

||Zﬁ1 — 1B, ”dJQ < AHﬂl - /82”27

where || - ||y, is the sub-Gaussian norm, A is a positive constant. Then, the expectation of the supremum of the process can
be bounded as follows.

E sup zg < CAR (\/dv log dyd + \/logQK) ,
BEVR

where C'is positive constant.

Proof. Using Dudley’s integral inequality (Dudley, 1967) to the zero-mean random process:

E sup 75 < CoA / Vg N e T Ta)de. (19)
0

BEVR

Since the set Vg is (K, dy) regular set from Lemma 2.13 by Zhang & Kileel (2023), Lemma 3.1 shows the upper bound of
the covering number for any ¢ € (0, 2R] as follows.

2Rdyd

log N (Vr, €, - [|2) < dylog ( > +log 2K.

We substitute the above inequality to Eq. (19):

Rl 2Rdyd
E sup zg < CpA (\/dv/ log <v>de—|— ZR\/log2K> .
BEVR 0 €

The integral in the first term can be calculated using substitution and integration by parts. Let

2R
, 7/ / 2Rdvd @ 7/ 2Rdvd

We substitute o := 2Rdyd, u := log(a/e) into the integral:

log dyd
I= / w2 (—ae™")du.

oo

To solve the above integral, we use the formula for integration by parts:

log dyd
I=—« <[u1/2eu]£}gd‘;d + %/ ’ ul/ze“du)

o0

= 2R+\/log dyd + Rdyd u Y 2e .

logdyd

The integral in the second term can be upper bounded as follows.

o0 o0
/ u%e7du < / e "du = [—e " ydpa = (dyd)~*.
log dyd log dyd

We obtain the following bound with some constant C'.

E sup zg < CAR (\/dv log dyd + \/logQK) .
BEVR

15
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C. Proof for Theorem 3.3

Theorem 3.3. The effective dimension of the PI kernel associated with the affine variety V(2,B,T) = {3 : D3 = 0}
with dimension dy, is upper bounded by

g d 1 d
NENSI ——+ > < .
(5’”)~j:11+5+j:dv1+5+mj 1+

where {\; }?z a4, are the eigenvalues of the matrix DTGD.

Proof. From Theorem 4.2 in (Doumeche et al., 2024a) and Equation 15 in (Doumeche et al., 2024b), the effective dimension
is bounded as follows:

1 1
N (V) S Z 111 < Z T (20)

AEG(CM—1C) Aeo(M 1)

where M = ¢I +vD T GD € RIBIXIBl and C € RIBI*IBl is the matrix of the inner products of the basis functions, i.e.,
Cjj = <¢j7¢j/>u for all ¢;, ¢;+ € B.

Since the matrix D " G'D is positive semi-definite, the eigenvalues of the matrix M in ascending order o;(-) are given by

B £ G=1,...,dv)
Uj(M)_{ €+ v ’ (dy <j)v

Therefore, the matrix M is positive definite, and the eigenvalues of M ~! are A~ ! for all A € o(M ). Combining this with
Eq. (20), we obtain the first inequality. The second inequality is obtained when v = 0. O

D. Experimental Detail
D.1. Experiments on Strong Solution

In the experiments in Section 5.1, strong solutions to the equations are obtained analytically. The analytical solution with
added Gaussian noise was used as data, the variance of the Gaussian noise was set to 0.01. The hyperparameters L2
regularization weights and differential equation constraint weights £ and v were searched in the range [1e-9, le-2] using the
Optuna library (Akiba et al., 2019). The configuration with the smallest MSE on the validation data among 100 candidates
was selected.

Harmonic Oscillator: The initial value problem of a harmonic oscillator 2[y] = 0 with spring constant k& and mass m on
the domain Q = [0, T is given by:
d2

k
D) = 5y + pn’} y(0) = vo,

d
a2 —y(O) = 19.

dt

We set the parameters m = k = 1.0, 7' = 2. The initial position and velocity [yo,vo] ' are generated from the normal
distribution A/(1, I'), where 1 is an all-ones vector and I is the identity matrix. The solution to the initial value problem is
analytically given by:

y(t) = yo cos(wt) + %O sin(wt), w = k/m.

The settings for the basis functions and the test functions with the measure ¢; € B, (¢, pi) € T are as follows:

|
—_

o1(x) =1, ¢9j(x) = cos (2;‘736) , ¢241(x) =sin (2;‘7:16) (J ooy di)y
wk(x) = 13 i :§Ik (k: 17 RN K)a

where d; € {2,4,8,16} is the set of the number of basis functions, and z;, € Q is uniformly sampled from data with
K =100.

16
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Diffusion Equation: The initial value problem for the one-dimensional diffusion equation Z[u] = 0 with diffusion
coefficient o and periodic boundary conditions is given by:

5, o? - =
D] = Frir el (z,t) € [-E,E] x [0,T]
u(z,0) = ug(x) x € [-8, 5]

— _ ou , _ ou ,_
u(=E,t) =u(E,t), %(—:,t):%(:,t).

We set the parameters o = 1.0, = = w, T = 2. The initial value u is given by:

Jmax

ug(z) = Z Aj cos (wjz) + Bjsin (wjz), wj = g, 21
3=0 -
where [A;, B;]" are generated from the normal distribution A'(1,1) for all j = 0, ..., jmax and jmax is set to 1. The

solution to the initial value problem is analytically given by:

jrﬂax
u(z,t) = Z [A; cos (wjz) + Bjsin (wjz)] et
j=0

The settings for the basis functions and the test functions with the measure ¢; € B, (¢, p) € T are as follows:

d1(z,t) =1, ¢ojjr(x,t) = Cos(wj:z:)efo“"?’t7 Goj+15 (T, ) = sin(wjx)efaw?’t
(jZI, covy dy, j/=1, ey dy),
wk($7t) = 11 e = 6(xk,tk) (k = 17 ceey K)7

where d; = 2, d,, € {10,15,20,25} are the sets of the number of basis functions, and (x, tx) € €2 is uniformly sampled
from data with K = 50 x 500.

D.2. Experiments on Numerical Solution

In the experiments in Section 5.2, we numerically simulate the Bernoulli equation using the explicit Euler method and the
diffusion equation using the finite difference method (FDM). The data used are the numerical solutions with added Gaussian
noise of variance 0.01. The method for hyperparameter search is the same as described in Appendix D.1. For the nonlinear
equations, we use the Adam optimizer with a learning rate of 1 x 102, along with an exponential learning rate scheduler.
The training is performed for a maximum of 2000 epochs, utilizing an early stopping technique.

Discrete Bernoulli Equation: The discrete Bernoulli equation 2, [y] = 0 with the step size h on the domain 2 = [0, 7] is
given by:

Yr —Yr
‘@h[y] = +1h + Py'r - Qyﬁa

where y, = y(t.) and y, 11 = y(¢, + h) are evaluations on the grid {¢,}*, with n, = % We set the constant parameters
(P,Q, p) to (1.0,0.0,0.0) for the linear case and to (1.0, 0.5,2.0) for the non-linear case. We use varying n; € {100,200}
with T' = 1.0 for both cases. The initial state yq is generated from the standard normal distribution A/ (0, 1) for both cases.
The ground-truth solution to the initial value problem is numerically solved by the explicit Euler method with step size h.
The settings for the basis functions and the test functions with measure ¢, € By, (¢, i) € Tp, are as follows:

- (t) = {1 it €t tri) (r=1,...,n),

0 otherwise
wT(t) :¢T(t)7 NT:(stT (7—:1,...,7’Lt),

where ny = % is the same as the number of basis and test functions, corresponding to the ground-truth solutions.
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Discrete Diffusion Equation: The one-dimensional discrete diffusion equation %, [u] = 0 with the step size b = [h¢, hy| "

and the diffusion coefficient «(u) on the domain §2 = [-Z, E] x [0, T is given by:

T

Wt — 7

u”
@h[u] — ]hitj _ a(u;) j+1

—2uT T
2uf +uj_y
2 )
n

where u} = u(z;,t,), u;H = u(wj,tr + hi), and ulyy = u(z; + hy,t;) are evaluations on the n, x n; size grid
{z;}iz x {t-}7L,, where n; = % and n; = hlt The periodic boundary condition is adopted in the spatial domain,
ie.,uy, ;= uj forany j € N. The diffusion coefficient c(u) = 1.0 is used for the linear case and or(u) = 0.1/(1 + u?)
for the nonlinear case. We use varying (n:, n,) € {(400,10), (400, 20), (400,30)} with 2 = 1.0 and T' = 1.0 for both
cases. The initial value is generated with the same setting as shown in Eq. (21). The ground-truth solution to the initial
value problem is numerically solved by the FDM with step sizes h; for the time domain and h,, for the spatial domain. The

settings for the basis functions and the test functions with measure ¢; - € Br, (¥j,-, ft,+) € T, are as follows:

1 if (2,1) € [2j, 2j41] X [tr, trpa]

i =1,...,n, T=1,...,n4),
0 otherwise U * )

¢j77'(xvt> = {
’(/}j,T(xat) :(bj,‘r(x’t)7 i+ :6(ccj,t,-) (j: 1)"'ana:a T = 1a"'7nt)a

where n, = i—E and n; = = are the same as the number of basis and test functions, corresponding to the ground-truth

. ht
solutions.
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