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ABSTRACT

Asymmetric image retrieval aims to deploy compatible models on platforms of
different resources to achieve a balance between computational efficiency and re-
trieval accuracy. The most critical issue is how to align the output features of dif-
ferent models. Despite the great progress, existing approaches apply strong con-
straints so that features or neighbor structures are strictly aligned across different
models. However, such a one-to-one constraint is too strict to be well preserved
for the query models with low capacity. Considering that the primary concern of
the users is the rank of the returned images, we propose a generic rank preserv-
ing framework, which achieves feature compatibility and the order consistency
between query and gallery models simultaneously. Specifically, we propose two
alternatives to instantiate the framework. One realizes straightforward rank order
preservation by directly preserving the consistency of the sorting results. To make
sorting process differentiable, the Heaviside step function in sorting is approxi-
mated by the sigmoid function. The other aims to preserve a learnable monotonic
mapping relationship between the returned similarity scores of query and gallery
models. The mapped similarity scores of gallery model are considered as pseudo-
supervision to guide the query model training. Extensive experiments on various
large-scale datasets demonstrate the superiority of our two proposed methods.

1 INTRODUCTION

In recent years, deep representation learning methods (Babenko et al., 2014; Tolias et al., 2016;
2020) have achieved great progress in image retrieval. Typically, most existing image retrieval tasks
belong to symmetric image retrieval, in which a deep representation model is deployed to map both
query and gallery images into the same discriminative feature space. During online retrieval, gallery
images are ranked by sorting their feature distances, e.g., cosine similarity or Euclidean distance,
against query image. To achieve high retrieval accuracy, most existing methods tend to deploy a
large powerful representation model. In a real-world visual search system, the gallery side is usually
on the cloud-based platforms, which have sufficient resources to deploy large powerful models. As
for the query side, e.g., mobile phone or smart camera, its resources are too constrained to meet the
demand of deploying large models. To strike a balance between performance and efficiency, it is
better to deploy a lightweight model on the query side, while a large one for the gallery side. This
setup is denoted as asymmetric image retrieval (Duggal et al., 2021; Budnik & Avrithis, 2021).

For asymmetric retrieval, how to align the embedding spaces of the query and gallery models is the
core problem. To this end, BCT (Shen et al., 2020) first introduces feature compatibility learning.
Concurrent work AML (Budnik & Avrithis, 2021) learns the query model by contrastive learning
with gallery model extracting features for positive and negative samples. Recently, CSD (Wu et al.,
2022b) achieves promising results by considering both first-order feature imitation and second-order
neighbor similarity preservation during the learning of the query model. Despite the great progress,
existing methods enforce the consistency of features or neighbor structures across different models,
which is too strict to be well preserved for lightweight query models with low capacity. For users,
the order of the returned images plays a more important role than the image features or similarity
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scores. Strictly enforcing the feature-level one-to-one consistency is not the best choice to achieve
better asymmetric retrieval accuracy, while rank preserving deserves more attention.

To address the above issues, we propose a general rank preserving framework, which directly op-
timizes the consistency of rank order to realize the feature compatibility across query and gallery
models implicitly. Specifically, for a training image, we first extract its features with the query
and gallery models, respectively. Then, the gallery feature is utilized for symmetric retrieval in a
database, in which images are also embedded by the gallery model. After that, the ranking list and
similarity scores are returned. We select the top K images in the ranking list and calculate their
asymmetric similarity scores with the query feature. These asymmetric similarity scores may result
in different rank orders from those returned by symmetric retrieval. Thus, two instantiation methods
are proposed to achieve the consistency of these two rank orders.

The first aims to directly optimize the rank order consistency of the sorting results. To make the
sorting process differentiable, the sigmoid function is adopted to approximate the Heaviside step
function (Davies, 1978), which is typically used for numerical comparison. Secondly, we propose
to maintain a learnable monotonic mapping relationship between the symmetric and asymmetric
similarity scores. A learnable monotonically increasing function is applied to the similarity scores
returned by the symmetric retrieval, which will serve as the pseudo-supervision of the query model.
Then, we constrain the consistency between the mapped similarity scores and the asymmetric sim-
ilarity scores to optimize the query model. Notably, both two instantiations preserve the rank order
of the images, which are returned by symmetric retrieval.

Compared with previous methods, our framework has a unique advantage. It does not constrain
the query model to mimic the features or the overall neighbor structures of the gallery model. In-
stead, it expects that the query model maintains the order of the returned images from symmetric
retrieval. Thus, our framework weakens the restriction on the query model with low capacity, and
reduces the risk of overfitting during learning the query model. Besides, our framework utilizes no
annotation or label of the training data, which makes it flexible and adaptable in various real-world
scenarios. To evaluate our approach, comprehensive experiments are conducted on four popular re-
trieval datasets. Ablations demonstrate the effectiveness and generalizability of our framework. Our
approach surpasses the existing state-of-the-art methods by a considerable margin.

2 RELATED WORK

Image Retrieval. Given a large corpus, image retrieval aims to efficiently find the images, which
contain the same object or describe the same content with the queries, based on their feature sim-
ilarities. Most of the traditional image retrieval systems are based on local features (Lowe, 2004;
Bay et al., 2006) and bag-of-words (Sivic & Zisserman, 2003; Philbin et al., 2007) representations
borrowed from text retrieval. There are also several aggregation methods including VLAD (Jégou
et al., 2011), Fisher vectors (Perronnin et al., 2010) and ASMK (Tolias et al., 2013), which are used
to aggregate local features into compact representations for efficient search. Recently, with the pro-
posed various pooling methods (Kalantidis et al., 2016; Tolias et al., 2016; Radenović et al., 2018b)
and loss functions (Revaud et al., 2019; Deng et al., 2019; Weinzaepfel et al., 2022), deep learning
has greatly improved the performance of image retrieval. Despite the great progress, a large deep
model is usually deployed for its optimal performance, which, however, is not applicable in some
resource-constrained scenarios. In this work, we focus on asymmetric retrieval, where the query
(user) side deploys a lightweight model while the gallery side applies a large model.

Feature Compatibility. The core of asymmetric retrieval is to align the features of the query and
gallery models, which is also known as feature compatibility. BCT (Shen et al., 2020) first formu-
lates the problem of feature compatible learning and reuses the old classifier for the query model
training. AML (Budnik & Avrithis, 2021) achieves the feature compatibility by performing asym-
metric contrastive learning between different models. After that, CSD (Wu et al., 2022b) achieves
the preservation of neighbor similarities in the embedding space of the gallery model in an unsu-
pervised manner. As for HVS (Duggal et al., 2021), both parameter and architecture are considered
simultaneously in a unified framework, which gives promising performance. Other lines of research
follow the model regression problem (Yan et al., 2021; Zhang et al., 2022; Duggal et al., 2022) dur-
ing gallery model updating, which is also related to feature compatibility. In this work, we start from
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the main concern of the users, i.e., the order of the returned images in the ranking list, and propose
a general rank preserving framework, which is free of annotations from training datasets.

Lightweight Network. Thanks to the evolution of the network architecture (He et al., 2016; Tan
& Le, 2021), deep convolutional neural networks (CNNs) achieve superior performance in various
computer vision tasks. Usually, a large powerful model leads to better performance with the con-
sumption of more storage and computational resources. Real-world tasks aim to achieve the best
accuracy with a limited computational budget, which is determined by the target platforms. The
demand of deploying high-performance deep models on resource-constrained platforms has led to a
series of studies on model compression (Antonio et al., 2016; He et al., 2018b; Oktay et al., 2020)
and efficient network architecture design, e.g., MobileNets (Howard et al., 2017; Sandler et al.,
2018), ShuffleNets (Zhang et al., 2018; Ma et al., 2018) and EfficientNets (Tan & Le, 2019). In
this work, we focus on asymmetric retrieval in resource-constrained scenario. Since query features
are extracted on resource-constrained end platforms, our approach employs the various lightweight
models mentioned above as query models.

Smooth Rank Approximation. There is a long history of designing smooth surrogate for rank ap-
proximation. In image retrieval, the well-known surrogate is to constrain the relative relationships
between pairs (Raia et al., 2006) or triplets (Gordo et al., 2017), which implicitly leads to partial
ranking. Some methods propose to utilize a smooth discretization of similarity scores (He et al.,
2018a; Cakir et al., 2019; Ustinova & Lempitsky, 2016; Revaud et al., 2019) for the rank approx-
imation. Other approaches explicitly approximate the non-differentiable rank metric with a neural
network (Engilberge et al., 2019) or a sum of sigmoid functions (Brown et al., 2020; Huang et al.,
2022; Patel et al., 2022). Recently, a more accurate and robust approximation method is proposed
in ROADMAP (Elias et al., 2021). However, all the methods mentioned above are designed for
symmetric retrieval, where only a single model exists and no cross-model feature compatibility has
been considered. Thus, they cannot be directly applied for asymmetric retrieval. In our approach,
asymmetric and symmetric retrieval are performed with the same query. Then, the order of two
returned ranking lists are constrained to be consistent, which also ensures feature compatibility.

3 BACKGROUND: ASYMMETRIC IMAGE RETRIEVAL

Given images of interest (referred to as query set Q), image retrieval targets at correctly finding
images of the same content or object from a large-scale gallery set G. An image encoder φp¨q is
deployed to map the images into L2-normalized feature vectors. Then, the cosine similarity of two
normalized vectors is used for measuring the similarity between query and gallery images. Usually,
some metrics, e.g., mean Average Precision (mAP), are adopted to evaluate a retrieval system, which
are conditioned on φp¨q, Q and G. For convenience, we ignore query and gallery sets and denote the
metric as Mpφqp¨q, φgp¨qq, where φqp¨q and φgp¨q are the image encoders deployed for query and
gallery feature extraction, respectively.

In a conventional symmetric retrieval system, the same encoder, i.e., φgp¨q “ φqp¨q, is used for both
gallery and query sides. Typically, deploying a powerful model results in better retrieval accuracy.
However, it is not applicable in some resource-constrained platforms, e.g., mobile devices or smart
cameras. Assuming φqp¨q is different from and significantly smaller than φgp¨q, asymmetric image
retrieval leverages φqp¨q to embed query images and φgp¨q to embed the gallery images. Thus, we
should ensure that the lightweight query model φqp¨q maps images into the same embedding space
of the large gallery model φgp¨q. Besides, an asymmetric retrieval system is expected to achieve a
retrieval accuracy comparable to that of a symmetric retrieval system (Duggal et al., 2021),

Mpφgp¨q, φgp¨qq «Mpφqp¨q, φgp¨qq ąMpφqp¨q, φqp¨qq. (1)

4 RANK PERSEVERING FRAMEWORK

An overview of our framework is shown in Fig. 1. Given a well-trained gallery model φgp¨q, we
aim to learn a lightweight query model φqp¨q to be compatible with it. Assume there exits a training
gallery set Gt, we first embed it into F “ rf1

g ,f
2
g , . . . ,f

N
g s P RNˆd with φgp¨q:

f ig “ φgpgiq P Rd, i “ 1, 2, . . . , N, (2)
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Figure 1: An overview of Rank preserving framework. Given a training image x, gallery model
φgp¨q and query model φqp¨q encode it into features g and q, respectively. g is treated as the query
to search in a training gallery set Gt, of which the images are also embedded by φgp¨q. We fetch the
features FK of the top-K images in the ranking list and calculate the asymmetric similarity scores
Sq with q. Two instantiations of our framework named Ranking Order Preservation (Sec. 4.1)
and Monotonic Similarity Preservation (Sec. 4.2) are proposed to ensure the consistency of rank
orders when the query is embedded by φqp¨q and φgp¨q, respectively.

where gi is the i-th image in the training gallery set Gt. During the learning of φqp¨q, gallery model
is fixed. For each training image x, we extract its features q and g with φqp¨q and φgp¨q, respectively:

q “ φqpxq P Rd, g “ φgpxq P Rd. (3)
Then, we perform symmetric retrieval in Gt with g as the query. After that, we obtain the ranking
list R “ rr1, r2, . . . , rKs P RK and similarity scores Sg “ rgTfr1g , g

Tfr2g , . . . , g
TfrKg s P RK of

top-K images, where ri denotes the ID of the i-th image in Gt. Notably, the values in Sg satisfy the
monotonically decreasing property, i.e., gTfr1g ě gTfr2g ě ¨ ¨ ¨ ě gTfrKg . With the ranking list R,
the corresponding feature embeddings FK “ rfr1g ,f

r2
g , . . . ,f

rK
g s for the top-K images are taken

from F . Then, we calculate the asymmetric similarity scores between the query feature q and FK :
Sq “ rq

Tfr1g , q
Tfr2g , . . . , q

TfrKg s P RK . (4)

In CSD (Wu et al., 2022b), the consistency of Sq and Sg is directly constrained to optimize the query
model. However, we argue that it is too strict to be preserved well for the lightweight model with
low capacity. Besides, the user experience is mainly influenced by the rank order of the returned
images rather than the specific similarity scores. Thus, it is better to directly impose the constraint
on the rank order of the returned images rather than the specific similarity scores. Specifically, we
need to ensure the values in Sq are also monotonically decreasing:

qTfr1g ě qTfr2g ě ¨ ¨ ¨ ě qTfrKg . (5)

To this end, we propose two methods to instantiate the rank preserving framework. One aims to
achieve straightforward Rank Order Preservation (ROP) by constraining the consistency of the
sorting results, which are formulated as the indicator matrices in Sec. 4.1. Typically, it is not feasible
to optimize the sorting results directly due to the non-differentiable Heaviside step function (Davies,
1978), which is used for numerical comparison in sorting. Thus, sigmoid function is introduced as
the smooth approximation, which enables the optimization of sorting process with back-propagation
methods. The other is Monotonic Similarity Preservation (MSP), which aims to preserve a learn-
able monotonic mapping relationship between the returned similarity scores Sq and Sg . Specifically,
we learn a monotonically increasing function, which predicts Sq given Sg . Then, the consistency
between the mapped Sg and Sq is restricted to train the query model.

4.1 RANK ORDER PRESERVATION

The motivation of our method is directly preserving the rank order of the returned images between
asymmetric and symmetric retrieval. Thus, the critical problem is to select a suitable evaluation
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metric as the constraint. In this section, we dive into the sorting process and constrain the sorting
results of symmetric and asymmetric retrieval to be consistent.

Sorting process. Sorting the similarity scores between the query and database images is an essential
operation to get the final ranking list in image retrieval. Numerical comparison is the most funda-
mental operation in various sorting algorithms. In this work, we take the comparison sorting as the
sorting algorithm. Assume there exists a list of similarity scores S “ rs1, s2, . . . , sN s P RN needed
to be sorted. We first compute the difference matrix D P RNˆN between any elements in S. Then,
the binary indicator matrix I P RNˆN is calculated by applying the Heaviside step function Hpxq,
which is equal to 0 for negative values, otherwise equal to 1, on the difference matrix D:

D “

»

—

–

s1 . . . sN
...

. . .
...

s1 . . . sN

fi

ffi

fl

´

»

—

–

s1 . . . s1
...

. . .
...

sN . . . sN

fi

ffi

fl

, I “

»

—

–

Hps1 ´ s1q . . . HpsN ´ s1q
...

. . .
...

Hps1 ´ sN q . . . HpsN ´ sN q

fi

ffi

fl

. (6)

Each element Ii,j in the indicator matrix I denotes the relative relationship between the similarity
scores si and sj . Ii,j “ 1, if sj is larger than or equal to si, otherwise, Ii,j “ 0.

Indicator matrix consistency. Since the indicator matrix demonstrates the relative relationships of
similarity scores, we take it as the constraint for optimizing the query model. If the indicator matrix
is well preserved, the asymmetric retrieval will result in the same ranking list as the symmetric
retrieval. Specifically, we take Sg and Sq into Eq. (6) to get the corresponding indicator matrices
Ig P RKˆK and Iq P RKˆK :

Ig “

»

—

–

1 . . . Hp∆K,1
g q

...
. . .

...
Hp∆1,K

g q . . . 1

fi

ffi

fl

“

»

—

–

1 . . . 0
...

. . .
...

1 . . . 1

fi

ffi

fl

, Iq “

»

—

–

1 . . . Hp∆K,1
q q

...
. . .

...
Hp∆1,K

q q . . . 1

fi

ffi

fl

,

(7)
where ∆m,n

l “ Sml ´ Snl , l P tq, gu. Generally, if one gallery image has a higher similarity
score against query image, it is more possible to be the true positive, which deserves more attention
during the training of query model. To this end, we design a ranking weight Wi “ exppSig{τrq{piˆ
řK
l“1 exppSlg{τrqq, i “ 0, 1, . . . ,K, where τr is the temperature. Finally, the weighted indicator

matrix consistency loss is minimized as the final objective function to train the query model:

LROP “

K
ÿ

i“1

Wi

›

›Igi,: ´ Iqi,:
›

›

2

2
“

K
ÿ

i“1

K
ÿ

j“1

WipHp∆
i,j
g q ´Hp∆

i,j
q qq

2. (8)

Heaviside step function approximation. Unfortunately, the derivative of the Heaviside step func-
tion Hpxq is Dirac delta function δpxq, which is either flat everywhere, with zero gradient, or dis-
continuous, and hence cannot be optimized with gradient-based method. Inspired by (Brown et al.,
2020), the sigmoid function σpx, τq “ 1

1`e´ x
τ

, where τ denotes the temperature adjusting the sharp-
ness, is used to approximate the Heaviside step function smoothly. As shown in Fig. 2, the temper-
ature governs the approximation tightness and the gradient-effective interval. Substituting σpx, τq
into Eq. (8), the weighted indicator matrix consistency loss is approximated as:

LROP “

K
ÿ

i“1

K
ÿ

j“1

WipHp∆
i,j
g q ´ σp∆

i,j
q , τqq

2. (9)
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4.2 MONOTONIC SIMILARITY PRESERVATION

In this section, we introduce another method to preserve the rank order. In Fig. 3, we visualize the
distributions of the similarity score pairs sq and sg in existing methods. It is observed that same sg
may correspond to a wide range of values for sq . In other words, the similarity score pairs locate
on wide strips, which means that existing methods do not well preserve the order of the images
returned by symmetric retrieval. We think it is due to the fact that existing methods all impose a
strict one-to-one constraint, which may cause overfitting for the query model with low capacity.

Therefore, we introduce a learnable monotonic mapping function fpxq applied to Sg to form the
pseudo-supervision of Sq . Formally, M i

g “ fpSigq, i “ 1, 2, . . . ,K. This avoids the strict neigh-
bor structure alignment between query and gallery models. After that, the Kullback-Leibler (KL)
divergence, which shows excellent performance in CSD (Wu et al., 2022b), between Mg and Sq is
adopted as the final objective function to optimize the query model. Specifically, we first convert
Mg and Sq into the form of probability distributions:

pig “
exp

`

M i
g{τg

˘

řK
l“1 exp

`

M l
g{τg

˘
, piq “

exp
`

Siq{τq
˘

řK
l“1 exp

`

Slq{τq
˘
, i “ 1, 2, . . . ,K, (10)

where τq and τg are temperature coefficients. Both τq and τg are set less than 1 to keep φqp¨q focus
on the top images of the ranking list. Then, the monotonic similarity preservation loss is defined as

LMSP “ KLppg||pqq “
K
ÿ

i“1

piglogp
pig
piq
q. (11)

To preserve the order of each elements in Sg , we should ensure that the function fpxq is monotoni-
cally increasing. In this work, we consider three common families of the monotonically increasing
functions, which are discussed in the following.

Logarithmic function. Considering that the definition domain of the logarithmic functions is
p0,`8q and the cosine similarity lies between -1 and 1, we define the mapping function as
fpxq “ logapx` 1q, p´1.0 ă x ă 1.0, a ą 1q, where a is a learnable parameter.

Exponential function. Another common monotonically increasing function is the exponential func-
tion. To make each M i

g exist in the range less than 1.0, fpxq is defined as fpxq “ ax´1, p´1.0 ă
x ă 1.0, a ą 1q, where a is also a learnable parameter.

Polynomial function. There are a wide variety of polynomial combinations. In this work, we
consider a simple case. We first choose a set of basis functions X “ txα, x2α, . . . , xNαu, then
the mapping function is defined as linear combinations of those basis functions. Formally, fpxq “
řN
i“1 aix

iα, p´1.0 ă x ă 1.0, α ą 0q, where ta1, a2, . . . , aNu is a set of learnable parameters.
To ensure that fpxq is monotonically increasing, each ai should be greater than 0. Besides, we also
make the sum of ai equal to 1 to control the range of fpxq.

Relation with contextual similarity distillation. In CSD (Wu et al., 2022b), KL loss strictly re-
stricts the consistency between Sg and Sq . When the loss minimum is achieved, a linear relation-
ship τqSg “ τgSq between Sg and Sq is presented. In MSP, when the mapping function is set to
fpxq “ x (diagonal line in Fig. 3), Mg is equal to Sg , the loss function LMSP degrades to the form
in CSD. Thus, CSD is a special case of our monotonic similarity preservation. As shown in Fig. 3,
our MSP method realizes a narrower striped similarity distribution, since it introduces a learnable
monotonically increasing mapping between symmetric and asymmetric similarities. As a result, our
MSP method could preserve the order of the returned images better than CSD.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Training datasets. Two datasets are used for training. One is SfM-120k (Radenović et al., 2018b),
of which 551 3D models are taken for training while the other 162 3D models for validation. The
other is GLDv2 (Weyand et al., 2020), which consists of 1, 580, 470 images with 81, 311 classes.
We randomly sample 80% images from GLDv2 for training and leave the rest 20% for validation.
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Figure 4: Analysis of the length of the ranking list K in our methods. SfM-120k, GeM and
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τ
SfM-120k INSTREROxf + R1MRPar + R1M

val +H Med Hard Med Hard

0.001 67.33 34.13 31.59 12.46 37.11 12.23
0.01 71.16 41.30 34.87 13.96 40.47 14.56
0.05 76.33 59.59 42.08 19.28 46.63 19.36
0.1 77.06 60.75 42.33 19.78 47.72 20.34
0.5 75.46 57.19 41.68 18.83 45.64 18.64
1.0 74.86 55.78 40.94 18.15 44.36 16.99

Table 1: Analysis of temperature τ in Eq. (9). τ
controls the smoothness of the sigmoid function used
to approximate the Heaviside step function.

Wi
SfM-120k INSTREROxf + R1MRPar + R1M

val +H Med Hard Med Hard

1 50.99 25.12 32.73 14.81 34.00 16.85
1{i 75.99 52.57 42.52 20.17 44.76 18.03
Sig 59.43 59.59 36.55 16.27 36.27 16.11
Pi 76.91 58.63 42.73 20.07 47.92 20.11
Pi{i 77.06 60.75 42.33 19.78 47.72 20.34
1 ´ i{K 69.57 31.08 34.95 15.89 44.36 16.99

Table 2: Analysis of ranking weight Wi in
Eq. (9). K: length of the ranking list; Pi denotes
exppSig{τrq{

řK
l“1 exppS

l
g{τrq.

Evaluation datasets and metrics. We evaluate the trained query models on four datasets under
the setting of asymmetric retrieval, including GLDv2-Test (Weyand et al., 2020), Revisited Oxford
with R1M (ROxf + R1M), Revisited Paris with R1M (RPar + R1M) (Radenović et al., 2018a)
and INSTRE (Wang & Jiang, 2015). The evaluation metric for GLDv2-Test is mAP@100, while all
other datasets are mAP. See App. A.1 for the more detailed descriptions of the testing sets.

Architectures. Following the settings in CSD (Wu et al., 2022b), we choose ResNet101 (He
et al., 2016) trained by GeM (Radenović et al., 2018b) and DELG (Cao et al., 2020) as the gallery
models. For the query model, common lightweight models, e.g., ShuffleNets (Ma et al., 2018),
MobileNets (Sandler et al., 2018) and EfficientNets (Tan & Le, 2019), are chosen. To adapt the
lightweight model for the image retrieval task, we adjust the model architecture slightly. The details
are present in App. A.1, with computation and parameter complexity statistics.

5.2 ANALYSIS AND ABLATIONS

In this section, we analyze the proposed rank preserving framework and perform exhaustive ab-
lations. R101 and Mv2 denote ResNet101 and MobileNetV2, respectively. “Ours” and “Ours˚”
denote that we train lightweight query model φqp¨q with ROP and MSP constraints, respectively.

Length K of the ranking list. In Fig. 4, we compare our proposed methods against CSD when
ranking list has different length K P t64, 256, 512, 2048, 4096, 8192u. As the length increases,
the performance increases but saturates when K “ 4096, after which, the performance decreases.
When K is small, the query model only needs to focus on the elements in front of the ranking list,
without taking full advantage of the order information in the ranking list. Thus, the performance
is unsatisfactory. On the contrary, when K is particularly large, the query model is concerned with
a very wide range of elements in the ranking list. Images at the bottom of the ranking list are far
away from the query, their relative orders have almost no effect on the overall retrieval accuracy.
Constraining the query model to preserve the order of this part leads to a decreased performance.

Heaviside step function approximation. In Tab. 1, we investigate the effect of the temperature τ ,
which governs the smoothness of the sigmoid function. Results show that τ “ 0.1 leads to the best
performance over different datasets. As explained in Sec. 4.1, a smaller value of τ leads to a nar-
rower gradient-effective interval (Fig. 2) and a tighter approximation to the Heaviside step function.
The strong acceleration of the gradient around zero encourages moving instances in the embedding
space, leading to a change of rank. However, excessively small τ causes gradient vanishing, which
is harmful to the optimization of the query model. In contrast, a large value of τ provides a wide
gradient-effective interval at the cost of a looser approximation to the true order.
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Figure 5: Analysis of different model architectures. Two on the left: Three typical deep representation mod-
els are chosen as gallery models. (1) DOLG (Yang et al., 2021) based on global and local feature aggregation.
(2) CVNet (Lee et al., 2022) based on global pooling. (3) Token (Wu et al., 2022a) based on local feature
aggregation. MobileNetV2 is adopted as the query model for all settings. Two on the right: GeM serves as
the gallery model, and four lightweight models, including ShuffleNetv2 (0.5ˆ) (Sv20.5ˆ), ShuffleNetv2 (Sv2),
EfficientNetB0 (Eb0) and EfficientNetB1 (Eb1), are chosen as query models, respectively.

Method Training GLDv2 INSTRE ROxf + R1M RPar + R1M
dataset T -Test +H +D1M Med Hard Med Hard

Reg
GLDv2
-index

12.11 60.88 51.62 40.34 18.15 46.91 19.77
CSD 14.55 64.51 55.77 46.02 21.85 52.05 24.13
Ours 15.01 65.70 56.74 47.57 23.33 53.44 25.01
Ours˚ 15.30 65.36 57.77 47.76 23.12 53.12 25.43

Reg
INSTRE:

+ D1M

11.22 69.34 59.44 38.76 16.72 44.24 17.29
CSD 13.00 71.86 62.83 44.95 21.09 49.07 21.94
Ours 14.27 75.30 64.50 46.75 22.74 51.59 23.87
Ours˚ 14.06 73.89 64.18 46.08 22.12 51.10 23.13

Reg ROxf:

+ RPar:

+ R1M

12.54 61.41 51.67 42.19 19.23 47.31 19.46
CSD 14.19 65.65 57.81 46.81 21.70 53.06 25.88
Ours 14.85 67.39 60.78 49.83 23.97 54.46 27.29
Ours˚ 14.31 68.05 61.42 50.77 24.96 55.03 27.56

Table 4: Comparison of different unsupervised meth-
ods trained on the deployed gallery set. : denotes the
gallery set of that testing dataset. MobileNetV2 and GeM
are adopted as query and gallery models, respectively.
Reg: (Budnik & Avrithis, 2021); CSD: (Wu et al., 2022b).

Method Query Gallery GLDv2 INSTRE
Net φqp¨qNet φgp¨q -Test +H +D1M

GeM R101 R101 14.47 71.23 64.10
Contr˚

Mv2 R101

9.44 28.05 15.93
Reg 10.58 34.96 23.06
CSD 11.81 58.22 46.84
Ours 12.35 60.81 50.96
Ours˚ 13.33 60.86 49.72
DELG R101 R101 26.77 37.54 31.66
Reg

Mv2 R101

21.59 21.84 13.88
HVS 21.99 22.80 14.71
LCE 22.42 23.85 15.91
CSD 23.45 22.34 15.44
Ours 23.86 29.93 21.76
Ours˚ 25.44 34.34 26.58

Table 5: Comparison to the state-of-the-
art methods on INSTRE and GLDv2-
Test. Contr˚: (Budnik & Avrithis,
2021); HVS: (Duggal et al., 2021);
LCE: (Meng et al., 2021).

Rank weight W in Eq. (9). Tab. 2 shows the impact of different ranking weight W . When no
weight is used, i.e., Wi “ 1, it leads to unsatisfactory results, and the best results are obtained when
both similarity score Si and ranking position i are considered, simultaneously. Since the images at
bottom of the ranking list are more likely dissimilar from the queries, keeping the order between
them wastes the representation capability of the query model. It should focus more on the order of
samples at the top of the ranking list.

Various query and gallery models. In Fig. 5, we study the adaptation to different model architec-
tures. Specifically, models with different architectures are adopted as gallery and query models. See
App. A.1 for the number of parameter and computation complexity of different models in details.
Our methods outperform CSD in all settings, demonstrating the superiority of rank preserving to the
strict neighbor structure alignment.

fpxq
SfM-120k INSTRE ROxf + R1MRPar + R1M

val Med Hard Med Hard

ax´1 77.83 62.69 43.32 20.51 47.94 20.66
logapx` 1q 78.94 60.61 44.24 20.93 48.13 21.45
ř6
i“1 aix

i{2 78.49 60.86 43.47 20.20 47.56 20.33
ř9
i“1 aix

i{3 78.07 59.17 42.20 19.45 47.84 20.34

Table 3: Analysis of different mapping functions. SfM-
120k, MobileNetV2 and GeM are adopted as training set,
query and gallery models, respectively.

Impact of the mapping function fpxq. In
Tab. 3, we study three different types of
mapping functions introduced in Sec. 4.2.
The specific parameters of each function
are present in App. C.2. We further visual-
ize the distribution of the similarity scores
obtained from three mapping functions in
App. D.3. The logarithmic function fits the
distribution best and thus leads to the opti-
mal asymmetric retrieval accuracy.

Training with unlabeled data. Since our methods require no annotations from training set, various
unlabeled data can be utilized. In practical scenarios, the deployed gallery images can be utilized
to train lightweight query models. Notably, query images, which are unknown in advance, cannot
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Method Query Gallery ROxf ROxf + R1M RPar RPar + R1M
Net φqp¨q Net φgp¨q Medium Hard MediumHard Medium Hard Medium Hard

Performances of the gallery models
GeM;

(Radenović et al., 2018b) Mv2 Mv2 58.81 33.41 40.02 17.71 67.87 40.97 42.25 16.59
GeM;

(Radenović et al., 2018b) R101 R101 65.43 40.13 45.23 19.92 76.75 55.24 52.34 24.77

DELG; (Cao et al., 2020) Mv2 Mv2 62.42 36.56 42.21 18.64 77.91 57.96 55.09 28.81
DELG; (Cao et al., 2020) R101 R101 78.55 60.89 66.02 41.75 88.58 76.05 73.65 51.46

Training with GeM as gallery model and SfM-120k as training set
Contr˚(Budnik & Avrithis, 2021)

Mv2 R101

47.10 21.80 18.00 6.20 61.50 37.70 28.80 8.80
Reg (Budnik & Avrithis, 2021) 49.20 23.20 26.50 7.80 65.00 40.70 34.60 12.70
CSD (Wu et al., 2022b) 64.12 37.53 39.38 17.73 76.16 54.29 44.40 18.08
Ours 64.33 39.65 42.33 19.72 76.33 54.65 47.78 20.69
Ours˚ 65.22 39.50 43.47 20.20 76.31 54.82 47.56 20.33

Training with DELG as gallery model and GLDv2 as training set
Reg (Budnik & Avrithis, 2021)

Mv2 R101

72.75 53.07 56.03 32.21 85.81 69.96 65.23 39.29
HVS (Duggal et al., 2021) 74.39 54.68 58.24 34.77 86.86 72.42 67.44 43.39
LCE (Meng et al., 2021) 75.45 54.95 58.03 33.88 87.24 73.03 67.30 43.01
CSD (Wu et al., 2022b) 76.01 57.61 58.42 36.59 87.55 74.82 69.24 45.68
Ours 79.11 59.44 64.34 39.19 89.08 76.78 72.00 48.47
Ours˚ 77.55 58.54 64.18 40.19 88.74 76.04 71.04 48.65

Table 6: comparison (asymmetric retrieval) to the state-of-the-art methods. ;: the same gallery
models as comparison methods; R101: ResNet101; Mv2: MobileNetV2; Black bold: the best
performance. See App. B for more comparisons.

participate in the training. In Tab. 4, compared with two other unsupervised algorithms Reg and
CSD, our methods achieve the optimal performance. Besides, it shows that when evaluating on
a test set, the model trained with the corresponding gallery images leads to better performance.
Except for the experiments present in Tab. 4, there is no experiment in the paper, which uses the
gallery images from the testing sets to participate in the training.

5.3 COMPARISON TO THE STATE-OF-THE-ART METHODS

We compare our method to the state-of-the-art methods in Tab. 5 and Tab. 6. First, we observe that
methods based on feature imitation, e.g., Reg, give inferior asymmetric retrieval performance. CSD
achieves better results, owing to taking feature preservation and neighbor structure alignment into
consideration, simultaneously. Our methods maintain the order of the returned images in ranking
list, which is directly related to user experience. It achieves the best performance on all evaluation
datasets under the asymmetric setting. When trained with GeM as gallery model and SfM-120k as
training set, our framework outperforms the best previous method CSD in mAP by 4.09%, 2.47% on
ROxf + R1M and 3.16%, 2.25% on RPar + R1M, with Medium and Hard protocols, respectively.
The results on INSTRE and GLDv2-Test also confirm the superiority of our methods.

6 CONCLUSIONS

In this paper, we present a general rank preserving framework for asymmetric image retrieval. Dif-
ferent from strictly feature imitation and neighbor structure alignment, we focus on preserving the
order of the returned images in the ranking list when the same query is utilized for symmetric and
asymmetric retrieval, respectively. To this end, we devise two instantiations. One is directly con-
straining the consistency of the sorting results. To make sorting differentiable, sigmoid function is
introduced as the smooth approximation for the non-differentiable Heaviside step function used in
sorting. The other aims to preserve a monotonic relationship between the returned similarity scores
of symmetric and asymmetric retrieval. It introduces a learnable monotonically increasing function
to the similarity scores of the symmetric retrieval, which is considered the target of the asymmetric
similarity scores. The proposed framework requires no annotation or labels during training, which
shows broad applicability and great generalizability in our extensive experiments.
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Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. Sodeep: A sorting deep net to learn
ranking loss surrogates. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-to-end learning of deep visual representa-
tions for image retrieval. International Journal of Computer Vision (IJCV), pp. 237–254, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff. Hashing as tie-aware learning to rank. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018a.

10



Published as a conference paper at ICLR 2023

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC : Automl for model compres-
sion and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 784–800, 2018b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Yuge Huang, Jiaxiang Wu, Xingkun Xu, and Shouhong Ding. Evaluation-oriented knowledge distillation for
deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18740–18749, 2022.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Teddy Furon, and Ondrej Chum. Efficient diffusion on region
manifolds: Recovering small objects with compact cnn representations. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 2077–2086, 2017.
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Appendix
In this appendix, we firstly present the pseudo-code of our methods, more details about training,
testing and model architectures (App. A). Then, we conduct more comparisons (App. B) to demon-
strate the superiority of our methods in various settings. Finally, more extended ablations (App. C)
are conducted for an in-depth understanding of our framework (App. D).

Algorithm 1 Pseudo-code of Rank Preserving Framework in a PyTorch-like style.

# gallery_model: well-trained and fixed encoder for gallery set, no gradient
# query_model: lightweight query encoder, with gradient
# topk: the length of ranking list, K in Equ.(5)
# gallery_feats: features of the training gallery set, embedded by gallery model

for x in training_loader: # load a mini-batch x with N samples from training set
with torch.no_grad(): # Symmetric retrieval, Sec. 4

gallery_feat = gallery_model.forward(x) # tensor shape: NxD
gallery_sim = einsum(’bc,kc->bk’, gallery_feat, gallery_feats)
gallery_sim, topk_index = topk(gallery_sim, topk, dim=-1)

# Asymmetric retrieval, Sec. 4
query_feat = query_model.forward(x)
query_sim = einsum(’bc,kc->bk’, query_feat, gallery_feats)
query_sim = gather(query_sim, dim=-1, topk_index) # \bm{S}_g shape: Nxtopk

# two instantiations of the rank preserving framework
loss = rank_order_preservation(gallery_sim, query_sim)
or loss = nonlinear_similarity_preservation(gallery_sim, query_sim)

# SGD update: query model
loss.backward()
update(query_model.params)

def sigmoid(x, tau):
y = 1.0 / (1.0 + exp(-x / tau))
return y

def rank_order_preservation(sim_g, sim_q): # Rank Order Preservation
# Indicator matrix \bm{I}_g, Equ. (8)
sim_g_repeat = sim_g.unsqueeze(1).repeat(1, topk, 1)
sim_g_diff = sim_g_repeat - sim_g_repeat.permute(0, 2, 1)

# pass through the sigmoid
I_g = sigmoid(sim_g_diff, 0.000001) # tesnor shape: Bxtopkxtopk

# rank weights \bm{W}
sim_weight = softmax(sim_g * tau_r, dim=-1) # tensor shape : Bxtopk
position_weight = arange(start=0, end=topk) + 1.0 # tensor shape : Bxtopk
rank_weight = (sim_weight * position_weight).unsqueeze(-1)

# Indicator matrix \bm{I}_q, Equ (8)
sim_q_repeat = sim_q.unsqueeze(1).repeat(1, topk, 1)
sim_q_diff = sim_q_repeat - sim_g_repeat.permute(0, 2, 1)

# pass through the sigmoid
I_q = sigmoid(sim_q_diff, tua) # tua: \tua in Equ. (10)
return sum(pow(I_g - I_q,2) * rank_weight,dim=(-1,-2)).mean()

def monotonic_similarity_preservation(sim_g, sim_q): # Monotonic Similarity
Preservation
sim_g_mapped = f(sim_g) # f(x) is the mapping function in Sec. 4.2
p_g = softmax(sim_g_mapped * tau_g, dim=-1) # tensor shape: Bxtopk
p_q = softmax(sim_q * tau_g, dim=-1).log() # tensor shape: Bxtopk
return kl_div(p_q, p_g, reduction=’mean’)

einsum: einstein summation convention; gather: gather values along an axis; cat: concatenation; softmax: softmax function.
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Query
Net φqp¨q

Gallery
Net φgp¨q

FLOPs (G) Param. (M)

ABS % ABS %

ResNet101 ResNet101 42.85 100.0 42.50 100.0

ShuffleNetV2 (0.5ˆ)

ResNet101

0.84 1.96 2.44 5.74
ShuffleNetV2 1.44 3.36 3.35 7.88
MobileNetV2 2.50 5.83 4.85 11.41
EfficientNetB0 2.86 6.67 6.63 15.60
EfficientNetB1 3.92 9.15 9.13 21.49
EfficientNetB2 4.50 10.51 10.58 24.90
EfficientNetB3 6.24 14.57 13.84 32.56

Table 7: The number of parameters and the compu-
tational complexity (in FLOPs) of query models used
in this work. To adapt for image retrieval, all layers
except feature extractor are removed. A convolutional
layer is added to the feature extractor for matching the
output dimension of the gallery model. (0.5ˆ) denotes
a model with 0.5ˆ width.

Feature extractor

Several FC layers

Classification layer

Global pooling

X

1 C1

1 C2

Feature extractor

GeM pooling

Whitening layer

Convolutional layer

X

H W C1

(a) Classification (b) Image retrieval

H W C1

1 C3

H W Ci

1 Ci

1 Ci

Figure 6: Model architecture comparison
of classification and image retrieval task.

A IMPLEMENTATION DETAILS

In Alg. 1, we demonstrate the pseudo-code of our methods. All the training and evaluation datasets
are publicly available, and the splits have been carefully described in Sec. 5. Training and testing
details are present at App. A.1.

A.1 EXPERIMENT SETTINGS

Training Details. When SfM-120k is adopted for training, we follow the common settings in
AML (Budnik & Avrithis, 2021). Training images are resized with the maximum side equal to
512, keeping the aspect ratio. No data augmentation is adopted. Training epochs and batch size are
set as 10 and 64, respectively. The query model is trained on one NVIDIA RTX 3090 GPU. When
using GLDv2 as the training set, 512 ˆ 512 pixels are center cropped from the randomly resized
image. Random color jittering is adopted as the data augmentation. We train the query model on
4 NVIDIA RTX 3090 GPUs for 10 epochs with a batch size of 256. All models are optimized us-
ing Adam with an initial learning rate of 10´3 and a weight decay of 10´6. A linearly decaying
scheduler is adopted to gradually decay the learning rate to 0 when the desired number of steps is
reached. When query model is trained with Rank Order Preservation (Sec. 4.1), the length K of
ranking list is set to 4096, and the temperature coefficient τr in ranking weight Wi is set as 0.2. As
for Monotonic Similarity Preservation (Sec. 4.2), K is also set as 4096, and both τg and τq are set
to 0.1. The gallery set Gt, used during training, is the same as training dataset in all cases.

Details about Testing Datasets. GLDv2-Test contains 761, 757 gallery images and 750 queries,
with evaluation metric of mAP@100. As for ROxf and RPar, there are 70 queries for both of them,
with 4, 993 and 5, 007 gallery images, respectively. mAP on the Medium (Med) and Hard settings
are reported. Large-scale results are reported with the R1M (Radenović et al., 2018a) dataset added,
which contains 1M distractor images. The last corpus is INSTRE (Wang & Jiang, 2015), which
contains various everyday 3D or planar objects from buildings to book covers in natural scenes. We
follow the data partitioning proposed by Iscen et al. (2017) with 1, 250 queries and 27, 293 gallery
images. mAP is reported with another 1M distractor images D1M added into the gallery or not.

Model Architecture Details. In Fig. 6, we show the typical differences in the model architecture
for the classification task and image retrieval task. To obtain better transfer performance, most of
the models are pre-trained on ImageNet (Deng et al., 2009) with category labels. These models
usually consist of a feature extractor, a global mean pooling, several fully-connected layers, and a
classification layer. To adapt these models for the image retrieval task, we keep only the feature ex-
tractor and discard the other layers. After that, GeM pooling (Radenović et al., 2018b) is adopted for
aggregating the feature map output by the feature extractor. Finally, a whitening layer, implemented
by a fully-connected layer, is adopted to obtain the final global feature. Notably, the whitening layer
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Method Query Gallery ROxf ROxf + R1M RPar RPar + R1M
NET φqp¨q NET φgp¨q Medium Hard Medium Hard Medium Hard Medium Hard

Performances of the gallery models
GeM;

(Radenović et al., 2018b) Eb3 Eb3 54.22 27.53 37.10 17.49 71.21 48.00 44.67 18.45
GeM;

(Radenović et al., 2018b) R101 R101 65.43 40.13 45.23 19.92 76.75 55.24 52.34 24.77

DELG; (Cao et al., 2020) Eb3 Eb3 66.64 43.82 49.67 24.89 81.78 63.90 61.10 32.34
DELG; (Cao et al., 2020) R101 R101 78.55 60.89 66.02 41.75 88.58 76.05 73.65 51.46

Training with GeM as gallery model and SfM-120k as training set
Contr˚(Budnik & Avrithis, 2021)

Eb3 R101

45.20 19.60 24.70 12.20 63.70 40.90 32.80 12.50
Reg (Budnik & Avrithis, 2021) 52.90 27.80 29.70 10.40 65.20 42.40 39.00 16.00
CSD (Wu et al., 2022b) 65.16 38.62 43.05 18.81 75.94 53.05 46.76 19.43
Ours 65.44 39.36 45.33 21.50 76.35 54.77 52.07 24.10

(mAP gains over CSD) (Ò 0.28) (Ò 0.74) (Ò 2.28) (Ò 2.69) (Ò 0.41) (Ò 1.72) (Ò 5.31) (Ò 4.67)
Ours˚ 66.26 39.83 46.20 21.39 76.33 53.68 50.65 22.97

(mAP gains over CSD) (Ò 1.10) (Ò 1.21) (Ò 3.15) (Ò 2.58) (Ò 0.39) (Ò 0.53) (Ò 3.89) (Ò 3.54)

Training with DELG as gallery model and GLDv2 as training set
Reg (Budnik & Avrithis, 2021)

Eb3 R101

74.60 53.41 59.88 33.31 83.81 68.15 59.36 35.24
HVS (Duggal et al., 2021) 76.41 56.13 62.72 36.86 87.07 74.53 71.54 49.09
LCE (Meng et al., 2021) 75.89 55.21 61.90 36.53 86.63 73.62 70.98 48.94
CSD (Wu et al., 2022b) 77.44 58.97 63.21 38.20 87.94 75.68 73.37 50.09
Ours 80.23 62.60 65.40 40.93 89.35 77.35 73.45 50.33

(mAP gains over CSD) (Ò 2.79) (Ò 3.63) (Ò 2.19) (Ò 2.73) (Ò 1.41) (Ò 1.67) (Ò 0.08) (Ò 0.24)
Ours˚ 80.60 62.45 66.21 40.86 89.36 76.78 74.24 51.05

(mAP gains over CSD) (Ò 3.16) (Ò 3.48) (Ò 3.00) (Ò 2.66) (Ò 1.42) (Ò 1.10) (Ò 0.87) (Ò 0.94)

Table 8: mAP (asymmetric retrieval) comparison to the state-of-the-art methods. DELG and
GeM are trained with SfM-120k and GLDv2, respectively. ;: gallery models are the same as compar-
ison methods; R101: ResNet101; Eb3: EfficientNetB3. Black bold denotes the best performance.

is pre-trained in the embedding space of the gallery model and remains fixed during the training of
the query model. In Tab. 7, we show the number of parameters and computational complexity (in
FLOPS) of different networks, all modified for the retrieval task, when the size of the input image is
362 ˆ 362. Compared with large models, lightweight models significantly reduce the computation
during inference phase. Thus, they can be used in various resource-constrained scenarios.

Testing Details. During testing, as for ROxf and RPar datasets, we resize images so that the larger
dimension is equal to 1024 pixels and preserve the aspect ratio. Besides, the image features are
extracted at three scales, i.e., t1{

?
2, 1,

?
2u. We perform L2 normalization for each scale indepen-

dently and the features of three scales are averaged, followed by another L2 normalization. Under
the asymmetric retrieval setting, queries are embedded with the lightweight query model φqp¨q,
while the gallery images are embedded by a large model φgp¨q.

B EXTENDED COMPARISONS

B.1 DIFFERENT QUERY MODEL

In this section, we perform more extensive comparisons with existing methods. Specifically, in
Tab. 8, we take EfficientNetB3 as the lightweight query model. The performance of asymmetric
retrieval improves as the capacity of the query model becomes larger (compared with the accuracy
of MobileNetV2 in Tab. 6). Our proposed methods achieve optimal performance in various settings,
with the performance of asymmetric retrieval being almost comparable to that of symmetric retrieval.

B.2 DIFFERENT GALLERY MODEL

In Tab. 9, we further extend the experiments in Fig. 5 in the main paper. Three recent deep repre-
sentation models are adopted to embed gallery images. (1) Token (Wu et al., 2022a) based on local
feature aggregation. (2) CVNet (Lee et al., 2022) based on global pooling. (3) DOLG (Yang et al.,
2021) based on local and global feature fusion. Our methods achieve the best performance across
various settings, which demonstrates the generalization of them.
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Method Query Gallery ROxf ROxf + R1M RPar RPar + R1M
NET φqp¨q NET φgp¨q Medium Hard MediumHard Medium Hard Medium Hard

Performances of the gallery models
Token; (Wu et al., 2022a)

R101 R101
82.16 65.75 70.58 47.46 89.40 78.44 77.24 56.81

CVNet; (Lee et al., 2022) 80.01 62.83 74.25 54.56 90.18 79.01 80.82 62.74
DOLG; (Yang et al., 2021) 82.37 64.94 75.19 53.55 90.97 81.71 82.28 66.45

Traing with Token as gallery model
Reg: (Budnik & Avrithis, 2021)

Mv2 R101

71.67 50.92 59.55 35.41 83.26 69.48 63.98 42.93
HVS: (Duggal et al., 2021) 73.16 53.19 57.68 35.52 84.27 71.43 62.90 41.00
LCE: (Meng et al., 2021) 74.82 56.40 61.57 39.43 84.09 71.88 65.70 43.86
CSD: (Wu et al., 2022b) 75.52 56.83 63.46 39.01 84.50 70.73 65.93 43.77
Ours 77.22 57.33 65.87 40.97 85.51 71.95 67.88 44.87
Ours˚ 76.99 57.35 66.00 41.24 86.35 73.69 70.37 48.89

Training with CVNet as gallery model
Reg: (Budnik & Avrithis, 2021)

Mv2 R101

74.60 53.41 59.88 33.31 83.81 68.15 59.36 35.24
HVS: (Duggal et al., 2021) 74.90 55.17 62.32 42.66 84.92 71.62 67.13 46.80
LCE: (Meng et al., 2021) 75.95 57.87 63.77 43.37 83.66 69.71 66.44 46.72
CSD: (Wu et al., 2022b) 76.44 58.41 64.42 43.90 85.32 71.61 68.32 47.76
Ours 76.62 59.48 66.49 46.26 86.48 73.58 72.89 53.11
Ours˚ 77.92 60.83 68.68 47.04 87.81 75.62 75.16 55.97

Training with DOLG as gallery model
Reg: (Budnik & Avrithis, 2021)

Mv2 R101

69.04 48.00 56.81 35.51 79.13 63.13 60.22 42.59
HVS: (Duggal et al., 2021) 72.79 54.20 63.29 41.74 85.18 70.72 68.13 48.25
LCE: (Meng et al., 2021) 72.84 53.70 61.90 40.84 85.77 69.54 67.65 48.53
CSD: (Wu et al., 2022b) 75.53 56.23 64.02 42.79 86.34 72.84 69.29 49.47
Ours 77.67 59.87 67.40 44.93 87.19 73.64 70.91 52.38
Ours˚ 78.46 60.74 66.98 43.84 87.81 74.72 72.18 53.63

Table 9: Extend mAP (asymmetric retrieval) comparison to the state-of-the-art methods with
different gallery models. All the models are trained with GLDv2. ;: re-evaluate the official public
weights; :: our re-implementation. R101: ResNet101; Mv2: MobileNetV2. Black bold denotes the
best performance.

C ADDITIONAL ABLATIONS

C.1 IMPACT OF DISTANCE TYPE

In Rank Order Preservation (Sec. 4.1), the weighted mean square error is token as the final objec-
tive function to train the query model end to end. In the section, we explore an alternative to measure
the distance between the Indicator matrices Ig and Iq . Specifically, we convert each row of Ig and
Iq into the form of probability distribution:

Pgi,j “
exp

`

Igi,j{τg
˘

řK
l“1 exp

´

Igi,l{τg

¯ , Pqi,j “
exp

`

Iqi,j{τq
˘

řK
l“1 exp

´

Iqi,l{τq

¯ , i “ 1, 2, ¨ ¨ ¨ ,K, (12)

where τg and τq are the temperatures. Then, the distance between two indicator matrices is defined
as the KL divergence of two distributions:

LROP “

K
ÿ

i“1

K
ÿ

j“1

WiPgi,j logp
Pgi,j
Pqi,j

q. (13)

As for Monotonic Similarity Preservation (Sec. 4.2), we try to use the L2 distance to measure the
inconsistency between the mapped similarity scores Mg and the asymmetric similarity scores Sq .
Then, Eq. (11) is defined as

LMSP “ }Mg ´ Sq}
2
2 “

K
ÿ

i“1

pM i
g ´ Siqq

2. (14)
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Gallery Loss function GLDv2-Test INSTRE ROxf + R1M RPar + R1M
Net φgp¨q +H + D1M Med Hard Med Hard

GeM Eq. (12) 13.33 59.83 50.98 42.49 19.99 48.05 20.15
Eq. (9) 12.35 60.81 50.96 42.33 19.78 47.72 20.34

DELG Eq. (12) 24.92 35.67 25.05 64.23 39.65 70.90 48.18
Eq. (9) 23.86 29.93 21.76 64.34 39.19 72.00 48.47

(a) Query model φqp¨q is trained by Rank Order Preservation (Sec. 4.1).

Gallery Loss function GLDv2-Test INSTRE ROxf + R1M RPar + R1M
Net φgp¨q +H + D1M Med Hard Med Hard

GeM Eq. (14) 12.79 60.95 52.48 43.00 20.83 48.46 20.63
Eq. (11) 13.33 60.86 49.72 43.47 20.20 47.56 20.33

DELG Eq. (14) 25.02 35.21 27.50 64.75 42.18 71.13 48.74
Eq. (11) 25.44 34.34 26.58 64.18 40.19 71.04 48.65

(b) Query model φqp¨q is trained by Monotonic Similarity Preservation (Sec. 4.2).

Table 10: mAP (asymmetric retrieval) comparison of different distance types. SfM-120k and
GLDv2 are adopted for training the query model when GeM and DELG serve as the gallery model,
respectively. MobileNetV2 is adopted as the query model.

Map func. SfM-120k INSTRE ROxf + R1MRPar + R1M
val Med Hard Med Hard

Logarithmic function
log2.2px` 1q 78.26 57.90 41.31 18.52 46.13 19.21
log2.4px` 1q 78.12 60.19 42.84 19.59 47.83 19.89
logepx` 1q 78.94 60.61 44.24 20.93 48.13 21.45
log3px` 1q 77.98 60.05 42.60 19.61 48.49 20.38
:log2.99px` 1q 78.24 60.49 43.01 20.51 48.52 20.69

Exponential function
6x´1 76.59 61.17 41.79 19.32 46.29 19.39
8x´1 77.55 62.21 43.08 19.77 47.78 19.89
10x´1 77.83 62.69 43.32 20.51 47.94 20.66
12x´1 77.61 62.63 43.20 20.14 47.82 20.48

:10.69x´1 77.47 62.15 43.13 19.72 47.76 20.20

Table 11: Ablation on different mapping functions.
: denotes that the base is learned from the data dis-
tribution, otherwise is determined artificially in ad-
vance. MobileNetV2 and GeM are adopted as query
and gallery models, respectively.

Map func. SfM-120k INSTRE ROxf + R1MRPar + R1M
val Med Hard Med Hard

Polynomial function
ř2
i“1 aix

i{2 75.65 54.55 39.88 18.08 44.87 18.34
ř4
i“1 aix

i{2 78.05 58.21 42.13 19.76 46.74 19.56
ř6
i“1 aix

i{2 78.49 60.86 43.47 20.20 47.56 20.33
ř3
i“1 aix

i{3 76.19 56.39 38.27 17.40 43.92 17.76
ř6
i“1 aix

i{3 77.47 58.05 42.41 19.31 46.16 19.85
ř9
i“1 aix

i{3 78.07 59.17 42.20 19.45 47.84 20.34
ř4
i“1 aix

i{4 76.63 53.99 40.25 17.76 44.23 17.62
ř8
i“1 aix

i{4 77.22 58.33 41.02 18.29 45.93 18.81
ř12
i“1 aix

i{4 77.94 59.02 42.18 19.84 46.43 19.32

Table 12: Ablation on different mapping functions.
Polynomial function is adopted as the mapping func-
tion. MobileNetV2 and GeM are adopted as query and
gallery models, respectively.

The comparison of different distance type are summarized in Tab. 10, the performance of various
loss types are similar, which shows that rank preserving is the key to achieve superior performance
rather than a specific consistency loss.

C.2 IMPACT OF THE UPDATE FUNCTION

In Tab. 11 and Tab. 12, we show an extend version of Tab. 3 in the main paper, where the specific
parameter values are given. As for the logarithmic and exponential functions, we also consider
manually defining the bases of the mapping functions. As shown in Tab. 11, both learnable bases
and manual defined bases lead to similar results. For the polynomial functions, we consider various
settings of the basis functions, i.e., tx1{2αu6α“1,tx1{3αu9α“1,tx1{4αu12α“1. Note that the parameters
ta1, a2, ¨ ¨ ¨ , aNu in this case are all learned from the data distribution. It can be seen that superior
performance is achieved with various settings of the basis functions when the order of the basis
functions is properly chosen.

C.3 EXTENDED ABLATION ON TRAINING DATASETS

In this section, we study the scalability of our framework. we randomly sample different number of
images from GLDv2 dataset for training. As shown in Tab. 13, more training data leads to better
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Gallery Training Image GLDv2-Test INSTRE ROxf + R1M RPar + R1M
Net φgp¨q Set T Numbers +H + D1M Med Hard Med Hard

GeM
SfM-120k 91, 642 12.35 60.81 50.96 39.65 19.78 47.72 20.34

GLDv2 (ˆ0.1) 128, 078 14.16 59.29 48.75 44.24 20.18 49.64 21.93
GLDv2 (ˆ0.2) 256, 156 14.62 61.06 51.57 45.95 22.34 51.33 23.57
GLDv2 (ˆ0.4) 512, 312 14.77 62.90 54.00 47.01 23.61 53.16 25.47

DELG

SfM-120k 91, 642 18.62 23.89 14.49 52.08 30.54 59.63 33.86
GLDv2 (ˆ0.1) 128, 078 23.39 28.64 22.19 61.99 38.87 67.83 46.25
GLDv2 (ˆ0.2) 256, 156 24.14 29.28 22.53 62.31 39.40 68.14 46.80
GLDv2 (ˆ0.4) 512, 312 24.79 32.48 25.70 63.23 40.23 69.40 47.21

(a) Query model φqp¨q is trained by Rank Order Preservation (Sec. 4.1).

Gallery Training Image GLDv2-Test INSTRE ROxf + R1M RPar + R1M
Net φgp¨q Set T Numbers +H + D1M Med Hard Med Hard

GeM
SfM-120k 91, 642 13.33 60.86 49.72 43.47 20.20 47.56 20.33

GLDv2 (ˆ0.1) 128, 078 14.13 62.41 53.42 46.88 22.53 51.41 23.48
GLDv2 (ˆ0.2) 256, 156 14.40 63.82 55.32 47.15 23.16 52.96 25.35
GLDv2 (ˆ0.4) 512, 312 14.86 65.26 57.48 48.90 23.97 53.17 25.91

DELG

SfM-120k 91, 642 19.07 25.12 13.35 52.19 28.35 56.19 30.03
GLDv2 (ˆ0.1) 128, 078 24.12 32.42 24.16 60.20 37.72 67.84 45.69
GLDv2 (ˆ0.2) 256, 156 24.27 33.02 25.34 62.31 38.66 68.23 46.41
GLDv2 (ˆ0.4) 512, 312 24.63 33.76 26.33 63.45 39.52 69.47 47.67

(b) Query model φqp¨q is trained by Monotonic Similarity Preservation (Sec. 4.2).
Table 13: mAP (asymmetric retrieval) comparison of different training dataset size. We randomly
sample some images from the original training datasets to form the new training set ,where (ˆx)
denotes the proportion. MobileNetV2 is adopted as the query model φqp¨q.

Gallery Training GLDv2-Test ROxf + R1M RPar + R1M
Net φgp¨q Set T Med Hard Med Hard

Token GLDv2 27.12 65.87 40.97 67.88 44.87
ROxf: + RPar: + R1M 26.33 66.95 42.26 74.63 53.16

CVNet GLDv2 28.68 66.49 46.26 72.89 53.11
ROxf: + RPar: + R1M 26.39 69.58 48.39 78.32 59.22

DOLG GLDv2 25.16 67.40 44.93 70.91 52.38
ROxf: + RPar: + R1M 24.73 68.83 46.41 75.21 55.2

(a) Query model φqp¨q is trained by Rank Order Preservation (Sec. 4.1).

Gallery Training GLDv2-Test ROxf + R1M RPar + R1M
Net φgp¨q Set T Med Hard Med Hard

Token GLDv2 27.55 66.00 41.24 70.37 48.89
ROxf: + RPar: + R1M 26.17 66.37 41.89 73.85 52.28

CVNet GLDv2 28.57 68.68 47.04 75.16 55.97
ROxf: + RPar: + R1M 26.05 68.51 47.08 78.50 59.26

DOLG GLDv2 26.25 66.98 43.84 72.18 53.63
ROxf: + RPar: + R1M 24.96 69.11 44.69 77.34 59.14

(b) Query model φqp¨q is trained by Monotonic Similarity Sreservation (Sec. 4.2).
Table 14: Extended experiments about training on the deployed gallery set. The query sets for all
test sets are not involved in training. : denotes the gallery set of that testing dataset. MobileNetV2
is adopted as query models.

performance across all settings. In Tab. 13, we conduct more experiments with unlabeled gallery
set for training. When evaluating on a deployed database, training on it is always better than on a
collected training dataset, which is also confirmed by Tab. 14 in the main paper.
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Figure 7: Performance versus inference computation complexity when varying the size of input image.
MobileNetV2 and GeM are adopted as query and gallery models, respectively. Query features are extracted as
the original single scale. The x-axis represents the average FLOPs (G) for five inferences, which is proportional
to the size of the image. We resize the queries to t0.2, 0.4, 0.6, 1{

?
2, 0.8, 1.0,

?
2u of the original size (1024ˆ

768).

D ANALYSIS AND DISCUSSIONS

D.1 INFERENCE COMPUTATION

During testing, we follow the common settings to use multi-scale feature extraction, which greatly
aggravates the inference computation of the query model. The inference computation is mainly re-
lated to the complexity of the model and the size of the test image. In this section, MobileNetV2
is adopted as query model. We use single-scale feature extraction and vary the image size to study
the relationship between inference computation and asymmetric retrieval accuracy. The results are
shown in Fig. 7, the asymmetric retrieval accuracy increases and saturates as the inference computa-
tion increases. In a practical application scenario, we should choose the appropriate test image size
to achieve a balance between efficiency and accuracy.

Gallery Loss function GLDv2-Test INSTRE ROxf + R1M RPar + R1M
Net φgp¨q +H + D1M Med Hard Med Hard

GeM
Eq.(11) 13.33 60.86 49.72 43.47 20.20 47.56 20.33
Eq.(9) 12.35 60.81 50.96 42.33 19.78 47.72 20.34

λ1Eq.(9) + λ2Eq.(11) 12.71 61.56 53.36 43.27 20.55 48.86 20.91

DELG
Eq.(11) 25.44 34.34 26.58 64.18 40.19 71.04 48.65
Eq.(9) 23.86 29.93 21.76 64.34 39.19 72.00 48.47

λ1Eq.(9) + λ2Eq.(11) 24.84 34.84 26.56 64.56 40.79 71.64 48.02

Table 15: Ablation on the combination of different training losses. SfM-120k and GLDv2 are
adopted for training the query model when GeM and DELG serve as the gallery model, respectively.
MobileNetV2 is adopted as the query model.

D.2 COMBINE TWO INSTANTIATIONS

In this section, we try to combine the two instantiation methods proposed in the main paper. As
shown in Tab. 15, the simple combination fails to bring further performance improvement. We
believe this is due to the fact that the optimization goals of both methods are to maintain the order
of the images in the returned ranking list. Thus, the final results obtained with two methods are not
complementary to each other, which is also confirmed by the distribution of the similarity scores
present in Fig. 3 and Fig. 8.

D.3 SIMILARITY SCORE DISTRIBUTION

In this section, we visualize the similarity score distributions in Fig. 8, when the query model is
trained by different methods. The first row shows the training process of Rank Order Preserva-
tion. The following three rows correspond to the training process of Monotonic Similarity Preser-
vation, when three different mapping functions are chosen, respectively. As the training proceeds,
the region of the similarity distributions gradually becomes slender, which indicates that the orders
of the images in the returned ranking list are better maintained. It can be found that under our rank
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preserving framework, the different instantiations yield similar results, which is also confirmed by
the final retrieval accuracy (Tab. 6).
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(a) φqp¨q is trained for ROP Eq. (9).
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(b) φqp¨q is trained for MSP Eq. (11) with learnable polynomial mapping function.
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(c) φqp¨q is trained for MSP Eq. (11) with learnable exponential mapping function.
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(d) φqp¨q is trained for MSP Eq. (11) with learnable logarithmic mapping function.

Figure 8: Visualization of the similarity score distributions. SfM-120k, MobileNetV2 and GeM
are adopted as the training dataset, query and gallery models, respectively. sg: symmetric similarity
score; sq: asymmetric similarity score.
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