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Abstract

We consider the problem of K-armed dueling bandits in the stochastic setting,
under the sole assumption of the existence of a Condorcet winner. We study the
objective of weak regret minimization, where the learner doesn’t incur any loss if
one of the selected arms is a Condorcet winner—unlike strong regret minimization,
where the learner has to select the Condorcet winner twice to incur no loss. This
study is particularly motivated by practical scenarios such as content recommen-
dation and online advertising, where frequently only one optimal choice out of
the two presented options is necessary to achieve user satisfaction or engagement.
This necessitates the development of strategies with more exploration. While
existing literature introduces strategies for weak regret with constant bounds (that
do not depend on the time horizon), the optimality of these strategies remains
an unresolved question. This problem turns out to be really challenging as the
optimal regret should heavily depend on the full structure of the dueling problem
at hand, and in particular on whether the Condorcet winner has a large minimal
optimality gap with the other arms. Our contribution is threefold: first, when said
optimality gap is not negligible compared to other properties of the gap matrix, we
characterize the optimal budget as a function of K and the optimality gap. Second,
we propose a new strategy called WR-TINF that achieves this optimal regret and
improves over the state-of-the-art both in K and the optimality gap. When the
optimality gap is negligible, we propose another algorithm that outperforms our
first algorithm, highlighting the subtlety of this dueling bandit problem. Finally,
we provide numerical simulations to assess our theoretical findings.

1 Introduction

We consider an instance of the problem of sequential and active learning from comparisons - namely
dueling bandits. It can be modeled as a sequential game where, at each time, a learner presents to a
user a pair of two items and collects feedback, which is a noisy indication of the user’s preference
between the two items. If neither of the presented items aligns with the user’s top choice, the learner
incurs a loss. Preference-based learning has gained importance recently as it reflects human decision-
making processes, which often rely on relative rather than absolute evaluations. This approach
is notably effective in systems that involve human interaction, where feedback is provided in a
qualitative form [7]. In the dueling bandit setting, initially presented by [19], the compared items
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are called “arms” and there are K of them. This setting is structured as an ongoing sequential game
with time horizon T , where in each round t ≤ T , the learner selects two arms (items) indexed by
i, j ∈ [K], and receives the result of a duel between these arms as feedback. The result of each duel
is encoded by 1 if the first arm - in our case arm i - beats the second one - in our case arm j - and 0
otherwise. This result follows a Bernoulli distribution with unknown parameter qi,j . Specifically,
this paper focuses on the stochastic scenario where the parameters governing the duels are assumed
to be constant throughout the game, albeit unknown to the learner. The literature on the stochastic
dueling bandits is very rich and contains various settings that differ from our paper either in optimal
arm characterization or the definition of rewards.

In contrast to the classic multi-armed bandit problem, defining the optimal arm in dueling bandits is
not straightforward. This led to the introduction of various definitions of winners within the literature
as detailed in the surveys [2, 16, 17]. Our study focuses on situations where there is an arm k∗ ∈ [K]
that, on average, defeats all other arms: formally, qk∗,j > 1/2 for any j ∈ [K] \ {k∗}. This arm is
termed the Condorcet winner while we refer to it as optimal in the rest of the paper. In the context of
dueling bandits, particularly the cumulative regret minimization problem, most of prior works either
made the assumption of the existence of a Condorcet winner [24, 23, 10, 8, 4, 14, 15] or the stronger
assumption of the exitence of a total order between arms [18, 20, 4].

Once the concept of the optimal arm is established, the next step is to define the objective. Rather
than identifying the best arm, our goal is to minimize the cumulative loss. To this end, we must
determine the loss incurred each round based on the two arms selected by the learner. The dueling
bandit literature distinguishes between two primary types of losses: strong loss and weak loss, as
described by [18]. With strong loss, the learner must select the Condorcet winner twice to avoid
any loss (noting that the feedback in this case is equivalent to a fair coin flip). In contrast, weak
loss requires only one of the selected arms to be the Condorcet winner. Formal definitions of weak
and strong regrets are provided in Section 2. In many practical scenarios, such as recommendation
systems and online advertising [6, 3], minimizing weak regret aligns more closely with the learner’s
objectives than strong regret minimization. For example, consider a situation where the learner
operates as a service provider, presenting two options to a client who then chooses their preferred
option. In this framework, the learner should incur a loss only if neither option matches the client’s
preference, encouraging exploration and maximizing information gain. While previous research in
dueling bandits has primarily focused on minimizing strong regret, developing optimal strategies
for minimizing weak regret remains an unresolved issue despite prior works [4, 12], as highlighted
in the survey [2]. Further details on the technical distinctions between these two objectives will be
discussed in the next sections.

In this paper, we focus on minimising the weak regret. We provide a lower bound for this problem in
a specific regime where the Condorcet winner beats largely the other arms. We provide an algorithm
that matches it. Nevertheless, it is not optimal in all regimes, and we highlight this by providing
another algorithm that performs better in some interesting regimes.

2 Problem setting

We consider K arms. Let Q = (qi,j)1≤i,j≤K ∈ [0, 1]K×K be the matrix of preference probabilities
where the probability of arm i beating arm j in a duel corresponds to qi,j . We assume that qj,i =
1− qi,j and qi,i = 1/2 for all i, j ∈ [K]. Define ∆i,j := qi,j − 1

2 . Notably, the sign of ∆i,j indicates
the relative preference between arms i and j (specifically, i is preferred over j if ∆i,j > 0). The
quantity ∆i,j characterizes the hardness of distinguishing which of the arms (i, j) is preferred to the
other. We denote ∆ := (∆i,j) the gap matrix. The only assumption made in this paper is regarding
the existence of a Condorcet winner, which we denote k∗ for the remainder of this paper:
Assumption 2.1. Existence of a Condorcet winner: There exists an arm k∗ ∈ [K] such that:

∀i ∈ [K] \ {k∗} : qk∗,i > 1/2.

We consider that at each time t = 1, 2, . . . , the learner chooses two arms (It, Jt) based on past
information and receives the output of a duel between the chosen arms. More formally, the output is
a sample from a Bernoulli distribution with parameter qIt,Jt

, independent of everything else after
conditioning on (It, Jt). We consider that after each round t the learner incurs a loss given by:

ℓ
(w)
t := min{∆k∗,It ,∆k∗,Jt

},
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which we term the weak instantaneous loss, following [18]. Another concept of instantaneous loss
that is often considered in the literature is the strong instantaneous loss [18, 1, 24], where at round
t the learner incurs the loss ℓ

(s)
t := (∆k∗,It + ∆k∗,Jt

)/2. Note that when it comes to the weak
instantaneous loss, in contrast to the strong instantaneous loss, the learner does not incur any loss
if at least one of the two chosen arms is the Condorcet winner, It = k∗ or Jt = k∗, while for the
strong instantaneous loss, both arms need to be the Condorcet winner in order for the learner to not
incur a loss. We finally define the weak expected cumulative regret up to time T by for the weak
instantaneous loss by R

(w)
T :=

∑T
t=1 E[ℓ

(w)
t ], which we term weak regret. Similarly, we define the

strong regret as R(s)
T :=

∑T
t=1 E[ℓ

(s)
t ].

3 Literature review and our contributions

3.1 Related work

When it comes to the stochastic dueling bandit literature, much of the prior work has been devoted
to the goal of minimizing the strong regret, under the assumption of a total order between the arms
[19, 18] or only under the assumption of the existence of a Condorcet winner [24, 23, 10, 8, 12]. We
detail nevertheless those results here as, since the strong regret upper bounds the weak regret, all
algorithms and upper bounds that are available for the strong regret also hold for the weak regret.
In [8], an instance-dependent lower bound for strong regret was established:

lim inf
T→∞

E
[
R

(s)
T

]
log(T )

≥
∑
k ̸=k∗

min
i∈Ok

∆k∗,k +∆k∗,i

2∆2
i,k

, (1)

where Ok = {i ∈ [K] | qi,k > 1/2}. This work also introduces an algorithm that asymptotically
matches this lower bound as T → +∞. However, in finite-horizon, their regret bound has a
quadratic dependence on the number of arms K. Deriving bounds that scale linearly with K has
been the subject of several works [23, 10], In particular, [14] devised a reduction to a standard (but
adversarial) multi-armed bandits problem. They obtained guarantees on the strong regret which are
of the order

∑
k ̸=k∗ log(T )/∆k∗,k. This regret bound turns out to match (1) in scenarios where the

Condorcet winner is also the arm that is best for eliminating all other sub-optimal arms, namely
where ∆k∗,k = maxi ∆i,k. In more general cases, the last upper bound of [14] does not match the
lower bound given in (1).

Weak regret itself was introduced in [18] to model in a more refined way some recommender systems
applications. As mentioned, it is upper bounded by the strong regret so that all described algorithms
and associated regret upper bounds would also hold for the weak regret. However, a distinction was
made in [4] regarding the fundamental nature of these two problems. While the problem-dependent
optimal order of the strong regret scales as log T (see above) - which is aligned with classical results
in stochastic bandits - there exist some algorithms whose problem-dependent weak regret is upper
bounded by a quantity that does not depend on T - which is in sharp contrast with classical results
on stochastic bandits. Specifically, [4] introduced an algorithm called WS-W, which, under the
sole assumption of the existence of a Condorcet winner, achieves an upper bound on weak regret
of the order K2/mini ̸=j ∆

2
i,j . More recently, in [12], the Beat The Winner (BTW) algorithm was

introduced. BTW adopts a round-based approach where the best arm so far keeps being challenged
through batches of duels by candidate arms. Assuming only the presence of a Condorcet winner, this
algorithm achieves an upper bound on weak regret of the order K2 +K/mini ̸=k∗ ∆4

k∗,i. Finally,
under the additional and arguably the strong assumption of the existence of a total order between
arms, the upper bound can be proven to be of order (K logK)/mini̸=j |∆i,j |5. In summary, the
dependency on the optimal regret on both K and on the matrix ∆ still remains largely unknown.

From a technical standpoint, developing optimal strategies in the weak regret framework underlies
different challenges than the ones for the strong regret. This complexity arises because losses in the
strong regret framework are linear in the problem parameters (the gaps matrix entries (∆i,j)1≤i,j≤K ):
ℓ
(s)
t = (∆k∗,It +∆k∗,Jt

)/2, whereas in weak regret, the loss is determined as the minimum gap with
the client’s preference: ℓ(w)

t = min{∆k∗,It ,∆k∗,Jt
}, which breaks linearity. As a result, classical

reduction methods as the one used in [1, 14, 15] are not directly applicable for weak losses.
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3.2 Main contributions

In this paper, we address the following fundamental question:

(i) What is the best possible weak regret one can achieve in terms of K and the gaps (∆k∗,i)i̸=k∗

to the Condorcet winner?
(ii) Beyond that, is it possible to improve the regret by leveraging over the unknown entries of

the matrix ∆? As a simple toy example, assume that the gaps ∆k∗,k are small and that,
some gaps (∆i,j) for i, j ̸= k∗ are much higher. In that regime, it is perhaps more beneficial
to explore theO(K2) duels between all arms to better discard sub-optimal arms than simply
to directly look for the Condorcet winner. This informal argument suggests the optimal
guarantees depend in an intricate way on the number of arms K and the gaps (∆i,j) and that
there is a complex trade-off between directly aiming for the Condorcet winner and further
exploration for better elimination.

To address the first question, we provide a lower bound on the weak regret, which, to the best of our
knowledge, is the first of its kind for this problem. We demonstrate that in certain cases, where in
particular the gaps between the Condorcet winner and the sub-optimal arms are larger than the gaps
between sub-optimal arms, the bound K/mini ̸=k∗ ∆k∗,i is not improvable (see Section 5).

We introduce and analyze two new procedures. First, we provide in Section 4.1 an algorithm
WR-TINF (Weak Regret-Tsallis INF) whose weak regret is bounded by√

K

mini ̸=k∗ ∆k∗,i

√∑
i ̸=k∗

1

∆k∗,i
. (2)

This can be upper-bounded by K/(mini̸=k∗ ∆k∗,i). This improves over the state-of-the art [4, 12]
(where bounds are respectively of the order of K2/mini ̸=j ∆

2
i,j and K2 +K/mini ̸=k∗ ∆4

k∗,i) both
in the dependency with respect to K and the gaps. Also, we do not require the strong stochastic
transitivity assumption, required in [12]2. Conversely, the bound K/mini̸=k∗ ∆k∗,i turns out to be
impossible to improve in general –see Section 5.

Second, we introduce in Section 4.2 the algorithm WR-EXP3-IX (Weak Regret EXP3-IX), which,
from an heuristic viewpoint aims at eliminating sub-optimal arms by looking at duels between
sub-optimal arms. For any ∆, its weak regret is at most of the order of∑

i ̸=k∗

K log(K/∆∗)∆k∗,i

∆2
j∗(i),i

, (3)

where j∗(i) ∈ argmaxj ∆j,i and ∆∗ = mink ̸=k∗ ∆k∗,k. In the case, where the gaps ∆j∗(i),i are
larger (up to log-terms) than ∆k∗,i

√
K, the regret guarantee (3) for WR-EXP3-IX becomes smaller

than (2) for WR-TINF. Up to our knowledge, WR-EXP3-IX is the first algorithm in weak regret
minimization that builds upon the complete structure of the gaps matrix ∆ to lower the regret.

To further discuss the difference between the performances of both procedures, let us consider a toy
model where, for some positive constants, ∆cw and ∆sub, we have, for any i ̸= k∗, ∆k∗,i = ∆cw,
that is the gap between the Condorcet winner and the sub-optimal arms. Besides, for any i ̸= k∗,
there exists j∗(i) such that ∆j∗(i),i = ∆sub. We distinguish two main regimes: (a) If ∆cw/∆sub ≥
1/
√
K, then the weak regret of WR-TINF is the better one and is of the order of K/∆cw. (b) If

∆cw/∆sub ≤ 1/
√
K, then a transition occurs. To show that an arm k is not the Condorcet winner,

then it now becomes beneficial to identify arms that provide the most evidence for the suboptimality
of k. Here, WR-EXP3-IX achieves the better guarantee which is (up to log terms) of the order of
K2(∆cw/∆

2
sub).

The presented algorithms use different techniques: we develop WR-TINF using an adaptation of the
standard reduction technique (discussed in Section 4.1). We extend the idea of using a best-of-both
worlds procedure as a base algorithm to sample each of the two arms It and Jt. However, since only
one of the sampled arms should be optimal, we modify the sampling distribution prescribed by the

2The strong stochastic transitivity assumption implies that there is a total order between the item, namely if i
is preferred to j (qi,j ≥ 1/2) and j is preferred to k (qj,k ≥ 1/2), then qi,k ≥ max(qi,j , qj,k), see [2].

4



base algorithm to induce more exploration. The second procedure, WR-EXP3-IX, uses a different
approach. Given the value of the left arm It (selected in a round-robin manner), we use the EXP3-IX
algorithm [11] to select the right arm Jt. Then after a fixed number of rounds, the choice of Jt (given
the value of It) concentrates around the arm with highest probability of defeating it. We leverage
the fact that when It is the Condorcet winner, the gaps are positive, while for sub-optimal arms the
minimal gap is negative.

4 Upper Bounds

This section presents two algorithms with guarantees on weak regret. Recall that we present two
strategies since we identified two regimes as discussed in Section 3.2. Each of the algorithms we
present is optimal in one of the regimes and none of them require prior knowledge on the problem
parameters.

The first algorithm, WR-TINF, is built upon an adaptation of the reduction technique to a standard
multi-armed bandit problem. Its upper bounds depend on the gaps between sub-optimal arms and
the Condorcet winner (∆k∗,k)k∈[K]. As demonstrated in the results of Section 5, this algorithm is
optimal for some regimes.The second procedure, WR-EXP3-IX, aims for the task of identifying, for
each arm, the arm that can eliminate it most rapidly (i.e., the arm with the largest gap). While this
strategy results in a quadratic dependence on K, we argue that it outperforms WR-TINF for some
instances.

4.1 Algorithm 1: Weak Regret Tsallis-INF

We adopt a previously explored approach [1, 15, 14], where the dueling bandit problem is converted
into two separate multi-armed bandit problems - one for each arm pulled. This reduction was
originally applied in the context of strong regret. However, adapting this approach to weak regret
requires a more nuanced approach.

The idea of reducing a dueling bandit problem to a standard one was first introduced in [1] where it
was termed Sparring in the context of minimizing strong regret. The high-level idea of this technique
is to view the problem of selecting the the arm pair (It, Jt) as two individual multi-armed bandit
(MAB) problems. The choice of It (resp. Jt) can be performed by the first (resp. second) player,
following which they incur a loss denoted ℓ−1,t(It) := Xt(It, Jt) (resp. ℓ+1,t(Jt) := 1−Xt(It, Jt)),
where Xt(It, Jt) ∼ Ber(qIt,Jt

) . Here the subscript −1 (resp. +1) refers to the first (resp. second)
player. It is easy to show that the regret of each player R±1,T satisfies the following identity, where
R

(s)
T is the strong regret of the dueling bandits problem:

E[R(s)
T ] =

1

2
E[R−1,T +R+1,T ]. (4)

The last identity reveals that the dueling bandits problem can be addressed using a ‘black-box’
strategy, where each player is allowed to use a standard Multi-Armed Bandit (MAB) algorithm. In
[1], the authors selected the EXP3 algorithm, which provides guarantees suitable for worst-case
scenarios. It’s important to note that achieving problem-dependent bounds is not possible when the
players use stochastic MAB procedures such as Upper Confidence Bounds algorithms, as the losses
experienced by the first player, for example, are not stationary. In a later work, [14] implemented
a best-of-both-worlds MAB algorithm, specifically the online mirror descent with the Tsallis-INF
regularizer [22]. This approach is effective because, from the perspective of the first player, the loss
distribution, although variable, is not entirely arbitrary. This is due to the second player’s strategy of
minimizing their own regret, which involves concentrating on sampling distributions that approximate
those associated with the optimal choice, corresponding to the Condorcet winner.

Adopting the reduction above to solve the weak regret dueling bandit problem seems however
insufficient due to several reasons. First, Equation (4) shows that minimizing the strong regret, and
minimizing the regrets of individual players is equivalent. Second, the weak regret can be significantly
smaller than the strong regret. This is because selecting the Condorcet winner just once is sufficient
to suffer zero instantaneous weak regret while leaving the second arm free to explore and gain
information about the problem. This is not the case in the strong regret minimization where both
selected arms have to be Condorcet winners to incur zero instantaneous strong regret. This suggests
that the algorithms that are optimal for strong regret cannot be expected to be optimal for weak regret.
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For the task of minimizing weak regret, we follow the intuition presented in [14], which involves using
a best-of-both-worlds procedure consisting of online mirror descent with the Tsallis-INF regularizer.
However, as previously argued, minimizing weak regret necessitates increased exploration, requiring
an adjustment to the sampling scheme, denoted as pt = (pt,i)1≤i≤K , suggested by these strategies.
Our algorithm first performs an internal step where two arms, I ′t and J ′

t, are sampled independently
from the distribution pt over [K], without playing them. We consider two cases: If I ′t = J ′

t, we
infer that pt lacks sufficient exploration. In this case, we use the left arm It for exploitation by
sampling it from pt, and the right arm Jt for exploration. This approach reduces to a decoupled
exploration-exploitation problem in standard multi-armed bandits, as studied in [13]. The authors
in [13] developed a strategy where exploitation is carried out using pt, while exploration follows a
distribution rt with rt,i ∝ p

2/3
t,i . They further demonstrated that this strategy, using Tsallis entropy

regularizers with a power of 2/3, provides instance-specific bounds independent of the time horizon T .
In the second case, if the internal step results in I ′t ̸= J ′

t, we consider that pt adequately encourages
exploration, and both It and Jt are sampled from pt. In summary, given that I ′t and J ′

t are sampled
from pt, we employ the following strategy:{

If I ′t ̸= J ′
t : It ∼ pt and Jt ∼ pt

If I ′t = J ′
t : It ∼ pt and Jt ∼ rt,

(5)

where rt = (rt,k)k is a distribution over the set [K] defined as follows: for each k ∈ [K]:

rt,k :=
p
2/3
t,k∑K

i=1 p
2/3
t,i

. (6)

Observe that arms with small probability pt,k, have a higher chance of being sampled under rt.
Hence, the distribution rt encourages more exploration, which will be beneficial for the weak regret.
Finally the losses fed to the online mirror descent procedure are estimated using the importance
weight estimators:

ℓ̂t(k) :=
1 (Jt = k)Xt(k, It)

qt,k
, (7)

where, qt,k = pt,k if I ′t ̸= J ′
t and qt,k = rt,k if I ′t = J ′

t. We dedicate Section B in the appendix to
develop guarantees on the resulting modified online mirror descent with Tsallis regularizer using the
sampling scheme described above.

Algorithm 1 WR-TINF

Input: α, Learning rates (ηt)
init: L̂0 = 0.
for t = 1, . . . do

compute:

pt = argmin
p∈SK−1

⟨p, L̂t−1⟩ −
1

ηt

K∑
i=1

pαi − αpi
α(1− α)

 (8)

where SK−1 is the K-dimensional simplex
Sample I ′t and J ′

t independently following pt

if I ′t = J ′
t then

Sample It following pt and Jt following rt in (6).
else

Sample It and Jt independently following pt

end if
Play (It, Jt), for each k ∈ [K] compute ℓ̂t(k) using (7) and update: L̂t(k) = L̂t−1(k) + ℓ̂t(k)

end for

Remark 4.1. The sampling method used in WR-TINF may occasionally result in selecting the same
arm twice (It = Jt), which is not ideal for weak regret minimization. However, WR-TINF’s design
ensures that the probability of this event is small enough to maintain the presented guarantees, which
are optimal in scenarios that we describe. While we could modify the algorithm to prevent entirely
that It = Jt, such a modification would not enhance our theoretical guarantees significantly.
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Theorem 4.2. Consider Algorithm 1 with α = 2/3 and ηt = 2K−1/6/
√
t. For any T ≥ 1, the weak

regret satisfies:

E
[
R

(w)
T

]
≤ c

√
K

∆∗

√∑
k ̸=k∗

1

∆k∗,k
,

where c is a numerical constant and ∆∗ = mink ̸=k∗ ∆k∗,k.

We obtain an upper-bound on weak regret of the order of Õ(
√

K/∆∗

√∑
k ̸=k∗ 1/∆k∗,k). In the

setting where all the gaps for the Condorcet winner are constant, the upper bound above translates to
O(K/∆cw). The last optimality result is shown in Theorem 5.1.

4.2 Algorithm 2: Weak Regret-EXP3-IX

This algorithm uses the Implicit Exploration strategy (EXP3-IX) [11], which is adapted specifically
for the dueling bandits problem. At its core, the algorithm selects one arm (left arm It) for exploitation
and another (right arm Jt) for exploration. Given It, Jt is selected following the EXP3-IX procedure.
We chose the EXP3-IX algorithm (restated in Section D.2 of the Appendix), particularly the version
without a fixed horizon for technical reasons, namely its bounds on cumulative loss that hold with
high probability. To clarify the notation used: in each round, we observe the result of the duel between
It and Jt, denoted by Xt(It, Jt). The variable Xt(i, j) represents the duel outcome between arm i
and arm j in round t.

The algorithm operates across multiple stages, where each stage n ≥ 1 is defined by a threshold
value B = 2n−1, updated through a doubling technique. At every stage, given B, we consistently
select the left arm as It = i, and consider a standard Multi-Armed Bandit problem where the
choices are the duels between arm i and the other arms in [K] \ i. Specifically, these choices relate
to the variables Xt(i, j)− 1

2
: j ∈ [K] \ i. Recall that E

[
Xt(i, j)− 1

2

]
= ∆i,j , and the optimal

arm, which minimizes cumulative loss, is j∗(i) = argminj∈[K]\i ∆i,j . The cumulative loss after
executing EXP3-IX for this specified problem over u rounds is denoted by S(i, n, u).

S(i, n, u) :=

u+τ∑
s=τ+1

(
Xs(i, Js)−

1

2

)
,

where τ represents the round at which the procedure starts. We continue the procedure until the value
of S(i, n, u) reaches the threshold −B

√
u. When this threshold is met, we transition to the next arm,

i+ 1, and address the duels involving this new arm. A stage is completed once all arms have met this
stopping criterion, allowing the algorithm to advance to the next stage, n+ 1.

The underlying rationale of the algorithm is as follows: consider stage n, by design of the algorithm,
if i is a sub-optimal arm, then after a constant number of rounds, the process S(i, n, u) mimics
a random walk characterized by a negative drift of ∆i,j∗(i) < 0. We demonstrate that S(i, n, u)
typically reaches the threshold −B

√
u when u is approximately of the order max{K,B}/∆2

j∗(i),i.
In contrast, the process S(k∗, n, u), which is linked to the Condorcet winner, has a positive drift. We
show that the probability of the last process never meeting the threshold −B

√
u for some u ≥ 1

is less than min{1, exp(−B2) log(1/∆∗)}, where ∆∗ = mink ̸=k∗ ∆k∗,k. Consequently, there is a
high probability that, at some stage, the algorithm will be trapped in a loop where the left arm is the
Condorcet winner leading to zero regret when considering weak regret.

Theorem 4.3. Under the assumption of the existence of a Condorcet winner, the weak regret of
Algorithm 2 satisfies:

E
[
R

(w)
T

]
≤ c log(K/∆∗)

∑
k ̸=k∗

K∆k∗,k

∆2
j∗(k),k

,

where for each k ̸= k∗: j∗(k) ∈ argmaxj ∆j,k, ∆∗ = mink ̸=k∗ ∆k∗,k and c =
c′ max{1, log log log(K ∨ 16)} with c′ being an absolute constant.

The complete proof is presented in Section D of the supplementary material.

Comparison with WR-TINF: Intuitively, WR-EXP3-IX is designed to outperform WR-TINF when
the gaps between sub-optimal arms are more important than the gaps with the Condorcet winner. In
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Algorithm 2 WR-EXP3-IX

Initialization: B ← 1 and for all i: ni ← 0, S(i)← 0.
for t = 1, . . . do

for i = 1, . . . ,K do
while S(i) > −B√ni do

Run EXP3-IX algorithm on the problem with variables {X(i, k) − 1
2
: k ∈ [K] \ {i}},

after each round, update the cumulative loss S(i) and the number of rounds ni.
end while
Re-initialize: S(i)← 0, ni ← 0.

end for
B ← 2B.

end for

this case, as argued in Section 3.2, the algorithm should explore the K2 duels to detect sub-optimal
arms. More rigorously, consider an example where the gaps satisfy: For all i ̸= k∗: ∆k∗,i = ∆cw
and maxj ̸=k∗ ∆j,i = ∆sub, where ∆cw and ∆sub are positive constants. Then the upper bound in
Theorem 4.3 is of order K2∆cw/∆

2
sub. The last bound is sharper than the bound for WR-TINF (which

is of order K/∆cw), when we have ∆sub/∆cw > 1/
√
K.

5 Lower Bound

In this section, we provide a lower bound on the largest weak regret of any algorithm, when confronted
with a given set of dueling bandit problems, which we will discuss below.

Let ∆cw ∈ (0, 1/4) denote a positive number. For a dueling bandits problem, define the class of
problems D(∆cw) by the set of matrices M representing the gaps (∆i,j)ij such that M is skew-
symmetric and there exists some k∗ ∈ [K] (representing the Condorcet winner) such that:

∀i ̸= k∗ : Mk∗,i = ∆cw and ∀i, j ̸= k∗ : |Mi,j | ≤ ∆cw.

The introduced class of matrices D(∆cw) includes many natural instances, such as when the gaps
satisfy the general identifiability assumption. This assumption states that for each sub-optimal arm j,
the arm with the highest probability to beat j is the Condorcet winner k∗: i.e., k∗ ∈ argmini∈[K] ∆j,i.
It has been considered in prior works such as [21] and more specifically it is implied by strong
stochastic transitivity assumption (Section 3.1 of [2]).

Theorem 5.1. Fix K ≥ 6, ∆cw ∈ (0, 1/4). The weak regret of an algorithm A satisfies:

max
M∈D(∆cw)

EM,A [RT ] ≥ c
K

∆cw
,

when T ≥ c′K/∆2
cw. Here c and c′ are numerical constants.

The result in Theorem 5.1 proves that Algorithm 1 is optimal for the considered instance, particularly
highlighting that linear scaling with K is optimal in this case. In the lower bound, we assumed
uniform gaps between the Condorcet winner and the sub-optimal arms (equal to ∆cw). A potential
improvement would be to develop a lower bound that depends on all the gaps with the Condorcet win-
ner (∆k∗,i)i∈[K]. Additionally, a more general lower bound should discard the general identifiability
assumption. As previously argued, if the gaps between sub-optimal arms are large compared to the
gaps with the Condorcet winner, it becomes easier to explore the K2 duels to detect the sub-optimality
of the arms and focus decision-making on the Condorcet winner.

6 Experiments

In this section, we perform a numerical evaluation of WR-EXP3-IX and WR-TINF algorithms in
three different scenarios that favor different algorithms according to the prior theoretical results. As
a benchmark for our experiments, we utilize the state-of-the-art algorithm for weak regret, WS-W
[4]. Additionally, we include one of the best-performing algorithms for strong regret, Versatile-DB
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(a) Weak regret for small problem (Scenario 1)
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(b) Weak regret for moderate problem (Scenario 2)
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(c) Strong regret for moderate problem (Scenario 2)
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(d) Weak regret for large problem (Scenario 3)

Figure 1: Performance of algorithms in different scenarios

[14], to demonstrate that optimizing for strong regret does not necessarily translate into optimal weak
regret performance. For each of the experiments, we plot the mean regret over 20 iterations together
with 0.2 and 0.8 quantiles. All the experiments in this section use theoretical values of parameters
for the algorithms. The runtime of each algorithm and iteration is in terms of minutes on a personal
computer.

Scenario 1: weak regret under SST (Figure 1a). We consider here: K = 30, T = 10000,
qi,j = 1 − qj,k∗ = 0.8 for i, j ∈ [K] such that i < j. In this scenario, we have a small number of
arms and the SST holds - the arm with the lower index always wins with probability 0.8. This favors
WS-W and WR-EXP3-IX algorithms. On the other hand, WR-TINF is a explores less, this results in
larger regret for small K while the algorithm shines as K grows.

Scenario 2: Strong and weak regret comparison without SST (Figures 1b and 1c). We consider
here: K = 150, T = 100000, qk∗,i = 0.9 for every i ∈ [K] \ {k∗}, qi,j = 0.9 (resp. qi,j = 0.1)
for i, j ∈ [K] \ {k∗} such that i < j and (i + j) ≡ 0 mod 2 (resp. (i + j) ≡ 1 mod 2). In this
scenario, we have a moderately large number of arms and SST does not hold - each arm, except
for the Condorcet winner, wins against approximately K/2 (every other index) other arms with
probability 0.9 and loses to the other arms with probability 0.1. This should still favor WR-EXP3-IX
algorithm but lack of ordering makes WS-W algorithm perform slightly worse. Algorithm WR-TINF
slightly closes the gap in weak regret thanks to the increased number of arms. This can be seen in
Figure 1b. For completeness of comparison, we also plot strong regret of the algorithms, see Figure
1c. Naturally, algorithms WS-W and WR-EXP3-IX suffer linear strong regret since they never play
the same arm twice. However, WR-TINF performs well even with extra exploration, needed for weak
regret, compared to Versatile-DB.

Scenario 3: large number of arms, no SST (Figure 1d). We consider: K = 400, T = 50000,
qk∗,i = 0.9 for every i ∈ [K] \ {k∗}, qi,j = 0.9 (resp. qi,j = 0.1) for i, j ∈ [K] \ {k∗} such
that i < j and (i + j) ≡ 0 mod 2 (resp. (i + j) ≡ 1 mod 2). The same setup without SST as
in Scenario 2 but with a larger K. Better scaling with K gives algorithm WR-TINF an edge over
algorithms WS-W and WR-EXP3-IX while WS-W still suffers from the lack of SST.
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Remark 6.1. On the variance of the WS-W algorithm: WS-W is a round-based procedure where
the selected arms, "winner and challenger," duel in batches of iterations. The length of each batch
increases with the number of duels won by the selected arms so far. When an arm loses, it is replaced
by a contender chosen from the remaining arms. Once the set of candidate arms is exhausted, the
process is repeated. In numerical experiments, particularly with a large number of arms (Scenario 3
in the simulations section), we observe that in some unfortunate cases, especially in the early stages,
the CW may lose its duels. This results in a large number of iterations before it is picked again as a
contender, leading to very high weak regret for the procedure. Although such outcomes are infrequent,
they significantly impact the empirical variance of the weak regret of WS-W.

7 Conclusion and limitations

In this work, we addressed the problem of weak regret analysis under the assumption of a Con-
dorcet winner. We showed that, it is impossible in general to achieve a weak regret smaller than
K/(mini̸=k∗ ∆k∗i) and we introduced the procedure WR-TINF which achieves this bound. The
second algorithm, WR-EXP3-IX, employs a more aggressive exploration strategy by querying the
K2 duels. We show that in some cases, this approach, despite inducing a quadratic dependence on K
can outperform WR-TINF, because it better adapts to the gaps between suboptimal arms. This is
the first work in duelling bandit with weak regret that establishes how that the full matrix ∆ can be
leveraged in the regret.

This work gives rise to several open questions. While WR-TINF is optimal in certain instances,
developing algorithms that fully adapt to the underlying problem parameters remains a significant
challenge.
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8 Appendix / supplemental material

A Preliminary results for Algorithm 1

A.1 Preliminary Lemma:

Lemma below upper-bounds the weak regret of Algorithm 2.

Lemma A.1. Let an algorithm A′ playing in each round the pair of arms (I ′t, J
′
t) observing only

the feedback of the duel between arms (It, Jt) sampled following the scheme in (5). Let A be an
algorithm playing in each round the pair (It, Jt) and observing the feedback Xt(It, Jt). let R(s)

T,A′

denote the strong regret of A′ and R
(w)
T,A the weak regret of A. We have:

E
[
R

(w)
T,A

]
≤ E

[
R

(s)
T,A′

]
.

Proof. For t ∈ [T ] observe that following Algorithm 1, we have:

E
[
min{∆k∗,It ; ∆k∗,Jt}

]
= P

(
I ′t ̸= J ′

t

)
E
[
min{∆k∗,It ; ∆k∗,Jt}| I ′t ̸= J ′

t

]
+ P

(
I ′t = J ′

t

)
E
[
min{∆k∗,It ; ∆k∗,Jt

}| I ′t = J ′
t

]
≤ P

(
I ′t ̸= J ′

t

)
E
[
min{∆k∗,I′

t
; ∆k∗,J′

t
}
]
+ P

(
I ′t = J ′

t

)
E
[
∆k∗,I′

t

]
≤ P

(
I ′t ̸= J ′

t

)
E

[
∆k∗,I′

t
+∆k∗,J′

t

2

]
+ P

(
I ′t = J ′

t

)
E
[
∆k∗,I′

t

]
= E

[
∆k∗,I′

t
+∆k∗,J′

t

2

]
.

We used in the second line the fact that conditionally to the event {I ′t ̸= J ′
t}, (It, Jt) are sampled

independently from pt (same distribution as (I ′t, J
′
t)), and conditionally to the event {I ′t = J ′

t}, It is
sampled from pt. The result follows by summing over t ∈ [T ].

A.2 Additional Lemmas:

Lemma below states that the reduction proved in Theorem 2 of [14] is still valid in our setting. Recall
the notation:

R′
−1,T =

T∑
t=1

ℓ′−1,t(I
′
t)− ℓ′−1,t(k

∗)

R′
+1,T =

T∑
t=1

ℓ′+1,t(J
′
t)− ℓ′+1,t(k

∗),

where ℓ′−1,t(k) = Xt(J
′
t, k) and ℓ′+1,t(k) = Xt(I

′
t, k).

Lemma A.2. Theorem 2 of [14] The expected strong regret of algorithm A′ satisfies:

E[R(s)
T,A′ ] =

1

2
E
[
R′

−1,T +R′
+1,T

]
= E

[
R′

−1,T

]
.

Moreover, we have:

E
[
R′

−1,T

]
=

T∑
t=1

E

∑
k ̸=k∗

pt,k∆k∗,k

 .
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Proof. We have

E
[
R′

−1,T +R′
+1,T

]
=

T∑
t=1

E
[
ℓ′−1,t(I

′
t)− ℓ′−1,t(k

∗) + ℓ′+1,t(J
′
t)− ℓ′+1,t(k

∗)
]

=

T∑
t=1

E
[
1−

(
ℓ′−1,t(k

∗) + ℓ′+1,t(k
∗)
)]

=

T∑
t=1

E
[
∆k∗,I′

t
+∆k∗,J′

t

]
(9)

= 2E
[
R

(s)
T,A′

]
.

We used in the second line the fact that: ℓ′−1,t + ℓ′+1,t = Xt(I
′
t, J

′
t) +Xt(J

′
t, I

′
t) = 1.

Furthermore, observe that for any t ∈ [T ]:

E
[
ℓ′−1,t(I

′
t)− ℓ′−1,t(k

∗)
]
= E

[
Xt(I

′
t, J

′
t)−Xt(k

∗, J ′
t)
]

= E
[
Xt(J

′
t, I

′
t)−Xt(k

∗, I ′t)
]

= E
[
ℓ′+1,t(J

′
t)− ℓ′+1,t(k

∗)
]
,

where we used the fact that I ′t and J ′
t are sampled independently from the same distribution. Therefore

we have summing over t:
E
[
R′

−1,T

]
= E

[
R′

+1,T

]
Now let us prove the last identity of the lemma. We have

E
[
R′

−1,T

]
=

1

2
E
[
R′

−1,T +R′
+1,T

]
=

1

2

T∑
t=1

E
[
∆k∗,I′

t
+∆k∗,J′

t

]
=

T∑
t=1

E
[
∆k∗,I′

t

]
=

T∑
t=1

∑
k ̸=k∗

E
[
pk,t∆k∗,k

]
.

We used in the last equality (9), and the fact that I ′t ∼ J ′
t in the fourth.

Recall the notation: ℓ′t(k) := Xt(k, J
′
t), which corresponds to the loss of the learner playing k when

the environment chooses J ′
t . Recall the expression of the importance weights estimator introduced in

(7) in the main body:

ℓ̂t(k) :=
1 (Jt = k)Xt(k, It)

qt,k
,

where,

qt,k =

(
1
(
I ′t ̸= J ′

t

)
P
(
Jt = k | I ′t ̸= J ′

t

) + 1
(
I ′t = J ′

t

)
P
(
Jt = k | I ′t = J ′

t

))−1

We provide the following expressions of the probabilities used in the definition above. we have that
I ′t and J ′

t are sampled independently following pt = (pt,k)k∈[K]:

P
(
Jt = k | I ′t ̸= J ′

t

)
= pt,k

P
(
Jt = k | I ′t = J ′

t

)
=

p
2/3
t,k∑K

i=1 p
2/3
t,i

.
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Lemma A.3. We have for any k ∈ [K]:

Et−1[ℓ̂t(k)] = Et−1

[
ℓ′t(k)

]
,

where Et−1[.] corresponds to the expectation at round t given the past information.

Proof. We have

Et−1[ℓ̂t(k)] = Et−1

[
1 (Jt = k)1

(
I ′t ̸= J ′

t

)
Xt(k, It)

P
(
Jt = k | I ′t ̸= J ′

t

) ]
︸ ︷︷ ︸

Term 1

+Et−1

[
1 (Jt = k)1

(
I ′t = J ′

t

)
Xt(k, It)

P
(
Jt = k | I ′t = J ′

t

) ]
︸ ︷︷ ︸

Term 2

Calculating Term 1: We have

Term 1 = Et−1

[
1 (Jt = k)1

(
I ′t ̸= J ′

t

)
Xt(k, It)

P
(
Jt = k | I ′t ̸= J ′

t

) ]

= P
(
I ′t ̸= J ′

t

)
Et−1

[
1 (Jt = k)Xt(k, It)

P
(
Jt = k | I ′t ̸= J ′

t

) | I ′t ̸= J ′
t

]

= P
(
I ′t ̸= J ′

t

)
Et−1

[
1 (Jt = k)Xt(k, J

′
t)

P
(
Jt = k | I ′t ̸= J ′

t

) | I ′t ̸= J ′
t

]
= P

(
I ′t ̸= J ′

t

)
Et−1[ℓ̂t(k) | I ′t ̸= J ′

t],

where we used in the third line the fact that conditionally to I ′t ̸= J ′
t, we have It ∼ J ′

t.

Calculating Term 2: We have

Term 2 = Et−1

[
1 (Jt = k)1

(
I ′t = J ′

t

)
Xt(k, It)

P
(
Jt = k | I ′t = J ′

t

) ]

= P
(
I ′t = J ′

t

)
Et−1

[
1 (Jt = k)Xt(k, It)

P
(
Jt = k | I ′t = J ′

t

) | I ′t = J ′
t

]

= P
(
I ′t = J ′

t

)
Et−1

[
1 (Jt = k)Xt(k, J

′
t)

P
(
Jt = k | I ′t = J ′

t

) | I ′t = J ′
t

]
= P

(
I ′t = J ′

t

)
Et−1[ℓ̂t(k) | I ′t = J ′

t].

The conclusion follows by summing the obtained expressions.

B Analysis for the modified OMD with Tsallis regularizer

B.1 The Setting:

The online mirror descent with Tsallis regularizer in the standard coupled exploration and exploitation
case was analyzed in [22] and in the decoupled exploration and exploitation setting in [13]. In this
section, we develop guarantees in the case where exploration and exploitation are partially coupled
via the sampling scheme that we employ, which is restated in Algorithm 4. Note that to be compatible
with our setting for dueling bandits, we need to make some modifications to the game protocol for the
problem of regret minimization. More precisely, we assume that in each round t instead of choosing
a sequence of numbers, the environment chooses a sequence of distributions for losses. The incurred
and observed losses are sampled independently from the sequence chosen by the environment. Note
that this change doesn’t affect the definition of the pseudo-regret, which is the quantity of interest
here, since the definitions involve expectations. We present in Algorithm 3 the game protocol of this
game.
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Algorithm 3 Game Protocol

for t = 1, . . . do
The player chooses two distributions pt = (pt,k)k∈[K] and qt = (qt,k)k∈[K] over [K].
Concurrently, the environment chooses K random distributions with support in [0, 1] denoted
(Lt,k)k∈[K].
The player plays an arm At sampled following pt and incurs an unseen loss ℓt,At

sampled from
Lt,At

.
The player samples an arm Bt following qt and observes an independent fresh sample ℓ̄t,Bt

from the distribution Lt,Bt .
end for

Remark B.1. The only difference between the game protocol above and the one used in [13] is that
in our setting we assume that the observed losses and the incurred losses are independently sampled
from some distribution, while in [13] the losses that are observed and incurred are the same.

We define the pseudo-regret with respect to k as follows:

RT :=

T∑
t=1

E
[
ℓt,At

]
−min

k
E

 T∑
t=1

ℓt,k

 .

We denote by k∗ := argmink E
[∑T

t=1 ℓt,k

]
.

We consider the stochastically constrained adversarial setting where we have for some positive
numbers (∆k):

RT =

T∑
t=1

∑
k ̸=k∗

E
[
pt,k
]
∆k. (10)

B.2 The Algorithm:

Following [22], we consider a follow-the-regularized leader (FTRL) approach using

Ψt(w) = −
1

ηt

K∑
k=1

wα
k − αwk

α(1− α)
,

as regularizers where (ηt) is a sequence of positive numbers and α ∈ (0, 1).

More specifically, following the analysis of decoupled exploration and exploitation in [13], we focus
on the case where α = 2/3. We introduce the following loss estimators:

∀t ∈ [T ], k ∈ [K], ℓ̂t,k =
1 (Bt = k)

qt,k
ℓ̄t,k, (11)

Recall that following Game Protocol 3: ℓ̄t,k and ℓt,k are independent and follow the same distribution
Lt,k.

We define our exploration distribution qt by:

1 (Bt = k)

qt,k
:=

1
(
{Bt = k} and Et

)
q
(1)
t,k

+
1
(
{Bt = k} and Ec

t

)
q
(2)
t,k

, (12)

where Et is some internal event specified by the learner based on past information and some internal
randomization. In Algorithm 4 below, Et corresponds to the event {At = B′

t} where At and B′
t are

independent and sampled from [K] following pt. Ec
t denotes the complementary to Et. (q

(1)
t,k )k∈[K]

and (q
(2)
t,k )k∈[K] are probability distributions defined by:

q
(1)
t,k = P

(
Bt = k | Et

)
q
(2)
t,k = P

(
Bt = k | Ec

t

)
.
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We define the probability (q
(1)
t,k )k∈[K] by: q(1)t,k := pt,k. Define the probability q

(2)
t,k as follows:

q
(2)
t,k :=

p
2/3
t,k∑K

i=1 p
2/3
t,i

. (13)

Algorithm 4 Partially coupled Tsallis-INF

Input: (Ψt)t=1,2,...

init: L̂0 = 0.
for t = 1, . . . do

choose pt = argmaxp

{
⟨p,−L̂t−1⟩ −Ψt(p)

}
Sample At from [K] using pt.
Play At and suffer ℓt,At .
Sample B′

t independently from [K] using pt.
if B′

t ̸= At then
Sample Bt according to pt.

else
Sample Bt according to (q

(2)
t,k ) defined in (13).

end if
Observe ℓ̄t,Bt

(loss having the same distribution as ℓt,Bt
)

Compute ℓ̂t,k using (11) and update L̂t.
end for

Theorem B.2. Suppose the regret satisfies the self-constraining condition (10). The pseudo-regret of
Algorithm 4 with α = 2/3, ηt = 2K−1/6

√
t

, Ψt(w) = − 1
ηt

∑
i
wα

i −αwi

α(1−α) , satisfies:

RT ≤ c

√
K

∆∗

√∑
k ̸=k∗

1

∆k

where ∆∗ = mink ̸=k∗ ∆k and c is a numerical constant.

Proof. Following previous works, we decompose the expected regret into the stability and penalty
terms using the potential Φt defined by:

Φt(−L) = max
w∈SK−1

⟨w,−L⟩+ 1

ηt

K∑
k=1

wα
k − αwk

α(1− α)

 ,

where SK−1 is the set of probability weights on [K]. Let L̂t =
∑T

t=1 ℓ̂t, where ℓ̂t is defined by (11).
We have

RT = E

 T∑
t=1

ℓt,At +Φt(−L̂t)− Φt(−L̂t−1)


︸ ︷︷ ︸

stability

+E

 T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− ℓk∗,t


︸ ︷︷ ︸

penalty

.

Recall that we have:

RT =

T∑
t=1

∑
k ̸=k∗

E[pt,k]∆k.

16



Therefore:

RT = 2RT −
T∑

t=1

∑
k ̸=k∗

E[pt,k]∆k

= 2E

 T∑
t=1

ℓt,At +Φt(−L̂t)− Φt(−L̂t−1)

− 1

2

T∑
t=1

∑
k ̸=k∗

E[pt,k]∆k︸ ︷︷ ︸
Term 1

+ 2E

 T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− ℓt,k∗

− 1

2

T∑
t=1

∑
k ̸=k∗

E[pt,k]∆k︸ ︷︷ ︸
Term 2

.

Let us bound each term separately.

Bounding the term corresponding to the penalty: Term 2 Let T0 ≥ 1. We have using Lemma B.4

Term 2 ≤ 9
√
K

2
+

T∑
t=1

∑
i ̸=k∗

9

4
K1/6E

[
pt,i
]2/3

√
t

− 1

2
E
[
pt,i
]
∆i

 (14)

≤ 9
√
K

2
+

T0∑
t=1

∑
i ̸=k∗

9

4
K1/6E

[
pt,i
]2/3

√
t

+

T∑
t=T0+1

∑
i̸=k∗

9

4
K1/6E

[
pt,i
]2/3

√
t

− 1

2
E
[
pt,i
]
∆i


≤ 9
√
K

2
+

9

2

√
KT0 +

T∑
t=T0+1

∑
i̸=k∗

9

4
K1/6E

[
pt,i
]2/3

√
t

− 1

2
E
[
pt,i
]
∆i


≤ 9
√

KT0 +

T∑
t=T0+1

∑
i̸=k∗

max
z≥0

{
9K1/6z2/3

4
√
t

− ∆i

2
z

}
, (15)

where we used in the third line Jensen’s inequality on the concave function x → x2/3, giving:∑
i ̸=k∗ E[p2/3t,i ] ≤ K1/3 and the fact that

∑T0

t=1
1√
t
≤ 2
√
T0.

Bounding the term corresponding to the stability: Term 1 We have using Lemma B.3

Term 1 ≤ 2

T∑
t=1

ηtE

(1− pt,k∗)
∑
i ̸=k∗

p
1/3
t,i +K1/3

∑
i ̸=k∗

p
2/3
t,i

− 1

2

T∑
t=1

∑
i ̸=k∗

E
[
pt,i
]
∆i

=

T∑
t=1

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]
+

T∑
t=1

∑
i ̸=k∗

E

[
4
K1/6

√
t
p
2/3
t,i −

1

4
pt,i∆i

]

=

T∑
t=1

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]
︸ ︷︷ ︸

Term 1.1

+

T0∑
t=1

∑
i ̸=k∗

E

[
4
K1/6

√
t
p
2/3
t,i −

1

4
pt,i∆i

]
︸ ︷︷ ︸

Term 1.2

+

T∑
t=T0+1

∑
i ̸=k∗

E

[
4
K1/6

√
t
p
2/3
t,i −

1

4
pt,i∆i

]
︸ ︷︷ ︸

Term 1.3

,

where we used the definition of ηt from line 1 to line 2.
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The Terms 1.2 and 1.3 can be upper bounded using the same derivation as in the previous calculations
for Term 1, where we obtained (15) from (14):

Term 12 + Term 13 ≤ 8
√
KT0 +

T∑
t=T0+1

∑
i̸=k∗

max
z≥0

[4K1/6

√
t

z2/3 − ∆i

4
z
]
. (16)

Let us bound Term 1.1. Let T̄ := ⌈ 256K∆2
∗
⌉. We have

Term 11 =

T̄∑
t=1

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]
+

T∑
t=T̄+1

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]
.

Let t ≥ T̄ , recall that
∑K

i=1 pt,i = 1, therefore using Jensen’s inequality for the concave function
x→ x1/3, we have:

∑
i ̸=k∗ p

1/3
t,i ≤ K2/3(

∑
i ̸=k∗ pt,i)

1/3 = K2/3(1− pt,k∗)1/3

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]
≤ 4

K−1/6

√
t

(1− pt,k∗)K2/3(1− pt,k∗)1/3 − 1

4
∆∗(1− pt,k∗)

≤ ∆∗

4
(1− pt,k∗)4/3 − 1

4
∆∗(1− pt,k∗)

≤ 0,

where the the second line follows from the fact that t ≥ T̄ , and the last line from the fact that
pt,k∗ ∈ [0, 1]. We conclude that

Term 1.1 ≤
T̄∑

t=1

∑
i ̸=k∗

E

[
4K−1/6

√
t

(1− pt,k∗)p
1/3
t,i −

1

4
pt,i∆i

]

≤
T̄∑

t=1

∑
i ̸=k∗

E

[
4K−1/6

√
t

p
1/3
t,i −

1

4
pt,i∆i

]

≤
T̄∑

t=1

∑
i ̸=k∗

max
z≥0

{
4
K−1/6

√
t

z1/3 − ∆i

4
z

}

≤ 25

T̄∑
t=1

∑
i ̸=k∗

K−1/4

t3/4
1√
∆i

,

where we used Lemma F.4 to obtain the last line. Using
∑T̄

t=1 t
−3/4 ≤ 4T̄ 1/4, we have

Term 1.1 ≤ 100

(
T̄

K

)1/4 ∑
i ̸=k∗

1√
∆i

.

Next we use the definition of T̄ , then Jensen’s inequality for the concave function x→
√
x to have:

Term 1.1 ≤ 400
1√
∆∗

∑
i ̸=k∗

1√
∆i

≤ 400

√
K

∆∗

√∑
i ̸=k∗

1

∆i
, (17)

We conclude combining (16) and (17) that:

Term 1 ≤ 400

√
K

∆∗

√∑
i ̸=k∗

1

∆i
+ 8
√
KT0 +

T∑
t=T0+1

∑
i̸=k∗

max
z≥0

4K1/6

√
t

z2/3 − ∆i

4
z. (18)
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Conclusion: Combining the bounds in (18) and (15) we have:

RT ≤ 400

√
K

∆∗

√∑
i̸=k∗

1

∆i
+ 17

√
KT0 +

T∑
t=T0+1

∑
i ̸=k∗

max
z≥0

{
7K1/6

√
t

z2/3 − 3∆i

4
z

}
. (19)

Using Lemma F.4, we have:
T∑

t=T0+1

max
z≥0

{
7K1/6

√
t

z2/3 − 3∆i

4
z

}
≤

T∑
t=T0+1

(
7K1/6

√
t

)3(
3∆i

4

)−2

≤ 610

T∑
t=T0+1

√
K

t3/2
1

∆2
i

.

We conclude that
T∑

t=T0+1

∑
i̸=k∗

max
z≥0

{
7K1/6

√
t

z2/3 − 3∆i

4
z

}
≤ 610

√
K
∑
i ̸=k∗

Si(T ), (20)

where Si(T ) :=
∑T

t=T0+1
1

∆2
i t

3/2 . Let us bound the quantities Si(T ). We have for any i ̸= k∗:

Si(T ) ≤
+∞∑

t=T0+1

1

∆2
i t

3/2

≤ 1

∆2
i

∫ +∞

T0

1

t3/2
dt

=
1

∆2
i

lim
T→∞

T−1/2 − T
−1/2
0

− 1
2

=
2

∆2
i

√
T0

.

Next, we re-inject the bound above on inequality (20) and obtain
T∑

t=T0+1

∑
i ̸=k∗

max
z≥0

{
7K1/6

√
t

z2/3 − 3∆i

4
z

}
≤ 610

√
K
∑
i ̸=k∗

Si(T )

≤ 1220
√
K
∑
i ̸=k∗

1

∆2
i

√
T0

.

We take
T0 := ⌈∗⌉ 1

∆∗

∑
i ̸=k∗

1

∆i
. (21)

Therefore:
T∑

t=T0+1

∑
i̸=k∗

max
z≥0

{
7K1/6

√
t

z2/3 − 3∆i

4
z

}
≤ 1220

√
K
∑
i̸=k∗

1

∆2
i

√
T0

≤ 1220

√
K√
T0

T0

≤ 1220

√
K

∆∗

√∑
i̸=k∗

1

∆i
. (22)

Finally, we use the bounds (21) and (22) in (19) and conclude that for some numerical constant c we
have:

RT ≤ c

√
K

∆∗

√∑
i ̸=k∗

1

∆i
.
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B.3 Some Lemmas:

The following lemma is an adaptation of part 2 of Lemma 6 in 13 that bounds the stability term.

Lemma B.3. We have

E
[
ℓt,At +Φt(−L̂t)− Φt(−L̂t−1)

]
≤ 2ηtE

(1− pt,k∗)
∑
i̸=k∗

p
1/3
t,i +K1/3

∑
i̸=k∗

p
2/3
t,i


Proof. We adapt the arguments presented in the proof of Lemma 6 in [13]. We use Lemma B.5,
where we choose x = 1{Bt = k∗}ℓ̄t,k∗ . When Bt ̸= k∗, we have x = 0 and the expression is
maximized for p̃i = pt,i, since the losses are non-negative, and ∇Ψ∗

t is monotonically increasing.
When Bt = k∗, we have ℓ̂t,k∗ − x = 0− x ≥ −1 and we can apply Lemma B.6 and bound p̃i

4/3 by
(3/2)p

4/3
t,i . We conclude that

E

 K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−ℓ̃t+x1K)

i
]

ηt
2

(
ℓ̂t,i − x

)2 (
p̃t,i
)4/3

≤
∑
i ̸=k∗

ηt
2
E
[
ℓ̂2t,ip

4/3
t,i

]
+

ηt
2
E
[(

ℓ̂t,k∗ − x
)2

(3/2)4/3p
4/3
t,i

]
(23)

Let us bound each term in the expression above. For the first term we have:

∑
i ̸=k∗

ηt
2
E
[
ℓ̂2t,ip

4/3
t,i

]
≤
∑
i̸=k∗

ηt
2
E

(1(Bt = i and At ̸= B′
t)

p2t,i
+
1
(
Bt = i and At = B′

t

)
r2t,i

)
ℓ̄2t,ip

4/3
t,i


We have:

Et−1

[
1(Bt = i and At ̸= B′

t)
]
= Pt−1

(
At ̸= B′

t

)
P
(
Bt = i | At ̸= B′

t

)
= (1−∥pt∥2) pt,i.

Similarly, we show that

Et−1

[
1
(
Bt = i and At = B′

t

)]
=∥pt∥2 rt,i.

Therefore: ∑
i ̸=k∗

ηt
2
E
[
ℓ̂2t,ip

4/3
t,i

]
≤
∑
i ̸=k∗

ηt
2
E

[
(1−∥pt∥2)p1/3t,i +

∥pt∥2

rt,i
p
4/3
t,i

]
. (24)

For the second term in (23)we have:

ηt
2
E
[(

ℓ̂t,k∗ − x
)2

(3/2)4/3p
4/3
t,i

]
≤ ηtE

1(Bt = k∗)

(
1
(
At ̸= B′

t

)
pt,k∗

+
1
(
At = B′

t

)
rt,k∗

− 1

)2

ℓ̄2t,k∗p
4/3
t,k∗


= ηtE


(1−∥pt∥2)pt,k∗

(
1

pt,k∗
− 1

)2

+∥pt∥2 rt,k∗

(
1

rt,k∗
− 1

)2
 ℓ̄2t,k∗p

4/3
t,k∗


≤ ηtE

[
(1−∥pt∥2)(1− pt,k∗)2p

1/3
t,k∗ +∥pt∥2

(1− rt,k∗)2

rt,k∗
p
4/3
t,k∗

]
(25)

Finally, we inject the bounds (24) and (25) into (23), rearranging the terms we obtain
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E

 K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−ℓ̃t+x1K)

i
]

ηt
2

(
ℓ̂t,i − x

)2 (
p̃t,i
)4/3

≤ ηtE

(1−∥pt∥2)
(1− pt,k∗)2p

1/3
t,k∗ +

∑
i ̸=k∗

p
1/3
t,i




︸ ︷︷ ︸
Term 1

+ ηtE

∥pt∥2
 (1− rt,k∗)2

rt,k∗
p
4/3
t,k∗ +

∑
i ̸=k∗

p
4/3
t,i

rt,i




︸ ︷︷ ︸
Term 2

Upper bounding Term 1: We have:

ηtE

(1−∥pt∥2)
(1− pt,k∗)2p

1/3
t,k∗ +

∑
i̸=k∗

p
1/3
t,i


 ≤ ηtE

(1−∥pt∥2)
(1− pt,k∗) +

∑
i ̸=k∗

p
1/3
t,i




= ηtE

(1−∥pt∥2)
∑

i ̸=k∗

pt,i +
∑
i̸=k∗

p
1/3
t,i




≤ 2ηtE

(1−∥pt∥2) ∑
i ̸=k∗

p
1/3
t,i


≤ 2ηtE

(1− pt,k∗)
∑
i̸=k∗

p
1/3
t,i

 .

Upper bounding Term 2: We have:

ηtE

∥pt∥2
 (1− rt,k∗)2

rt,k∗
p
4/3
t,k∗ +

∑
i ̸=k∗

p
4/3
t,i

rt,i


 ≤ ηtE

 (1− rt,k∗)2

rt,k∗
p
4/3
t,k∗ +

∑
i̸=k∗

p
4/3
t,i

rt,i



≤ ηtE

 (1− rt,k∗)

rt,k∗
p
4/3
t,k∗ +

∑
i ̸=k∗

p
4/3
t,i

p
2/3
t,i

 K∑
j=1

p
2/3
t,j




= ηtE

∑i̸=k∗ rt,i

p
2/3
t,k∗

 K∑
j=1

p
2/3
t,j

 p
4/3
t,k∗ +

∑
i ̸=k∗

p
2/3
t,i

 K∑
j=1

p
2/3
t,j




≤ ηtE


∑

i ̸=k∗

p
2/3
t,i

 p
2/3
t,k∗ +

∑
i ̸=k∗

p
2/3
t,i

 K∑
j=1

p
2/3
t,j




≤ 2ηtK
1/3E

∑
i̸=k∗

p
2/3
t,i

 ,

where we used in the last line Jensen’s inequality for the concave function x→ x2/3.
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The following lemma is a direct consequence of the second part of Lemma 7 in 13 where we take
α = 2/3 and β = K−1/6. It provides a bound on the penalty term:

Lemma B.4 (Part 2 of Lemma 7 in 13). For ηt = 2K−1/6
√
t

, the penalty term satisfies:

E

 T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− ℓt,k∗

 ≤ 9

8
K1/6

∑
k ̸=k∗

T∑
t=1

E
[
pt,k
]2/3

√
t

+
9

4

√
K.

Proof. Our algorithm uses the Tsallis-inf framework introduced by [22] and [13]. We use a learning
rate ηt =

2β√
t
, with β = K−1/6. Moreover, the loss estimator we use defined by (11) is unbiased.

Therefore the statement of Lemma 7 from [13] applies. The expression in the lemma follows by
taking α = 2/3 and β = K−1/6.

Lemma B.5. Lemma 10 in [13] Let pt = ∇Φt

(
−L̃t−1

)
for L̃t = L̃t−1+ ℓ̃t, where ℓ̃t is an unbiased

estimate of ℓt. For any x ≥ 0, the instantaneous stability of the pseudo-regret of Algorithm 4 satisfies:

E
[
ℓt,At

+Φt

(
−L̃t

)
− Φt(−L̃t−1)

]
≤ E

 K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−ℓ̃t+x1K)

i
]

ηt
2

(
ℓ̃t,i − x

)2 (
p̃t,i
)4/3 .

Proof. Recall that our loss estimators (11) are unbiased and the played arm At is selected following
the same rule as in [13]. Therefore the statement of Lemma 10 in [13] applies.

Lemma B.6. Lemma 11 in [13] Let p ∈ SK−1 and p̃ = ∇Ψ∗
t

(
∇Ψt(p)− ℓ

)
. If ηt ≤ 1/4 then for

all ℓi ≥ −1 it holds that p̃4/3i ≤ 3
2p

4/3
i .

C Proof of Theorem 4.2

Proving Theorem 4.2 amounts to combining the previous results. We have using Lemma A.1:

E
[
R

(w)
T,A

]
≤ E

[
R

(s)
T,A′

]
.

Furthermore, using Lemma A.2, we have:

E
[
R

(s)
T,A′

]
≤ E

[
R′

−1,T

]
.

Now let us show how the problem of upper-bounding the regret above related to the analysis of the
modified OMD with Tsallis-INF regularizer in Algorithm 4 developed in Section B.

The regret R′
−1,T is with respect to a learner playing with the following strategy: In each round

t ∈ [T ]

• The learner samples I ′t from pt.
• The learner plays I ′t and incurs ℓt,I′

t
= Xt(I

′
t, J

′
t) where J ′

t is independently sampled from
pt.

• The learner samples Jt using:

– from pt if an event with probability 1−∥pt∥2 holds.
– from rt if an event with probability∥pt∥2 holds.

• The learner observes the feedback Xt(Jt, It) where It is independently sampled using pt.

Comparing the strategy above with the game protocol 3 and Algorithm 4 of Section B, we conclude
that: At plays the same role as I ′t, and Jt plays the same role as Bt. Moreover, the losses observed
Xt(k, It) corresponding to ℓ̄t,k are independent but follow the same distribution as the actual losses
Xt(k, J

′
t) corresponding to ℓt,k.

Finally in order to apply Theorem B.2, we need to check whether the regret R′
−1,T satisfies the

necessary self-bounding condition (condition considered in Section B). The last requirement is a
direct consequence of Lemma A.2.

Therefore, the bound in Theorem B.2 applies and gives the result.
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D Proof of Theorem 4.3

We restate here the theorem:
Theorem D.1. Under the assumption of the existence of a Condorcet winner, the weak regret of
Algorithm 2 satisfies:

E
[
R

(w)
T

]
≤ c log(K/∆∗)

∑
k ̸=k∗

K∆k∗,k

∆2
j∗(k),k

,

where for each k ̸= k∗: j∗(k) ∈ argmaxj ∆j,k, ∆∗ = mink ̸=k∗ ∆k∗,k and c =
c′ max{1, log log log(K ∨ 16)} with c′ an absolute constant.

Proof. Notation: Let Ft = σ
(
(I1, J1), X1(I1, J1), . . . , (It, Jt), Xt(It, Jt)

)
. Following Algo-

rithm 2, we run EXP3-IX Algorithm for each arm k in each phase (a phase corresponds to a
fixed value of the parameter B), during the nth increment of the value B (phase number n) we have
B = −2n−1. When we fix arm k as a left arm and run EXP3-IX to choose the right arm for t rounds,
we denote by S(k, n, t) the obtained cumulative loss:

S(k, n, t) :=

t∑
s=1

(
Xs(k, Js)−

1

2

)
,

More rigorously, the sum above is over rounds between τ + 1 and τ + t, where τ is a variable
independent of the considered cumulative loss. We consider the notation above to simplify the proof.

We define, for each k ∈ [K] and n ≥ 1, by τ
(n)
k as the stopping time, with respect to (Ft),

corresponding to the round where (S(k, n, t))t hits the level −2n−1
√
t for the first time:

τ
(n)
k := min

{
t ≥ 1 : S(k, n, t) < −2n−1

√
t
}

.

We call phase, the time interval in Algorithm 2 between two increments of the variable B. More
formally, phase number n corresponds to the number of rounds t such that τ (n)K < t ≤ τ

(n+1)
K .

For k ≤ K and a positive n, let E(n)
k denote the following event

E
(n)
k = {τ (n)k−1 < +∞}.

We use the following τ
(0)
K = 0, τ (n)0 := τ

(n−1)
K for each n ≥ 1. The expected regret incurred at phase

n satisfies:

E
[
R

(n)
T | E(n)

1

]
≤

K∑
k=1

P
(
E

(n)
k | E(n)

1

)
E

τ
(n)
k∑
t=1

min
{
∆k∗,k,∆k∗,Jt

}
| E(n)

k


≤

K∑
k=1

P
(
E

(n)
k | E(n)

1

)
E

τ
(n)
k∑
t=1

∆k∗,k | E(n)
k


=

K∑
k=1

∆k∗,k P
(
E

(n)
k | E(n)

1

)
E
[
τ
(n)
k | E(n)

k

]
.

Therefore the weak regret of Algorithm 2 satisfies:

E [RT ] ≤
+∞∑
n=1

P(E(n)
1 )E

[
R

(n)
T | E(n)

1

]
≤

+∞∑
n=1

K∑
k=1

P(E(n)
k )∆k∗,k E

[
τ
(n)
k | E(n)

k

]
.

Define by Uk the quantity:

Uk :=
K log(K)

∆2
j∗(k),k

.

23



Using Lemma D.2. We have for some numerical constant c > 0

E [RT ] ≤ c

+∞∑
n=1

K∑
k=1

P(E(n)
k )∆k∗,k

(
Uk +

4n

∆2
j∗(k),k

)
.

We have

E [RT ] ≤ c

+∞∑
n=1

K∑
k=1

P(E(n)
k )∆k∗,k

(
Uk +

4n

∆2
j∗(k),k

)

= c

+∞∑
n=1

K∑
k=1

P(E(n)
k )∆k∗,kUk +

+∞∑
n=1

K∑
k=1

P(E(n)
k )∆k∗,k

4n

∆2
j∗(k),k

. (26)

Let N = log4(1 ∨ log(1 ∨ log2(1/∆∗))), therefore we have exp(22N ) ≥ log2(1/∆∗). Therefore,
using Lemma D.3, we have:

+∞∑
n=1

P
(
E

(n)
k

)
≤ 1 +

+∞∑
n=2

min

{
1,

exp(−22n−2)

4 log(2)

(
1− 8 log

(
min{1, 2n−2∆∗}

))}

≤ 1 +

+∞∑
n=2

min

{
1,

exp(−22n−2)

4 log(2)
9 log

(
1/∆∗

)}

≤ 1 +

+∞∑
n=2

min
{
1, 5 exp(22N − 22n−2)

}
≤ 1 +N +

∞∑
n=(N+2)∨2

5 exp(−22(n−N)−2) ≤ N + 4. (27)

Moreover, we have:
+∞∑
n=1

4nP
(
E

(n)
k

)
≤ 4 +

+∞∑
n=2

4n
exp(−22n−2)

4 log(2)

(
1− 8 log

(
min{1, 2n−2∆∗}

))

≤ 4 +
9 log(1/∆∗)

4 log(2)

+∞∑
n=2

4n exp(−2n−2)

≤ 4 + 150 log(1/∆∗). (28)
Finally we plug (27) and (28) into (26) and use the fact that K log(K)N + log(1/∆∗) ≤
2K log(K/∆∗)max{1, log log log(K ∨ 16)}, to conclude.

D.1 Auxiliary Lemmas

We recall the notation: for each k ∈ [K], let j∗(k) ∈ argminj∈[K]\{k} ∆k,j . Therefore, j∗(k)
represents the arm with the largest chance to beat arm k. Moreover, let S(k, n, t) denote the
cumulative loss obtained when running EXP3-IX algorithm in phase n for arm k. For n ≥ 1, let
τ
(n)
k denote the stopping time corresponding to the round where the process S(k, n, t) hits the level
−2n−1

√
t:

τ
(n)
k := min

{
t ≥ 1 : S(k, n, t) ≤ −2n−1

√
t
}
.

Lemma D.2. Let k ∈ [K] \ {k∗}, then we have for any n > 0:

E
[
τ
(n)
k | τ (n)k−1 < +∞

]
≤ c

K log(K)

∆2
j∗(k),k

+ c
4n

∆2
j∗(k),k

,

where c is an absolute constant.

Proof. Fix k ∈ [K] \ {k∗} and n ≥ 1. Suppose that {τ (n)k−1 < +∞} holds. Recall the definition of
S(k, n, t):

S(k, n, t) :=

t∑
s=1

(
Xs(k, Js)−

1

2

)
.
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To ease notation we will focus only on the rounds where the fixed arm k was chosen as a left arm
in phase n. Recall that at each phase when we consider a new arm, we run EXP3-IX from scratch,
therefore the obtained cumulative loss process is independent from the past. Denote by Yj,s the
sample received when choosing j as a right arm at round s, Yj,s has the same distribution as the
variable X(k, j) − 1/2, hence E[Yj,u] = ∆k,j . In each round u, the chosen arm is denoted Au.
Therefore we have:

S(k, n, t) =

t∑
s=1

YAs,s.

Let j∗ ∈ argminj{∆k,j} (j∗ = j∗(k), we just dropped the dependence on k). Let

∆ := ∆k,j∗ < 0, (29)

∆ is negative because k is not the Condorcet winner (remember we fixed k ∈ [K] \ {k∗}). Define
the (random) regret for this problem after t rounds as follows:

Rt =

t∑
s=1

YAs,s −
t∑

s=1

Yj∗,s.

Our objective is to upper-bound the expectation of the stopping time τ
(n)
k . To develop such a bound

we use the identity:

E
[
τ
(n)
k | τ (n)k−1 < +∞

]
=

+∞∑
N=0

P
(
τ
(n)
k > N | τ (n)k−1 < +∞

)
.

In the remainder of this proof all events are assumed to hold conditionally to {τ (n)k−1 < +∞}. Let us
bound the probabilities in the rhs: Fix m ≥ n and let

Nm := ⌈ K
∆2

+
2m

∆2
⌉, (30)

where ∆ is defined by (29). Recall that conditional to {τ (n)k−1 < +∞} the event {τ (n)k > Nm} implies
in particular that {

∑Nm

t=1 YAt,t > −2n−1
√
Nm}. Therefore:

P
(
τ
(n)
k > Nm

)
≤ P

Nm∑
t=1

YAt,t > −2n−1
√

Nm

 .

Let us upper bound the probability of the last event. We have

P

Nm∑
t=1

YAt,t > −2n−1
√

Nm

 = P

Nm∑
t=1

YAt,t −
Nm∑
t=1

Yj∗,t +

Nm∑
t=1

Yj∗,t −Nm∆ > −2n−1
√
Nm −Nm∆


= P

RNm +

Nm∑
t=1

Yj∗,t −Nm∆ > −2n−1
√
Nm −Nm∆


≤ P

(
RNm

> 7x
√
KNm log(K)

)
+ P

Nm∑
t=1

Yj∗,t −Nm∆ > −2n−1
√
Nm −Nm∆− 7x

√
KNm log(K)

 ,
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where x is any constant larger than 1. Using the definition of Nm (recall that ∆ < 0), we have
−Nm∆ ≥ −2m/∆. Therefore

P

Nm∑
t=1

YAt,t > −2n−1
√
Nm

 ≤ P
(
RNm

> 7x
√
KNm log(K)

)

+ P

Nm∑
t=1

Yj∗,t −Nm∆ > −2n−1
√
Nm −

2m

∆
− 7x

√
KNm log(K)


≤ P

(
RNm > 7x

√
KNm log(K)

)
+ P

Nm∑
t=1

Yj∗,t −Nm∆ > −2n−1
√
Nm −

2m

∆
− 7x

√
KNm log(K)

 .

(31)

Now let us take:
x =

−2m

28|∆|
√
KNm log(K)

.

Define n̄ as the smallest integer in [2n+ 3,+∞) such that

2n̄ ≥ 28∆
√
KNn̄ log(K). (32)

Hence 2n̄ ≥ K. Moreover, for m ≥ n̄, we have: x ≥ 1. Furthermore:

2n−1
√
Nm < 2n−1

√
4max

{
K

∆2
,
2m

∆2

}
≤ 2n−1

√
4
2m

∆2
= −2

m
2 +n

∆

≤ −2m−3/2

∆
, (33)

where we used m ≥ n̄ ≥ 2n+ 3.

Using (31):

P

Nm∑
t=1

YAt,t > −2n−1
√
Nm

 ≤ P
(
RNm

> 7x
√
KNm log(K)

)
+P

Nm∑
t=1

Yj∗,t −Nm∆ > −2m−2

∆

 .

Using Theorem D.5 to bound the first term (recall that by definition of n̄, for m ≥ n̄: x ≥ 1), and
Hoeffding’s inequality to bound the second term we obtain:

P

Nm∑
t=1

YAt,t > −2n−1
√
Nm

 ≤ 2 exp
(
−x
√

log(K)
)
+ exp

(
− 22m−4

∆2Nm

)
. (34)

Let us upper-bound the r.h.s of the inequality above. We have for m ≥ n̄:

exp
(
−x
√
log(K)

)
= exp

(
−

2m
√

log(K)

28|∆|
√
KNm log(K)

)
Using (30) we have that Nm ≤ 2m

∆2 , therefore 1√
Nm
≥ |∆|

2m/2 we get

exp
(
−x
√

log(K)
)
≤ exp

(
−

2m
√
log(K)

28∆
√
K log(K)

· |∆|
2m/2

)

≤ exp

(
−2m/2

28

√
1

K

)
, (35)
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where we used the definition of Nm. The second term in (34) can be bounded for m ≥ n̄ following:

exp

(
− 22m−4

∆2Nm

)
≤ exp

(
−2m−4

)
. (36)

Combining (34), (35) and (36) we conclude that:

P

Nm∑
t=1

YAt,t > −2n−1 −
√
Nm

 ≤ 2 exp

(
−2m/2

28

√
1

K

)
+ exp

(
−2m−4

)

≤ 3 exp

(
−2m/2

28

√
1

K

)
. (37)

We conclude that for m ≥ n̄:

P
(
τ
(n)
k > Nm | τ (n)k−1 < +∞

)
≤ 3 exp

(
−2m/2

28

√
1

K

)
.

We have:

E
[
τ
(n)
k | τ (n)k−1 < +∞

]
=

+∞∑
N=0

P
(
τ
(n)
k > N | τ (n)k−1 < +∞

)
≤ Nn̄ +

+∞∑
N=Nn̄

P
(
τ
(n)
k > N | τ (n)k−1 < +∞

)

≤ Nn̄ +

+∞∑
m=n̄

Nm+1−1∑
N=Nm

P
(
τ
(n)
k > N | τ (n)k−1 < +∞

)

≤ Nn̄ +

+∞∑
m=n̄

(Nm+1 −Nm)P
(
τ
(n)
k > Nm | τ (n)k−1 < +∞

)
≤ Nn̄ + 3

+∞∑
m=n̄

(
2m

∆2
+ 1

)
exp

(
−2m/2

28

√
1

K

)

= Nn̄ + 6
2n̄

∆2

+∞∑
m=n̄

2m−n̄ exp

(
−2(m−n̄)/2

28

√
2n̄

K

)
.

Recall that by definition of n̄ in (32), we have: 2n̄ ≥ K. Therefore:

E
[
τ
(n)
k | τ (n)k−1 < +∞

]
≤ Nn̄ + 6

2n̄

∆2

+∞∑
m=n̄

2m−n̄ exp

(
−2(m−n̄)/2

28

)

≤ Nn̄ + 6
2n̄

∆2

+∞∑
p=0

2p exp

(
−2p/2

28

)
.

Next we use the bound
+∞∑
p=0

2p exp

(
−2p/2

28

)
≤ 888.

We conclude using the definition of Nm and n̄ that

E
[
τ
(n)
k | τ (n)k−1 < +∞

]
≤ K

∆2
+

2n̄

∆2
+ 6000

2n̄

∆2

≤ K

∆2
+ cmax

{
22n

∆2
,
K log(K)

∆2

}

≤ (c+ 1)
K log(K)

∆2
+ c

4n

∆2
,

where c is an absolute constant.

27



Lemma D.3. We have for any n ≥ 2, k ∈ [K]:

P
(
E

(n)
k

)
≤ exp(−22n−2)

4 log(2)

(
1− 8 log(min{1, 2n−2∆∗})

)
,

where ∆∗ = mink ̸=k∗ ∆k∗,k.

Proof. Let n ≥ 2 and k ∈ [K]. We have that E(n)
k implies the event: E(n−1)

k∗+1 . Therefore:

P
(
E

(n)
k

)
≤ P

(
E

(n−1)
k∗+1

)
= P

(
τ
(n−1)
k∗ < +∞

)
≤ exp(−22n−2)

4 log(2)

(
1− 8 log(min{1, 2n−2∆∗})

)
,

where we used in the last line Lemma F.3.

D.2 Deviation guarantees for the regret of EXP3-IX

We recall below the algorithm EXP3-IX from [11]

Algorithm 5 EXP3-IX

Input: (ηt)t, (γt)t.
Initialization: wi,1 = 1 for all i.
for t = 1, . . . do

Let pt,i =
wi,t∑K

j=1 wj,t
.

Draw At ∼ pt = (p1,t, . . . , pK,t).
Observe the loss ℓAt,t.
ℓ̃i,t ← ℓi,t

pi,t+γ1(It = i) for all i ∈ [K].

wt+1,i ← wt,i exp(−ηtℓ̃t,i) for all i ∈ [K].
end for

Define the random regret RT by: RT :=
∑T

t=1 ℓIt,t − mini∈[K]

∑T
t=1 ℓi,t. We restate below the

main result from [11].

Theorem D.4. Theorem 1 in [11]. Fix an arbitrary δ ∈ (0, 1), set ηt = 2γt =
√

log(K)
Kt for all t,

then EXP3-IX guarantees with probability at least 1− δ:

RT ≤ 4
√
KT log(K) +

2

√
KT

log(K)
+ 1

 log(2/δ).

We have the following corollary

Corollary D.5. Fix x ≥ 1, and consider EXP3-IX algorithm with ηt = 2γt =
√

log(K)
Kt , then:

P
(
RT ≤ 7x

√
KT log(K)

)
≤ 2 exp

(
−x
√
log(K)

)
.

Proof. Let x ≥ 1, take:

δ = min

{
1, 2 exp

(
−x
√

log(K)
)}

.

Therefore:

x ≥ log(2/δ)√
log(K)

.
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We have with probability at least 1− δ ≥ 1− 2 exp(−x
√
log(K)):

RT ≤ 4
√
KT log(K) +

2

√
KT

log(K)
+ 1

 log(2/δ)

≤ 7
√
KT max

{√
log(K), log(2/δ)

}
= 7
√
KT log(K)max

{
1,

log(2/δ)√
log(K)

}
≤ 7x

√
KT log(K).

E Proof of Theorem 5.1

We restate the theorem for the lower bound, then we proceed with the proof. Let ∆cw denote a
positive number. For a dueling bandits problem, we denote by M = (Mi,j)1≥i,j≤K the matrix such
that Mi,j = ∆i,j . Define the class of problems D(∆cw) by the set of matrices M representing the
gaps (∆i,j)ij such as M is skew-symmetric and there exists some k∗ ∈ [K] such that

∀i ̸= k∗ : Mk∗,i = ∆cw

and
∀i, j ̸= k∗ : |Mi,j | ≤ ∆cw

where k∗ ∈ [K] denotes the Condorcet winner.

Theorem E.1. Fix K ≥ 6, ∆cw ∈ (0, 1/4). The weak regret of an algorithm A satisfies:

max
M∈D(∆cw)

EM,A [RT ] ≥ c
K

∆cw
,

when T ≥ c′K/∆2
cw. Here c and c′ are numerical constants.

Proof. Let M (0) denote a matrix such that M (0)
1,i = ∆cw for any i > 1 and M

(0)
i,j = 0 for i, j ̸= 1.

Let P0 denote the probability distribution associated with the dueling bandits’ problem with matrix
M (0) (where arm 1 is the Condorcet winner).

Let k ̸= 1 , let M (k) denote the matrix defined by: for all u ̸= k M
(k)
k,u = ∆cw = −M (k)

u,k , for all

i ̸= k M
(k)
1,i = ∆cw = −M (k)

i,1 , otherwise for i ̸= k, 1 and j ̸= k, 1: M (k)
i,j = 0. Let Pk denote the

probability distribution associated with the dueling bandits’ problem with matrix M (k) (where arm k
is the Condorcet winner).

For any u ∈ [K], let Nu denote the total number of rounds where arm u was queried. For u, v ∈ [K],
let Nu,v denote the total number of rounds where arms u and v were dueled.

Information theoretic tool: Without loss of generality, we assume that the player follows a
deterministic strategy A. Let us introduce the following notation: let Zt =

(
(It, Jt) , Xt(It, Jt)

)
denote the information disclosed to the player at time t. Let Zt = (Z1, . . . , Zt) denote the entire
information available to the player after t rounds.

Lemma E.2. Assume that ∆cw ≤ 1/4. Let F (ZT ) denote a fixed function of the player observations,
taking values in [0, B]. Then for any k ∈ [K] \ {1} and any player strategy A,

Ek

[
F (ZT )

]
≤ E0

[
F (ZT )

]
+ 4B

√
2

3
∆2

cwE0[Nk],

where Nu =
∑K

v=1 Nu,v and Nu,v denotes the number of rounds where arms u and v were duelled.
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Proof. Recall that for any function G bounded by R, we have: |EX∼P[G(X)]− EX∼Q[G(X)]| ≤
2R TV(P,Q), where TV(., .) denotes the total variation distance. Therefore, by shifting F by −B/2,
we have:

EkF (ZT )− E0F (ZT ) ≤ B TV(Pk,P0) ≤ B

√
1

2
KL (P0,Pk),

by Pinsker’s inequality, where KL(.) denotes the Kullback-Leibler divergence and KL(x,y) for
x, y ∈ (0, 1) denotes the Kullback-Leibler divergence between two Bernoulli distributions with
means x and y.

Next we use the chain rule for relative entropy (Theorem 2.5.3 in 5):

KL (P0,Pk) =

T∑
t=1

E
[

KL
(
P0

(
Zt|Zt−1

)
,Pk

(
Zt|Zt−1

))]
Observe that we have for each t ∈ [T ]:

E
[

KL
(
P0

(
Zt|Zt−1

)
,Pk

(
Zt|Zt−1

))]
≤

∑
u̸=k

P0

(
k, u ∈ {It, Jt}

)
KL(M (0)

k,u + 1/2;M
(k)
k,u + 1/2)

≤ 64

3
P0

(
k ∈ {It, Jt}

)
∆2

cw ,

where in the last line we used that KL(x, y) ≤ (x− y)2/[y(1− y)]. Summing over t ∈ [T ] leads to
the desired result.

Recall that the weak regret for the problem Pk is given by:

Ek [RT ] =

K∑
u,v=1

min{∆k,u,∆k,v}Ek[Nu,v]

= ∆cw(T − Ek[Nk]).

Applying Lemma E.2 with F (ZT ) = ∆cwNk, we have:

∆cwE0 [T −Nk] ≤ ∆cwEk[T −Nk] + 2∆cwT

√
8

3
∆2

cwE0[Nk]

Averaging over k ∈ [K] \ {1} and using Jensen’s inequality:

∆cwE0

T − 1

K − 1

∑
k

Nk

 ≤ 1

K − 1

∑
k

Ek [RT ] + 2∆cwT

√
∆2

cw

8

2(K − 1)
E0[
∑
k

Nk],

Observe that
∑K

u=1 Nu ≤ 2T , therefore the inequality above gives:

∆cw

(
T − 2T

K − 1

)
≤ 1

K − 1

∑
k

Ek [RT ] + 2∆cwT

√
∆2

cw

16T

3(K − 1)
.

Let P∗ denote the problem where we choose k uniformly at random from [K] \ {1}, then we proceed
to the game where gaps are given by M (k). Hence we have:

E∗ [RT ] =

∑
k Ek [RT ]

K − 1
.

We conclude that

E∗[RT ] ≥ ∆cw

(
T − 2T

K − 1

)
− 2∆cwT

√
16T∆2

cw

3K − 3
.
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Therefore,

E∗[RT ] ≥ sup
T ′≤T

E∗ [RT ′ ]

≥ sup
T ′≤T

∆cw

(
T ′ − 2T ′

K − 1

)
− 2∆cwT

′

√
16T ′∆2

cw

3(K − 1)

 . (38)

Recall that we assume that K ≥ 6. In the above inequality, the supremum is achieved for T ′ of the
order of K/∆2

cw, which is achievable as long as T is at least of this order. This leads to the desired
result when K/∆2

cw is higher than some numerical constant c′′. In the extreme situation, where
K/∆2

cw is smaller or equal to c′′, the lower bound (38) could be negative for any T ′ ≥ 1. In that
case, we can use the trivial bound E∗[RT ] ≥ E∗[R1] ≥ c′∆cw as, with probability bounded away
from zero, the first duel does not contain the Condorcet winner.

F Technical Results:

Lemma F.1. Let q ∈ (0, 1), we have:
+∞∑
n=0

2nq2
n

≤ 2

+∞∑
n=1

qn

Proof. We have:
+∞∑
n=1

2n−1q2
n

≤
+∞∑
n=1

2n−1∑
i=0

q2
n−1+i

≤
∞∑

n=1

qn.

Lemma F.2 (Doob’s maximal inequality: Section 5.6 from Lawler). Let (Xi) be a sequence of
independent Bernoulli variables such that for any i ≥ 1: E[Xi] = pi. Let St =

∑t
i=1(Xi − pi). We

have for any t ≥ 1, a > 0:

P
(

max
1≤t≤n

{St} > a

)
≤ exp

(
−2a2

n

)
.

Proof. We have St is a martingale with respect to the filtration associated to the process (Xi).
Therefore using Doob’s maximal inequality: Section 5.6 [9], for any b > 0:

P
(

max
1≤t≤n

{St} > a

)
≤

E
[
exp(bSn)

]
exp(ba)

=
E
[
exp(b

∑n
i=1(Xi − pi))

]
exp(ba)

≤ exp(−ba) exp(nb2/8),
where we used the fact that for each i ∈ [n] : E[exp(b(Xi − E[Xi]))] ≤ exp(b2/8). The conclusion
follows by minimizing the upper bound for b > 0.

Lemma F.3. Let (Xt) be a sequence of independent Bernoulli variables such that for some ∆ ∈
(0, 1/2), for each t we have: E [Xt] ≥ 1

2 +∆. Let B ≥ 1 and define the stopping time:

τ := inf

t ≥ 1 :
t∑

s=1

(
Xs −

1

2

)
< −B

√
t

 .

31



Then we have:

P (τ < +∞) ≤ exp(−B2)

4 log(2)

(
1− 8 log(min{1, B∆/2})

)
.

Proof. Let St =
∑t

i=1(E[Xi]−Xi). We have

P(τ < +∞) = P

∃t ∈ N :
t∑

s=1

(
Xs −

1

2

)
< −B

√
t


= P

∃t ∈ N :
t∑

s=1

(
1

2
+ ∆−Xs

)
> ∆t+B

√
t


≤ P

∃t ∈ N :
t∑

s=1

(
E[Xs]−Xs

)
> ∆t+B

√
t


= P

(
∃t ∈ N : St > ∆t+B

√
t
)

Since we have for each t ≥ 1: St ≤ t, and ∆ > 0. We have:

P (τ < +∞) = P
(
∃t ≥ 1 : St > ∆t+B

√
t
)

= P
(
∃t ≥ B2 : St > ∆t+B

√
t
)
.

Let N0 = ⌊log2(B2)⌋. We have

P (τ < +∞) ≤
+∞∑

n=N0

P
(
∃t ∈ [2n, 2n+1] : St > ∆t+B

√
t
)

≤
+∞∑

n=N0

P
(
∃t ∈ [2n, 2n+1] : St > ∆2n +B2n/2

)

≤
+∞∑

n=N0

P
(
∃t ≤ 2n+1 : St > ∆2n +B2n/2

)
.

Using Lemma F.2, we have:

P
(
∃t ≤ 2n+1 : St > ∆2n + 2B2n/2

)
= P

(
max

1≤t≤2n+1
St > ∆2n +B2n/2

)

≤ exp

−
(
∆2n +B2n/2

)2
2n


≤ exp

(
−∆22n −B2

)
.

Pluging the last bound in the previous display gives:

P (τ < +∞) ≤
+∞∑

n=N0

exp
(
−∆22n −B2

)

≤ exp(−B2)

+∞∑
n=1

exp

(
−∆2

2
2n+N0

)

≤ exp(−B2)

+∞∑
n=1

exp

(
−1

4
(B∆)22n

)
≤ exp(−B2)

(
1

4 log(2)
− 2 log(min{1, B∆/2})

log(2)

)
.
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To get the last bound, we bounded the sum by an integral and use the change of variable u =
(B∆)22t/4.

+∞∑
n=1

exp

(
−1

4
(B∆)22n

)
≤
∫ +∞

0

exp

(
−1

4
(B∆)22t

)
dt

=

∫ +∞

(B∆)2/4

exp (−u)
log(2)u

du

=

∫ 1

(B∆)2/4

exp (−u)
log(2)u

du+

∫ +∞

1

exp (−u)
log(2)u

du

≤
∫ 1

min{1,(B∆)2/4}

1

log(2)u
du+

∫ +∞

1

exp (−u)
log(2)u

du

≤ −2 log(min{1, B∆/2})
log(2)

+
1

4 log(2)
.

Lemma F.4. Lemma 8 in [13] Let α ∈ (0, 1), c > 0 and d ∈ (0, 1], we have

max
x≥0
{cxα − dx} = c

1
1−α d

α
α−1

(
α

α
1−α − α

1
1−α

)
.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we introduce in a non-technical way the main
setting of the paper (duelling bandits and minimisation of weak regret), and expose our main
contributions also in a non-technical way. We detail this after we introduce the setting.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This work primarily concentrates on theoretical aspects. We explored the
optimality and limitations of the guarantees in Section 3.2. Additionally, discussions on the
guarantees for WR-TINF and WR-EXP3-IX are provided in Sections 4.1 and 4.2, respec-
tively. Limitations and directions for potential improvements are presented in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumption made is the existence of a Condorcet winner Assumption 2.1.
All the proofs are provided in the appendix: The proof of the upper bound for WR-TINF
(Theorems 4.2) is provided in Section C, the proof of the upper bound for WR-EXP3-IX
(Theorem 4.3) is provided in Section D. The proof of the lower bound (Theorem 5.1) is
provided in Section E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Algorithms introduced in this paper, together with the theoretical values of
parameters, are fully described in sections 4.1 and 4.2. Section 6 provides all the details
needed to reproduce the simulations presented in our paper. The code is provided as well.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In our experiments, we used data generated synthetically. The description of
the distributions of the duels considered is provided in Section 6. The code is provided as
well.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 6 describes all the necessary details to understand the experimental
results and their connection to the theoretical guarantees of the presented algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experimental results in Figure 1 compare algorithms and their average
performance over multiple iterations together with 0.2 and 0.8 quantiles.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The algorithms for dueling bandits use a small amount of resources and can be
run on personal computers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The NeurIPS Code of Ethics was respected.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of theoretical
Machine Learning. There are no potential relevant societal consequences of our work, we
feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of assets are authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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