
Generalizing CNNs to Graphs with Learnable
Neighborhood Quantization

Isaac Osafo Nkansah1 Neil Gallagher1 Ruchi Sandilya1 Conor Liston1

Logan Grosenick1∗
1Department of Psychiatry and BMRI, Weill Cornell Medicine,

Cornell University, New York, NY, USA

Abstract

Convolutional neural networks (CNNs) have led to a revolution in analyzing array
data. However, many important sources of data, such as biological and social
networks, are naturally structured as graphs rather than arrays, making the design
of graph neural network (GNN) architectures that retain the strengths of CNNs
an active and exciting area of research. Here, we introduce Quantized Graph
Convolution Networks (QGCNs), the first framework for GNNs that formally and
directly extends CNNs to graphs. QGCNs do this by decomposing the convolution
operation into non-overlapping sub-kernels, allowing them to fit graph data while
reducing to a 2D CNN layer on array data. We generalize this approach to graphs of
arbitrary size and dimension by approaching sub-kernel assignment as a learnable
multinomial assignment problem. Integrating this approach into a residual network
architecture, we demonstrate performance that matches or exceeds other state-
of-the-art GNNs on benchmark graph datasets and for predicting properties of
nonlinear dynamics on a new finite element graph dataset. In summary, QGCNs
are a novel GNN framework that generalizes CNNs and their strengths to graph
data, allowing for more accurate and expressive models.

1 Introduction

Many important real-world scenarios involve data structured as graphs. For example, neural networks
(both biological and artificial) are typically represented as directed graphs where individual neurons
propagate information to other neurons along edges. Digital networks (e.g. social networks, the
internet) are graphs made up of links between digital objects, and chemical structures can be modeled
as graphs made up of bonds between atoms. It can be challenging to accurately model such graph
data, creating a barrier to studying these problems. Indeed, this work was motivated by our own
experiments in modeling brain networks from neural data, where we have found that existing methods
are often not expressive enough to effectively capture the types of phenomena we are interested in.

In recent years, the prevailing approach for learning from graph data has shifted towards methods
inspired by convolutional neural networks (CNNs) [20, 21, 8, 17, 25, 4, 5]. The focus on extending
the convolutional layer of CNNs to graph data is motivated by the strong and successful inductive
bias of CNNs, which use trainable filters that efficiently model local structure in array-structured
data (e.g., images). CNNs have been effectively employed in numerous domains, including natural
language processing [26, 43] and image recognition [7]. Because graph data often exhibit strong
patterns of local correlation like those seen in language and image data, it is reasonable to expect they
might similarly benefit from shared local filters.

∗To whom correspondence should be addressed: log4002@med.cornell.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Early work extending CNNs to graphs focused on spectral methods [6, 3], which can suffer from high
runtime and memory complexity [40]. In contrast, spatial methods aim to generalize the convolution
operation explicitly from array data to graph data. Recent spatial GNN methods approach this problem
by either adapting the convolution operation to graphs [11, 1, 27, 28] or by adapting graphs to fit the
CNN convolutional operation [10]. Existing spatial methods, however, do not truly generalize the
CNN convolution layer.

Spatial Graph Convolutional Networks (SGCNs) [5], for example, claim to generalize CNNs to
graph data as during inference on array data an SGCN will have spatial filters that resemble those
of a CNN. But an SGCN will not reduce to an equivalent CNN when trained on array data, and
is thus not a proper generalization. This relates to a central challenge of extending convolutions
to graph-structured data: in CNNs, local neighborhoods have fixed sizes and fixed ordering of the
nodes within the neighborhood, a convenience that does not hold true for more general graphs. We
believe that bridging the gap between CNNs and GCNs and properly generalizing the powerful local
inductive bias of CNNs to GNNs will lead to improved learning for many types of graph data.

To this end, we introduce the Quantized Graph Convolution Layer (QGCL), which adds to the spatial
graph neural network literature a proper generalization of the CNN convolution layer to graphs. We do
this by first "quantizing" the convolution operation for CNNs into an equivalent set of non-overlapping
sub-kernels applied to local geometry. Second, we describe a specific set of sub-kernels for graphs that
are equivalent to a 2D convolutional kernel based on a satisficing mapping, which relies on relative
angular displacements of nodes to quantize graph neighborhoods into sub-kernels. To generalize the
QGCL to arbitrary graphs, we extend it to be able to learn neighborhood quantizations from data,
using a network we term QuantNet. Furthermore, we design a residual network around the QGCL
architecture, which we term Quantized Graph Residual Layer (QGRL), to make the layer more robust
to model depth effects like vanishing gradients. As we were initially inspired by the regularity of
widely-used finite element method (FEM) graphs, we provide a new benchmark data set for FEM
(based on Navier-Stokes fluid flow on an adaptive mesh graph) and demonstrate that a QGRL-based
architecture (called Quantized Graph Residual Network or QGRN) is highly competitive on such
data. Next, we show that QGRNs enable competitive performance across nineteen inductive learning
graph datasets. Finally, we demonstrate that incorporating QGRLs leads to superior performance in a
supervised autoencoder model applied to a public EEG recordings and emotional states dataset [18].

In summary, our main contributions are:

1. Introducing the Quantized Graph Convolutional Network (QGCN) framework, which gener-
alizes CNNs to graphs.

2. Empirical and formal validation that a QGCN using the satisficing mapping sub-kernels
reduces to a 2D CNN on image graphs.

3. An end-to-end learnable quantization network (QuantNet) that extends QGCNs to arbitrary
graphs.

4. A residual network inspired architecture, Quantized Graph Residual Networks (QGRNs),
that further improves QGCN performance.

5. Benchmarking of QGRNs on a new Navier-Stokes FEM dataset and 19 other public bench-
mark graph datasets for graph classification and node classification.

6. Showing QGRLs improve joint modeling of emotional states and EEG data in a supervised
autoencoder architecture.

2 Relevant work

GCNs Although inspired by spectral theory, Graph Convolutional Networks (GCNs) [17] are practi-
cally understood as a spatial GNN method as they aggregate node features within local neighborhoods
(normalizing by the node degree of the central/target node) and then transform the resulting aggre-
gated features into new features for the central/target nodes. Because all neighboring node features
are scaled by fixed weights and then aggregated in the input features space, this method’s number
of trainable free parameters differs from CNNs (failing to generalize the CNN convolution layer).
In contrast, CNNs learn embeddings of each node feature separately and the ability of each node’s
features to embed in a different point in the output feature space independently makes CNNs more
flexible than GCNs.

2

SGCNs Spatial Graph Convolutional Networks (SGCNs) [5], a recent novel CNN-inspired GCN
architecture, improve on GCNs by using graph node positional descriptors to rank nodes within
their neighborhoods. They extend GCNs by using MLPs that project the relative spatial/positional
descriptors of nodes into output feature space. Though the authors claim that SGCNs are equivalent
to CNNs for inference, SGCNs and CNNs exhibit a different inductive bias during training. There is
additional difficulty in matching CNN and SGCN model parameters and determining how scaling
different parts of SGCN architecture translates into equivalent CNN adaptions. A strength of SGCNs
is that they can consume pseudo-positional descriptors, making them more general than GCNs.

KerGNNs Kernel GNNs [9] define kernels as sub-graphs with trainable adjacency matrices and
node features. The trainable node features for sub-graphs parallel CNN kernel weights, and the
learned adjacency matrices allow for different topologies of sub-graph kernels to be learned. In
CNNs, the adjacency matrix of the convolving kernel is fixed, hence kerGNNs generalize the CNN
convolution operation well in this sense. However, the size of the direct product graph (which
captures the relationship between local sub-graph patches and the convolving sub-graph kernel)
grows quadratically with the sizes of the local neighborhood and the convolving sub-graph kernel.
For graphs with large local neighborhoods, the computation of the adjacency matrix of the direct
product graph per local neighborhood (effectively a cubic runtime complexity across the data)
becomes very expensive. Further the authors suggest the use of additional trainable weights for the
base random walk kernels, causing further divergence with regular CNN convolution layer.

LGCLs Inspired by [27], the Learnable Graph Convolutional Layer [10] approach is unlike the
aforementioned methods, instead adapting graph data into a form that a regular CNN convolution
operator can use. It does this by applying max pooling on the feature vectors of the local graph
neighborhoods. This does not generalize the CNN convolution operation (which uses all the features
within the local neighborhood and not a sub-sampled set). Further, max pooling sub-sampling
constrains the model to ascribe more importance to large features; a constraint absent in CNNs.

GATs GATs extend the power of transformers and attention networks to graphs and have been
shown to be highly performant on graph data [38, 39, 2, 36]. In current GATs, every node attends
to its neighbors either in a static or dynamic fashion. The attention mechanism effectively yields
edge-aware feature scalars from source nodes whose messages must be aggregated for the target node.
This is akin to CNNs applying different kernel weights to different node features in local image graph
neighborhoods.

DeeperGCNs Early works [22] adapted residual connections, inspired by ResNets [12], to deep graph
networks to deal with the problem of vanishing gradients and over-smoothing [24]. A more recent
innovation in this space, GENConv [23], builds on these residual connections (first demonstrating
how powerful these connections alone are for deep networks) and innovates generalized messaging
passing aggregators, learnable message normalization layers etc. to compete with state-of-the-art
performance on standard graph dataset benchmarks. Other works such as DropEdge [31], which
propose randomly removing graph edges, and PairNorm [44] which develops a normalization layer
to tackle the problems aforementioned, are also noteworthy.

3 Proposed methodology

3.1 Extending CNNs to graphs

Quantized Graph Convolution Networks (QGCNs) are an extension of CNNs to graph data. We
begin with a formal description of the convolutional layer, which is the core component of CNNs,
in order to motivate the Quantized Graph Convolution Layer (QGCL). For simplicity, we focus on
the convolutional layer in two dimensions with a stride size of one operating on G ∈ RC′×D′×F ′

,
where G is structured in a way such that proximity and adjacency in the space composed of the first
two dimensions has meaning, but that the ordering of those 2D planes along the third dimension is
arbitrary. As an example, 2D image data with multiple color channels exhibits this structure. In this
case, a convolutional layer will generate an output feature map O ∈ RC×D×F :

Oc,d,: =

J−1∑
j=0

K−1∑
k=0

Wj,k,:,:Gj+c,k+d,:

+ b, (1)

3

where W ∈ RJ×K×F×F ′
and b ∈ RF are the weights and bias terms of the convolutional kernel,

respectively. To produce a map that is the same size as the original input, zero-padding can be added
along the edges of G before applying the convolutional layer to result in Oc,d,: being defined for
c ∈ [0, C ′ − 1], d ∈ [0, D′ − 1].

We can refactor the kernel parameters in Eq. 1 to have a single index h iterating over the 2D space
traversed by j and k above:

Oc,d,: =

JK−1∑
h=0

Ŵh,:,:

J−1∑
j=0

K−1∑
k=0

1(h=jK+k)Gj+c,k+d,:

+ B̂h,:, B̂h,: =
b

JK
∀h, (2)

where ŴjK+k,:,: corresponds to Wj,k,:,: in Eq. 1. The indicator function 1(h=jK+k) has the effect
of creating a mask over a single element in the 2D space defined by j and k, with a one-to-one
correspondence between each element and each value of h. Thus the convolutional layer can be
decomposed into a set of sub-kernels (i.e., weight matrices Ŵh,:,: and bias vectors B̂h,:) along with a
corresponding set of masks on the input space. This formulation of the convolutional layer allows
for interesting possibilities by designing a different set of mask functions; for example, one could
produce a well-defined output O with the same dimensions as G without the need for zero-padding.

In the Eq.2, the masks implicitly compare the location of elements in G to the relative position of the
current output within the larger output tensor O. We generalize the ideas above to graphs by allowing
for masks that operate on node pairs, rather than comparing pairs of elements in tensor data. When
generalizing the convolution to graph input, we want the output to be a graph as well. Here, we limit
ourselves to outputting graphs with identical structure to the input and only considering the local
neighborhood of a node when calculating the features of the corresponding output node. We formally
define output of the quantized graph convolution layer as follows:

o(v) =

H−1∑
h=0

Ŵh,:,:

∑
v′∈N (v)

1((v,v′)∈Mh)a(v
′)

+ B̂h,:, (3)

where o(v) ∈ RF provides the feature vector of the output node at the same relative location as
input node v, N (v) is the set of nodes in the local neighborhood around v, Mh is the set of node
pairs selected by the mask corresponding to Ŵh,:,:, and a(v) ∈ RF ′

retrieves the feature vector of
node v. In the context of QGCNs, we refer to each Ŵh,:,: as a sub-kernel. It is the process of using
binary masks of fixed cardinality to quantize the space of potential nodes in a local neighborhood that
gives quantized graph convolution networks their name. This framework is sufficient to include most
practical use cases of the convolutional layer. For example, convolutional kernels with any dimension
larger than three can be represented by considering tensor elements to be connected in the graph
representation if the kernel would apply to one node while the kernel is positioned with the other
node at its ‘center’. Two noteworthy exceptions that do not fit in the QGCN framework are stride
sizes larger than one or convolutional kernels with odd dimensions (to be explored in future work).

3.2 A satisficing mapping generalizes local convolutional kernel masks

In this section, we show how the sub-kernel masks (Mh) associated with convolutional kernels can
be extended to the case of graphs with (pseudo-)positional information. The masks associated with
CNN convolutions are functions of the relative position of tensor elements (nodes) to the position of
the current element in the output tensor (see Eq. 2). We refer to these as the natural convolutional
masks (see Fig. 1 f). For graphs with positional information, it is possible to formalize a method for
choosing a set of sub-kernel masks that would produce standard convolutional layer masks when
applied to tensor data that has been converted to graph form. For simplicity we consider the case of a
convolution in two dimensions where data is converted to a 2D positional graph by assuming that
edges exist only between adjacent elements (nodes) and extend this case to handle all 2D positional
graphs. Note that in the absence of positional information, any other information associated with
nodes that can be embedded into a 2D space can be treated as pseudo-positional information to enable
this more general approach.

As seen in Eq. 2, each mask is defined by the indicator function 1(h=jK+k), which selects a single
element. When dealing with tensor data, the relative position of the elements selected by these masks

4

Figure 1: Contrasting the assignment of kernel weights to local neighborhood nodes for traditional
CNN convolution kernels and the satisficing mapping sub-kernels of a QGCL layer. Traditional CNN
convolution kernel is depicted with its natural kernel weights masks while QGCL sub-kernels are
shown with their corresponding quantizing kernel masks on graph neighborhoods. Note that the
angular quantization bins have inclusive angular lower bounds and exclusive angular upper bounds,
such that nodes falling on the edges are mapped to unique sub-kernels (e.g., the node in (h.) on the
135°edge maps to the green mask sub-kernel.

remains fixed as the convolutional kernel moves to different output positions. In contrast, we cannot
assume that the nodes in a local neighborhood will always be located in the same relative positions
for all local neighborhoods within a graph. Because we desire a set of masks that is applicable to
all 2D positional graphs, our masks must define a way to potentially map all of 2D space to a set of
sub-kernels. One simple option is dividing 2D space into regularly spaced non-overlapping segments
defined by angular position relative to the center node of the local neighborhood that the map is being
applied to. Then the center-neighbor node pair (v, v′) is part of the hth sub-kernel mask (Mh) when

Mh =

{
(v, v′) | 2π h− 1

H − 1
+ ϕ ≤ θ(v, v′) < 2π

h

H − 1
+ ϕ

}
∀v∈V ,v′∈N (v)

, h ∈ [1, H − 1],

θ(v, v′) = tan−1

(
py(v

′)− py(v)

px(v′)− px(v)

)
∈ [0, 2π),

(4)

where θ is the angle of the neighbor node relative to the center node, px and py return the x and y
coordinates of a node, respectively, and H is the total number of sub-kernels. The 0th sub-kernel is
applied only to the node pair (v, v) made up of the center node and itself. The offset angle ϕ is an
optional hyperparameter that can be used to select the starting point from which the space is divided.
To select H , we choose the smallest number that results in all nodes within a local neighborhood
being assigned to a different sub-kernel, which we refer to as a satisficing mapping. It is easy to see
that separating the local elements of tensor data based on this method produces the same assignments
as the natural convolutional kernel masks (Fig. 1 f). Algorithm 2 in Appendix D outlines an efficient
process for determining the value of H that satisfies this condition. If the sub-kernel masks are
chosen in this way and, importantly, the bias values for each sub-kernel are tied to the same value (i.e.
B̂h,: =

b
JK ,∀h), then we arrive at a set of quantized graph convolution sub-kernels that will behave

on 2D positional graph data identically to a standard 2D convolutional layer on equivalent tensor data
(see Appendix C for proof and below for empirical validation).

5

With this satisficing mapping approach, the process of assigning nodes in every local neighborhood
to sub-kernels (see Algorithm 1 in Appendix D) incurs a computational cost of O(|V |2) in each
forward pass. In the case of homogeneous graph meshes, choosing to cache the satisficing mapping
incurs at worst O(|V |2) space complexity. Using Algorithm 2 for determining the minimum number
of subkernels for the convolution such that a satisficing mapping is honored adds a constant cost
on top of Algorithm 1. We note that this is only one of many possible ways in which the natural
convolutional mask and sub-kernels described in Eq. 2 can be extended to positional graph data.

3.3 Learning neighborhood quantization

Next, we introduce a method for generating masks that assign nodes to sub-kernels in arbitrary
dimensions and regardless of whether positional information is present. Specifically, we frame
quantization as a learnable multinomial classification problem where for a learnable model assigns a
sub-kernel to each center-neighbor node pair in a local neighborhood. This approach was inspired by
the idea of dilated convolutions in CNNs, akin to learning the spacings of the kernel elements during
CNN convolution [15]. To learn the quantization, we introduce QuantNet, an MLP that projects node
features or (pseudo-)positional descriptors into a higher dimensional space where we difference the
target and source features and then project this difference to a vector representing assignment weights
for each sub-kernel (see Fig. 2). The mask Mh associated with sub-kernel h contains the ordered
node pair (v, v′) when QuantNet Q assigns the node pair to h:

Mh = {(v, v′)|Q(v, v′) = h}∀v∈V ,v′∈N (v) ,

Q(v, v′) = argmax(softmax(U2(U1(v; η)− U1(v
′; η); θ))),

(5)

where U1 is a high dimensional MLP projector with parameters η for the input features (spatial
descriptors, node features, etc.), U2 is a low dimensional projector with parameters θ for the difference
in high dimensional features projected by U1, v is a node in V (the node set of the input graph), and
N (v) denotes the local neighborhood node set of v. Note argmax in Eq. 5 is symbolic; it represents
any differentiable function that outputs discrete categorical samples, for example, a custom argmax
implemented with a straight-through gradient estimator or Gumbel-Softmax with hard sampling (our
implementation uses Gumbel-Softmax with hard sampling) [13]. The QuantNet network architecture
is shown in Fig. 2. Finally, we reiterate that because QuantNet can use any vector in place of
positional information, QGCL becomes extensible to graphs without explicit positional information.

3.4 Integrating QGCNs with a residual architecture

A common and successful approach used to address vanishing gradients and over-smoothing in GNNs
is residual learning, inspired by the success of ResNets for CNNs [12]. We adapt this framework

Figure 2: QuantNet and Quantized Graph Residual Layer (QGRL). [Left] A learnable network for
dynamic quantization of nodes to subkernels in different local neighborhoods. The message passing
framework in PyTorch provides the source and target nodes across all edges so QGCL doesn’t have
any computation overheads in defining the input tensors fed into QuantNet. The output of QuantNet
is the satisficing mapping used to filter the receptive fields of the QGCL subkernels. [Right] An
architectural retrofit of QGCL, incorporating 2 residual blocks: (1) outer residual block for the
QGCL and (2) an inner residual block for learning features from input graph messages. The network
combines all features dynamically via MLP-III to prepare the final node messages for the layer.

6

Table 1: Standard image datasets. CNN and QGCN model accuracies (mean ± S.D.).

Dataset Test Accuracy
CNN QGCN

MNIST 98.92± 0.10 98.98± 0.04
FashionMNIST 92.56± 0.18 92.39± 0.13
CIFAR-10 80.21± 0.29 79.59± 0.35

Table 2: Custom Graph Datasets. QGRN and SGCN Performance Comparison

Dataset Parameters (k) FLOPs (M) Test Accuracy (%)
QGRN SGCN QGRN SGCN QGRN SGCN

NS-Binary 58.67 57.37 535.17 800.32 99.67± 00.23 99.67± 00.23
NS-Denary-1 58.67 57.37 535.17 800.32 97.47± 01.01 94.23± 01.32
NS-Denary-2 58.67 57.37 535.17 800.32 95.13± 05.21 93.33± 05.77
AIDS 59.43 57.61 9.30 13.03 99.50± 00.14 99.25± 01.07
Letter (high) 56.33 49.72 0.77 0.98 94.10± 00.81 93.21± 00.79
Letter (low) 53.14 49.72 0.74 0.95 99.81± 00.23 99.62± 00.14
Letter (med) 53.14 49.72 0.74 0.95 97.14± 00.71 95.24± 00.79

to QGCNs, arriving at the architecture shown in the right panel of Fig. 2, which we call Quantized
Graph Residual Layer (QGRL). Notice that QGRL subsumes and generalizes QGCL.

4 Experiments

4.1 Empirical validation of equivalence with CNNs on 2D images

First, we confirmed that the QGCL performs similarly to the CNN convolutional layer when applied
to image data. We considered three standard 2D image datasets that vary in complexity: MNIST [21],
Fashion-MNIST [41], and CIFAR10 [19]. MNIST contains gray-scaled images of handwritten
digits of shape 28x28x1, FashionMNIST contains fashion images of shape 28x28x1, and CIFAR10
consists of color images of shape 32x32x3 from 10 categories. Figure 4 in Appendix E shows
the different CNN models trained for the different standardized datasets. We created a 3-layer
CNN and its equivalent QGCN model for the MNIST dataset, 6-layer network models for Fashion-
MNIST, and 9-layer network models for CIFAR10. The equivalent QGCN models have the same
architecture as the CNN models, except that QGCN uses QGCL layers internally in place of traditional
convolutional layers. All models were trained 5 times on each dataset, with different random parameter
initializations and random ordering of the training data for each run, using cross-entropy loss and the
Adam optimizer [16] with a learning rate of 0.01 for 200 epochs. In order to establish equivalence
between CNN and QGCN while avoiding full-dataset ceiling effects we separately trained models
fit at three different sample sizes (yielding different bias-variance trade-offs) by varying the dataset
train-test splits (see Appendix F).

Table 1 shows how QGCN performs almost identically to CNN across the different standard image
datasets. Appendix F (table 8) shows the expanded version of 1, showing different train-test splits,
devised to explore bias-variance trade-offs. Additionally, Appendix G shows training loss and
train/test set accuracy profiles over a wide range of learning rates for both CNN and its parameter-
matched equivalent QGCN (not QGRN) to show how model behaviors are very similar even in
different bias-variance trade-off regimes. These results confirm how both models follow exceedingly
similar loss trajectories during training and have the same accuracy profiles, empirically supporting
our formal proof of CNN and QGCN equivalence on image data.

4.2 Graph Classification: Datasets with Positional Descriptors

Next, we compared QGRN to SGCN on graph datasets that have positional descriptors, including a
novel FEM fixed-mesh graph dataset. The graph benchmark datasets: AIDS, Letters (high/low/med)
were post-processed to extract out their positional node descriptors into separate positional attributes

7

Table 3: Graph kernels benchmark datasets - I. Test Accuracy (%) across different GCNs

Models AIDS Frankenstein Mutag Proteins

QGRN 99.50± 0.10 75.58± 0.40 99.99± 00.26 80.20± 00.14
GCNConv 90.92± 0.38 60.27± 0.06 92.68± 02.29 71.95± 00.57
ChebConv 93.42± 0.14 62.56± 0.28 91.87± 01.41 75.58± 01.51
GraphConv 94.25± 0.16 65.89± 0.28 95.12± 00.48 74.59± 00.57
SGConv 91.92± 0.14 60.23± 0.06 92.68± 00.49 72.94± 00.57
GENConv 99.17± 0.14 66.74± 0.42 98.37± 01.41 79.87± 00.57
GeneralConv 94.33± 0.14 65.67± 0.42 92.68± 00.45 74.59± 00.57
GATv2Conv 98.58± 0.38 63.71± 0.29 95.94± 01.41 80.20± 00.99
TransformerConv 99.25± 0.14 64.40± 0.32 92.68± 02.29 79.21± 00.67

that QGRN and SGCN use. This was to show that QGRN is able to use positional descriptors when
they exist and is able to perform competitively with models such as SGCN designed specifically to
use positional descriptors. Table 2 provides test set accuracy, as well as model size and computational
complexity for each model on each positional graph dataset. We highlight that QGRN performs equal
to or better than SGCN on all positional graph datasets we tested.

4.2.1 Custom FEM Dataset

We compare QGRNs and matched SGCNs on our new simulated Navier-Stokes non-linear dynamics
benchmark datasets for binary and denary classification. We simulated the “flow past a cylinder”
problem on an adaptive mesh with the underlying two-dimensional flow geometry depicted in
Appendix H Fig. 15a. For binary classification, we separated laminar and turbulent flows based on
distinct Reynold’s number (Re) values while for denary classification we used evenly spaced Re
values. We created three datasets: Navier-Stokes-Binary (NS-Binary) for easier binary classification
and Navier-Stokes-Denary-1 (NS-Denary-1) and Navier-Stokes-Denary-2 (NS-Denary-2) for more
challenging denary classification, with NS-Denary-2 being most challenging (most closely spaced Re
values; see Appendix H). QGRNs matched SGCN performance on the binary task and outperformed
SGCNs on the more challenging denary tasks.

4.3 Graph Classification: Generic Graph Datasets

Finally, we compared QGRNs to matched (in model parameter count) GNN models using inductive
learning datasets from Benchmark Data Sets for Graph Kernels [14], namely: AIDS, COIL-DEL,
Frankenstein, Enzymes, Letter (low/med/high), Mutagenicity, Proteins, Proteins-Full, Mutag and
Synthie. See Appendix I for a description of each dataset. We trained on a number of novel
GNN architectures including Transformer networks (GAT, TransformerConv), showing how QGRN
maintains superior performance over its competitors on many of the benchmark datasets (which lack
positional descriptors). We size all models relative to QGRN to have a matched number of parameters
for fair comparison. Given the simplicity of some of the models, this effort of establishing equivalence
yields slightly different architectures, however, all architectures are constrained to have the same
depth. More details are provided in the dataset configuration section of the provided code. All models
were trained with the Adam optimizer using cross-entropy loss for 500 epochs at 4 different learning
rates (0.1, 0.01, 0.001, 0.0001). Appendix subsection K shows how QGCN wall clock time varies
compared to other GNN methods with matching parameter sizes. Each run is repeated 3 times and
we report the best accuracy for each model across these learning rates.

Tables 3, 4 and 12 showcase QGRN matching and outperforming all GNN methods across a diverse
sampling of inductive graph learning problems. All datasets appearing in these tables either do
not have positional descriptors or have their positional attributes collapsed into the individual node
features. We do this because many of the generalized GNNs in the literature such as ChebConv,
GCNConv, GraphConv etc. are not able to handle positional descriptors as separate attributes from
node features. In the tables, we see clearly how QGRN matches or outperforms all models on all
benchmark graph classification tasks.

Finally, there are additional experiments we carried out such as how QGRN fares in deeper networks
(see Appendix O), how different quantizations impact model performance (see Appendix P), how

8

Table 4: Graph kernels benchmark datasets - II. Test Accuracy (%) across different GCNs

Models Synthie Letters (high) Enzymes Coil-Del

QGRN 99.99± 0.23 94.10± 0.81 72.50± 00.96 94.14± 00.78
GCNConv 80.89± 0.70 40.76± 0.29 43.61± 00.48 20.42± 00.39
ChebConv 87.40± 0.70 55.56± 0.40 48.06± 01.74 27.86± 00.29
GraphConv 89.43± 0.70 54.54± 0.22 46.94± 00.48 26.91± 00.30
SGConv 80.08± 0.41 40.44± 0.11 44.44± 01.27 20.81± 00.44
GENConv 92.28± 0.86 91.62± 0.83 67.22± 02.93 81.91± 00.86
GeneralConv 91.46± 0.22 54.54± 0.11 48.61± 00.48 28.33± 00.60
GATv2Conv 92.68± 0.11 76.83± 0.23 53.89± 03.16 65.48± 01.82
TransformerConv 92.68± 0.11 85.52± 0.29 54.17± 01.34 62.71± 00.76

Table 5: Node Classification Datasets. Test Accuracy (%) across different GNNs

Models Homophilic Heterophilic
Computers Cora PubMed Chameleon Squirrel

QGRN 90.02± 0.02 89.02± 0.14 89.11± 0.15 74.15± 0.37 56.17± 0.45
GraphConv 87.96± 0.16 87.15± 0.44 88.39± 0.07 72.77± 0.32 64.25± 0.09
GENConv 91.66± 0.05 86.31± 0.36 87.73± 0.19 71.56± 0.67 58.00± 0.18
GeneralConv 89.29± 0.02 87.64± 0.04 88.97± 0.09 78.11± 0.29 66.80± 0.08
EGConv 91.50± 0.06 88.34± 0.30 88.38± 0.08 63.54± 0.07 48.44± 0.41

to determine the number of quantization bins for a given dataset (see Appendix Q) and finally a
comparison of QGRN with leaderboard performances from papers with code (see Appendix M).

4.4 Node Classification

Next, we evaluated the performance of QGRNs on various node classification tasks. We tested
on multiple types of node classification datasets, including citation networks (like Cora, PubMed),
Wikipedia hyperlinks networks (like such as the Chameleon dataset) and product relations networks
(such as Amazon Computers) [33, 35, 42]. We highlight that the datasets used in this exploration
exhibit different degrees of homophily and heterophily properties. The Chameleon and Squirrel
datasets exhibit strong heterophily while all the others exhibit stronger homophily. We chose a
single architecture that proved reasonably performant across all the models we compared against
(see Figure 5 in Appendix E). We include another novel GNN, EGConv [37] to highlight the
competitiveness of our method to recent methods. We trained all models across a range of learning
rates (0.1, 0.05, 0.01, 0.005, 0.001) for 2000 epochs and mimicked early stopping by caching the
model state that produced the largest validation set accuracy. Given the now apparent fact that
Message Passing Neural Networks generally struggle with heterophilic datasets, we designed the
generic architecture with edge directionality awareness, as inspired by authors Rossi et. al. [32].

We see in Table 5 and Tables 18 and 19 in Appendix L, that QGRNs performed competitively across
the homophilic datasets and appreciably well on the two heterophilic datasets. On the Chameleon
heterophilic dataset QGRN performs moderately well, outperforming all comparison models except
GeneralConv. The Squirrel dataset, which is the most heterophilic of those we tested, proved more
challenging for our QGRN models. Overall, QGRNs perform reasonably well on node classification
tasks, especially in cases where the dataset exhibits homophilic properties.

4.5 Supervised Autoencoder Model of Emotional States in EEG data

A major motivation behind these models was the need for more expressive ways to model graphical
data with positional information captured from complex geometrical surfaces. As a demonstration of
the practical value of QGRNs beyond standardized benchmark datasets, we developed a supervised
autoencoder (SAE) to model brain networks related to valence in the publicly available DEAP
dataset [18]. The last 42 s of each recording in the DEAP EEG dataset were divided into sliding
windows of 3 s with 50% overlap, then were z-scored and spectral power was calculated in four

9

Table 6: EEG SAE test set performance. All values are presented as the mean±SEM over all subjects.

Models QGRN SGCN

MSE loss (Generative) 1787.33± 315.51 2169.38± 317.80
CE loss (Supervised) 0.65± 0.01 0.66± 0.01
AUC 0.59± 0.01 0.56± 0.01

frequency bands (4-8 Hz, 8-12 Hz, 12-30 Hz, and 30-44 Hz) for each of the 32 electrodes. Power
features were used as node attributes in a fully-connected graph containing all electrodes. We trained
a separate model for each subject, dividing the data for each subject according to a 64%/16%/20%
train/validation/test split. The generative objective for the autoencoder was mean-squared error (MSE)
and the supervised objective was cross-entropy (CE) for classifying whether subjects self-rated their
emotional state as positive valence (≥ 5) or negative valence (< 5) on a 9-point scale. Models were
pre-trained for 1000 epochs on just the generative objective, then for another 100 epochs with one of
3 values of weight (100, 1000, or 10000) on the classification objective. Validation sets were used to
select the weight and number of training epochs with highest area under the receiver operating curve
(AUC). As shown in table 6, we found that using QGRN layers in the same autoencoder architecture
compared to SGCN layers resulted in better generative and supervised loss values on the held out test
sets. In addition, the QGRN-based model resulted in appreciably better classification performance
(measured by AUC) for this difficult classification problem.

5 Discussion

This work introduces Quantized Graph Convolution Networks (QGCNs), a flexible framework for
designing graph neural networks that extends the benefits of CNNs’ strong local inductive bias to
graphs. QGCNs "quantize" the space of possible neighbor nodes in a local neighborhood into a fixed
set of sub-kernels. We show, both theoretically and empirically, that QGCNs are a generalization of
CNNs to graphs with positional information. We extend QGCNs to arbitrary graphs by introducing
the QuantNet method for learning sub-kernel assignment in a QGCN. We then show that embedding
a QGCL within a residual network architecture gives state-of-the-art results on a suite of benchmark
graph and node classification tasks, in addition to a novel Navier-Stokes FEM dynamics classification
dataset. Finally, we demonstrate that QGCLs improve the performance of a supervised autoencoder
to jointly model EEG data and emotional state.

One significant limitation of the current work is that the implementation of the QGCL is not yet
efficient as demonstrated in the comparison of wall clock runtime with other models in Appendix
K. Future work will look into parallelized subkernel operations to demonstrate wall clock runtime
competitive with similar models in the literature. QGCNs also do not generalize all CNNs, as it
cannot represent convolutional layers with odd-numbered kernel sizes (i.e. no ’center’ element) or
stride sizes other than one. Finally, the use of the QGCL layer in more complex architectures such
as U-Nets could be explored in future work, alongside examining the performance of this model on
more inductive and transductive tasks to assess its strength in various learning scenarios.

We have shown that QGCNs are a true generalization of CNNs and therefore are capable of maintain-
ing the same powerful inductive bias that has led to such great success in the application of CNNs.
In our experience, QGCNs are more expressive and efficient at learning complex local patterns of
correlation in graph data than competing methods, and we expect that QGCNs can be successfully
applied in many domains where graph data are prevalent. We expect that future research into dif-
ferent masking functions for QGCN sub-kernels (in addition to the angular satisficing mapping and
QuantNet masking functions we outline here) will further extend the potential usefulness of QGCNs.

Acknowledgments and Disclosure of Funding

NG is supported by the NIH CTSA TL1 training program via NIH/NCATS Grant #2TL1TR2386.
LG is supported by NIH R01MH131534, R01MH118388, New Venture Fund 202423, a Whitehall
Foundation grant (WF 2021-08-089), a Cornell Center for Pandemic Prevention Research seed grant,
and an A2 Collective pilot grant (PennAITech, NIA).

10

References
[1] J. Atwood and D. Towsley. Diffusion-convolutional neural networks. In D. Lee, M. Sugiyama, U. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[2] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks?, 2022.

[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013.

[4] J. Chen, T. Ma, and C. Xiao. Fastgcn: Fast learning with graph convolutional networks via importance
sampling, 2018.

[5] T. Danel, P. Spurek, J. Tabor, M. Śmieja, Ł. Struski, A. Słowik, and Ł. Maziarka. Spatial graph convolutional
networks. In International Conference on Neural Information Processing, pages 668–675. Springer, 2020.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural information processing systems, 29, 2016.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[8] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams.
Convolutional networks on graphs for learning molecular fingerprints. Advances in neural information
processing systems, 28, 2015.

[9] A. Feng, C. You, S. Wang, and L. Tassiulas. Kergnns: Interpretable graph neural networks with graph
kernels. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 6614–6622,
2022.

[10] H. Gao, Z. Wang, and S. Ji. Large-scale learnable graph convolutional networks. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pages 1416–1424,
2018.

[11] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

[13] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax, Aug. 2017.
arXiv:1611.01144 [cs, stat].

[14] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann. Benchmark data sets for graph kernels,
2016.

[15] I. Khalfaoui-Hassani, T. Pellegrini, and T. Masquelier. Dilated convolution with learnable spacings, 2023.

[16] D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[18] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras.
Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective
computing, 3(1):18–31, 2011.

[19] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[20] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropa-
gation applied to handwritten zip code recognition. Neural Computation, 1:541–551, 1989.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] G. Li, M. Müller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as deep as cnns?, 2019.

[23] G. Li, C. Xiong, A. Thabet, and B. Ghanem. Deepergcn: All you need to train deeper gcns, 2020.

11

[24] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-supervised
learning, 2018.

[25] R. Li, S. Wang, F. Zhu, and J. Huang. Adaptive graph convolutional neural networks, 2018.

[26] M. M. Lopez and J. Kalita. Deep learning applied to nlp, 2017.

[27] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs. In Interna-
tional conference on machine learning, pages 2014–2023. PMLR, 2016.

[28] G. Nikolentzos, P. Meladianos, A. J.-P. Tixier, K. Skianis, and M. Vazirgiannis. Kernel graph convolutional
neural networks. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27,
pages 22–32. Springer, 2018.

[29] C. Norberg. Flow around a circular cylinder: aspects of fluctuating lift. Journal of fluids and structures,
15(3-4):459–469, 2001.

[30] K. Riesen and H. Bunke. Iam graph database repository for graph based pattern recognition and machine
learning. In N. da Vitoria Lobo, T. Kasparis, F. Roli, J. T. Kwok, M. Georgiopoulos, G. C. Anagnostopoulos,
and M. Loog, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 287–297, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[31] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional networks on node
classification, 2020.

[32] E. Rossi, B. Charpentier, F. D. Giovanni, F. Frasca, S. Günnemann, and M. Bronstein. Edge directionality
improves learning on heterophilic graphs, 2023.

[33] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding, 2021.

[34] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark computations of laminar flow
around a cylinder. Springer, 1996.

[35] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network evaluation,
2019.

[36] Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng, and Y. Sun. Masked label prediction: Unified massage
passing model for semi-supervised classification, 2020.

[37] S. A. Tailor, F. L. Opolka, P. Liò, and N. D. Lane. Do we need anisotropic graph neural networks?, 2022.

[38] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et al. Graph attention networks.
stat, 1050(20):10–48550, 2017.

[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks,
2018.

[40] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24, 2021.

[41] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[42] Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph embeddings,
2016.

[43] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative study of cnn and rnn for natural language processing,
2017.

[44] L. Zhao and L. Akoglu. Pairnorm: Tackling oversmoothing in gnns, 2020.

12

A Code

Please find the code-base for the paper here: https://github.com/Grosenick-Lab-Cornell/
QuantNets

B Nomenclature disambiguation

The table 7 is meant to assist with disambiguating different layer, network and model names introduced
in this paper.

Table 7: Glossary. Terms used in this paper and quick reference meaning

Name Expanded Comment

QGCL Quantized Graph Convolution Layer CNN-equivalent convolutional lay-
er that can be applied to graphs with
(pseudo-)positional information

QGCN Quantized Graph Convolution Network A network / model that subsumes
the QGCLs

QuantNet Quantizing Network A learnable network for assigning
nodes in local neighborhoods to
QGCL sub-kernels

QGRL Quantized Graph Residual Layer QGCL retrofitted with residual net-
work architecture

QGRN Quantized Graph Residual Network A network / model that subsumes
QGRLs

C The satisficing mapping QGCL for 2D positional graphs extends the 2D
local convolutional layer

In this section we formally prove that the satisficing mapping QGCL described in Section 3.2 is
identical to the 2D convolutional kernel on the local neighborhood of array elements (i.e. 3 × 3
kernel) as described in Section 3.1.

Theorem 1. The satisficing mapping QGCL is identical to a 3× 3 convolutional layer when applied
to 2D array data converted to a 2D positional graph by forming edges between adjacent elements
(i.e. nodes).

Proof. We have already defined the output of the satisficing mapping QGCL in (3) and (3.2); and we
have shown that the output of a standard convolutional layer is given by (2) in Section 3.1. Here, it is
sufficient to show that these two are equivalent when using 2D array data that is represented as a 2D
positional graph.

13

https://github.com/Grosenick-Lab-Cornell/QuantNets
https://github.com/Grosenick-Lab-Cornell/QuantNets

o(v) =

8∑
h=0

Ŵh,:,:

∑
v′∈N (v)

1((v,v′)∈Mh)a(v
′)

+ B̂h,: (6)

=

8∑
h=0

Ŵh,:,:

2∑
j=0

2∑
k=0

1(h=3j+k)a(v
′
j+c,k+d)

+ B̂h,: (7)

=

8∑
h=0

Ŵh,:,:

2∑
j=0

2∑
k=0

1(h=3j+k)Gj+c,k+d,:

+ B̂h,: (8)

=

8∑
h=0

Ŵh,:,:

2∑
j=0

2∑
k=0

1(h=3j+k)Gj+c,k+d,:

+
b

9
(9)

= Oc,d,: (10)

The proof begins by restating the definition of the QGCL in (6). As described in Section 3.2, the
sub-kernel masks are chosen such that within each local neighborhood N (v) each mask Mh is
selective of a single neighbor node v′. Thus we can iterate over each sub-kernel and mask by iterating
over the rows and columns of the equivalent convolutional kernel, giving (7). We use v′a,b to represent
the node associated with the array data Ga,b,:, which gives (8). In Section 3.2, we define the bias
vectors associated with each sub-kernel B̂h,: =

b
JK ,∀h, giving (9). This is equivalent to the form

given in (2) in Section 3.1, completing our proof.

This equivalence indicates that both types of convolutional models will produce identical output
vectors during inference when given the same parameters (Ŵ, b) and input data (G). This also means
that gradients with respect to the parameters will be identical for the purposes of backpropagation,
because f(x) = g(x) implies ∂f

∂x = ∂g
∂x .

D Quantizing local neighborhoods with satisficing mapping

Algorithm 1 Quantization algorithm: pseudo-code

Input: G = (V,E, P) and S, where V is the
node set of G, E is the adjacency matrix of G,
P is the positional descriptors for all nodes
in V and S is the list of subkernels
and their angular centroids or quantization ranges.
Helper Functions:
exnb - extracts local graph neighborhoods
crad - computes relative angular distances
gski - gets subkernel (by index) a node maps to
M ← {}
for a ∈ V do

Na ← exnb(G, a)
for b ∈ Na do

r ← crad(a, b)
k_index← gski(S, r)
M .add({b, k})

return M

14

Algorithm 1 shows in pseudo-code the operation to be done deterministically in each forward pass
iteration of the QGCL model with satisficing mapping kernels. Notice that we have O(k|V |2), where
|V | is the cardinality of the node set of the graph and k is the constant overhead of computation in
each neighborhood to map nodes to specific kernels: this is the complexity of the function named
gski. For homogeneous graphs with fixed graph meshes, this computation could be cached, adding a
memory/space cost of O(|V |2), exemplified in the strongly connected graph scenario.

D.1 Determining the minimum number of sub-kernels per QGCL layer

Algorithm 2 QGCL minimum sub-kernel number

Input: G = (V,E, P) and ub, where V is the node set of G, E is the adjacency matrix of G,
P is the positional descriptors for all nodes in V and ub is the upper-bound on number of sub-
kernels in the QGCL layer.
Helper Functions:
mnd - extracts graph’s max node degree
exnb - extracts local graph neighborhoods
absk - assigns angular bins to sub-kernels
crad - computes relative angular distances
ansk - assigns neighborhood nodes to sub-kernels
inai - determines if neighborhood assignment is injective
M ← mnd(G)
if M ≥ ub then

return ub
else

N ← exnb(E)
for i = M until ub do

k ← i ▷ k - number of sub-kernels
q ← 360

k
b← absk(k, q)
for n ∈ N do

a← crad(n)
is_injective← inai(ansk(a, b))
if not is_injective then

break
if is_injective then

return k
return ub

We introduce Algorithm 2 to establish the minimum number of sub-kernels necessary to ensure
satisficing mapping across any arbitrary static graph dataset. This algorithm runs once during the
first training epoch to initialize the minimum number of sub-kernels necessary for the particular
dataset. This cost occurs just once for the very first batch of training data; afterwards the mapping of
sub-kernels to local neighborhood nodes can be cached so that subsequent batches and nodes can
reuse it. The runtime complexity of the algorithm is O(|V |2), where |V | represents the cardinality of
the graph node set. This worst-case asymptotic complexity is observed in strongly connected graphs.
The quadratic dependency on |V | arises from the inner for loop, which iterates through each node
within the graph (resulting in an O(|V |) operation) and computes relative angular displacements for
each local neighborhood (another O(|V |) worst-case-complexity operation in the case of strongly
connected graphs) to assign nodes to their respective sub-kernels. Caching incurs O(|V |2) space
cost in the case of strongly connected graphs where the same node in every neighborhood maps to a
different subkernel.

15

Figure 3: Visualization of natural ranking of nodes within local neighborhoods of image graph data
via relative positional descriptors, which imposes a natural relative positional descriptor label on the
convolving sub-kernels.

E Model Architectures

Figure 4: CNN models trained for different standardized datasets: MNIST, FashionMNIST and
CIFAR10. QGCN and SGCN architectures were exactly the same as the CNN architectures except
with the convolutional layers replaced with QGCL and SGCN layers.

16

Figure 5: Neural GNN Architecture for Node Classification Task. All GNNs we tested had the
same architecture as depicted. The generic architecture has 2 blocks, the first is a convolutional
layer followed by batch normalization and then a ReLU activation function. The second block
in the architecture sums up features from three identical blocks, each of which is a convolutional
layer followed by a ReLU activation function. For any given GNN, it’s message passing layer was
substituted into the convolutional layer, depicted in the figure, to derive the overarching architecture.
In doing so, we guaranteed an iso-architecture comparison.

F Standard Datasets: Full Results

We trained CNN and QGCN models on sub-sampled splits of the standard image datasets described
in the main paper. The splits chosen were: (train, test) = (100, 20), (1000, 200) and (10000, 1000),
with equal sampling across categories. These sub-sampled versions of the data allowed a greater
variance in model performance, facilitating clearer comparisons across methods. Here, we compared
training loss, and train/test accuracies across various learning rates for both CNN and QGCN. We
train all models three times on different splits of the datasets.

Table 8 provides results collated across various train-test splits, in effort to capture model performance
in different bias-variance regimes.

G Learning Rate Charts

Figure 6: MNIST dataset results Figure for 100:20 dataset split

17

Table 8: Standard Datasets. CNN and QGCN model accuracies (mean ± S.D.) on standard datasets

Dataset Train:Test Test Accuracy
CNN QGCN

MNIST 100:20 76.67± 5.77 74.33± 6.56
1000:200 95.50± 0.71 97.50± 0.71

10000:1000 97.91± 1.02 97.57± 0.69
60000:10000 98.92± 0.10 98.98± 0.04

Fashion- 100:20 72.67± 2.31 72.67± 2.31
MNIST 1000:200 84.67± 0.03 83.67± 0.11

10000:1000 90.13± 0.03 90.23± 0.26
60000:10000 92.56± 0.18 92.39± 0.13

CIFAR-10 100:20 23.67± 2.52 24.33± 2.31
1000:200 49.33± 0.08 47.67± 0.20

10000:1000 68.08± 0.45 66.95± 1.07
50000:10000 80.21± 0.29 79.59± 0.35

Figure 7: MNIST dataset results Figure for 1000:200 dataset split

Figure 8: MNIST dataset results Figure for 10000:1000 dataset split

Figure 9: Fashion-MNIST dataset results Figure for 100:20 dataset split

18

Figure 10: Fashion-MNIST dataset results Figure for 1000:200 dataset split

Figure 11: Fashion-MNIST dataset results Figure for 10000:1000 dataset split

Figure 12: CIFAR-10 dataset results Figure for 100:20 dataset split

Figure 13: CIFAR-10 dataset results Figure for 1000:200 dataset split

19

Figure 14: CIFAR-10 dataset results Figure for 10000:1000 dataset split

H Custom FEM Dataset

Figure 15: Underlying geometry and the flow around a circular cylinder.

We introduce several simulated Navier-Stokes non-linear dynamics benchmark datasets for both
binary and denary classification tasks on FEM graphs. We simulated the “flow past a cylinder"
problem on an adaptive mesh with the underlying two-dimensional flow geometry depicted in
Figure 15a. We assumed a fluid density of ρ = 1.0 and dynamics governed by the time-dependent
Navier-Stokes Equation:

ut − v∆u+ u∆u+∇p = 0,∇ · u = 0. (11)

Here, u represents velocity and p represents pressure. We adopted a kinematic velocity of v =
0.001. For the lower and upper walls, as well as the boundary of the cylinder, no-slip boundary
conditions were imposed. On the left edge, we prescribed a parabolic inflow profile as u(0, y) =(

4Uy(0.41−y)
0.412 , 0

)
with a maximum velocity U = 3vRe

2D . Here, Re and D denote the Reynolds number
and the diameter of the cylinder, respectively. On the right edge, do-nothing boundary conditions
define the outflow v δu

δn − pn = 0 with n denoting the outer normal vector. We employed FEniCS
library for solving the governing Navier-Stokes equations, using the adaptively refined mesh as
shown in Figure 1b. for the spatial discretization in the finite element implementation. We conducted
simulations to produce a dataset of flow velocities, covering a range of Reynolds numbers spanning
values 20 to 120. At lower Reynolds numbers, the flow exhibits a stationary behavior. However,
as the Reynolds number increases, a fascinating phenomenon known as Karman vortex shedding
emerges. This phenomenon results in the flow adopting a time-periodic behavior, characterized by
vortex shedding occurring behind the cylinder ([29, 34]). It’s important to note that in our simulations,
the primary flow direction is horizontal, emphasizing the significance of the x-component of velocity.

We generated the graph dataset representing fluid velocity components in a standard PyTorch Geo-
metric format. We explored two inductive learning tasks with the graph dataset: binary and denary
classifications. For binary, we separated laminar and turbulent flows based on distinct Re values,
while for denary classification, we used evenly spaced Re values across a range. We created three
datasets, as illustrated in Table 9: Navier-Stokes-Binary (NS-Binary) for binary classification and
Navier-Stokes-Denary-1 (NS-Denary-1) and Navier-Stokes-Denary-2 (NS-Denary-2) for denary
classification, with NS-Denary-2 being more challenging. Training data for each Re value is from the

20

initial time period, and test data is from later time steps in the simulation, so models predict classes
for future time points they have not seen.

Table 9: The table captures the different Re ranges we considered for the different custom datasets
and the step sizes. Notice in the binary case that Re = 20-40 are grouped in laminar class and
100-120 into the turbulent flow class.

Dataset Re range Re step-size
NS-Binary 20-40, 100-120 5
NS-Denary-1 30-120 10
NS-Denary-2 20-40, 100-120 5

Table 10: Shown in the table are different custom dataset splits we have provided as part of this paper.
The third column captures the training time period per Re from which train data were aggregated
from the FEM time series solutions

Dataset Train:Test Train Time (s)
NS-Binary 100:20 0 - 0.005
NS-Binary 1000:200 0 - 0.05
NS-Binary 10000:1000 0 - 0.5
NS-Binary 20000:5000 0 - 1.0
NS-Denary-1 100:20 0 - 0.005
NS-Denary-1 1000:200 0 - 0.05
NS-Denary-1 10000:1000 0 - 0.5
NS-Denary-1 20000:2000 0 - 1.0
NS-Denary-2 100:20 0 - 0.005
NS-Denary-2 1000:200 0 - 0.05
NS-Denary-2 10000:1000 0 - 0.5
NS-Denary-2 20000:2000 0 - 1.0

21

I Benchmark Datasets for Graph Kernels

The diverse set of Benchmark Data Sets for Graph Kernels we used for validating QGRN and other
GNN methods are as introduced below:

AIDS. 2000 sample binary classification dataset of molecular compounds with classes active and
inactive, representing activity against HIV.

COIL-DEL. 3900 sample graph dataset extracted from images of 100 different objects taken at
different poses (with pose interval of 5 degrees)

Enzymes. 600 sample size enzymes dataset with 6 classes (each of which represents one of the 6 EC
top-level classes) from the BRENDA enzyme database.

Letter (low/med/high). 2250 sample datasets of graphs representing distorted letter drawing with
15 classes, each corresponding to a different Roman alphabet letter. low, med and high represent
different degrees of distortions applied to the hand-drawn letter graphs.

Mutagenicity. 4337 sample binary classification dataset of chemical compounds with classes mutagen
and non-mutagen.

Proteins and Proteins-Full. 1113 sample size binary classification datasets for classifying protein
graphs into enzymes or non-enzymes.

Proteins-Full differs in that it has many more node features: Proteins=3 and Proteins-Full=31

Frankenstein. A 4337 sample binary mutagenicity classification dataset modified from the BURSI
dataset with classes, mutagen and non-mutagen. This dataset has continuous node features with very
high dimensionality: 781 features per node.

Mutag. 188 sample binary classification dataset of chemical compounds and their mutagenic effect
on bacterium

Synthie. A 400 sample Erdös-Rényi synthetic graphs dataset with 4 classes generated with prob-
abilistic models. Figure 16 shows the distribution of the dataset samples across their different
classes.

Figure 16: Distribution of samples by classes across all datasets used in this paper. We exclude
COIL-DEL because it has 100 classes each with 39 samples and hence would render the plot illegible.

J Graph kernels benchmark datasets: additional results

Tables 11 and 12 contain additional results worth highlighting.

22

Table 11: Standard datasets. CNN and QGCN model accuracies on standard datasets

Dataset Train:Test Train Accuracy Test Accuracy
CNN QGCN CNN QGCN

MNIST 100:20 95.33± 0.05 92.67± 2.31 76.67± 5.77 74.33± 6.56
1000:200 99.67± 0.02 99.67± 0.02 95.50± 0.71 97.50± 0.71
10000:1000 − − 97.91± 1.02 97.57± 0.69
60000:10000 − − 98.92± 0.10 98.98± 0.04

Fashion- 100:20 99.67± 0.58 98.33± 1.15 72.67± 2.31 72.67± 2.31
MNIST 1000:200 99.50± 0.71 97.05± 0.71 84.67± 0.03 83.67± 0.11

10000:1000 − − 90.13± 0.03 90.23± 0.26
60000:10000 − − 92.56± 0.18 92.39± 0.13

CIFAR-10 100:20 96.67± 4.93 99.33± 0.58 23.67± 2.52 24.33± 2.31
1000:200 99.33± 0.33 95.33± 0.71 49.33± 0.08 47.67± 0.20
10000:1000 − − 68.08± 0.45 66.95± 1.07
50000:10000 − − 80.21± 0.29 79.59± 0.35

Table 12: Graph kernels benchmark datasets - III. Test Accuracy (%) across different GCNs

Models Mutagenicity Proteins-Full Letters (low) Letters (med)

QGRN 83.80± 00.33 87.13± 00.55 99.81± 00.11 96.76± 00.63
GCNConv 60.60± 00.19 85.15± 00.86 64.95± 00.22 41.52± 01.39
ChebConv 68.66± 00.17 85.15± 00.99 73.27± 00.22 63.18± 00.40
GraphConv 68.66± 00.17 85.48± 00.57 74.29± 00.19 64.25± 00.90
SGConv 60.60± 00.11 84.16± 01.98 65.21± 00.11 42.10± 00.57
GENConv 81.10± 00.34 85.48± 00.57 99.11± 00.11 90.92± 00.67
GeneralConv 68.81± 00.11 85.48± 00.57 74.29± 00.19 64.19± 00.50
GATv2Conv 80.02± 00.33 84.16± 01.72 96.70± 00.55 85.84± 00.98
TransformerConv 78.36± 00.34 85.15± 00.72 98.09± 00.11 90.10± 00.50

K Graph kernels benchmark datasets: model parameters and wall clocks

Table 13: Graph kernels benchmark datasets - I. Model sizes (number of parameters)

Models AIDS Frankenstein Mutag Mutagenicity Proteins Proteins-Full

QGRN 64.86 1409.33 57.15 63.69 63.97 73.61
GCNConv 63.36 1437.89 57.54 62.59 62.79 68.16
ChebConv 64.13 1400.48 56.45 65.67 65.95 74.02
GraphConv 67.71 1447.30 56.45 66.69 66.95 74.11
SGConv 63.36 1408.83 57.54 62.59 62.79 72.61
GENConv 71.62 1399.17 60.80 60.80 60.99 74.82
GeneralConv 60.10 1393.67 59.33 59.33 59.52 77.51
GATv2Conv 64.13 1391.62 63.36 63.36 63.55 68.93
TranformerConv 64.90 1307.91 63.36 63.36 63.75 74.50

23

Table 14: Graph kernels benchmark datasets - I. Model sizes (number of parameters)

Models Synthie Letters (h) Letters (l) Letters (m) Enzymes Coil-Del

QGRN 68.19 61.51 58.21 58.21 69.71 70.34
GCNConv 65.54 60.21 60.21 60.21 66.57 61.09
ChebConv 69.96 59.15 59.15 59.15 71.81 75.56
GraphConv 70.53 59.15 59.15 59.15 71.81 75.56
SGConv 70.72 60.21 60.21 60.21 71.88 75.43
GENConv 73.28 62.67 62.67 62.67 74.18 73.64
GeneralConv 67.52 62.86 62.86 62.86 68.93 65.83
GATv2Conv 66.18 52.18 52.18 52.18 67.08 69.92
TranformerConv 68.87 53.88 52.88 52.88 70.50 70.12

Table 15: Graph kernels benchmark datasets - I. Google TPU Inference latency. Wall clock (in ms)

Models AIDS Frankenstein Mutag Proteins

QGRN 12.38± 0.38 17.50± 1.02 14.74± 0.42 15.69± 2.28
GCNConv 2.39± 0.04 3.04± 0.32 3.82± 0.63 2.42± 0.14
ChebConv 5.65± 0.24 5.53± 0.37 3.61± 0.20 6.25± 0.43
GraphConv 1.25± 0.05 1.81± 0.19 1.16± 0.04 1.94± 0.60
SGConv 4.20± 0.09 5.13± 0.83 4.10± 0.26 4.37± 0.44
GENConv 1.58± 0.04 1.89± 0.13 1.49± 0.14 1.57± 0.16
GeneralConv 1.67± 0.06 0.08± 0.27 1.66± 0.31 1.54± 0.14
GATv2Conv 3.33± 0.27 4.11± 0.11 3.34± 0.21 3.56± 0.33
TransformerConv 3.50± 0.24 4.06± 0.34 3.27± 0.13 4.09± 0.44

Table 16: Graph kernels benchmark datasets - II. Google TPU Inference latency. Wall clock (in ms)

Models Synthie Letters (high) Enzymes Coil-Del

QGRN 13.46± 1.65 10.83± 0.20 13.46± 2.34 13.68± 0.99
GCNConv 2.45± 0.14 2.26± 0.06 2.33± 0.06 2.37± 2.37
ChebConv 6.12± 1.80 3.88± 0.28 4.99± 1.33 3.65± 0.08
GraphConv 1.22± 0.05 1.25± 0.06 1.47± 0.42 1.26± 0.14
SGConv 4.05± 0.19 4.27± 0.13 4.32± 0.23 4.70± 0.57
GENConv 1.71± 0.18 1.54± 0.07 1.62± 0.07 1.51± 0.09
GeneralConv 1.47± 0.06 1.95± 0.09 1.54± 0.12 1.45± 0.08
GATv2Conv 3.37± 0.31 4.29± 0.12 3.29± 0.15 3.31± 0.08
TransformerConv 3.50± 0.27 4.63± 0.19 3.56± 0.23 3.78± 0.17

Table 17: Graph kernels benchmark datasets - III. Google TPU Inference latency. Wall clock (in ms)

Models Mutagenicity Proteins-Full Letters (low) Letters (med)

QGRN 24.88± 9.04 15.73± 1.07 14.12± 2.53 10.45± 0.53
GCNConv 3.07± 0.32 2.48± 0.11 3.50± 0.75 2.40± 0.13
ChebConv 4.81± 0.21 6.26± 0.56 3.70± 0.16 3.73± 0.26
GraphConv 1.27± 0.02 1.62± 0.04 2.10± 0.75 1.22± 0.12
SGConv 4.84± 1.13 5.57± 1.22 4.12± 0.29 4.03± 0.11
GENConv 1.50± 0.03 1.62± 0.12 1.42± 0.05 1.55± 0.15
GeneralConv 1.58± 0.08 1.56± 0.18 1.42± 0.05 1.55± 0.15
GATv2Conv 4.06± 0.97 3.35± 0.10 3.18± 0.12 3.30± 0.11
TransformerConv 4.12± 1.09 3.89± 0.16 3.34± 0.27 3.56± 0.19

24

L Graph Datasets: Node Classification

Tables 18 and 19, representing homophilic and heterophilic dataset results respectively, provide the
full set of datasets, against which we benchmarked, for node classification tasks.

Table 18: Homophilic node classification datasets. Test Accuracy (%) across different GCNs

Models Photo Computers Cora PubMed CiteSeer

QGRN 95.34± 0.10 90.02± 0.02 89.02± 0.14 89.11± 0.15 79.09± 0.27
GraphConv 94.44± 0.04 87.96± 0.16 87.15± 0.44 88.39± 0.07 76.69± 0.07
GENConv 95.25± 0.04 91.66± 0.05 86.31± 0.36 87.73± 0.19 75.37± 0.34
GeneralConv 94.13± 0.14 89.29± 0.02 87.64± 0.04 88.97± 0.09 75.53± 0.10
EGConv 96.19± 0.05 91.50± 0.06 88.34± 0.30 88.38± 0.08 76.34± 0.21

Table 19: Heterophilic node classification datasets. Test Accuracy (%) across different GCNs

Models Chameleon Squirrel

QGRN 74.15± 0.37 56.17± 0.45
GraphConv 72.77± 0.32 64.25± 0.09
GENConv 71.56± 0.67 58.00± 0.18
GeneralConv 78.11± 0.29 66.80± 0.08
EGConv 63.54± 0.07 48.44± 0.41

M Leader Board - Comparison with QGRNs

Our search for state of the art performance was limited to Papers with Code, which has only a subset
of the datasets we trained on. This, we believe, is indicative of the fact that in literature, a subset of
these benchmarks are chosen for different types of downstream tasks. Our method mostly focused on
inductive classification tasks. After searching thoroughly through Papers with Code, we found what
we believe to be the full subset of data sets with comparable SOTA results below:

Table 20: Leader-board (Papers with Code). Comparison of QGRN performance to leading models
Dataset Average Test Accuracy (%) Leading Model Name

QGRN Leading Model

AIDS 99.50 97.30 k-NN classifier: IAM Repository
MUTAG 100.00 100.00 Evolution of Graph Classifiers
Mutagenicity 83.80 83.00 Tree-G
Proteins 80.20 84.91 HGP-SL
Enzymes 72.50 78.39 DSGCN-allfeat-2020
Frankenstein 75.58 78.90 GWL_WL (Graph Invariant Kernels)

N IAM Graph Database - Comparison with QGRNs

The conference paper, “IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning” ([30]), provides k-NN classifier-based results that the authors intended as “a first
reference system to compare other algorithms with”. Clearly these do not represent SOTA results, but
we include them as another baseline comparison available for the data sets considered in our paper:

25

Table 21: IAM Graph Database Repository. Comparison of QGRN performance to k-NN classifier
Dataset Average Test Accuracy (%)

QGRN k-NN

Letters (low) 99.81 99.60
Letters (medium) 96.76 94.00
Letters (high) 94.10 90.00
Coil-Del 94.14 93.30
AIDS 99.50 97.30
Mutagenicity 83.80 71.50
Proteins 80.20 65.50

O Training Deeper QGRNs

We present some preliminary results on training deeper QGRNs, in an effort to understand the model’s
ability to overcome GCNs inability to go deep. In this exploration, we trained different depths of
the same QGRN model each on 2 different datasets. These datasets roughly capture the extremes of
dataset difficulty in the paper. We trained on the AIDS dataset: a small binary classification 1600:400
train:test split dataset, and the Letters (high) dataset: a more complex dataset with 15 classes and
train:test = 1725:525 split. We trained these models with ADAM optimizer and cross entropy loss,
under the same conditions as used elsewhere in the paper (see Sec. 4.3).

Table 22: Deeper QGCN and QGRN networks. Sample results illustrating impact of deeper network
on model performance

Dataset Model Depth Model Size (K) Mean Test Accuracy (%)
QGCN QGRN QGCN QGRN

AIDS 3 30.91 59.43 99.25 99.50
6 59.62 101.26 99.25 99.25
9 88.32 143.09 99.25 99.25
12 117.03 184.92 99.25 99.00
18 174.43 268.58 99.25 99.00

Letters (high) 3 30.90 56.33 92.95 94.10
6 59.60 95.07 91.24 93.33
9 88.30 133.81 89.57 91.19
12 117.01 172.55 90.23 91.24
18 174.42 250.05 87.24 90.86

Discussion: From the results compiled in table 22, we do see that as the depth of the network increases
there is a modest reduction in overall model performance. The results also reveal that the extent of
model performance regression depends on the complexity of the dataset. The AIDS dataset is less
sensitive to model depth: scaling the model depth by 6x (from 3 to 18) results in just a 0.5% loss in
mean test accuracy. Letters (high), on the other hand, sees more performance loss at the same 6x
depth, i.e., 5% loss in performance. Though part of the regression could be attributed to insufficient
number of epochs for the deeper networks, but we speculate that it is largely due to our residual
network retrofit in our QGRN layer not being sufficient to mitigate the effects of depth (e.g., the
vanishing gradient problem). There are several exciting findings in the literature that have suggested
methods such as customized aggregators instead of standard addition and softmax aggregation in
the message passing network (layer level innovations). Others approach this problem architecturally,
e.g., borrowing from successful architectures such as ResNets (as we did), using skip connections,
pooling and sampling layers, drop-out inspired methods, and so on. We highlight that our paper’s
focus is primarily extending CNN’s convolution operation to arbitrary graphs, which we demonstrate
is the case through our equivalence analysis. In this context, we highlight that deep vanilla CNNs also
face this same challenge of being difficult to train. In the world of CNNs, this problem is combated
via architectural innovations such as batch normalization, use of better activations like ReLU, skip
connections etc. In this light, our layer-level innovation with quantizable neighborhoods (replicating

26

CNN-like convolution) also stands to benefit from such architectural designs that allow for robust
and deeper network architectures, which we leave to future work.

P Performance impact of quantization

Here, we explore a pilot comparison of satisficing (angular) mapping and QuantNet to understand
how quantizing the neighborhoods uniformly vs learning the quantization affects model performance.
We were able to compile together some sample results that provide some insight into this, which we
share in Table 23. In Table 24, we considered the impact of using pseudo-positional descriptors (here,
the entire node attributes) as opposed to explicit spatial descriptors as positional descriptors.

Table 23: Deeper satisficing mapping (SM) and QuantNet networks. Sample results illustrating
impact of deeper network on model performance

Dataset Model Depth Model Size (K) Mean Test Accuracy (%)
SM QuantNet SM QuantNet

AIDS 3 30.91 59.43 99.25 99.50
6 59.62 101.26 99.25 99.25
9 88.32 143.09 99.25 99.25
12 117.03 184.92 99.25 99.00
18 174.43 268.58 99.25 99.00

Letters (high) 3 30.90 56.33 92.95 94.10
6 59.60 95.07 91.24 93.33
9 88.30 133.81 89.57 91.19
12 117.01 172.55 90.23 91.24
18 174.42 250.05 87.24 90.86

Table 24: 3-layer QGRN model analysis. Sample results for QGRN model trained with and without
positional descriptors.

Dataset Average Test Accuracy
With Positional Descriptors Without Positional Descriptors

AIDS 99.50 99.50
Coil-Del 94.57 94.14
Letters (high) 94.10 94.10
Letters (med) 97.14 96.76
Letters (low) 100.00 99.81

Discussion: In Table 23, we examined 2 different datasets representing the extremes of classification
difficulty: AIDS (a binary classification task with 2000 samples) and Letters-high (a dataset with 15
classes and 2250 total samples). We notice from Table 5 that in the easier inductive task, both uniform
and learned quantization methods yield similar performance. Learned quantization outperforms
uniform quantization in the harder learning task, Letters (high), where the ability to learn which bins
activation input elements should be clustered, becomes beneficial. We also observe that the relative
model performance improvement of 1-2% persists between the satisficing (angular) mapping and
QuantNet, even with increasing model depth, adding more validation to quantization learning as
a useful property. In Table 24, we focused only on QuantNet-based QGRN and trained the model
on a sampling of datasets which had positional attributes. We prepared from the same datasets,
variants with positional attributes and variants without positional attributes for the quantization
learning. Intuitively, we’d expect that with quantization learning from explicit positional descriptors,
binning should be close to optimal, thereby leading to optimal model performance. This is what the
experimental results show. Without explicit positional descriptors (here QGRN uses the entire node
attributes, of which explicit positional attributes are inclusive), the model achieves near-optimal test
accuracies. It is interesting to point out that the model performance of the variants without positional
descriptors is upper bounded by the model performance on variants with positional descriptors.

27

Q Empirically determining quantization bins

The number of bins is set by choosing the number of subkernels, which is user defined and hence a
hyper-parameter of our model. As such, the number of bins can be tuned via any hyper-parameter
optimization method, such as Grid search, Bayesian search etc. For image datasets, this choice is
immediately obvious: the number of bins must be the total number of neighboring nodes in any given
neighborhood (8 neighbors + 1 central node). For the uniform quantization case, we developed an
algorithm (an algorithm pseudo-code, Algorithm D.1) to determine satisficing mapping across all
neighborhoods. For QGRN with learnable quantization, the number of bins is a hyper-parameter. We
present a sample hyper-parameter search for select graph datasets from the TUDatasets benchmark in
Table 25.

Table 25: Number of bins - hyper-parameter search. Hyper-parameter search of optimal number of
bins/subkernels for QGRN

Dataset Average Test Accuracy (%)
Bins=2 Bins=3 Bins=5 Bins=7 Bins=9

AIDS 99.25 99.25 98.75 99.50 99.25
Enzymes 70.83 71.67 69.17 72.50 68.89
Coil-Del 91.26 92.39 92.39 94.14 90.54
Letters (high) 93.91 93.71 93.71 94.67 93.71
Proteins 73.27 76.24 73.27 80.20 73.27

Discussion: Notice the classification test accuracy variations as we sweep the number of
bins/subkernels. The trend is non-linear, mostly peaking between 3 - 7 bins/subkernels. This
is partly explained by the fact that most datasets here have an average neighborhood size of 5 - 7,
which provides a reasonable partitioning size for all neighborhoods; the analogy here is CNN’s bin
size of 9, which is a consequence of full regular neighborhoods having a size of 9 pixels. As the
number of subkernels grow, each subkernel sees a smaller subset of the training data; additionally,
bin data size distribution imbalance results in uneven training of the corresponding bin subkernels,
which results in regression of the overall model’s performance. A pathological case worth mentioning
here would be defining an arbitrarily large number of bins (far greater than the dataset’s average
neighborhood size), leading no or very little training of subkernels: the weights that see any node
features are bound to overfit on the small set of node features they see while those not seeing any node
features will never get to train. During test time, this blend of over-fitted and under-fitted subkernel
weights will result in large regression in the overall model’s performance. On the other extreme,
with a single learnable subkernel, all types of nodes which ideally may belong to different bins are
collapsed into the same bin, making it hard for the single subkernel to learn common messages across
the entire node set of the graph for message passing. This is an example of underfitting (high bias)
scenario. The optimal bin size is intuitively expected to be around the average neighborhood size of
the given dataset, which is what we see in the experimental results summarized in Table 25.

R Compute resources for experiments

All experimental results provided in this paper were the results of runs on Google Colab premium
offering of GPUs and TPUs. As much as specific details on these systems are publicly available, we
have tabulated them below. The two main accelerator options we used were the A100 GPUs and
TPUs. In table 26, we outline some of the system specifications. It is worth noting that the set of
datasets we explored in the TUDataset benchmark were all moderately sized, hence Google Colab’s
Pro+ offering was more than sufficient for us. This was also the case for results collated on the
standard dataset splits and our own custom Navier-Stokes FEW dataset. Not included in the table is
Tesla V100, which at the time of finalizing this paper, Colab had deprecated support for it.

S Addressing Latency Concerns

Regarding model training and inference speed, there is much room for future work to develop new
algorithms for choosing subkernel masks that are faster than those we introduce here. We see the

28

Table 26: Compute Resources. Google Colab Pro+ offering

System System RAM (GB) GPU RAM (GB) Disk Space (GB)

Nvidia A100 83.5 40.0 201.2
Google T4 GPU 51.0 15.0 201.2
Google L4 GPU 62.8 22.5 201.2
Google TPU 334.6 NA 225.3

primary contribution of this paper as the introduction of the quantized convolutions theoretical
framework, which we demonstrated with 2 options for subkernel selection:

1. 2D angular-quantization (satisficing mapping).
2. Flexible learnable-quantization (QuantNet).

There are many possible algorithms for choosing sub-kernel masks within this framework, and we
suspect that future research into this area could be very fruitful. For example, some practical ways
satisficing mapping & QuantNet might be sped up include:

1. Separating out tensor operations in the message preparation, propagation and update stages of
the message-passing neural networks (MPNN) and leveraging the operator fusion capability
of Torch JIT Script to optimize these operation sets.

2. Parallelizing the execution of the sub-kernel convolutions, with dedicated low level CUDA
kernels, instead of using grouped convolutions (as we do in our current implementation).

3. Using depth-wise separable convolutions: this will reduce the model complexity (in terms
of number of parameters, hence resulting in a proportional reduction in model runtime com-
plexity. Depth-wise separable convolutions trade off model flexibility for model size. This
means this optimization would need to be carried out carefully to ensure that QGCN/QGRN
doesn’t regress significantly in performance. It is worth noting that CNNs also have been
sped up in this way for edge platforms.

The above listed are by no means exhaustive but we believe these will be good starting points for
optimizing QGCN/QGRN to make them competitive with existing highly optimized MPNNs in the
literature. We do hope that further research into QGCN/QGRNs will allow them to eventually be
useful for numerous applications (as happened historically for CNNs over time).

T Impact statement

As the paper’s primary innovation is a learning model that can be trained to perform different tasks
on graphs, it by itself doesn’t pose any obvious risks. The potential for negative societal impact
depends on the dataset and downstream learning tasks a user of this model designs for. We strongly
recommend for such a model to be used in compliance with all ethical standards appropriate to the
domain in which it is targeted to be deployed. We accentuate the need to ensure that datasets on which
this model is trained reflect not only the status quo but take into account broader social, political,
economical and religious contexts so that they mitigate potential harms from any potential bias or
misuse of the model’s learning abilities.

29

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claim 1: QGCNs contain a CNN-equivalent convolution layer, termed QGCL,
as a subset. We show this in Section 3.1. Claim 2: QGCNs using the the satisficing
mapping strategy are empirically and formally equivalent to 2D CNNs applied to image
data. We introduce the satisficing mapping as a masking approach that matches the natural
convolutional masks in Section 3.2; we show that performance is empirically equivalent
between QGCNs and CNNs in Table 1 and Figures 6, 7, 8, 9, 10, 11, 12, 13, 14. Claim 3:
We present an end-to-end learnable quantization network that extends QGCNs to arbitrary
graphs. See Section 3.3. Claim 4: A residual network inspired architecture (QGRNs) that
further improve QGCN performance. See Section 3.4. Claim 5: Benchmarking of QGRNs
on a novel Navier-Stokes FEM dataset and 19 other public benchmark graph datasets. See
Section 4. Claim 6: Showing QGRLs improve joint modeling of emotional states and EEG
data in a supervised autoencoder architecture. See Section 4.5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation are mentioned briefly throughout the paper and discussed in detail
in Section 5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Sections 3.1, 3.2, and C.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all code and data necessary to reproduce every experimental result
that we describe in this paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all experimental code and data.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide sufficient details to make sense of the results in the core paper.
Full details are provided in the available code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

30

Answer: [Yes]

Justification: We report for all relevant results (both in the main paper and the appendix) the
mean and standard deviations, wherever applicable. The error bars shown on the learning
rate plots in Figures 6, 7, 9, 10 and 12 are all also standard deviation.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experimental results reported were generated on Google Colab’s offering
of GPUs and TPUs. As much as specific details on these systems are publicly available, we
have included them in the paper, here in Appendix section R.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, this paper fully conforms with the Code of
Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We address impacts in Section T.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe this paper poses any such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets, other than our custom datasets, have been cited properly. The
various GNN models we compared to our QGRN models have also all been cited properly,
including SGCN (which was cloned from the original paper’s GitHub repository). For
SGCN, the cloned repository includes the copyright and permission notices, as defined
within the MIT License. Other than these datasets and models, no other assets were used in
the project.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets (code, datasets: Navier Stokes FEM datasets) are well documented.
Appendix section H details how the FEM dataset was constructed. Additionally, the GitHub
repository contains relevant links for where to download the datasets. All the datasets used
in this paper were packaged into a common dictionary object that our experimentation
infrastructure could use. The details are all provided in the README page of the GitHub
repository.

31

https://neurips.cc/public/EthicsGuidelines

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper did not involve crowdsourcing or research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper did not involve crowdsourcing or research with human subjects.

32

	Introduction
	Relevant work
	Proposed methodology
	Extending CNNs to graphs
	A satisficing mapping generalizes local convolutional kernel masks
	Learning neighborhood quantization
	Integrating QGCNs with a residual architecture

	Experiments
	Empirical validation of equivalence with CNNs on 2D images
	Graph Classification: Datasets with Positional Descriptors
	Custom FEM Dataset

	Graph Classification: Generic Graph Datasets
	Node Classification
	Supervised Autoencoder Model of Emotional States in EEG data

	Discussion
	Code
	Nomenclature disambiguation
	The satisficing mapping QGCL for 2D positional graphs extends the 2D local convolutional layer
	Quantizing local neighborhoods with satisficing mapping
	Determining the minimum number of sub-kernels per QGCL layer

	Model Architectures
	Standard Datasets: Full Results
	Learning Rate Charts
	Custom FEM Dataset
	Benchmark Datasets for Graph Kernels
	Graph kernels benchmark datasets: additional results
	Graph kernels benchmark datasets: model parameters and wall clocks
	Graph Datasets: Node Classification
	Leader Board - Comparison with QGRNs
	IAM Graph Database - Comparison with QGRNs
	Training Deeper QGRNs
	Performance impact of quantization
	Empirically determining quantization bins
	Compute resources for experiments
	Addressing Latency Concerns
	Impact statement

