
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Understanding and Scaling Collaborative Filtering Optimization
from the Perspective of Matrix Rank

Anonymous Author(s)

Abstract
Collaborative Filtering (CF) methods dominate real-world recom-

mender systems given their ability to learn high-quality, sparse ID-

embedding tables that effectively capture user preferences. These

tables scale linearly with the number of users and items, and are

trained to ensure high similarity between embeddings of interacted

user-item pairs, while maintaining low similarity for non-interacted

pairs. Despite their high performance, encouraging dispersion for

non-interacted pairs necessitates expensive regularization (e.g., neg-

ative sampling), hurting runtime and scalability. Existing research

tends to address these challenges by simplifying the learning pro-

cess, either by reducing model complexity or sampling data, trading

performance for runtime. In this work, wemove beyondmodel-level

modifications and study the properties of the embedding tables un-

der different learning strategies. Through theoretical analysis, we

find that the singular values of the embedding tables are intrinsically

linked to different CF loss functions. These findings are empirically

validated on real-world datasets, demonstrating the practical ben-

efits of higher stable rank – a continuous version of matrix rank

which encodes the distribution of singular values. Based on these

insights, we propose an efficient warm-start strategy that regular-

izes the stable rank of the user and item embeddings. We show

that stable rank regularization during early training phases can

promote higher-quality embeddings, resulting in training speed im-

provements of up to 65.9%. Additionally, stable rank regularization

can act as a proxy for negative sampling, allowing for performance

gains of up to 21.2% over loss functions with small negative sam-

pling ratios. Overall, our analysis unifies current CF methods under

a new perspective – their optimization of stable rank – motivat-

ing a flexible regularization method that is easy to implement, yet

effective at enhancing CF systems. Code provided at Repo Link.
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1 Introduction
Across the web, recommender systems play a pivotal role in de-

livering personalized user experiences [9, 13, 26, 32, 40]. From e-

commerce platforms offering tailored product suggestions to music

streaming services organizing personalized playlists, these systems

have become integral to navigating the vast amount of online infor-

mation [10, 19, 20, 24]. At the forefront of recommender systems is

collaborative filtering (CF), a technique that predicts unknown user

preferences from the known preferences of a set of users [3, 30, 33].

One of the most prominent variants of CF is matrix factorization

(MF) which learns embeddings for each user and item from his-

torical user-item interaction data [15, 16, 23, 35]. Once trained,

MF-based models are able to efficiently filter and rank content for

each user, offering a curated and personalized experience. [6, 44].

With advancements in CF, such as deep neural networks [4, 36],

message passing [15, 22, 37], and loss function design [25, 35, 39],

the computational demands to train CF models has risen consid-

erably [15, 35, 37]. These demands are further exacerbated as the

number of users and items increases, leading to a considerable rise

in training time [34]. The challenge of scaling to large user and item

sets is most apparent in modern loss functions, where recent losses,

such as DirectAU [35] and MAWU [25], scale quadratically with the

number of users and items. However, it is also well known that com-

putationally heavy losses, such as DirectAU, MAWU, and Sampled

Softmax (SSM) [39] significantly out-perform lighter losses, such

as Bayesian Personalized Ranking (BPR) [30]. To manage the com-

putational cost, compromises are often made on either the system’s

parameterization or architecture, however this also risks reducing

personalization and overall performance [7, 12, 17]. Thus, main-

taining high performance while reducing computational burden

presents a significant challenge in modern CF systems.

Focusing on loss function design, previous work has highlighted

that many CF losses, including BPR, SSM, and DirectAU, differ

primarily by their regularization strength [25]. Moreover, this reg-

ularization is largely related to the number of negative samples

considered during training. Thus, it would appear that the trade-off

between performance and run-time is fundamental, given more

negative samples incurs a higher computational overhead. However,

we question if it is possible to attain a cheaper proxy for negative

sampling that can be leveraged as an alternative regularization dur-

ing training. To answer this question, we focus on the one shared

aspect amongst all of the aforementioned designs: the user and
item embedding matrices. This then leads us to consider a more

fundamental question:

Are there intrinsic properties of the embedding matrices that
contribute to high-performing CF systems?

By identifying such properties, we are able to examine why certain

learnedmatrices perform better than others, and elucidate candidate

matrix properties that can be leveraged as priors on the training

process to improve embedding quality.

1
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Through our analysis, we uncover that the stable rank
1
[18, 31]

(a continuous variant of rank) of the user and item embedding

matrices tends to positively correlate with the negative sampling

rate, as seen in the difference between systems trained with BPR

and DirectAU.We empirically demonstrate this result by examining

the optimization trajectory of stable rank across various datasets

and loss functions, also drawing a link between stable rank and

performance. We then provide a theoretical explanation for how

varying levels of stable rank emerge from different loss functions,

linking CF optimization to the singular values of the user and

item matrices. Based on these findings, we propose a stable rank

regularization which is utilized as a warm-start mechanism for CF

training, acting as a cost-effective proxy for negative sampling.

Focusing on BPR, SSM, and DirectAU as a family of losses which

induce different levels of negative sampling-based regularization,

we study how stable rank regularization can: (a) replace expensive

full negative sampling, such as in the regularization term of Direc-

tAU, as well as (b) provide the full negative sampling training signal

for lighter losses, e.g. BPR. Through empirical analysis, we demon-

strate that warm-starting systems trained with DirectAU can save

multiple hours of training given the linear scaling with the num-

ber of users during warm-start epochs. Additionally, for systems

trained with BPR, stable rank regularization achieves significant

performance increases with a small increase in computational over-

head, given the warm-start epochs approximates more expensive

negative sampling strategies. Overall, our analysis unifies common

CF training paradigms from the novel perspective of stable rank

optimization of the user and item embedding matrices. Given our

proposed method is model-agnostic and lightweight, it can be easily

applied with minimal overhead, helping to promote scalability in

real-world systems. Our contributions are outlined below:

• Linking Negative Sampling, Matrix Rank, and CF Perfor-
mance: We offer the first analysis which formally connects

negative sampling with matrix rank. We also demonstrate a cor-

relation between matrix rank and higher performance.

• Theoretical Analysis onMatrix Rank: We theoretically relate

common CF training paradigms to matrix rank, demonstrating

that alignment induces rank collapse in user and item matrices,

whereas uniformity promotes rank increase in low rank settings.

• Warm Start Strategy for Scalable Recommenders: Using

our newfound understanding, we propose a warm-start strat-

egy which acts as a cost-effective proxy for negative sampling,

enabling faster learning of high quality embeddings.

• Extensive Empirical Analysis: We show that stable rank

regularization is able to provide (i) significant speed benefits to

more expensive loss functions, e.g. DirectAU, attaining up to a

65.9% decrease in training time, and (ii) significant performance

benefits to light-weight loss functions, e.g. BPR, attaining up to

a 21.7% performance increase.

2 Preliminaries and Related Work
2.1 Collaborative Filtering
Given an interaction set E between a set of users 𝑈 and items

𝐼 , collaborative filtering (CF) learns unique embeddings for each

1
Defined later in Equation (5), Section 2.3.

user 𝑢 ∈ 𝑈 and item 𝑖 ∈ 𝐼 such that the interactions between

user and items can be recovered [1]. The matrix which holds the

interaction set is denoted E ∈ Z |𝑈 |× |𝐼 |
. The embeddings for the

set of users and items are represented through the user and items

matrices, U ∈ R |𝑈 |×𝑑
and I ∈ R |𝐼 |×𝑑

, where 𝑑 is the embedding

dimensionality. The most common learning paradigm for CF is

matrix factorization (MF), where U and I are learned such that

E ≈ UI⊤. Letting u and i be the user and item embeddings associated

with a user 𝑢 and item 𝑖 , respectively, the interaction signal under

MF is recovered via the dot product between u and i, i.e. E𝑢,𝑖 ≈ u · i⊤.
Despite MF’s effectiveness, the dot product as an interaction

function limits expressivity [16]. Thus, variants of MF have pro-

posed using neural networks to introduce non-linearities into the

interaction calculation. For instance, one may transform the user

and item matrices using a deep neural network (DNN), e.g. with

DNNs 𝐹 and 𝐺 , E ≈ 𝐹 (U)𝐺 (I)⊤, or one can parameterize the in-

teraction calculation, letting E𝑢,𝑖 ≈ 𝐻 (u, i) for DNN 𝐻 [4, 36, 43].

Recent advancements in graph machine learning have also moti-

vated the development of graph-based CF methods that leverage

message passing over the embeddings before the interaction func-

tion [11, 15]. While both methods tend to improve the performance

of recommender systems over the traditional MF baseline, each

introduces a significant computational cost.

2.2 Optimization for Collaborative Filtering
Given we cannot directly factor E, an approximate solution can

be obtained by formulating a linear least squares objective with

respect to the predicted matrix Ê = UI⊤. This is formalized as

𝐿 = | |E−Ê| |𝐹 , where 𝐿 can be minimized by letting Ê be the Singular

Value Decomposition (SVD) of E. In practice, due to matrix size and

overfitting concerns, 𝐿 is solved through gradient descent. However,

the properties of U and I learned through gradient descent have

yet to be studied, making it unclear how different loss functions

benefit CF. The loss functions consdered in this work are outlined

with discussion on their trade-offs.

2.2.1 Bayesian Personalized Rank (BPR). One of the traditional

losses to train MF models is BPR [8, 30]. Rather than predicting the

exact interaction value, BPR optimizes for ranking by maximizing

the margin between preferred and non-preferred items for each

user. This is achieved through a pair=wise loss which maximizes the

distance between interacted and non-interacted samples. Formally,

for a set of user-item triplets, where each triplet is comprised of a

user 𝑢, interacted item 𝑖 , and non-interacted item 𝑖′, the loss is:

𝐿𝐵𝑃𝑅 =
∑︁

(𝑢,𝑖,𝑖′ ) ∈D
ln𝜎 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖′ ), (1)

where 𝑒𝑢,𝑖 is the similarity between 𝑢 and 𝑖 . In a classic MF setting,

the similarity is just the dot product between u and i⊤. By focusing

on the relative order of items, rather than their absolute scores, BPR

enhances the ranking quality of recommenders.

2.2.2 Sampled Softmax (SSM). Set-wise losses generalize pair-wise
losses, like BPR, by considering 𝑘 negative samples for each user-

item pair. A common variant of set-wise loss in recommendations

is SSM [28, 39]. SSM reduces the large set of negative samples (i.e.,

the rest of the items not in the positive set for a user) to a subset of

negative samples which need to be ranked lower than the positive

2
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items. When the number of negative samples is one, this reduces

to BPR. SSM is expressed as:

𝐿𝑆𝑆𝑀 = − log

exp(𝑒𝑢,𝑖 )
exp(𝑒𝑢,𝑖 ) +

∑
𝑖′∈𝑆 exp(𝑒𝑢,𝑖′ )

, (2)

where 𝑆 is the set of negative samples. By using a subset of the pos-

sible negative samples, SSM is able to retain competitive efficiency

while generally achieving higher performance than BPR [29].

2.2.3 DirectAU. DirectAU is a loss function for CF that directly

optimizes both similarity between interacted users and items (align-

ment) and dispersion between user-user or item-item pairs (unifor-

mity) [35]. DirectAU leverages principles from contrastive losses

which remove the need for explicit negative sampling, as in BPR

and SSM. The alignment component of DirectAU is specified as:

𝐿𝑎𝑙𝑖𝑔𝑛 =
∑︁

(𝑢,𝑖 ) ∈E
∥u − i∥2, (3)

where (𝑢, 𝑖) are observed user-item interactions. Alignment aims to

promote similarity between embeddings for users and items which

share an interaction. To ensure embeddings do not overfit to the

historic user-item pairs, the uniformity component of DirectAU

promotes that user and item representations be dispersed on the

𝑑-dimensional hyperspheres. This term is formulated as:

𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 = log

∑︁
(𝑢,𝑢′ ) ∈𝑈

𝑒−2∥u−u′ ∥2 + log

∑︁
(𝑖,𝑖′ ) ∈𝐼

𝑒−2∥i−i′ ∥2 . (4)

Note that the embeddings are normalized for the alignment and

uniformity term. The DirectAU loss weights these two terms with

trade-off parameter 𝛾 . DirectAU offers several advantages by help-

ing to prevent embedding collapse; however, the uniformity term

introduces significant computational overhead, scaling as𝑂 ( |𝑈 |2𝑑).
While some works have offered improvements to DirectAU, this has

centered around mitigating popularity bias and generally requires

even more parameters than the original formulation [29].

2.2.4 Relationship Between the Losses. It is well established that

DirectAU tends to outperform SSM, and SSM tends to outperform

BPR [35]. More recent work has highlighted that uniformity in

DirectAU has a relationship with BPR and SSM, where uniformity

can be interpreted as considering all possible negative samples [29].

From this perspective, BPR, SSM, and DirectAU can be seen as a

family of techniques which consider stronger level of regularization,

induced by the number of negative samples. However, the signif-

icant increase in complexity introduced by both SSM, when 𝑘 is

large, and DirectAU may be impractical for real-world applications.

To mitigate this trade-off, we consider if there is an alternative

method to attain regularization conferred by negative sampling

that scales more favorably with the size of the user and item sets.

2.3 Matrix Rank
The rank of a matrix is used to characterize the dimension of the

vector space spanned by the matrix. A generic method to define the

rank of a matrix A is given by rank(A) = |{𝜎𝑟 |𝜎𝑟 > 0}|, where 𝜎𝑟
is the 𝑟 -th singular value of A. The singular values can be extracted

through the SVD of A, where A = ΨΣΩ⊤
and Ψ is the matrix of

left singular vectors, Σ is the matrix of singular values along the

diagonal, and Ω is the matrix of right singular vectors. In practice,

it is common to compute the rank for singular values greater than

𝜖 , rather than 0, due to numerical precision.

To provide a more comprehensive understanding of the singular

values of a matrix, while also alleviating the challenge of setting an

appropriate 𝜖 , the stable rank of a matrix is often utilized in matrix

analysis [18, 31]. The stable rank of a matrix A is defined as:

srank(A) =
∥A∥2

𝐹

∥A∥2
2

=

∑
𝑟 ∈{1,...,rank(A) } 𝜎

2

𝑟

𝜎2
1

, (5)

where 𝜎𝑟 is a non-zero singular value of A, sorted in descending

order or magnitude, and 𝜎1 is the largest singular value of A. In-

tuitively, srank(A) can be interpreted as a continuous variant of

traditional matrix rank where the relative contribution of a singular

value is directly encoded, rather than discretized to 0 or 1. From

the perspective of optimization during MF training, stable rank can

be used to characterize how effectively the model is utilizing the 𝑑

dimensions of the embeddings.

3 Motivation - Matrix Properties of
High-Quality User and Item Matrices

In this section, we study the properties of the user and item embed-

ding matrices learned across different CF methods. Through our

findings, we can decipher what constitutes higher-quality embed-

dings, as measured by performance, and leverage such knowledge

during training. To study the properties of the embedding matri-

ces, we begin by simply training an MF model with both BPR and

DirectAU across four different benchmarks. We then study the

training trajectories for the different models, focusing on how the

stable rank changes. The final stable rank of the learned embed-

ding matrices is compared to the performance of the respective

model. Our results demonstrate that stable rank tends to be highly

correlated with stronger performance between BPR and DirectAU,

prompting a deeper study on how stable rank is optimized in the

different methods and how it can be utilized to improve training.

Exact details for the empirical setup can be found in Appendix C.

3.1 Stable Rank Trajectories
In Figure 1, we plot the stable rank trajectories for different bench-

mark datasets and the BPR and DirectAU loss functions. Initially,

both models start at a high stable rank due to random initialization.

However, both display significantly different trajectories. BPR tends

to decrease in stable rank across epochs, arriving at an overall low

stable rank at early stopping. DirectAU is significantly different,

where initially the matrices collapse to a lower stable rank, and then

later increase after a period of training. As DirectAU utilizes both

an alignment and uniformity loss, DirectAU is able to both collapse

and disperse the representations of the user and item matrices, as

opposed to BPR which tends to prioritize collapse. We hypothesize

that these loss behaviors are the direct cause of the different stable

rank values, which we validate in subsequent sections.

3.2 Relationship between Performance and
Stable Rank

With establishing the different stable rank trajectories between

BPR and DirectAU, we now consider the quality of the resulting

3
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Figure 1: Stable Rank Trajectories of user matrices. The blue
and orange lines denote BPR and DirectAU, respecitvely. The
dotted lines denote the final stable rank of the user matrices
after training. DirectAU produces higher stable rank. Similar
trends are found for the itemmatrices, as seen inAppendixD.

Table 1: NDCG@20 and stable rank for different datasets and
losses. Both metrics are reported as an average over three
random seeds with standard deviations.

Dataset Loss Function NDCG@20 Stable Rank

MovieLens1M

BPR 0.194 ± 0.0 12.921 ± 0.046

DirectAU 0.236 ± 0.0 21.082 ± 0.015

Yelp2018

BPR 0.047 ± 0.001 7.471 ± 0.13

DirectAU 0.071 ± 0.0 14.423 ± 0.019

Gowalla

BPR 0.092 ± 0.001 9.386 ± 0.043

DirectAU 0.132 ± 0.001 40.681 ± 0.061

AmazonBook

BPR 0.046 ± 0.0 6.5 ± 0.01

DirectAU 0.078 ± 0.0 31.852 ± 0.033

learned user and item embeddings for the different settings. For

each dataset and loss, we compare their performance, computed as

NDCG@20, and stable rank. In Table 1, we see that in each instance,

the higher performing loss function additionally has a higher stable

rank, drawing a correlation between the two.

To provide intuition on this behavior, we consider the inter-

action matrix E for sets of users 𝑈 and items 𝐼 . We know that

the rank(E) ≤ min( |𝑈 |, |𝐼 |), where the less than condition of the

inequality accounts for users with identical item interactions, or

items with identical user interactions. As it is common to set the

embedding dimension of U and I, 𝑑 , to be significantly less than

min( |𝑈 |, |𝐼 |), and given interactions matrices tend to be extremely

sparse minimizing duplicate interaction patterns, we assume the

goal is to learn a rank-𝑑 approximation of E. The optimal solution

then comes from the truncated SVD of E with 𝑑 retained singular

values. Thus,

E𝑑 = Ψ𝑑Σ𝑑Ω⊤
𝑑
= (Ψ𝑑Σ

1

2

𝑑
) (Σ

1

2

𝑑
Ω𝑑⊤) = U𝑑V⊤

𝑑
. (6)

Using the Eckart–Young–Mirsky theorem, the error in the rank-𝑑

approximation of E is then given by:

∥E − E𝑑 ∥2𝐹 = ∥E − U𝑑V⊤
𝑑
∥2𝐹 =

rank(E)∑︁
𝑟=𝑑+1

𝜎2𝑟 . (7)

In practice, the matrix E is often too large to directly compute

SVD, thus the true rank(E) is unknown. Moreover, even computing

a truncated SVD is only possible on small datasets. Thus, U𝑑 and V𝑑

are generally approximated via gradient descent. While truncated

SVD ensures U and I are rank 𝑑 , the chosen gradient descent loss

function can incorporate inductive biases which further reduce this

rank below 𝑑 , potentially hurting performance given the relation

in Equation (7). To thoroughly understand how certain rank values

arise, in the next section we offer a rigorous analysis on how differ-

ent losses impact the gradient descent process and induce different

rank properties into the the user and item matrices.

4 Theoretical Analysis - Matrix Properties
Induced by Different Losses

Despite BPR, SSM, and DirectAU sharing a common underlying

optimization paradigm, related to the number of negative samples

considered in the training process [29], the implications on the user

and item matrices (beyond negative sampling improving perfor-

mance) remains unclear. Due to thismissing connection, it is unclear

what properties negative sampling induces into the embedding ma-

trices, and how one might create a proxy for negative sampling

via priors on the training process. To address this gap, we build

upon our established empirical findings on stable rank and carefully

study how optimization through different CF losses changes the

user and item embedding matrix properties. Specifically, we study

the cases of pure alignment optimization (zero negative samples),

and pure uniformity optimization (all negative samples), demon-

strating that the adjustment of stable rank is intrinsically encoded

in the matrix updates. With our newfound theoretical relationship,

we propose a training strategy able to induce the benefits of full

negative sampling with a significantly smaller computational cost.

4.1 Singular Values under Alignment and
Uniformity Optimization

Below we offer two theoretical analyses where we study the prop-

erties of the user matrix U after training solely with alignment and

solely with uniformity, respectively. For each analysis, we provide

the assumptions, our theoretical analysis, and the implications.

4.1.1 Optimizing Alignment. We assume user and item embedding

matrices U ∈ R𝑛×𝑑
and I ∈ R𝑚×𝑑

, as well as an interaction set

E, where ( 𝑗, 𝑙) ∈ E denotes a user 𝑢 𝑗 interacted with item 𝑖𝑙 . For

brevity, we focus on a mini-batch of interactions between a set of

𝑟 users, {𝑢1, ..., 𝑢𝑟 }, and a particular item 𝑖 . We then compute the
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ratio of the first and second singular values for a gradient descent

step 𝑡 , denoting the learning rate as 𝜂.

Theorem 4.1. Given the initial user embedding matrix, U(0) , with
singular values 𝜎 (0)

1
and 𝜎 (0)

2
, and the user embedding matrix after 𝑡

iterations of gradient descent with 𝐿𝑎𝑙𝑖𝑔𝑛 , U(𝑡 ) , with singular values

𝜎
(𝑡 )
1

and 𝜎 (𝑡 )
2

, Δ(𝑡 )
ali =

𝜎
(0)
1

𝜎
(0)
2

/𝜎
(𝑡 )
1

𝜎
(𝑡 )
2

is given by:

Δ
(𝑡 )
ali =

𝜎
(0)
1

(1 − 2𝜂)𝑡

(1 − (1 − 2𝜂)𝑡 )
√
𝑟 ∥i∥2 + 𝜎

(0)
1

(1 − 2𝜂)𝑡
. (8)

The full proof is given in Appendix A.1. When 𝜂 < 1

2
, the first term

in the denominator is strictly positive and Δ
(𝑡 )
𝑎𝑙𝑖

< 1, indicating that

the first and second singular values diverge as 𝑡 increases. Thus,

training purely with alignment, i.e. without negative sampling,

induces lower stable rank in the user matrix. Similar logic can

be applied to the item embedding matrix by flipping the initial

notation, indicating a similar decline in stable rank.

4.1.2 Optimizing Uniformity. As uniformity operates solely on

either the user or item embedding matrix, WLOG we focus only

on the user embedding matrix U ∈ R𝑛×𝑑
. Similar to alignment,

we compute the ratio of the first and second singular values for a

gradient descent step 𝑡 .

Theorem 4.2. Given the user embedding matrix optimized via
𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 at gradient step 𝑡 and 𝑡 + 1, with singular values 𝜎 (𝑡 )

1
, 𝜎 (𝑡 )

2

and 𝜎 (𝑡+1)
1

, 𝜎 (𝑡+1)
2

, respectively, Δ(𝑡 )
uni =

𝜎
(𝑡 )
1

𝜎
(𝑡 )
2

/𝜎
(𝑡+1)
1

𝜎
(𝑡+1)
2

is given by:

Δ
(𝑡 )
𝑢𝑛𝑖

=
𝜎
(𝑡 )
1

(𝛼𝜎2 (𝛿U(𝑡 ) ) + 𝜎
(𝑡 )
1

)

𝜎
(𝑡 )
2

(𝛼𝜎1 (𝛿U(𝑡 ) ) + 𝜎
(𝑡 )
1

)
, (9)

where 𝛼 = 𝜂4𝑒−4
√
𝑛𝑑 , 𝛿U(𝑡 ) ∈ R𝑛×𝑛

is the matrix of L1 distances

between pairs of rows in U(𝑡 )
, and 𝜎 𝑗 (𝛿U(𝑡 ) ) is the 𝑗-th singular

value of 𝛿U(𝑡 )
. The full proof is given in Appendix A.2. Δ

(𝑡 )
𝑢𝑛𝑖

> 1

when

𝜎
(𝑡 )
1

𝜎
(𝑡 )
2

>
𝜎1 (𝛿U(𝑡 ) )
𝜎2 (𝛿U(𝑡 ) ) . If we consider a rank-2 user embedding

matrix, where the individual user vectors deviate by angle 𝜖 ,
𝜎
(𝑡 )
1

𝜎
(𝑡 )
2

≈

1

𝜖 and
𝜎1 (𝛿U(𝑡 ) )
𝜎2 (𝛿U(𝑡 ) ) ≈ 𝑟−1√

𝑟
. Thus, as 𝜖 tends towards 0, Δ

(𝑡 )
𝑢𝑛𝑖

is greater

than 1, indicating that uniformity promotes higher stable rank as

the embeddings with the matrix become more aligned.

5 Expediting Collaborative Filtering Training
with Stable Rank Regularization

Given our analysis thus far, we have evidence that (a) the stable rank

of the user and item matrices influences model performance, and

(b) negative sampling-based regularization strategies intrinsically

induce higher stable rank. Thus, our goal is to directly induce

the stable rank property within the training process, rather than

indirectly optimize it through a more costly regularization term,

like uniformity. We begin by introducing our new loss term, stable

rank regularization, and then discuss how we use it during training.

5.1 Stable Rank Regularization
We formulate the stable rank regularization as the stable rank cal-

culation scaled relative to the max possible rank of the matrix. The

scaling allows for the stable rank loss to be between 0 and 1, mak-

ing it easier to balance with other loss terms. Specifically, given

A ∈ R𝑛×𝑚
, the regularization is formulated as:

𝐿
srank

=
∥A∥2

𝐹

∥A∥2
2
max(𝑛,𝑚)

. (10)

Notably, 𝐿
srank

is model-agnostic, and can be amenable to any

ID embedding training strategy by co-optimizing it with some

similarity-inducing loss, e.g. 𝐿
align

. We optimize with respect to

−𝛾𝑠𝑟𝐿srank to retain higher stable rank, where 𝛾𝑠𝑟 is the weighting

parameter between the chosen similarity loss and 𝐿
srank

. We can

additionally express ∇A𝐿srank (A) as:

∇A𝐿srank (A) =
2(A − srank(A)𝜎1𝜓1𝜔⊤

1
)

∥A∥2
2

, (11)

where 𝜎1 is the largest singular value of A, 𝜓1 is the left singular

vector corresponding to 𝜎1, and 𝜔1 is the right singular vector

corresponding to 𝜎1. Similar to uniformity, we row-normalize A.

5.1.1 Relation to Other Methods. The proposed stable rank regu-

larization has relation to some methods found in self-supervised

learning (SSL). For instance, the BarlowTwins loss aims tomaximize

the off-diagonals of the the correlation matrix between perturbed

samples, mitigating dimensionality collapse [42]. However, this is

highly coupled to the SSL setting and not directly amenable to CF.

More general contrastive losses have also discussed the benefit of

optimizing spectral properties of embeddings [21]. In the context

of CF, the newly proposed nCL loss has begun to explore these

principles, optimizing for compact and high-dimensional clusters

for users and items [2]. Yet, the loss is only motivated empirically

by performance and cannot be applied to pre-existing systems.

5.1.2 Computational and Memory Complexity: Computing ∥A∥2
𝐹

requires iterating over all elements within A, thus scaling as O(𝑛𝑚).
∥A∥2

2
requires solving for the largest eigenvalue of (A⊤A)

1

2 , which

scales as O(𝑛𝑚2) given the number of embedding dimensions is

small (𝑛 ≫𝑚). In comparison, uniformity scales as 𝑂 (𝑛2𝑚) given
the need to compute all pairwise similarities between users or items.

As the intermediary matrices must be retained for gradient compu-

tation, as seen in Equations (12) and (13), the memory requirements

follow similar scaling properties as the computation requirements.

Thus, stable rank regularization is not only faster, but allows for

training with larger datasets given a fixed memory size.

5.2 Training with Stable Rank Regularization
Despite establishing that stable rank is optimizedwithin CF training,

it is still unclear to what extent stable rank can be used as a direct

proxy for negative sampling during training. Thus, we first study

the relationship between stable rank and uniformity optimization,

finding that stable rank is a reasonable approximation when the

user (or item) embeddings are similar, i.e. strong alignment. We

then establish a warm-start training strategy which uses stable rank

regularization during early phases of training, and other negative

sampling-based regularization during the end of training.

5
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Figure 2: Example of Vectors Optimized for Stable Rank and Uniformity.
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Figure 3: Angle 𝜌 between ∇u𝐿srank and
Angle between ∇u𝐿uniformity across gradi-
ent descent steps. Fill represents std across
three randomly initialized user matrices.

5.2.1 Relationship Between Stable Rank and Uniformity Optimiza-
tion. To establish a connection between stable rank and uniformity,

we start with a motivating example where we optimize uniformity

and stable rank for three random user vectors in 2-D space. Then,

we expand the analysis and look at the angle formed by the unifor-

mity and stable rank gradients, using Equation (12) and (13), for a

set of 1000 users in 32-D space. In the higher-dimensional setting,

we instantiate the user embeddings such that the angle between

pairs of embeddings are within a small angle, 𝜃 = 1
◦
, simulating

strong alignment. Together, the results highlight that stable rank

and uniformity approximate each other well when the vectors are

close, and only deviate once the vectors become more uniform.

∇𝑢𝐿uniformity
=

−4∑𝑢′ 𝑒−2∥u−u′ ∥2
2 (u − u′)∑

𝑢′ 𝑒−2∥u−u′ ∥2
2

(12)

∇𝑢𝐿srank =
𝜎2
1
2u − ∥U∥2

𝐹
(2𝜎1𝜓1𝜔⊤

1
)𝑢

𝜎4
1

(13)

In Figure 2, we plot the three user vectors on the unit circle. In

early stages of optimization, the angles between the vectors are

highly similar across the two losses. However, as the optimizes

continues, the angles diverge between losses, where uniformity

continues to separate the vectors apart while the stable rank gradi-

ent goes to zero. As stable rank aims to attain orthogonal vectors,

it is unable to increase the angle between the vectors beyond Step

500 given the vectors would revert back to linear dependence.

To measure the angle between ∇𝑢𝐿uniformity
and ∇𝑢𝐿srank, we

generate our larger user matrix and compute Equations (12) and

(13) for all users. Then, the angle between the gradients is,

𝜌 = arccos

( ∇𝑢𝐿uniformity
· −∇𝑢𝐿srank

∥∇𝑢𝐿uniformity
∥∥∇𝑢𝐿srank∥

)
(14)

across the gradient descent steps. A negative is applied to ∇𝑢𝐿srank
as the objective is maximized. In Figure 3, the uniformity and stable

rank gradients are highly similar for a majority of the optimization

process, and only begin to deviate in the later stages of the opti-

mization. This demonstrates that the smaller example in Figure 3

translates to larger user matrices. We use this insight to inform how

we utilize stable rank during training, as described in our section.

5.2.2 Warm-Start Training Strategy. As stable rank regularization

cannot directly replace uniformity and fully approximate negative

sampling, we focus on identifying periods of training where stable

rank can be most impactful. Based on the DirectAU trajectories ob-

served in Figure 1, training typically involves three phases focused

on alignment, stable rank, and then uniformity. Early in training,

alignment dominates the DirectAU loss, leading to an initial col-

lapse in stable rank. Once alignment is achieved, training promotes

stable rank, ensuring interacted pairs are closer than non-interacted

pairs. Near the end of training, the stable rank is high, however the

uniformity continues to push non-interacted pairs apart. Notably,

BPR generally only possesses an alignment phase given the weak

regularization induced by one negative sample.

To utilize these insights, we propose a warm-start strategy that

uses stable rank regularization, in place of negative sampling or

uniformity, during the alignment and stable rank phases. Stable

rank regularization is then replaced with negative sampling or uni-

formity regularization during the uniformity phase. To determine

the transition point, we employ an early stopping strategy where a

decrease in validation performance signals to switch. This is mo-

tivated by the fact that once stable rank becomes ineffective, the

alignment term will dominate the loss and reduce performance.

This early stopping approach accounts for noise by incorporating

patience, ensuring the stable rank phase is complete. Given the

stable rank computation is significantly faster than more expensive

losses, like uniformity, we expect speed-ups in overall training to

be roughly proportion with the relative number of epochs warmed

up via stable rank. Additionally, since stable rank serves as an inex-

pensive proxy for negative sampling, we expect lightweight losses

which focus on alignment, e.g. BPR, to benefit in performance from

stable rank regularization with relatively small runtime costs.

6 Empirical Analysis
In this section, we perform a series of empirical analyses to validate

the benefit of stable rank regularization and determine how we can

6
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Table 2: Comparison between MF models trained with DirectAU and DirectAU + Stable Rank warm-start. Test Recall@20 and
NDCG@20 are reported, with the runtime measured over training process. We provide the difference between standard and
warm start training processes (Stable Rank - Standard) and the percent differences (change from Standard). Stable Rank shown
as effective given all datasets receive significant training speedups with no performance loss.

DirectAU Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 24.9 ± 0.0 23.3 ± 0.1 58.3 ± 0.7 18.4 ± 0.1 13.3 ± 0.1 244.4 ± 1.9

+ Stable Rank 25.0 ± 0.1 23.6 ± 0.0 40.1 ± 5.1 18.3 ± 0.1 13.2 ± 0.1 148.8 ± 10.7

Difference (% Diff.) ↑ 0.1 (0.40%) ↑ 0.3 (1.29%) ↓ 18.2 (-31.22%) ↓ 0.1 (-0.54%) ↓ 0.1 (-0.75%) ↓ 95.6 (-39.12%)

Yelp2018 AmazonBook

Standard 10.6 ± 0.1 7.1 ± 0.0 310.9 ± 3.2 10.5 ± 0.1 7.8 ± 0.1 426.6 ± 9.3

+ Stable Rank 10.7 ± 0.1 7.1 ± 0.0 174.6 ± 20.2 10.6 ± 0.1 7.8 ± 0.1 145.0 ± 15.7

Difference (% Diff.) ↑ 0.1 (0.94%) 0.0 (0.00%) ↓ 136.2 (-43.81%) ↑ 0.1 (0.95%) 0.0 (0.00%) ↓ 281.6 (-66.03%)

improve CF training. This leads to three core research questions:

(RQ1) How effective is our stable rank warm-start strategy at expe-

diting training in computationally expensive settings?, (RQ2) How
well does stable rank approximate negative sampling, and can it

be used to bolster lightweight losses?, and (RQ3) What datasets

benefit most from stable rank warm-start strategy?

6.1 Experimental Setup
6.1.1 Datasets. Our experiments are performed on four common

benchmarks including MovieLens1M [14], Gowalla [5], Yelp2018

[41], AmazonBook [27]. The dataset statistics are provided in Ta-

ble 5 of the Appendix.

6.1.2 Models and Loss Functions. We focus on applying the stable

rank warm-up strategy to MF, trained with BPR, SSM, and Direc-

tAU. We additionally include experiments training LightGCN with

DirectAU given together this combination has been shown to pro-

duce state of the art results on many tasks. We provide details on

hyperparameters and tuning in Appendix C.

6.1.3 Evaluation Methods/Metrics. To assess the quality of the ID

embedding tables learned under the different model and loss com-

binations, we look at both performance and training time. For per-

formance, we utilize Recall@20 and NDCG@20, while for runtime

we report the time to perform forward and backward passes, given

these are the factors which vary between architectures. Exact details

on evaluation and implementation are provided in Appendix C.

Table 3: Comparison between LightGCNmodels trained with
DirectAU and DirectAU + Stable Rank warm-start. Percent
differences are shown for NDCG@20 performance and run-
time. LightGCN benefits similar to MF with significant im-
provements in runtime while retaining high performance.

Dataset NDCG@20 % Diff. Runtime % Diff.

MovieLens1M -0.47 ± 0.66% -35.02 ± 25.87%

Gowalla -0.51 ± 0.36% -37.75 ± 7.19%

Yelp2018 0.51 ± 0.71% -42.61 ± 12.99%

AmazonBook 4.69 ± 2.64% -10.27 ± 16.88%

6.2 Results
(RQ1) Expediting Training with Stable Rank. In Table 2, we

compare the performance and runtime of MF models trained with

vanilla DirectAU and those employing DirectAU with a stable rank

warm-start. Across all datasets, the stable rank warm-start signifi-

cantly reduces runtime while maintaining comparable Recall@20

and NDCG@20 metrics. On average, our approach allows MF mod-

els to train 45.93% faster, with speed-ups reaching up to 65.9% on

AmazonBook. This improvement stems from two core properties: (i)

the stable rank calculation is significantly cheaper than uniformity,

accelerating epochs in the alignment or stable rank phases, and (ii)

stable rank regularization mitigates the initial stable rank collapse,
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Figure 4: Ablating the Stable Rank warm-start with Align-
ment Only warm-start. Each dot represents the NDCG@20
and runtime for the respective training strategy. While all
methods attain similar performance, both DirectAU and
Alignment Only Warm-start significantly increase runtime.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Comparison between MF models trained with BPR, and BPR + Stable Rank warm-start. Stable rank is shown to
significantly increase performance of BPR with minimal increases in runtime relative to more expensive loss functions.

BPR Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 22.0 ± 0.1 19.4 ± 0.0 1.2 ± 0.2 12.7 ± 0.0 9.2 ± 0.1 1.8 ± 0.2

+ Stable Rank 22.3 ± 0.0 19.8 ± 0.1 2.0 ± 0.5 13.6 ± 0.1 9.9 ± 0.1 3.2 ± 1.2

Difference (% Diff) ↑ 0.3 (1.36%) ↑ 0.4 (2.06%) ↑ 0.8 (66.67%) ↑ 0.9 (7.09%) ↑ 0.7 (7.61%) ↑ 1.4 (77.78%)

Yelp2018 AmazonBook

Standard 7.1 ± 0.1 4.7 ± 0.1 2.2 ± 0.1 6.6 ± 0.1 4.6 ± 0.0 18.0 ± 0.7

+ Stable Rank 8.3 ± 0.0 5.5 ± 0.0 5.4 ± 1.3 8.0 ± 0.1 5.6 ± 0.1 30.7 ± 1.7

Difference (% Diff) ↑ 1.2 (16.90%) ↑ 0.8 (17.02%) ↑ 3.2 (145.45%) ↑ 1.4 (21.21%) ↑ 1.0 (21.74%) ↑ 12.7 (70.56%)

reducing the number of epochs needed for DirectAU to achieve

sufficient uniformity. An ablation study shown in Figure 4 supports

these findings where we compare an alignment-only warm-start

strategy –disabling all regularization in the initial phases – with

our stable rank approach. Across nearly all datasets, the alignment

warm-start, despite retaining similar performance, takes signifi-

cantly longer than stable rank to converge.

In Table 3, we report performance and runtime metrics for Light-

GCN, revealing similar improvements without performance loss,

averaging a 31.4% speed-up across datasets. This result suggests that

rank collapse observed in message passing for contrastive learning

[38] is also relevant to CF. Notably, the standard deviations for

LightGCN are higher than for MF due to its faster convergence –

LightGCN typically converges within∼25 epochs for MovieLens1M,

compared to ∼100 epochs for MF. As a single LightGCN epoch has a

longer runtime than a single MF epoch, fluctuations in the number

of warm-start epochs can produce large swings in percent differ-

ence. Nonetheless, the runtime reductions consistently point to

significant improvements, underscoring the efficacy of our stable

rank warm-start strategy in expediting training.

(RQ2) Approximating Negative Sampling with Stable Rank.
In Table 4 we compare MF models trained with vanilla BPR and

BPR with stable rank warm-start. Across all datasets, BPR with

stable rank warm-start exhibits a notable performance boost, with

NDCG@20 increasing by an average of 12.1%, and up to 21.2% on

AmazonBook. Importantly, these gains come with only a small in-

crease in runtime, usually just a few extra minutes of computation.

To understand the relationship between these performance im-

provements and negative sampling, we also conducted experiments

on SSM, presented in Table 6 of the Appendix. While stable rank

regularization offers less benefit to SSM, since SSM is already a cost-

effective approximation for full negative sampling, BPR with stable

rank regularly achieves similar or better performance. For instance,

on Yelp and Gowalla datasets, BPR with stable rank improves over

SSM by 22.2% and 3.1% in NDCG@20, respectively. Additionally, on

MovieLens1M and Gowalla, BPRwith stable rank decreaes runtimes

by 60.78% and 48.39% as compared to SSM, demonstrating that our

warm-start strategy encodes useful negative sampling signal.

(RQ3) Stable Rank Warm-start Effectiveness with Different
Dataset Properties While our previous analysis focused on dif-

ferent losses for a fixed dataset, we now examine trends between

datasets for a given loss. As shown in Table 4 and Table 2, our

proposed method behaves differently across datasets. Specifically,

for MF models trained with DirectAU and BPR, the most substan-

tial speed-ups and performance gains occur with AmazonBook, as

mentioned in RQ1 and RQ2. According to Table 5, AmazonBook

is the sparsest dataset with a large item set. Conversely, Movie-

Lens1M shows the least benefit and is extremely dense with a small

item set, only displaying speed-ups of 31.2% and performance im-

provements of 2.1%. From a negative sampling perspective, sparser

datasets with larger item sets require significantly more negative

samples to achieve similar levels of regularization as compared to

denser datasets with smaller item sets. This is evident in Figure 1,

where MovieLens1M trained with BPR shows recovery from the

initial stable rank collapse with just one negative sample, while

AmazonBook’s trajectory strictly decreases. Thus, stable rank reg-

ularization tends to be more beneficial for large, sparse datasets,

which are commonly seen in real-world systems. For LightGCN, the

trend differs due to the runtime bottleneck in the message passing

component, which scales with the edge set. Consequently, reducing

the number of epochs for LightGCN on denser datasets yields larger

runtime improvements, as seen on MovieLens1M and Yelp.

7 Conclusion
In this work, we addressed scalability challenges within CF meth-

ods by investigating the properties and training trajectories of

ID embedding tables under various learning strategies. Through

both empirical and theoretical analyses, we revealed an intrinsic

link between the singular values of these tables and different CF

loss functions. Moreover, leveraging the relationship between BPR,

SSM, and DirectAU, rooted in the level of regularization induced

by negative sampling, we proposed a an efficient stable rank regu-

larization which promotes similar training signals as full negative

sampling. To operationalize our proposedmethod, we also proposed

a warm-start strategy which optimizes for stable rank during the

early training phases, significantly improve embedding quality and

efficiency. These findings both enhance our fundamental under-

standing of CF-based recommender systems, while also broadening

their applicability to large-scale environments by mitigating com-

putational overhead. Furthermore, as the method is model and loss

function agnostic, it can be easily combined with more modern CF

learning paradigms, as well as more mature production pipelines.
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A Theoretical Analysis for Alignment and
Uniformity

The goal of this analysis is to understand how alignment (no neg-

ative sampling) and uniformity (full negative sampling) induce

different stable rank properties in the user and item embedding

matrices. We begin by studying the gradient descent process for

the user embedding matrix as trained by the alignment loss func-

tion, represented as the euclidean distance between user-item pairs.

Then, we will consider the uniformity loss term, and perform a

similar style of analysis.

A.1 Proof for Theorem 1 - Alignment Induces
Rank Collapse

We begin by understanding how the alignment objective modifies

the singular values of the user (or item) matrices. Without loss

of generality, we focus on the singular values of the user matrix,

however the same logic can be applied to the itemmatrix by flipping

the user and item notation.

Assume there is a user matrix U ∈ R𝑛×𝑑
and an item matrix I ∈

R𝑚×𝑑
. Additionally, assume there are a set of historic interactions

E, where ( 𝑗, 𝑙) ∈ E denotes that a user 𝑗 interacts with item 𝑙 . Then,

the alignment objective over the user and item pairs is:

𝐿
align

=
∑︁

( 𝑗,𝑙 ) ∈𝐸
∥u𝑗 − i𝑙 ∥22 .

As we can group terms within 𝐿
align

according to particular items,

similar to batching within gradient-based optimization, we focus

on a single arbitrary item i with 𝑟 interacted users. Through this

notation, a user u𝑗 ∈ {u1, ..., u𝑟 } is attached to item i. The alignment

loss for this subset is expressed as:

𝐿
align

=

𝑟∑︁
𝑗=1

∥u𝑗 ∥22 − 2u⊤𝑗 i + ∥i∥2
2
.

The partial derivative for the alignment loss with respect to a

user u𝑗 is give by,

𝜕L
𝜕u𝑗

= 2(u𝑗 − i)

leading to a recursive gradient descent update rule of,

u(𝑡+1)
𝑗

= u(𝑡 )
𝑗

− 2𝜂 (u(𝑡 )
𝑗

− i) .

where 𝜂 is the learning rate and u(𝑡+1)
𝑗

is the 𝑗-th user’s embedding

vector at time 𝑡 . To attain a closed-form solution of the embedding

for u𝑗 , the recurrence relation is expanded, leading to:

u(𝑡 )
𝑗

= (1 − 2𝜂)𝑡u(0)
𝑗

+ 2𝜂

𝑡−1∑︁
𝑘=0

(1 − 2𝜂)𝑘 i.

This result can be further simplified by summing the geoemtric

series, leading to,

u(𝑡 )
𝑗

= (1 − 2𝜂)𝑡u(0)
𝑗

+
(
1 − (1 − 2𝜂)𝑡

)
i.

The update equation for each user can be consolidated into

matrix-form by recognizing the equation as a weighted sum of

the original user embeddings, and the item embeddings. Then, the

update rule becomes,

U(𝑡 ) = (1 − 2𝜂)𝑡U(0) + (1 − (1 − 2𝜂)𝑡 ) (1 ⊗ i⊤)

where U(𝑡 )
denotes the user matrix at gradient descent step 𝑡 , 1

represents a ones vector of size 𝑟 and ⊗ is the outer product.

The singular values of the matrix U(𝑡 )
can be directly inferred

based on the update rule. First, we assume that U(0)
, the original

user embeddings, has a singular value decomposition (SVD), where

U(0) =
∑𝑚𝑖𝑛 (𝑟,𝑑 )

𝑗=1
𝜎
(0)
𝑗

𝛼
(0)
𝑗

𝛽
(0)
𝑗

, and all 𝜎
(0)
𝑗

> 0. That is, U(0)
is

full rank. Then, we can study the singular values of the two terms

in the update rule. The 𝑗-th singular values for the two terms of

U(𝑡 )
are given by:

𝜎 𝑗 ((1 − 2𝜂)𝑡U(0) ) = (1 − 2𝜂)𝑡𝜎 (0)
𝑗

𝜎 𝑗 ((1 − (1 − 2𝜂)𝑡 ) (1 ⊗ i⊤)) =
{
(1 − (1 − 2𝜂)𝑡 )

√
𝑟 ∥i∥2, 𝑗 = 1

0, 𝑗 ≠ 1

.

Using Weyl’s inequality, we can then bound the 𝑗-th singular

value of𝑈 (𝑡 )
as:

𝜎 𝑗 (U(𝑡 ) ) ≤ 𝜎 𝑗 ((1 − (1 − 2𝜂)𝑡 ) (1 ⊗ i⊤)) + 𝜎1 ((1 − 2𝜂)𝑡U(0) )

=

{
(1 − (1 − 2𝜂)𝑡 )

√
𝑟 ∥i∥2, if 𝑗 = 1

0, if 𝑗 ≠ 1

}
+ (1 − 2𝜂)𝑡𝜎 (0)

1

(15)

leveraging the relationship between the 2-norm of a matrix and

the dominant singular value. Additionally, 𝜎
(0)
1

is the largest singu-

lar value of the original sampled user matrix. To understand how

the singular values are changing, we can compare

𝜎
(0)
1

𝜎
(0)
2

with

𝜎
(𝑡 )
1

𝜎
(𝑡 )
2

,

denoted Δ(𝑡 )
, by dividing the two quantities to attain a relative

scaling. WhileWeyl’s inequality provides an upper bound, the exact

values are dictated by exact properties of the user and itemmatrices.

As these cannot be directly expressed, we instead introduce 𝜆1 ≤ 1

and 0 < 𝜆2 ≤ 1 as scalars on the first and second singular values to

account for instance where they are not at the upper bound. Then,

Δ(𝑡 ) =
𝜎
(0)
1

𝜆2 (1 − 2𝜂)𝑡

𝜆1 (1 − (1 − 2𝜂)𝑡 )
√
𝑟 ∥i∥2 + (1 − 2𝜂)𝑡𝜎 (0)

1

Assuming that 0 < 𝜂 < 0.5, otherwise the representations either

do not change, or immediately collapse to i, the term (1 − (1 −
2𝜂)𝑡 )

√
𝑟 ∥i∥ is strictly positive. Letting 𝜆1 ≈ 𝜆2, we cancel these

terms and conclude that Δ(𝑡 ) < 1, and the gap between the first and

second largest singular value exponentially increases as a function

of 𝑡 . Thus, one can expect that after sufficient iterations, alignment

will induce rank collapse on the subset of the user matrix. □

A.2 Proof for Theorem 2 - Uniformity Promotes
Higher Rank

Using our previously established result and analysis techniques,

we are now going to study uniformity. The goal will be to be able

to express a similar measure for the gap between the two largest

singular values. We will assume a batch of 𝑟 users with 𝑑 features,

11
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and study how user matrix U is updated. Similar logic can be applied

to the item matrix, 𝐼 . We begin by specifying the uniformity loss as

𝐿
uniformity

= log(
𝑟∑︁
𝑗

𝑟∑︁
𝑗 ′≠𝑗

𝑒−2∥u𝑗−u𝑗 ′ ∥22 ) .

To perform a similar analysis based on matrix computation, let

us first represent the uniformity term through matrix computation.

We will begin through a similar expansion used in the alignment

computation where:

∥u𝑗 − u𝑗 ′ ∥22 = ∥u𝑗 ∥22 − 2u⊤𝑗 u𝑗 ′ + ∥u𝑗 ′ ∥22 .
Given the log transform on the uniformity term is monotonic and

simply changes the scale of the gradient update, we remove it for

simplicity. Then, the uniformity loss is:

𝐿
uniformity

=

𝑟∑︁
𝑗

𝑟∑︁
𝑗 ′≠𝑗

𝑒
−2( ∥u𝑗 ∥2

2
−2u⊤

𝑗 u𝑗 ′+∥u𝑗 ′ ∥22 ) .

We can the compute the gradient with respect to a user 𝑢 𝑗 as:

∇𝑢 𝑗
𝐿
uniformity

=

𝑟∑︁
𝑗 ′≠𝑗

−4𝑒−2( ∥u𝑗 ∥2
2
−2u⊤

𝑗 u𝑗 ′+∥u𝑗 ′ ∥22 ) (u𝑗 − u𝑗 ′ ). (16)

We can then use the fact that the rows of U are normalized,

leading to

∇𝑢 𝑗
𝐿
uniformity

=

𝑟∑︁
𝑗 ′≠𝑗

−4𝑒−2(2−2u⊤
𝑗 u𝑗 ′ ) (u𝑗 − u𝑗 ′ ) .

= −4𝑒−4
𝑟∑︁

𝑗 ′≠𝑗

𝑒
4u⊤

𝑗 u𝑗 ′ (u𝑗 − u𝑗 ′ )
(17)

The gradient descent update for a user u𝑗 is:

u(𝑡+1)
𝑗

= u(𝑡 )
𝑗

+ 𝜂4𝑒−4
𝑟∑︁
𝑗 ′

𝑒
4u⊤

𝑗 u𝑗 ′ (u𝑗 − u𝑗 ′ )

Now, let UU⊤
be the Gram matrix of U, G. Likewise, let 𝛿U𝑘 ∈

R𝑛×𝑛
be the matrix of pairwise differences for the 𝑘-th element in

the user embeddings. Then, the update for the full matrix U is

U(𝑡+1) = U(𝑡 ) + 𝜂4𝑒−4 [(𝑒4𝐺 ⊗ 𝛿U0)1𝑛×1, ..., (𝑒4𝐺 ⊗ 𝛿U𝑓 )1𝑛×1]
(18)

The second term in the equation denotes the element-wise prod-

uct of the similarities from the exponential gram matrix and the

pairwise differences. 1𝑛×1 is used to sum across all pairwise ele-

ments for a given user, weighted by the similarity. Finally, all of

these elements are stacked for each dimension of the embedding.

The singular values can be expressed using Weyl’s inequality as

𝜎 𝑗 (U(𝑡+1) ) ≤ 𝜎 𝑗 (𝜂4𝑒−4 [(𝑒4𝐺 ⊗ 𝛿U0)1, ..., (𝑒4𝐺 ⊗ 𝛿U𝑓 )1]) + 𝜎1 (U(𝑡 ) )
(19)

In order to attain a closed form solution, wemake the assumption

that each of the dimensions from 0 to 𝑓 have the same pairwise

distance matrix 𝛿U. Then, the expression can be simplified as,

𝜎 𝑗 (U(𝑡+1) ) ≤ 𝜎 𝑗 (𝜂4𝑒−4 (𝑒4𝐺 ⊗ 𝛿U0)1𝑛×𝑑 ) + 𝜎1 (U(𝑡 ) )

= 𝜂4𝑒−4𝜎 𝑗 ((𝑒4𝐺 ⊗ 𝛿U)1𝑛×𝑑 ) + 𝜎
(𝑡 )
1

= 𝜂4𝑒−4𝜎 𝑗 (𝑒4𝐺 ⊗ 𝛿U)𝜎1 (1𝑛×𝑑 ) + 𝜎
(𝑡 )
1

= 𝜂4𝑒−4
√
𝑟𝑑𝜎 𝑗 (𝑒4𝐺 ⊗ 𝛿U) + 𝜎

(𝑡 )
1

(20)

We thus need to analyze 𝜎 𝑗 (𝑒4𝐺 ⊗ 𝛿U). We will begin by approx-

imating 𝑒4𝐺 as a first order Taylor series of 𝑒X = I + X to linearize

the relationship. Then 𝜎 𝑗 (𝑒4𝐺 ⊗ 𝛿U) ≈ 𝜎 𝑗 ((I + 4G) ⊗ 𝛿U). Using
the properties of singular values of hadamard products, we can

lower bound the relationship as 𝜎𝑖 (A ⊗ B) ≥ 𝜎𝑛 (A)𝜎𝑖 (B). Then,
the lower bound is:

𝜎𝑖 ((I + 4G) ⊗ 𝛿U) ≥ 𝜎𝑛 ((I + 4G))𝜎𝑖 (𝛿U)
= (1 + 4𝜎𝑟 (G))𝜎𝑖 (𝛿U)
> 𝜎𝑖 (𝛿U)

(21)

assuming that 𝐺 is full rank with smallest singular value greater

than 0. Applying the lower bound:

𝜎 𝑗 (U(𝑡+1) ) ≤ 𝜂4𝑒−4
√
𝑟𝑑𝜎 𝑗 (𝛿U) + 𝜎

(𝑡 )
1

(22)

We can then compute the ratio between
𝜎1 (U(𝑡 ) )
𝜎2 (U(𝑡 ) ) and

𝜎1 (U(𝑡+1) )
𝜎2 (U(𝑡+1) ) ,

Δ(𝑡 )
to measure how the singular values change with uniformity

optimization, again introducing 𝜆1, 𝜆2 as we did in the proof on

alignment to account for the divergence from the upper bound.

Then,

Δ(𝑡 ) =
𝜎1 (U(𝑡 ) )𝜆2 (𝛼𝜎2 (𝛿U𝑡 ) + 𝜎

(𝑡 )
1

)

𝜎2 (U(𝑡 ) )𝜆1 (𝛼𝜎1 (𝛿U𝑡 ) + 𝜎
(𝑡 )
1

)
(23)

where 𝛼 = 𝜂4𝑒−4
√
𝑟𝑑 . We can then solve for when Δ(𝑡 ) > 1 indicat-

ing that the first and second singular values have a smaller relative

gap. This occurs when
𝜎1 (U(𝑡 ) )
𝜎2 (U(𝑡 ) ) >

𝜎1 (𝛿U(𝑡 ) )
𝜎2 (𝛿U(𝑡 ) ) , assuming 𝜆1 ≈ 𝜆2.

If we study rank-2 matrices, considering a particular rank-2

matrix M,
𝜎1 (𝑀𝑡 )
𝜎2 (𝑀𝑡 ) is the condition number 𝜅 (M𝑡 ), and we want to

assess when 𝜅 (M𝑡 ) > 𝜅 (𝛿M𝑡 ) where 𝛿M is the pairwise difference

matrix where all element-wise distances are a constant. We will

also assume that the vectors are close in proximity, modeled as

M =

©­­­­«
𝑐𝑜𝑠 (𝜃 ) 𝑠𝑖𝑛(𝜃 )

𝑐𝑜𝑠 (𝜃 + 𝜖) 𝑠𝑖𝑛(𝜃 + 𝜖)
.
.
.

.

.

.

𝑐𝑜𝑠 (𝜃 + (𝑟 − 1)𝜖) 𝑠𝑖𝑛(𝜃 + (𝑟 − 1)𝜖)

ª®®®®¬
(24)

Then, we have that 𝜎1 (M) =
√
𝑟 from the Frobenius norm of 𝑀 ,

while 𝜎2 (M) scales as 𝜖
√
𝑟 given the second singular value is pro-

portional to the spread in angle between vectors. Thus, 𝜅 (M𝑡 ) ≈ 1

𝜖 ,

indicating an increased gap in the two singular values as 𝜖 becomes

smaller, approaching a collapse in the second singular value. Simi-

larly, 𝜎1 (𝛿M) will scale with the maximum distance between the

furthest vectors in 𝑈 , which is equivalent to 2|𝑠𝑖𝑛((𝑟 − 1)𝜖/2) |, i.e.
the angle spanned by the vectors with angles 𝜃 and 𝜃+(𝑟−1)𝜖 , when
𝜖 is small. Similarly, we can expect 𝜎2 (𝛿M) to scale as 𝜖

√
𝑟 given

12
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the dependence on the spread of angles and number of vectors.

With 𝜖 small, the small angle approximation of 2|𝑠𝑖𝑛((𝑟 − 1)𝜖/2) | is
(𝑟 − 1)𝜖 , and 𝜅 (𝛿M𝑡 ) ≈ (𝑟−1)𝜖

𝜖
√
𝑟

=
(𝑟−1)√

𝑟
. For lim𝜖→0 with a fixed 𝑟 ,

it is clear that 𝜅 (M𝑡 ) > 𝜅 (𝛿M𝑡 ), indicating a decrease in the gap in

the first and second singular values with uniformity optimization,

increasing stable rank.

□

B Dataset Statistics
For the datasets used throughout the paper, we provide their sta-

tistics in Table 5. We provide the number of users and items, as

well as the number of interactions. Additionally, we compute the

density of each dataset as # Interactions/(# Users × # Items).

Table 5: Dataset Statistics.

Dataset # Users # Items # Interactions Density

MovieLens1M 6,040 3,629 836,478 3.82%

Gowalla 29,858 40,981 1,027,370 0.08%

Yelp2018 31,668 38,048 1,561,406 0.13%

AmazonBook 52,643 91,599 2,984,108 0.06%

C Additional Setup Details on Experiments
In this section, we provide additional experiment setup details for

the analyses performed within the paper. Note that the details apply

to both the motivating experiment given on stable rank trajectories,

as well as the warm-start experiments. We start by giving addi-

tional details on the hyper-parameter tuning process, then provide

information on the evaluation process and implementation details.

C.1 Hyperparameters and Tuning
We primarily focus on MF throughout the paper, with LightGCN

added in the warm-start experiments. The embedding tables in

both cases are initialized using PyTorch’s standard unit normal

distribution. We use cross validation to choose the best model,

searching over learning rates {0.1, 0.01, 0.001} and weight decays

{1𝑒−4, 1𝑒−6, 1𝑒−8}. The embedding dimensions are kept at 64. For

LightGCN, we set a depth of 3. The models are trained for up to 400

epochs, with early stopping employed over validation NDCG@20.

A patience value of 20 epochs is used, based on our sensitivity study

performed in Appendix D.3. For experiments which utilize SSM, we

set a negative sampling ratio of 20. For DirectAU, we additionally

cross-validate 𝛾 values from {1.0, 2.0, 5.0}, as recommender in the

original paper [35]. The batch size for BPR, SSM, and DirectAU

training are set to roughlymaximize size that can fit withinmemory,

which is 16384 for BPR and SSM, and 4096 for DirectAU. When

using the stable rank regularization, we hyper-parameter tune 𝛾𝑠𝑟
from {0.05, 0.1, 0.2}, however we find that 0.1 tends to work well

for most datasets. The train/val/test splits are random and use

80%/10%/10% of the data.

C.2 Evaluation
To evaluate our models, we look at recall@K, NDCG@K, and run-

time in minutes. We use standard definitions for recall@K and
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Figure 5: Stable Rank Trajectories of Item Matrices. The blue
line denotes BPR, and the orange line denotes DirectAU. The
dotted line denotes the final stable rank of the item matrices
after training. DirectAU produces higher rank user matrices.

NDCG@K, except that we let 𝑘 = min(𝑘, 𝑁 (𝑢)), where 𝑁 (𝑢) is the
number of elements a user 𝑢 interacts with. This way, each user’s

recall and NDCG value can span the full range from 0 to 1. For

runtime, we specifically focus on timing the forward and backward

passes of the different methods. Thus, we do not include evaluation

given it is constant between methods. Moreover, evaluation can

be approximated with fewer samples, or performed on a subset of

epochs, and thus naturally sped up if significant runtime costs are

incurred.

C.3 Implementation
The loss functions, as well as the MF training process, and imple-

mented within vanilla PyTorch. LightGCN is implemented using

PyTorch Geometric. Data loading and batching is additionally imple-

mented with PyTorch Geometric’s dataloader. We use approximate

negative sampling for BPR and SSM, as seen in PyG’s documenta-

tion for their LinkNeighborLoader, meaning there is a small chance

some negative samples may be false negatives. The models are

trained on single Tesla P100s with 32GB of RAM, via Google Cloud.

D Additional Experimental Results
In this section, we provide supplemental results to the experiments

performed in the main text.

D.1 Item Stable Rank Trajectories
We include the stable rank trajectories for the item set in Figure 5,

denoting similar trends to those seen in the user embedding table

for both BPR and DirectAU.
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Table 6: Comparison between SSM models trained with standard training, as well as with Stable Rank regularization as a
warm-start process. Reported are Recall@20, NDCG@20 on the held-out test set, with the runtime measured over the training
process. Stable rank shown as less effective for SSM given the loss function already utilizes a larger number of negative samples
(20 negative samples).

Loss Recall@20 NDCG@20 Runtime (min) Recall@20 NDCG@20 Runtime (min)

MovieLens1M Gowalla

Standard 23.4 ± 0.1 20.8 ± 0.2 5.1 ± 0.8 13.0 ± 0.3 9.6 ± 0.2 6.2 ± 0.0

+ Stable Rank 23.3 ± 0.0 20.9 ± 0.1 5.1 ± 0.5 13.1 ± 0.4 9.8 ± 0.3 6.3 ± 0.0

Difference ↓ 0.1 (-0.43%) ↑ 0.1 (0.48%) 0.0 (0.00%) ↑ 0.1 (0.77%) ↑ 0.2 (2.08%) ↑ 0.1 (1.61%)

Yelp2018 AmazonBook

Standard 6.7 ± 0.7 4.5 ± 0.3 3.8 ± 0.6 8.1 ± 0.5 6.1 ± 0.4 20.9 ± 2.1

+ Stable Rank 6.8 ± 0.7 4.7 ± 0.4 6.8 ± 1.3 8.1 ± 0.4 6.1 ± 0.4 22.4 ± 2.2

Difference ↑ 0.1 (1.49%) ↑ 0.2 (4.44%) ↑ 3.0 (78.95%) 0.0 (0.00%) 0.0 (0.00%) ↑ 1.5 (7.18%)

D.2 Results on SSM
In this section, we provide results when training MF with the SSM

loss, using 20 negative samples. Given the relationship between

BPR, SSM, and DirectAU, rooted in the number of negative samples

acting as weaker or stronger regularization, SSM acts a intermedi-

ary between the BPR and DirectAU. The results in Table 6 highlight

this fact, where the 20 negative samples already offer a reasonable

trade-off of performance versus runtime, and thus do not benefit

strongly from stable rank. Discussion on these results are offered

in the main text, but at a high-level, BPR with stable rank is able

to attain comparable performance to SSM with and without stable

rank with significant lower runtime. This result demonstrates the

benefit of approximating negative sampling through stable rank, al-

lowing BPR significant performance gains with less computational

overhead.

D.3 Sensitivity to Patience
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Figure 6

We perform a sensitivity analysis on our choice of patience,

looking at different patience levels when trainingMFwith DirectAU

and DirectAU with stable rank warm-start. In Figure 6, we can see

that performance has no significant chances, and stays constant

across settings. On the other hand, the runtime speed-ups do have

some sensitivity to patience, which tends to be best around 20.

Before that, we risk the model early stopping due to noise, and then

requiring more uniformity epochs to attain optimal performance.

Moreover, if the patience is set higher to 20, then the optimization

risks residing in the stable rank phase of training too long, again

requiring more overall uniformity epochs.
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