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ABSTRACT

Large pre-trained language models have demonstrated impressive capabilities, but
there is still much to learn about how they operate. In this study, we conduct a in-
vestigation of the autoregressive transformer’s ability to perform basic addition
operations. Specifically, by using causal analysis we found that a few different
attention heads in the middle layers control the addition carry, with each head pro-
cessing carries of different lengths. Due to the lack of globality in these attention
heads, the model struggles to handle long-sequence addition tasks. By perform-
ing inference intervention on mistral-7B, partial task performance can be restored,
with the accuracy on 20-digit long-sequence additions from 2% to 38%. Through
fine-tuning, a new mechanism branches out for handling more complex cases, yet
it still faces challenges with length generalization. Our research reveals how the
model performs addition, and further provides insights into the debate on whether
these models are merely statistical.

1 INTRODUCTION

As large pre-trained language models increase in scale, they demonstrate increasingly powerful
performance on an increasing number of tasks (Brown et al.| [2020). But their working principle is
still a black box. As the application of large models expands, we have to start to care about safety
and ethical issues (Weidinger et al., [2021)). On the one hand, some studies believe that the model is
just a model that relies on statistics (Bender & Koller, [2020; |[Merrill et al., |2021). On the other hand,
some studies have found that the language model internally encodes other basic world concepts
(Abdou et al., 2021} [Patel & Pavlick, [2021)).

Addition and subtraction, despite being the simplest arithmetic operations, are still challenging tasks
for current large language models (Nogueira et al., 2021). Understanding how these models perform
such operations internally is highly beneficial for improving their transparency and interpretability.

We focus on the current mainstream pre-trained models and investigate their behavior on integer
addition tasks. It is worth noting that our research can be validated on larger models. For ex-
ample, when giving the following input to ChatGPT 4o0: “answer directly without programming:
633331+266667=", the model is highly likely to respond with 900,000 or another incorrect answer
starting with 9 (the correct answer is 899,998). In this paper, we will investigate why such errors
occur and implement mitigation measures.

We conducted experiments on pre-trained models, including Mistral-7B (Jiang et al.| 2023)) and
LLaMA-7B (Touvron et al., [2023). While these models demonstrate a baseline accuracy in per-
forming integer addition, they are far from achieving precise results. Through causal analysis, we
identified a subset of attention heads, primarily in the middle layers, that are responsible for en-
coding digit information relevant to bitwise addition. Visualizing the associated attention patterns
showed a high degree of interpretability. Ablation studies further highlighted the critical role of
these heads in determining the output, governing whether the model performs simple modular addi-
tion or full addition with carry. However, as the length of the carry chain increases, the information
encoded in the attention head gradually loses its significance, accompanied by the rapid decline of
interpretability of the attention pattern, resulting in a decrease in the accuracy of the model (See Fig

1.



Under review as a conference paper at ICLR 2025

233335 + 56666787 %

233335 + 56666125 X

Figure 1: Two types of mistake commonly made by LLMs: the model only uses localized informa-
tion for calculations, while the forward addition requires global information to handle carries. When
the model cannot obtain information on whether to carry or not, it leads to incorrect outputs.

Building on our discovery of the model’s underlying mechanisms, we partially restored the model’s
performance through inference intervention. During multiple inference runs, we manually inter-
vened by targeting the attention heads identified through causal analysis. After each token was
generated, we adjusted the attention weights by either re-weighting or ablating the attention focused
on the carry positions on the last token. This intervention resulted in a significant improvement in
accuracy, particularly for longer sequences.

Finally, we perform full-parameter fine-tuning on Gemma2-2B on specialized addition tasks. The
results reveal that while the model refines its original mechanism for simple cases, it implements a
new and more reasonable method for summation judgment to handle more complex cases. However,
it continues to face challenges with length generalization.

2 RELATED WORK

Studying arithmetic on language models has become popular with the continuous improvement of
model capabilities. [Zhou et al.|(2024) studies how the Transformer processes modular addition
from the perspective of Fourier transforms, that the MLP layer mainly approximates the size of
the results through low-frequency features, while the attention layer performs modular operations
through high-frequency features. |Quirke et al.| (2023) shows how a one-layer model decomposes
the task into parallel digit-specific computation streams and applies different algorithms to each
digit by analyzing the training loss curve. Another similar work is[Stolfo et al.|(2023)), which uses a
causal mediation analysis framework to reveal the internal information flow in large language models
during arithmetic reasoning tasks. Our research aims to go a step deeper and broader, providing a
more general framework to explain any pre-trained transformer-based autoregressive models’ real
internal operation process at a thorough level.

Lee et al.| (2023); [Zhou et al. (2022); [Liu & Low| (2023)) focus on improving the performance of
language models in arithmetic tasks. Their core idea is to extend the reasoning steps of the model,
thereby reducing the complexity of serial calculations. This is done by employing training strate-
gies like the ”scratchpad” approach, where intermediate reasoning steps are made explicit, or by
providing the model with hint prompts that guide it through mathematical expressions.

Broader interpretability research has recently focused on mechanistic interpretability (Geiger et al.,
2021; |(Conmy et al., 2023 Wang et al., 2022). Mechanical interpretation methods, which treat
the model as a computational graph composed of attention and MLP components, seek to locate
the sub-graph responsible for the actual task computation within the entire computational graph.
Hanna et al.| (2024) explores the mechanistic interpretability of how GPT-2 performs mathematical
comparison (greater-than) tasks through internal circuits without explicit training. On the other
hand, research (Geva et al.| [2020; [Meng et al., 2022} |Geva et al., [2022)) on the internal storage of
facts in models provides interpretability from another perspective, they consider MLPs as key-value
memory structures, where the model stores knowledge through the mapping relationships.
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3 METHOD

3.1 BACKGROUND

Consider two n-digit integers X = (x1,z2,...,2,),Y = (y1, Y2, - ., Yn) and their addition result
Z = (z1,22,-.-,%n). The numbers are tokenized digit by digit into the sequence numbers of the
vocabulary, mapping to the embedding d;, and the hidden state of ith token in the first layer is
hY = f(d;,pos(i)), where f is the positional encoding operation function (RoPE (Su et al., 2024)
for Mistral, Llama2 and Gemma?2). In all our experiments, the models used the tokenizer that breaks
numbers into individual digits.

Equations m describe how the transformer processes the hidden stateﬂ The matrices W,
Wi, and Wy, are learned linear transformations that produce the query, key, and value vectors from
the input hidden states, while W, serves as an output projection matrix. H represents the number
of attention heads, dj; represents hidden dimensions.

The o is a non-linear function. «y is a normalization function. W,,, and W, are learned weight
matrices in the feed-forward network, where WW,,, expands the dimensionality of the input, and
Waown reduces it back to the original dimension.

gl = ng’l)hl(»l_l), RO — DRG0 D) i) 1-1) 0
e (£28)
Zj/gi €xp (W) Jsi
a? = Concat (al",al*",... a{" ) W), 3)
m® =W, (Why (a +n0 ), 20 =+ 0l 4l @)

Different from the way humans calculate, the autoregressive model needs to output the answer from
front to back, which is more challenging than backward addition. Consider the process needed
for the model output to be the correct z;, there are three cases. Case 1: When ;11 + y;4+1 < 9,
zi = (z; + y;) mod 10. Case 2: When z;11 + yit1 > 9, then z; = (z; + y;) mod 10 + 1.
Case 3: When z;41 + y;41 = 9, we need to check if there is a carry from subsequent digits. If
Zita + Yire > 9, then z; = (z; + y;) mod 10 + 15 if 2440 + yiye < 9, then z; = (z; + y;)
mod 105 if ;49 + y;42 = 9, continue checking further.

For simplicity, we refer to an equation with a carry chain of length d as CCd (Carry Chain). For
example, 44 + 28 is CCl1, 356 + 247 is CC2, and 35556 + 24447 is CC4. On the other hand,
an equation that only has the chain format without actual carry is called OCd (Only Chain). For
example, 345 + 252 is OC2, and 46612 + 33385 is OCH4.

We first analyze the behavior of Mistral-7B on the OC'd and C'Cd tasks (Figure ). The value of d
ranges from 1 to 15. Each value of d corresponds to 200 samples in the dataset, of which 100 are
OC questions and 100 are C'C' questions. For OC input X + Y, and CC input X' + Y’, we take
average probability distribution p(z;|X,Y), p(z; + 1|X,Y), p(2}| X", Y"), pz} — 1|X',Y’). In
addition, in order to simulate the actual situation, a randomly generated number sequence of length
d is added after each pair of numbers, resulting in an actual number length of 2d.

The results show that, in addition to the overall probability exhibiting a decreasing trend as the
sequence length increases, once d > 1, the average probability of errors p(z} — 1|X’,Y”) on the CC
task exceeds that of correct probabilities p(z;|X’,Y"). Furthermore, when d > 8, the lines nearly
overlap, indicating that the model can hardly distinguish CC tasks from OC tasks.

!"To simplify, we omit the details of the position encoding in each layer, the implementation of the mixture
of experts in Mistral, the implementation of grouped query attention.
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Figure 2: The average probability output of Mistral-7B on OC and CC tasks, with each value of
length corresponding to 200 samples.
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Figure 3: An interpretation of the causal analysis is presented in this example, where y);, | +2 a1 >
9, causing the output shift from 5 to 6.

3.2 CAUSAL ANALYSIS

Causal analysis (Vig et al.l 2020; [Pearl, 2022; [Meng et al.,2022) is a technique based on activation

replacement, helping to reveal the causal roles of internal model components and understand how
they contribute to outcomes. We first create a set of two similar but different inputs, OCd input
X +Y and CCd input X’ + Y’. Naturally, 21 = x1 + y1, 2§ = 2] + y; + 1. And set restriction:
v =xy =y (i <d+1); 94,1 +Tar1 > 9or g, + Yar1 > 9 (randomly chosen). Figure
explains how causal analysis can impact model output.

We conduct three rounds of model inference. The symbols below refer to equations [T} 2} B]

* In the first run: (X + Y)) as the input to obtain the final probability output p(z1|X,Y)
and p(21|X,Y") and collect the activation o’ at y;;, , token position if y}; | +xq1 > 9, or
7, token position if z; | +y441 > 9,0 € {mfiljl, . ,mfii)l, ’Uéir)l, e vfli)l .

* In the second run: (X’ + Y’) as the input and collect the activation o' at y;, , to-
ken position if y(’Hl + zg11 > 9, or I2l+1 token position if xﬁHl + Yqgr1 > 9,0 €
{m:i+1(l) O, (L)}.

s Ugaq
« In the third run: (X + Y) as the input and replace the activation o with o’ to obtain the
probability output p*(27|X,Y).

/(L) ./
,...7md+1 77/d+1

When intervening in reasoning, we sequentially use o to override the original activation o to change
the model’s probability output. Intuitively, this should lead to an increase in the model’s output
probability for z’. The total effect is defined as [5| We used 100 sets of number pairs as input for
Mistral-7B and calculated their average T'E. For activation replacement of the attention layer, v is
chosen instead of @ or a because non-trivial result first and only occurs on v. Causal analysis of
other components (@ and a) refer to Appendix [A]

Total Effect (TE) = p*(2}|X,Y) — p(#,|X,Y) (5)
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Figure 4: The attention heads located through causal analysis show that for mistral-7B under differ-
ent values of d. Mistral-7B has 32 attention heads per layer, for a total of 32 layers.

Through our experimental analysis, we have the following findings (See Fig[d): the most significant
impact occurs in the middle to later layers, specifically between layers 15 and 20. Whend = 1, a
few attention heads exhibit a strong influence on the output, leading to up to a 50% difference in
probability. However, as d increases, the maximum probability difference declines rapidly, with only
2% difference at d = 2. Some attention heads, such as (Head 15, Layer 20), show a broader but much
weaker range of influence. We use TSNE (Van der Maaten & Hintonl [2008)) to visualize internal
shift within the model, where the hidden states for the OC'1 and C'C'1 became distinctly separated
after the attention layers, as shown in Appendix [B| MLP impacts the results by mostly contributing
to the located attention heads. (Causal analysis of MLP, other models, and effect breakdown, please
refer to Appendix [A).

3.3 ATTENTION IMPLEMENTS INCOMPLETE CARRY

The equation 2] illustrates how the replaced v vector affects the output through the attention pattern.
To recall that the v vector position we replaced in section 2 is y}, ; (or zj;,, depending on the
sample), so i = y/;_ ;, and the replaced v affects the output through the attention weight Uyl

where n the last sequence position.

Among the attention heads observed in the causal analysis, we visualize the top two attention heads
that cause the largest T'E for each value of d (See Fig[3).

It is observed that when the “=" token appears, the model focuses on ;11 and y;41 in order to
calculate z;, just like a double pointer. As the length of the output sequence increases, it continues
to move towards, forming a double staircase pattern. However, when d > 1, the attention head re-
sponsible for moving the digit information loses most of this staircase pattern. Instead, the attention
weights are unevenly distributed on each digit. The formation of the attention pattern is independent
of whether the input itself contains carry.
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Figure 5: The result of superimposing the attention heads on Mistral-7B, 34316+24352=58669 is
used as a demonstration example. For simplicity, the attention pattern displayed omits the prompt
and only retains the question. For d from 1 to 4, the selected top 2 attention heads (Head, Layer) are
(25, 17) and (30, 20); (15, 20) and (3, 17); (15, 20) and (16, 19); (15, 20) and (1, 17)

Our research focuses on two objectives: first, to assess the influence of the targeted attention heads
on the corresponding C'C task, the second is to investigate whether the model’s significant perfor-
mance decline on C'C' tasks with d > 1 is solely due to insufficient attention weights allocation. To
address the first objective, we perform ablation on the top two attention heads for the corresponding
CC task, by setting QUnyl, = 0, Ungly, | = 0 to eliminate the influence of the v vector. Addition-
ally, we randomly select attention heads in the same layer and same token position as the ablation
heads for comparison. For the second question, we dynamically perform re-weighting (6) according
to the input.

O‘n,:cfi_H ) an,yéH_l = an,ziﬂ_l + )‘7 an,yfﬂ_l +A (6)

Table 1: Ablation study (with A = 0.6) on Mistral-7B, Llama2-7B, and Gemma-7B models. Numbers
in parentheses are the baseline for the OC task.

Model Method Task
cC1 cC4 cCo6 cC10
Baseline 99.21(98.32)  29.99(80.24) 20.31(67.18) 17.93(23.26)
Mistral-7B Zero ablatiop 34.80 24.51 19.21 17.09
Random ablation 96.99 29.46 21.32 17.45
Re-weighting 98.12 41.83 23.87 19.20
Baseline 91.17(98.09) 48.21(44.23) 17.33(12.41) 0.67(0.21)
Llama2-7B Zero ablatiqn 17.51 42.14 17.23 0.67
Random ablation 88.92 49.21 17.30 0.68
Re-weighting 89.32 58.43 22.78 4.63
Baseline 99.33(99.21) 80.60(37.26) 49.98(31.65) 25.17(26.88)
Gemma-7B Zero ablatiop 1.47 49.72 28.69 20.64
Random ablation 96.84 78.53 48.57 25.07
Re-weighting 95.10 92.73 58.48 31.46
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Figure 6: Zero ablation causes the output of the model to revert back to modular addition, and the
same applies to subtraction.

For the C'C'1 task with high accuracy, there is a strong correlation between attention and model
output (see Table[I). Ablating the top two attention heads has an immediate and dramatic effect.
Notably, after ablating on Gemma, the accuracy of the C'C'1 task drops to just 1.47%. The ablation
removes the carry and reverts the output of the first digit to z; — 1 (See Fig E]) As d increases, the
impact of ablating attention heads diminishes, and accuracy declines accordingly.

When re-weighting weights to match C'C'1 level, we observed varying degrees of improvement
across different C'C'd tasks. However, this improvement was still limited and did not restore accuracy
to the C'C1 level. Additionally, as d increases, the effect of re-weighting continues to diminish.
This suggests that the model’s difficulty in handling carries is not solely due to insufficient attention
weight allocation, but rather a deeper issue in the model’s mechanism for processing such operations.

Interestingly, the three models exhibit distinct patterns in handling tasks, and when uncertain about
the presence of a carry, they tend to default to one of these patterns. Mistral-7B achieves higher
accuracy on OC' tasks compared to C'C tasks, while Gemma shows the opposite, with better per-
formance on C'C tasks than OC tasks. Llama2 falls between these two models. The relatively
low accuracy of Llama2 can be attributed to its inherently lower performance in modular addition
compared to the other two models (see Appendix [C)..

To summarize the experimental findings in this section, pre-trained autoregressive models rely on the
staircase attention patterns to transmit carry-encoded value tokens to the final token for prediction.
When this information transmission is disrupted, the model defaults to modular addition. As the
carry length increases, the model loses its ability to transmit this information, leading to disordered
attention patterns and a loss of carry-related information in the value vectors.

4 INFERENCE INTERVENTION

Based on the findings in section [3] we performed a full intervention enhancement experiment on
the model’s addition task. Many of the model’s errors stemmed from incorrect handling of car-
ries—either missing a carry or introducing an unnecessary one. In contrast, errors related to mod-
ular addition were relatively minor (See Appendix [B). The primary goal of this experiment was
to explore the potential for improving the model’s performance without additional training, by at-
tempting to restore its internal mechanisms, rather than transforming the model into a fully accurate
calculator.

4.1 EXPERIMENTS

Our experiment follows the following steps: when the model processes X + Y, it dynamically
intervenes in internal activation. When the model generates z;, we determine whether there is a
carry from the following sequence. We melt the model’s attention weights for z;; and y;4; if there
is no carry and let the model do modular addition (x; 41 + y;+1) mod 10. If there is a carry from
a carry chain of length m, the attention weight a,, ;4, is re-weighted. Here, the attention heads
are selected from the top 2 attention heads that cause the maximum 7'F when d = m. For a more
detailed algorithm explanation please refer to Appendix [C]

In the experiment, the number pairs corresponding to each length n were randomly sampled from
10"~ to 10", and each length contained 9000 questions. The model used greedy sampling. Due to
the need for n times of inference interferences for numbers with a length of 7, this computationally
intensive experiment ends at a length of 20.
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Similar to our experiment, activation intervention is a technology that adjusts the activation of some
components in the reasoning process to modify the behavior of the model. This also stems from the
work on the interpretability of deep neural network mechanisms (Adi et al.| (2016); |[Finlayson et al.
(2021); |Vig et al| (2020)), but our experiments generally only involve modifications to dozens of
scalars.

Algorithm 1 Model Inference with Ablation and Re-weighting

1: Input: X + Y. L: The last position in the sequence. m: Length of the carry chain. A,,,: Top 2
attention heads located in causal analysis when d = m.

2: Qutput: Z

3: fori < 0Oton —1do

4: if 2,41 + yi+1 < 9 then

5: Perform inference: z; <— Model(X,Y") with ablation (ar s, ,,ar,y,,,) on Head A;
6: Output: z;
7. else
8: if Carry exist: then
9: Perform inference: z; <— Model(X,Y’) with re-weighting (ar 4, .. aL,y,.,,) on Head
Am
10: Output: z;
11: else
12: Perform inference: z; <— Model(X,Y") with ablation (ar, 4. ,,ar.y,,,) on Head A;
13: Output: z;
14: end if
15:  endif
16 X+Y e XA4Y+2
17: end for
4.2 RESULTS

The result (See Fig|/) shows improvement in most cases, with longer sequences experiencing more
significant improvements. The lack of improvement for sequences shorter than length 5 is that the
proportion of these randomly sampled short sequences that contain C'C2 or above is relatively low.
Specifically, for sequences of length 3, only about 17% of the questions contain CC'd where d # 1,
this proportion increases to 26% at length 5, 56% at length 10, and 86% at length 20. Table[T]shows
that the improvement brought by re-weighting is mainly in more difficult cases, but harms the case
of C'C1, where the model already performs sufficiently well.

Additionally, this improvement has an upper limit, as accuracy remains close to zero for sequences
of length 60 (shown in Appendix [C). This is partly due to the limitations of attention discussed in
Section[3] where simply adjusting weights cannot fully compensate for performance decline caused
by the information loss. Another critical factor is that while intervention improves the model’s
handling of carries, it does not enhance the model’s accuracy in performing basic modular addition.
Additionally, many errors arise from number misalignment, where the model incorrectly adds x;
with y; where 7 # j (See Appendix . Many studies (McLeish et al., 2024; [Shen et al., 2023) have
that positional encoding is a primary cause of this issue.

5 FINE-TUNING

Furthermore, we extend our investigation to the model’s internal processing after fine-tuning on
more complex tasks, conducting full-parameter fine-tuning experiments on the Gemma?2-2B model.

The dataset includes questions of C'C'd, OCd, and randomly generated number pairs. To ensure
that modular addition does not affect the results, 40% of the dataset consists of randomly sampled
numbers with a length upper limit of 80, 30% consists of CCd tasks, and 30% consists of OCd tasks,
where d represents the maximum training length of the carry chain. The fine-tuned model results
are shown in Figure[8] The detailed training parameters are provided in Appendix [E]
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Figure 7: Comparison of accuracy between the baseline and inference intervention augmentation on
Mistral-7B.
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Figure 8: Performance of Gemma2-2B on CCd and OCd tasks after fine-tuning, legend represents
the max training length d. (c): The accuracy of C'Cd task on model training on training length
d = 10, along with the corresponding maximum 7'F tracked tracked throughout.

5.1 GENERALIZATION

Related studies (Sabbaghi et al, 2024} [McLeish et al, 2024}, [Kazemnejad et al] 2024} [Shen et al ]
2023)) have demonstrated that positional encoding plays a crucial role in enabling length general-

ization in arithmetic tasks. As arithmetic fundamentally relies on the alignment of digits, positional
encoding that effectively captures this structural information significantly enhances generalization
(Sabbaghi et al] 2024} [McLeish et all, [2024). However, processing long carry chains remains a
challenging task for models (Sabbaghi et al.| [2024)), as it requires not only precise digit alignment
but also conditional judgment based on the sum of each digit.

Figure [8] shows the performance of Gemma2-2B on OCd and C'Cd tasks after fine-tuning. The
model seems difficult to achieve noticeable generalization. The accuracy drops sharply after sur-
passing the maximum training length. We try to explain the reason from the perspective of the
formation of attention heads, by measuring the maximum 7'E that the attention heads can cause.
The result (8c) shows that after exceeding the training length, model performance deteriorates in
tandem with the maximum 7'E. The causal analysis heat maps corresponding to each length are
visualized in Appendix [D}]
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5.2 EMERGENCE OF NEW PATTERN

We perform causal analysis on the fine-tuned model with a maximum training length d = 10. In the
pre-trained models, cases like OC'1 and C'C1 are handled by allocating attention to the digit imme-
diately following the current calculation digit. After fine-tuning, the model retains and refines the
original mechanism (See Appendix D)) while also developing a new processing strategy (See Figure
) to handle more complex cases(d > 2). Notably, the model introduces a specialized attention pat-
tern, referred to as the Target Head, which focuses directly on the actual carry digit. Simultaneously,
another attention mechanism, named the Detection Head, emerges. This head becomes active even
before the “=" token appears, transmitting the corresponding z; information to the current token y;
token when it appears.

A guess is that the detection head obtains the information of x; and y; to determine whether x; +y; is
greater than 9. The carry chain length-related information is then passed to the Target Head, enabling
it to focus on the actual carry token and execute the carry operation. To validate this, we performed
zero ablation on the Detection Head, observing a disruption in the Target Head’s attention patterns
accompanied by a significant decrease in accuracy (See ablation studies in Appendix [D). Intuitively,
the differentiation of attention functions is more reasonable, since it involves the concept of sum
judgment, but it is still unclear why the model does not continue to use the original mechanism and
how the information is delivered. Addressing this question will require further studies.
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Figure 9: Causal Analysis on fine-tuned Gemma?2-2B. “233331+366671=600002" is used as the
demonstration example. Left: The Detection Head Pattern. Middle Left: Causal analysis on all
layers and heads. Middle Right: Target head patterns. Right: Target head patterns with detection
head melted.

6 CONCLUSIONS

In this study, we investigated how pre-trained autoregressive language models perform addition
operations.

We found that the model relies on localized attention distribution for handling carry operations,
which makes it challenging for the model to process inputs with long sequences. We attempted to
restore the model’s task performance by intervening in attention during inference without additional
training. While some task performance was recovered, the model’s inherent limitations remained.
Finally, through fine-tuning on the specialized addition tasks, we observed that the model imple-
ments a new and more reasonable mechanism to address more complex cases, yet it continues to
struggle with length generalization. This loss of generalization ability is related to the loss of ability
to form functional attention heads.

Our findings offer valuable insights into how language models process arithmetic tasks and serve as
a reference point for evaluating whether current language models rely solely on statistical patterns
rather than deeper reasoning mechanisms.

10
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A APPENDIX - ADDITIONAL INFORMATION FOR CASUAL TRACING
This section discusses causal analysis for other models and some interactions we observed between
attention and MLP.

The attention head located in Llama2-7B is further forward than Mistral (See Fig[I0), and significant
TFE occurs earliest in the 13th layer. Similarly, as d increases, the maximum 7'F rapidly decreases.
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Figure 10: The attention heads located through causal analysis show that for Llama2-7B under
different values of d. Llama2-7B has 32 attention heads per layer, for a total of 32 layers.

When performing activation intervention on a certain component, its total effect can be divided
into two parts 2020): one is that the component directly affects the output probability
by writing the residual stream value to cause direct effects (DE), and the other is that the residual
stream passes the influence to downstream components to cause indirect effects (IE) (See Figure

[12).

We found that the T'E caused by MLP mainly comes from the indirect effect on downstream at-
tention components, especially on the Top 2 attention heads. We set up an additional experimental
process to distinguish the degree of influence between the two. Specifically, when we perform acti-
vation intervention on m/}’ we fix the top 2 attention heads components as their original activation
aiTOp 2,

The results (See Fig [I3)) show that the impact of MLP on the results was concentrated in the early
stage of the model, and most of it was earlier than the influence range of the attention heads. After
restoring the top 2 attention heads, the impact of MLP decreased to an insignificant level. This
may represent that the role of MLP in the early stage is to provide the basic work of information
processing for attention layers.
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Figure 11: The attention heads located through causal analysis show that for Gemma-7B under
different values of d. Gemma-7B has 16 attention heads per layer, for a total of 26 layers.
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In addition to the activation replacement of v, we also conducted experiments on @ and a. (no con-
cept of attention head in a.) The results (See Figure[T4b] [T4a] [T5b] [[5a) show that these components
are difficult to significantly impact the output probability (even if d = 1).

B APPENDIX - VISUALIZATION

We provide some visualizations in this section, mainly including the process of handling modular
additions and additions with carry inside the model.

In Figure@ it is observed that in layer 12, similar labels (also of similar colors) are mixed together.
At layer 13, the clustering pattern immediately undergoes a sudden change, and the model distin-
guishes between carry and non-carry equations, which are much closer to the output of the final
layer. Layer 13 is also the earliest layer to be located through causal analysis (See Fig[T0a).

Similarly, a similar process also occurs in the mistral-7B model (See Fig[T7). After passing through
the 17th layers, the model quickly distinguishes between CC and OC tasks, the causal analysis
location of the 17th layer refers to [fa]
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Figure 14: Casual analysis of other components in Llama2-7B. (a) Replacing a. (b) Replacing a.

For modular addition, the visualization results show that the model is implemented in a progressive

manner, rather than dealing with abrupt changes

C APPENDIX - DETAILS IN INFEREN

like handling carry.

CE INTERVENTION

In this section, we give more details about the inference intervention.

We first classify the incorrect answer obtained by the model into four situations. When the model

treats the C'C question as the OC' question, it

is called a missing carry; When treating the OC

question as a C'C' question, it is called extra carry; alignment errors caused by incorrect numerical

alignment; basic modular addition errors.
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Figure 16: TSNE visualization of the last token hidden state on Llama2-7B, each color represents
the label z;.

The model runs on a dataset of randomly generated numbers of a specified length. By classifying
each error, it can be found that the most common error made by the model in low sequence lengths
is missing carry (See Fig[I8). As the length increases, errors caused by alignment account for the
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Figure 17: TSNE visualization of the last token hidden state on Mistral-7B, each color represents
the label z;.

vast majority, rather than basic modular additions. Our inference intervention is only optimized for
missing carry and extra carry situations.
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Figure 18: Four types of error that Mistral-7B makes on different lengths.
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We give a more detailed explanation of the algorithm for inference intervention (See Algorithn{?).
The algorithm explains more concretely about the carry detection progress.

Algorithm 2 Model Inference with Ablation and Reweighting

1: Input: X + Y. L: The last position in the sequence. m: Length of the carry chain. A,,: Top 2

attention heads when d = m in causal analysis.

2: Output: 7
3: fori < Oton — 1do

4:  Initialize: m < @
5: ifz;41 + yi+1 < 9 then
6: Set ablation: ar, 4, ,,ar,y,,, < 0
7: Perform model inference: z; <— ModelInference(X, Y, ablation(ar, ., ,, 01y, ,))
8: Output: z;
9:  elseifwz; 1 + ;11 > 9 then
10: Re-weighting: ar, ., ,,ar0,y,,; < Am
11: Perform model inference: z; <— ModelInference(X, Y, reweighting(ar, .., 01 y.,,))
12: Output: z;
13:  else
14: while ;11 + y;41 == 9do
15: m<+—m+1
16: if z,,, + ym, < 9 then
17: Set ablation: ar, 4, ,arL,y,, < 0
18: Perform model inference: z; <— ModelInference(X, Y, ablation(ar, 5, ,ar.y,.))
19: Output: z;
20: else if z,,, + y,,, > 9 then
21: Re-weighting: ar, z,.,ar.y,, < Am
22: Perform model inference: z; < ModelInference(X, Y, reweighting(ar, o, ,ar y,.))
23: Output: z;
24: end if
25: end while
26: Set ablation: ar, 4, ,,ar,y,,, < 0
27: Perform model inference: z; <— ModelInference(X, Y, ablation(ar, 5, ,ar.y,.))
28: Output: z;
29:  endif
300 X4+Y <+« X+Y+2z
31: end for

The improved accuracy data beyond length of 20 is listed in table 2]

Table 2: Further accuracy information about inference intervention on Mistral-7B and Llama-7B.

Model Method Length
20 30 40 50 60
Mistral-7B Baseline (%) 2.98 0.05 0.00 0.00 0.00
Inference Intervention(%) 38.21 14.12 4.63 1.12 0.22
Llama-7B Baseline (%) 0.00 0.00 0.00 0.00 0.00

Inference Intervention(%)  3.51 0.06 0.00 0.00 0.00

D APPENDIX - DETAILS IN FINE-TUNING

We first perform a causal analysis on the fine-tuned model (trained on a maximum length of 10)
under different d values (See Figure [19). where the location of attention heads of d=1 case is
different from others, representing a differentiation of functional attention heads.

In section[5.2] we discussed the emergence of a new pattern, the original mechanism remains and is
refined. Figure[??]shows the top-2 attention heads overlay pattern located in casual analysis.
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Figure 19: The attention heads located through causal analysis show that for fine-tuned Gemma2-2B
under different values of d, d = 12 analysis is based on OOD input.

In terms of the new mechanism of detection heads and target heads, to quantify their importance,
we perform an ablation study on them (See table 3).

The results show that the model has indeed developed two processing mechanisms. Ablation of
the detection head and target head has no effect on C'C'1 but has a huge impact on more complex
situations.

Table 3: Ablation study on the fine-tuned Gemma?2-2B model (trained on a maximum length of 10).

Method cCcl CCc4 CCo6 CC10
Baseline 100  99.67 99.62 91.72
Detection Head Ablation 100 55.42 58.37 54.32
Target Head Ablation 100 51.58 53.76 54.21
Combined Ablation 100 44.11 49.09 48.12
Random Ablation 99.68 99.12 99.72 90.47
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Figure 20: The result of superimposing the attention heads on fine-tuned Gemma2-2B,
23333+36667=60000 is used as a demonstration example. For simplicity, the attention pattern dis-
played omits the prompt and only retains the question. For d from 1 to 2, the selected top 2 attention
heads (Head, Layer) are (16, 6) and (19, 0); (16, 6) and (19, 9).

E APPENDIX - IMPLEMENTATION DETAILS
In our experiments, we use the following prompts (Table[d) plus the question ‘X + Y =’ format as
input. The temperature is set as 1 and use greedy sampling.

The detailed fine-tuning parameters are listed in table 5] The batch size varies depending on the
specific CCd and OCd tasks. The entire training process is done with one nvidia A800 GPU, all
experiments in the paper could be done within 15 hours.
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Table 4: Examples of Prompts

Prompt Examples

Do math calculations:
Calculate:
Compute the following sum:
Solve the addition:
Calculate the result of:
Solve the following problem:
Perform the calculation:
Determine the result of:
Find the value of:
Complete the calculation:
What is the solution to:
Solve this equation:
Compute the answer for:
What is the sum of:
Figure out the result of:
Determine the answer to:
Find the solution to:

Perform the operation:

Table 5: Key Training Arguments Configuration, d represents the CC'd and OCd task.

Parameter Value
num_train_epochs 15

number of training tokens (6d + 1) * 10°
learning_rate 5e-5

bflé6 True
weight_decay 0.0

adam betal 0.9
adam_beta2 0.999
adam_epsilon 1e-08
gradient_accumulation_steps 1

seed 42
lr_scheduler_type linear
optim adamw_torch
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